JP6066580B2 - 燃料電池システム - Google Patents

燃料電池システム Download PDF

Info

Publication number
JP6066580B2
JP6066580B2 JP2012101448A JP2012101448A JP6066580B2 JP 6066580 B2 JP6066580 B2 JP 6066580B2 JP 2012101448 A JP2012101448 A JP 2012101448A JP 2012101448 A JP2012101448 A JP 2012101448A JP 6066580 B2 JP6066580 B2 JP 6066580B2
Authority
JP
Japan
Prior art keywords
fuel
fuel gas
output current
anode
characteristic curve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012101448A
Other languages
English (en)
Other versions
JP2013229228A (ja
Inventor
卓 若林
卓 若林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2012101448A priority Critical patent/JP6066580B2/ja
Publication of JP2013229228A publication Critical patent/JP2013229228A/ja
Application granted granted Critical
Publication of JP6066580B2 publication Critical patent/JP6066580B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Description

本発明は、原燃料を改質して燃料ガスを生成する改質器と、改質器で生成された燃料ガスが供給されるアノード、及び、酸素ガスが供給されるカソードを有する燃料電池と、発電反応で用いられた後にアノードから排出される排出燃料ガス中の燃料成分と発電反応に用いられた後にカソードから排出される排出酸素ガスとを燃焼させ、その燃焼熱によって改質器を加熱する燃焼部と、燃料電池の出力電流を調節する出力調節手段と、改質器からアノードへの燃料ガスの供給量を調節する燃料ガス供給量調節手段と、出力調節手段及び燃料ガス供給量調節手段の動作を制御する運転制御手段とを備える燃料電池システムに関する。
特許文献1には、アノードに供給される燃料ガスの量に対する、アノードで発電反応に用いられる燃料ガスの量の比率である燃料利用率の目標値を出力電流の関数として定めている特性曲線に従って、出力調節手段の動作を制御して出力電流を調節し及び燃料ガス供給量調節手段の動作を制御して改質器からアノードへの燃料ガスの供給量を調節するように構成されている燃料電池システムが記載されている。つまり、特許文献1に記載の燃料電池システムでは、燃料電池の出力電流に応じて、燃料利用率を調節している。そして、燃焼部において、燃料電池の発電反応で消費されずに排出される排出燃料ガス中の燃料成分(H2など)を燃焼させ、改質器の加熱に利用している。
このような燃料電池システムにおいて、燃焼部での燃焼が失火すると、改質器での熱量の不足や、燃焼排気ガス中の可燃性・毒性ガス(H2、CO)の増加が生じるので、燃焼部での失火を極力避けることが望ましい。尚、排出燃料ガス中に含まれる燃料成分、即ち、燃料電池のアノードで発電反応に利用されなかった燃料成分は、燃料利用率が高くなるほど少なくなる。そのため、燃料利用率が高くなると、燃焼部に供給される燃料成分の絶対量の減少による発熱量(燃焼負荷)の低下、燃料成分の濃度減少により、安定した燃焼が行われ難くなる。そのため、定常状態では燃焼部において燃焼が維持できていたとしても、負荷変動などにより排出燃料ガス中の燃料成分の量が変化した場合、流速変化から火炎が不安定になりやすく、著しい場合には失火に至る。
尚、特許文献1に記載の燃料電池システムでは、燃料利用率が、低出力電流域では高出力電流域より低くなるようにすることで、発電反応に使用されなかった排出燃料ガス中の燃料成分の熱量が低出力電流域で増大し、燃焼部における燃料の熱量はほぼ一定に維持できるという効果を狙っている。
特開2010−92836号公報
特許文献1に記載のように、燃料利用率が、低出力電流域では高出力電流域より低くなるようにしたとしても、出力電流を増大変化させようとすると、排出燃料ガス中の燃料成分の量、即ち、燃焼部に供給される燃料成分の量が変化して、それを原因とする失火が発生する可能性がある。
特に出力電流を増大変化させる際には、出力電流の増大と共に燃料ガスの生成量を増大させるが、増量された燃料ガスがアノードに到達する前に出力電流が増大される、即ち、アノードへ供給される燃料ガスの量が増大される前にアノードでの燃料ガスの消費量が増大されることになる。そのため、燃焼部での燃焼に用いることのできる燃料成分の量が減少するため、燃焼部での失火が相対的に発生し易くなる。この現象は、先に説明した燃料利用率を出力電流に関係して制御するとき、燃料利用率を出力電流に対して一意的に固定している場合に顕著となり易い。
本発明は、上記の課題に鑑みてなされたものであり、その目的は、燃焼部での燃焼を安定して維持した状態で出力電流を増加変化させることのできる燃料電池システムを提供する点にある。
上記目的を達成するための本発明に係る燃料電池システムの特徴構成は、原燃料を改質して燃料ガスを生成する改質器と、前記改質器で生成された前記燃料ガスが供給されるアノード、及び、酸素ガスが供給されるカソードを有する燃料電池と、発電反応で用いられた後に前記アノードから排出される排出燃料ガス中の燃料成分と発電反応に用いられた後に前記カソードから排出される排出酸素ガスとを燃焼させ、その燃焼熱によって前記改質器を加熱する燃焼部と、前記燃料電池の出力電流を調節する出力調節手段と、前記改質器から前記アノードへの前記燃料ガスの供給量を調節する燃料ガス供給量調節手段と、前記出力調節手段及び前記燃料ガス供給量調節手段の動作を制御する運転制御手段とを備え、
前記運転制御手段は、前記アノードに供給される前記燃料ガスの量に対する、前記アノードで発電反応に用いられる前記燃料ガスの量の比率である燃料利用率の目標値を前記出力電流の関数として定めている特性曲線に従って、前記出力調節手段の動作を制御して前記出力電流を調節し及び前記燃料ガス供給量調節手段の動作を制御して前記改質器から前記アノードへの前記燃料ガスの供給量を調節するように構成されている燃料電池システムであって、
前記出力電流を所定の目標電流に向けて増大変化させるとき、前記出力電流を維持させたまま、前記燃料ガス供給量調節手段の動作を制御して前記改質器から前記アノードへの前記燃料ガスの供給量を増加させて前記特性曲線で定められている増大開始時の前記燃料利用率の目標値よりも前記燃料利用率を低下させた後で、前記出力調節手段及び前記燃料ガス供給量調節手段の動作を制御して前記出力電流及び前記燃料利用率を前記目標電流及び前記特性曲線に従って当該目標電流の関数で定められる増大完了時の前記燃料利用率の目標値に向けて変化させる過渡時運転を行い、
前記運転制御手段は、前記出力電流を前記燃焼部での前記排出燃料ガスと前記排出酸素ガスとの燃焼が不安定になる電流範囲を通って増大変化させるときに前記過渡時運転を行う点にある。
上記特徴構成によれば、出力電流を所定の目標電流に向けて増大変化させるとき、出力電流を維持させたまま、燃料ガス供給量調節手段の動作を制御して改質器からアノードへの燃料ガスの供給量を増加させて特性曲線で定められている増大開始時の燃料利用率の目標値よりも燃料利用率を低下させることで、アノードで発電反応に用いられずに排出される排出燃料ガス中の燃料成分の量が増大する。つまり、燃焼部での燃焼量が増大することで、燃焼を安定させることができる。そして、そのように燃焼が安定された状態で出力電流及び燃料利用率が変化される。
従って、燃焼部での燃焼を安定して維持した状態で出力電流を増加変化させることのできる燃料電池システムを提供できる。
また上記特徴構成によれば、例えば、燃料電池毎に燃焼が不安定になる電流範囲が分かっているのであれば、その電流範囲を通って出力電流を増大変化させるときに上記過渡時運転を行うと、燃焼部での燃焼をより安定させることができる。
本発明に係る燃料電池システムの別の特徴構成は、前記運転制御手段は、
前記出力電流を前記所定の目標電流に向けて増大変化させるとき、
増大開始時に、前記燃料ガス供給量調節手段の動作を制御して前記改質器から前記アノードへの前記燃料ガスの供給量を増加させて、前記燃料利用率を、前記燃料利用率の目標値を前記出力電流の関数として定めている、前記特性曲線とは別で且つ前記特性曲線よりも低燃料利用率側にある過渡時特性曲線で定められている前記燃料利用率の過渡時目標値に低下させ、
引き続いて、
前記出力調節手段及び前記燃料ガス供給量調節手段の動作を制御して、前記出力電流及び前記燃料利用率を、前記過渡時特性曲線で定められている値に従って変化させ、
前記出力電流が前記目標電流に到達すると、前記改質器から前記アノードへの前記燃料ガスの供給量を減少させて、前記燃料利用率を、前記特性曲線で定められている前記燃料利用率の目標値に上昇させて、増大変化を完了する前記過渡時運転を行う点にある。
上記特徴構成によれば、出力電流を所定の目標電流に向けて増大変化させるとき、増大開始時に、燃料ガス供給量調節手段の動作を制御して改質器からアノードへの燃料ガスの供給量を増加させて、燃料利用率を、燃料利用率の目標値を出力電流の関数として定めている、特性曲線とは別で且つ特性曲線よりも低燃料利用率側にある過渡時特性曲線で定められている燃料利用率の過渡時目標値に低下させことで、アノードで発電反応に用いられずに排出される排出燃料ガス中の燃料成分の量が増大する。つまり、燃焼部での燃焼量が増大することで、燃焼を安定させることができる。
更に、そのような燃焼が安定した状態で、燃料利用率が、目標電流に対して過渡時特性曲線で定められている燃料利用率の過渡時目標値となるように、出力電流及び燃料利用率を共に変化させる。つまり、燃焼が安定した状態を維持しながら、出力電流を目標電流に到達させることができる。
また更に、出力電流が目標電流に到達した後、改質器からアノードへの燃料ガスの供給量を減少させて、燃料利用率を、特性曲線で定められている燃料利用率の目標値に上昇させて、一連の出力電流増大変化を完了することで、安定した燃焼が維持できる程度まで排出燃料ガス中の燃料成分の量を減らすことができ、それだけ発電効率を向上させることができる。
本発明に係る燃料電池システムの更に別の特徴構成は、原燃料を改質して燃料ガスを生成する改質器と、前記改質器で生成された前記燃料ガスが供給されるアノード、及び、酸素ガスが供給されるカソードを有する燃料電池と、発電反応で用いられた後に前記アノードから排出される排出燃料ガス中の燃料成分と発電反応に用いられた後に前記カソードから排出される排出酸素ガスとを燃焼させ、その燃焼熱によって前記改質器を加熱する燃焼部と、前記燃料電池の出力電流を調節する出力調節手段と、前記改質器から前記アノードへの前記燃料ガスの供給量を調節する燃料ガス供給量調節手段と、前記出力調節手段及び前記燃料ガス供給量調節手段の動作を制御する運転制御手段とを備え、
前記運転制御手段は、前記アノードに供給される前記燃料ガスの量に対する、前記アノードで発電反応に用いられる前記燃料ガスの量の比率である燃料利用率の目標値を前記出力電流の関数として定めている特性曲線に従って、前記出力調節手段の動作を制御して前記出力電流を調節し及び前記燃料ガス供給量調節手段の動作を制御して前記改質器から前記アノードへの前記燃料ガスの供給量を調節するように構成されている燃料電池システムであって、
前記特性曲線として、
前記出力電流を増大変化させる場合に適用する増大変化時特性曲線と、
前記出力電流を増大変化させる以外の場合に適用する通常変化時特性曲線とを備え、
同一出力電流に対応する、前記増大変化時特性曲線上の燃料利用率が、前記通常変化時
特性曲線上の燃料利用率より小さく設定されており、
前記増大変化時特性曲線は、前記出力電流を前記燃焼部での前記排出燃料ガスと前記排出酸素ガスとの燃焼が不安定になる電流範囲で増大変化させる場合に適用され、
前記出力電流を所定の目標電流に向けて増大変化させるとき、前記出力電流を維持させたまま、前記燃料ガス供給量調節手段の動作を制御して前記改質器から前記アノードへの前記燃料ガスの供給量を増加させて、前記燃料利用率を前記増大変化時特性曲線で定められている前記燃料利用率の目標値に低下させた後で、前記出力調節手段及び前記燃料ガス供給量調節手段の動作を制御して、前記出力電流及び前記燃料利用率を前記増大変化時特性曲線に従って前記所定の目標電流に向けて変化させる点にある。
上記特徴構成によれば、同一出力電流に対応する、増大変化時特性曲線上の燃料利用率が、通常変化時特性曲線上の燃料利用率より小さく設定されている、即ち、排出燃料ガス中の燃料成分の量が相対的に増大するように設定されているので、増大変化時特性曲線を適用すると、燃焼部での燃焼は安定するようになる。その結果、出力電流を増大変化させる場合に増大変化時特性曲線を適用することで、燃焼部での燃焼を安定させた状態で出力電流を増大させることができる。また、出力電流を増大変化させる以外の場合に通常変化時特性曲線を適用することで、アノードに供給する燃料ガスの量を相対的に減らすことができ、それだけ発電効率を向上させることができる。
また上記特徴構成によれば、例えば、燃料電池毎に燃焼が不安定になる電流範囲が分かっているのであれば、その電流範囲を通って出力電流を増大変化させるときに上記増大変化時特性曲線を適用すると、燃焼部での燃焼をより安定させることができる。
本発明に係る燃料電池システムの更に別の特徴構成は、前記増大変化時特性曲線は、前記出力電流を前記燃焼部での前記排出燃料ガスと前記排出酸素ガスとの燃焼が不安定になる電流範囲で増大変化させる場合に適用される点にある。
上記特徴構成によれば、例えば、燃料電池毎に燃焼が不安定になる電流範囲が分かっているのであれば、その電流範囲を通って出力電流を増大変化させるときに上記増大変化時特性曲線を適用すると、燃焼部での燃焼をより安定させることができる。
燃料電池システムの構成を示す図である。 燃料電池の出力電流と燃料利用率との設定関係を示す特性曲線のグラフである。
図1は、燃料電池システムの構成を示す図である。本発明に係る燃料電池システムは、原燃料を改質して水素ガスを主成分とする燃料ガスを生成する改質器3と、改質器3で生成された燃料ガスが供給されるアノード24、及び、酸素ガスが供給されるカソード25を有する燃料電池21と、発電反応で用いられた後にアノード24から排出される排出燃料ガス中の燃料成分と発電反応に用いられた後にカソード25から排出される排出酸素ガスとをそれらの混合状態で燃焼させ、その燃焼熱によって改質器3を加熱する燃焼部22とを備える。本実施形態では、これら改質器3と燃料電池21と燃焼部22とは装置筐体1の内部に収容されている。更に、装置筐体1の内部には、蒸発器2も収容されている。
燃料電池21は、改質器3で生成された水素ガスを主成分とする燃料ガスが供給されるアノード24と酸素ガス(空気)が供給されるカソード25とを備えた固体酸化物形のセル26を複数個電気的に直列接続した状態で備えたセルスタックにて構成されている。図示は省略するが、セル26は、アノード24とカソード25との間に固体電解質層を備えた固体酸化物形に構成される。アノード24には燃料ガスが通流するように構成され、カソード25には空気が通流するように構成される。燃料電池21は、複数のセル26がアノード24の燃料ガス排出口24e及びカソード25の空気排出口25eが上向きになる姿勢で横方向に並ぶ状態で、装置筐体1の内部に設置されている。尚、セル26の形状や構造は図1に例示したものに限定されない。
燃料電池21には、改質器3から燃料ガス供給路23を通して供給される燃料ガスを受け入れるガスマニホールド27が設けられる。複数のセル26は、ガスマニホールド27の上方側に上述のように並ぶ状態で配置され、ガスマニホールド27と複数のセル26におけるアノード24の下端のガス導入口(図示せず)とが連通接続されている。そして、ガスマニホールド27に供給された燃料ガスが、複数のセル26夫々のアノード24に対して下端のガス導入口から供給され、各アノード24に対して下方側から上方側に通流して発電反応に供される。発電反応に供された後の燃料ガスは、上端の燃料ガス排出口24eから排出燃料ガスとして排出される。
装置筐体1には、空気導入口28が設けられ、その空気導入口28には空気供給路29が接続される。ブロア30の作動により、空気が空気供給路29を通して装置筐体1内に供給される。複数のセル26夫々におけるカソード25の下端部近傍には、装置筐体1内とカソード25とを連通する空気供給孔(図示せず)が設けられている。複数のセル26夫々のカソード25には装置筐体1内の空気がこの空気供給孔を通して供給され、各カソード25に対して下方側から上方側に通流して発電反応に供される。発電反応に供された後の空気は、上端の空気排出口25eから排出酸素ガスとして排出される。
燃料電池21の上方には、各セル26のアノード24の燃料ガス排出口24eから排出される排出燃料ガスとカソード25の空気排出口25eから排出される排出酸素ガスとを燃焼させる燃焼空間が形成される。つまり、燃料電池21により、燃焼部22が実現される。加えて、後述するように、一体で構成された蒸発器2と改質器3とが、燃焼部22として機能する燃料電池21の上方の燃焼空間に隣接して設けられている。
装置筐体1には、燃焼部22にて発生した燃焼排ガスを外部に排出させる排出部31が下面部等に形成されている。そして、装置筐体1内には、排出部31から外部に排出される燃焼排ガス中の一酸化炭素ガスを除去する燃焼触媒部32(例えば、白金系触媒)が設けられている。
本実施形態において、燃料電池21のアノード24に供給される燃料ガスを生成する燃料改質装置Rは、改質器3と、蒸発器2と、燃料電池21により実現される燃焼部22とで構成される。
燃焼部22は、可燃性ガスを燃焼して燃焼熱を発生させる。具体的には、上述したように、燃焼部22は、各セル26のアノード24の燃料ガス排出口24eから排出される排出燃料ガス中の燃料成分(主に水素ガス)とカソード25の空気排出口25eから排出される排出酸素ガスとを燃焼させて燃焼熱を発生させる。
蒸発器2の内部空間には、原燃料ガスが供給される原燃料ガス供給管7と、改質水が供給される改質水供給管6とが、蒸発器2の外部から引き込まれる。そして、蒸発器2の内部に、原燃料ガス及び改質水が供給される。蒸発器2に対する原燃料ガスの供給量は、原燃料ガス供給管7の途中に設けられる原燃料流量調節弁4によって調節可能である。蒸発器2に対する改質水の供給量は、改質水供給管6の途中に設けられる改質水ポンプ9によって調節可能である。
そして、蒸発器2は、供給される改質水を、燃焼部22から伝えられる燃焼熱を用いて加熱して蒸発させる。更に、蒸発器2では、改質水の蒸発によって生成された水蒸気と、原燃料ガスとが混合される。
改質器3は、供給される原燃料ガスを蒸発器2にて生成された水蒸気を用いて改質処理する。具体的には、改質器3の内部には改質触媒が充填されており、この改質触媒の触媒作用によって原燃料ガスが改質処理される。
本発明に係る燃料電池システムは、燃料電池21の出力電流を調節する出力調節手段Lと、改質器3からアノード24への燃料ガスの供給量を調節する燃料ガス供給量調節手段Fと、出力調節手段L及び燃料ガス供給量調節手段Fの動作を制御する運転制御手段Cとを備える。燃料ガス供給量調節手段Fは、上述した原燃料流量調節弁4及び改質水ポンプ9によって実現できる。つまり、改質器3に供給される原燃料ガスの量及び水蒸気の量を調節することで、改質器3での燃料ガスの生成量、即ち、改質器3からアノード24への燃料ガスの供給量が調節される。燃料電池21の出力電流を調節する出力調節手段Lは、例えばインバータ装置などの電力変換装置である。そして、この出力調節手段Lを介して、燃料電池21の発電電力が様々な電力消費装置に供給される。
運転制御手段Cは、燃料電池21が出力すべき電流(出力電流)を決定し、その出力電流を出力調節手段Lに伝達する。そして、出力調節手段Lが、燃料電池21の出力電流を調節することで、燃料電池21ではその出力電流に応じた発電反応(即ち、出力電流に応じた燃料ガスの消費)が行われることとなる。尚、燃料電池21の出力電流が所望の値になるためには、燃料電池21のアノード24に対して適切な量の燃料ガスが供給されていること及びカソード25に対して適切な量の酸素ガスが供給されていることが必要である。そのため、運転制御手段Cは、原燃料流量調節弁4及び改質水ポンプ9の動作を制御して改質器3へ供給される原燃料の量及び水蒸気の量を調節することで、改質器3で生成される燃料ガスの量、即ち、改質器3から燃料電池21のアノード24に供給される燃料ガスの量を調節する。また、運転制御手段Cは、ブロア30の動作を制御して、燃料電池21のカソード25に供給される酸素ガスの量を調節する。
図2は、燃料電池の出力電流と燃料利用率との設定関係を示す特性曲線のグラフである。この燃料利用率は、アノード24に供給される燃料ガスの量(即ち、改質器3で生成される燃料ガスの量に相当)に対する、アノード24で発電反応に用いられる燃料ガスの量の比率である。そして、運転制御手段Cは、燃料利用率の目標値を出力電流の関数として定めている図2の特性曲線に従って、出力調節手段Lの動作を制御して出力電流を調節し及び燃料ガス供給量調節手段Fの動作を制御して改質器3からアノード24への燃料ガスの供給量を調節するように構成されている。
図2の特性曲線では、出力電流Iが決まると、その出力電流Iを燃料電池21で発生させるのに要する燃料ガスの量が決まる。つまり、燃料電池21のアノード24で発電反応に用いられる燃料ガスの量が決まる。また、出力電流Iが決まると、そのときの燃料利用率Uf(I)が決まる。その結果、燃料電池21のアノード24で発電反応に用いられる燃料ガスの量と、燃料利用率とから、燃料電池21のアノード24で発電反応に用いられずに排出される排出燃料ガス中の燃料成分の量も導出できる。従って、出力電流Iに対して、図2の特性曲線で決定される燃料利用率Uf(I)を満たすための、燃料電池21のアノード24に供給する必要がある燃料ガスの量(発電反応に用いられる燃料ガスの量、及び、発電反応に用いられずに排出される排出燃料ガス中の燃料成分の量)が導出される。そして、その燃料電池21のアノード24に供給する必要がある燃料ガスの量は、改質器3で生成するべき燃料ガスの量であるので、その燃料ガスを生成するために必要な原燃料ガスの量及び水蒸気の量を導出できる。その結果、運転制御手段Cは、燃料ガス供給量調節手段Fとしての原燃料流量調節弁4及び改質水ポンプ9に対して、改質器3へ供給する原燃料ガスの量及び水蒸気の量を調節するように指令する。
〔過渡時運転〕
次に、運転制御手段Cが燃料電池21の出力電流を増大変化させるときに行う過渡時運転について説明する。図2には、燃料電池21の出力電流を、増大開始時の出力電流I1から、所定の目標電流I2に増大変化させる場合を例示する。
運転制御手段Cは、現在の出力電流I1を所定の目標電流I2に向けて増大変化させるとき、燃料ガス供給量調節手段Fの動作を制御して改質器3からアノード24への燃料ガスの供給量を増加させて特性曲線Ufa(I)で定められている増大開始時(現在)の燃料利用率の目標値:Ufa(I1)よりも燃料利用率を低下させた後で、出力調節手段L及び燃料ガス供給量調節手段Fの動作を制御して、出力電流及び燃料利用率を、目標電流I2及び特性曲線Ufa(I)に従ってその目標電流I2の関数で定められる増大完了時の燃料利用率の目標値Ufa(I2)に向けて変化させる過渡時運転を行う。
具体的には、図2の点Aは増大開始時の出力電流及び燃料利用率(出力電流,燃料利用率)を示し、それぞれの値は(I1,Ufa(I1))である。運転制御手段Cは、この出力電流I1を目標電流I2に増大変化させようとするとき、先ず、点Aよりも燃料利用率を低下させる。図2に示す例では、出力電流はI1を維持させたまま、燃料利用率のみをUfb(I1)に低下させる。ここで、出力電流を維持したままで燃料利用率を低下させるためには、燃料電池21のアノード24へ供給する燃料ガスの量を増大させればよい。そして、燃料利用率のみを低下させた結果、出力電流及び燃料利用率は点B(I1,Ufb(I1))の状態になる。
図2に示すように、本実施形態では、実線で示す特性曲線Ufa(I)とは別で且つ特性曲線Ufa(I)よりも低燃料利用率側にある過渡時特性曲線Ufb(I)(図2中では細線で示す)を利用している。この過渡時特性曲線Ufb(I)も、燃料利用率の目標値を出力電流の関数として定めている。そして、点B(I1,Ufb(I1))は、この過渡時特性曲線Ufb(I)上の点である。つまり、運転制御手段Cは、増大開始時に、燃料ガス供給量調節手段Fの動作を制御して改質器3での燃料ガスの生成量を増加させて、燃料利用率を過渡時特性曲線Ufb(I)で定められている燃料利用率の過渡時目標値Ufb(I1)に低下させている。
引き続いて、運転制御手段Cは、点Bの状態から出力電流が目標電流I2に到達するまで、出力調節手段L及び燃料ガス供給量調節手段Fの動作を制御して、出力電流及び燃料利用率を、過渡時特性曲線Ufb(I)で定められている値に従って変化させる。その結果、出力電流はI2になり、燃料利用率はUfb(I2)になる。つまり、このときの出力電流及び燃料利用率は点C(I2,Ufb(I2))の状態になる。
そして、運転制御手段Cは、出力電流が目標電流I2に到達すると、改質器3からアノード24への燃料ガスの供給量を減少させて、燃料利用率を、特性曲線Ufa(I)で定められている燃料利用率の目標値Ufa(I2)に上昇させる。その結果、出力電流をI1からI2へと増大変化させる過渡時運転が完了する。
このように、本実施形態では、特性曲線として、出力電流を増大変化させる場合に適用する増大変化時特性曲線(上述した「過渡時特性曲線」)Ufb(I)と、出力電流を増大変化させる以外の場合(即ち、出力電流を一定に保つ或いは低下させる場合)に適用する通常変化時特性曲線(上述した「特性曲線」)Ufa(I)とを備える。特に、同一出力電流に対応する、増大変化時特性曲線Ufb(I)上の燃料利用率は、通常変化時特性曲線Ufa(I)上の燃料利用率より小さく設定されている。
以上のように、出力電流を所定の目標電流に向けて増大変化させるとき、増大開始時に、燃料ガス供給量調節手段Fの動作を制御して改質器3からアノード24への燃料ガスの供給量を増加させて、増大開始時の燃料利用率Ufa(I1)を、特性曲線Ufa(I)とは別で且つ特性曲線Ufa(I)よりも低燃料利用率側にある過渡時特性曲線Ufb(I)で定められている燃料利用率の過渡時目標値Ufb(I1)に低下させことで、アノード24で発電反応に用いられずに排出される排出燃料ガス中の燃料成分の量が増大する。つまり、燃焼部22での燃焼量が増大することで、燃焼を安定させることができる。
更に、そのような燃焼が安定した状態で、目標電流I2に対して過渡時特性曲線Ufb(I)で定められている燃料利用率の過渡時目標値Ufb(I2)となるように、出力電流及び燃料利用率を共に変化させる。つまり、燃焼が安定した状態を維持しながら、出力電流を目標電流に到達させることができる。
また更に、出力電流が目標電流I2に到達した後、改質器3からアノード24への燃料ガスの供給量を減少させて、燃料利用率を、特性曲線Ufa(I)で定められている燃料利用率の目標値Ufa(I2)に上昇させて増大変化を完了することで、安定した燃焼が維持できる程度まで排出燃料ガス中の燃料成分の量を減らすことができ、それだけ発電効率を向上させることができる。
<別実施形態>
<1>
上記実施形態では、燃料電池システムの構成について具体例を挙げて説明したが、その構成は適宜変更可能である。例えば、原燃料ガス供給管7の途中に、原燃料ガス(例えば、都市ガス等)に含まれる硫黄化合物を取り除くための脱硫器等を設けてもよい。
また、燃料電池21及び燃料改質装置Rが装置筐体1の内部に収容し、その装置筐体1の内部にガスや水などを取り込む構成について図示したが、それらの構成は例示目的で記載したものであり適宜変更可能である。
<2>
上記実施形態では、点A(I1,Ufa(I1))から点D(I2,Ufa(I2))へ出力電流及び燃料利用率を変化させるとき、点A→点B→点C→点Dという手順で出力電流及び燃料利用率を変化させる例を説明したが、他の手順で点Aから点Dへと出力電流及び燃料利用率を変化させてもよい。例えば、点A→点B→点Dという手順で出力電流及び燃料利用率を変化させてもよい。但し、点Bから点Dへの変化において、Ufa(I)を超えないことを条件とする。
また、上記実施形態では、出力電流I1を所定の目標電流I2に向けて増大変化させるとき、先ず、出力電流I1は変更させず、且つ、燃料利用率のみを増大開始時の燃料利用率の目標値Ufa(I1)よりも低下させてUfb(I1)に変更させる例を説明したが、このとき、燃料利用率を低下させると共に出力電流を変化させるような改変も可能である。
<3>
上記実施形態において、出力電流を増大変化させるときに燃焼部での燃焼状態が不安定になるような出力電流の範囲が例えば実験的に分かっているのであれば、そのような出力電流の範囲(図2に示す例では、出力電流I1〜I2までの特定の出力電流範囲)を通って出力電流を増大変化させるときに上述した過渡時運転を行ってもよい。つまり、運転制御手段Cが、出力電流を燃焼部22での排出燃料ガスと排出酸素ガスとの燃焼が不安定になる電流範囲を通って増大変化させるときに過渡時運転を行うように(即ち、増大変化時特性曲線Ufb(I)が、出力電流を燃焼部22での排出燃料ガスと排出酸素ガスとの燃焼が不安定になる電流範囲で増大変化させる場合に適用されるように)構成してもよい。
本発明は、燃焼部での燃焼を安定して維持した状態で出力電流を増加変化させることのできる燃料電池システムに利用できる。
3 改質器
4 原燃料流量調節弁(燃料ガス供給量調節手段 F)
9 改質水ポンプ(燃料ガス供給量調節手段 F)
21 燃料電池
22 燃焼部
24 アノード
25 カソード
C 運転制御手段
L 出力調節手段

Claims (3)

  1. 原燃料を改質して燃料ガスを生成する改質器と、前記改質器で生成された前記燃料ガスが供給されるアノード、及び、酸素ガスが供給されるカソードを有する燃料電池と、発電反応で用いられた後に前記アノードから排出される排出燃料ガス中の燃料成分と発電反応に用いられた後に前記カソードから排出される排出酸素ガスとを燃焼させ、その燃焼熱によって前記改質器を加熱する燃焼部と、前記燃料電池の出力電流を調節する出力調節手段と、前記改質器から前記アノードへの前記燃料ガスの供給量を調節する燃料ガス供給量調節手段と、前記出力調節手段及び前記燃料ガス供給量調節手段の動作を制御する運転制御手段とを備え、
    前記運転制御手段は、前記アノードに供給される前記燃料ガスの量に対する、前記アノードで発電反応に用いられる前記燃料ガスの量の比率である燃料利用率の目標値を前記出力電流の関数として定めている特性曲線に従って、前記出力調節手段の動作を制御して前記出力電流を調節し及び前記燃料ガス供給量調節手段の動作を制御して前記改質器から前記アノードへの前記燃料ガスの供給量を調節するように構成されている燃料電池システムであって、
    前記出力電流を所定の目標電流に向けて増大変化させるとき、前記出力電流を維持させたまま、前記燃料ガス供給量調節手段の動作を制御して前記改質器から前記アノードへの前記燃料ガスの供給量を増加させて前記特性曲線で定められている増大開始時の前記燃料利用率の目標値よりも前記燃料利用率を低下させた後で、前記出力調節手段及び前記燃料ガス供給量調節手段の動作を制御して前記出力電流及び前記燃料利用率を前記目標電流及び前記特性曲線に従って当該目標電流の関数で定められる増大完了時の前記燃料利用率の目標値に向けて変化させる過渡時運転を行い、
    前記運転制御手段は、前記出力電流を前記燃焼部での前記排出燃料ガスと前記排出酸素ガスとの燃焼が不安定になる電流範囲を通って増大変化させるときに前記過渡時運転を行う燃料電池システム。
  2. 前記運転制御手段は、
    前記出力電流を前記所定の目標電流に向けて増大変化させるとき、
    増大開始時に、前記燃料ガス供給量調節手段の動作を制御して前記改質器から前記アノードへの前記燃料ガスの供給量を増加させて、前記燃料利用率を、前記燃料利用率の目標値を前記出力電流の関数として定めている、前記特性曲線とは別で且つ前記特性曲線よりも低燃料利用率側にある過渡時特性曲線で定められている前記燃料利用率の過渡時目標値に低下させ、
    引き続いて、
    前記出力調節手段及び前記燃料ガス供給量調節手段の動作を制御して、前記出力電流及び前記燃料利用率を、前記過渡時特性曲線で定められている値に従って変化させ、
    前記出力電流が前記目標電流に到達すると、前記改質器から前記アノードへの前記燃料ガスの供給量を減少させて、前記燃料利用率を、前記特性曲線で定められている前記燃料利用率の目標値に上昇させて、増大変化を完了する前記過渡時運転を行う請求項1に記載の燃料電池システム。
  3. 原燃料を改質して燃料ガスを生成する改質器と、前記改質器で生成された前記燃料ガスが供給されるアノード、及び、酸素ガスが供給されるカソードを有する燃料電池と、発電反応で用いられた後に前記アノードから排出される排出燃料ガス中の燃料成分と発電反応に用いられた後に前記カソードから排出される排出酸素ガスとを燃焼させ、その燃焼熱によって前記改質器を加熱する燃焼部と、前記燃料電池の出力電流を調節する出力調節手段と、前記改質器から前記アノードへの前記燃料ガスの供給量を調節する燃料ガス供給量調節手段と、前記出力調節手段及び前記燃料ガス供給量調節手段の動作を制御する運転制御
    手段とを備え、
    前記運転制御手段は、前記アノードに供給される前記燃料ガスの量に対する、前記アノードで発電反応に用いられる前記燃料ガスの量の比率である燃料利用率の目標値を前記出力電流の関数として定めている特性曲線に従って、前記出力調節手段の動作を制御して前記出力電流を調節し及び前記燃料ガス供給量調節手段の動作を制御して前記改質器から前記アノードへの前記燃料ガスの供給量を調節するように構成されている燃料電池システムであって、
    前記特性曲線として、
    前記出力電流を増大変化させる場合に適用する増大変化時特性曲線と、
    前記出力電流を増大変化させる以外の場合に適用する通常変化時特性曲線とを備え、
    同一出力電流に対応する、前記増大変化時特性曲線上の燃料利用率が、前記通常変化時特性曲線上の燃料利用率より小さく設定されており、
    前記増大変化時特性曲線は、前記出力電流を前記燃焼部での前記排出燃料ガスと前記排出酸素ガスとの燃焼が不安定になる電流範囲で増大変化させる場合に適用され、
    前記出力電流を所定の目標電流に向けて増大変化させるとき、前記出力電流を維持させたまま、前記燃料ガス供給量調節手段の動作を制御して前記改質器から前記アノードへの前記燃料ガスの供給量を増加させて、前記燃料利用率を前記増大変化時特性曲線で定められている前記燃料利用率の目標値に低下させた後で、前記出力調節手段及び前記燃料ガス供給量調節手段の動作を制御して、前記出力電流及び前記燃料利用率を前記増大変化時特性曲線に従って前記所定の目標電流に向けて変化させる燃料電池システム。
JP2012101448A 2012-04-26 2012-04-26 燃料電池システム Active JP6066580B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012101448A JP6066580B2 (ja) 2012-04-26 2012-04-26 燃料電池システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012101448A JP6066580B2 (ja) 2012-04-26 2012-04-26 燃料電池システム

Publications (2)

Publication Number Publication Date
JP2013229228A JP2013229228A (ja) 2013-11-07
JP6066580B2 true JP6066580B2 (ja) 2017-01-25

Family

ID=49676663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012101448A Active JP6066580B2 (ja) 2012-04-26 2012-04-26 燃料電池システム

Country Status (1)

Country Link
JP (1) JP6066580B2 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6637778B2 (ja) * 2016-02-05 2020-01-29 大阪瓦斯株式会社 燃料電池システム
JP6701804B2 (ja) * 2016-02-26 2020-05-27 アイシン精機株式会社 燃料電池システム
JP6721363B2 (ja) * 2016-03-11 2020-07-15 大阪瓦斯株式会社 燃料電池システム及びその運転方法
JP6611661B2 (ja) * 2016-04-13 2019-11-27 大阪瓦斯株式会社 燃料電池システム
JP6611662B2 (ja) * 2016-04-13 2019-11-27 大阪瓦斯株式会社 燃料電池システム
JP6958078B2 (ja) * 2017-08-01 2021-11-02 株式会社アイシン 燃料電池システム
EP3570357B1 (en) * 2018-05-16 2021-10-06 Panasonic Intellectual Property Management Co., Ltd. Fuel cell system
CN113841273A (zh) * 2019-05-27 2021-12-24 京瓷株式会社 燃料电池装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3460897B2 (ja) * 1995-11-21 2003-10-27 三菱電機株式会社 燃料電池発電装置
JP4934950B2 (ja) * 2004-08-17 2012-05-23 三菱マテリアル株式会社 燃料電池発電装置および運転制御方法
JP5052756B2 (ja) * 2005-03-11 2012-10-17 アイシン精機株式会社 燃料電池発電システムの運転方法、燃料電池発電システム
JP4789505B2 (ja) * 2005-05-11 2011-10-12 アイシン精機株式会社 燃料電池システム
JP5412960B2 (ja) * 2008-09-12 2014-02-12 Toto株式会社 燃料電池装置
JP2010257751A (ja) * 2009-04-24 2010-11-11 Honda Motor Co Ltd 燃料電池システムの制御方法
EP2624351B1 (en) * 2010-09-29 2017-11-01 Toto Ltd. Solid oxide fuel cell

Also Published As

Publication number Publication date
JP2013229228A (ja) 2013-11-07

Similar Documents

Publication Publication Date Title
JP6066580B2 (ja) 燃料電池システム
JP5643712B2 (ja) 燃料電池モジュール
JP5551954B2 (ja) 燃料電池発電装置
JP4147659B2 (ja) 改質器の制御装置
JP2008091049A (ja) 燃料電池発電システム及びその運転方法
JP2009205868A (ja) 固体電解質燃料電池システムおよび固体電解質燃料電池
JP2004119299A (ja) 燃料電池システム
JP2018110079A (ja) 燃料電池システム及びその運転方法
KR20150042616A (ko) 연료전지 가열장치 및 가열방법과 이를 포함하는 연료전지장치
JP2007109590A (ja) 燃料電池用改質装置およびこの燃料電池用改質装置を備える燃料電池システム
JP5548534B2 (ja) 発電装置
JP6607803B2 (ja) 燃料電池システム
JP5122028B2 (ja) 発電システム及びその運転方法
JP5943781B2 (ja) 燃料利用率の設定方法
JP2007073302A (ja) 燃料改質システム
JP7018733B2 (ja) 固体酸化物形燃料電池
JP6755425B1 (ja) 燃料電池装置
JP6405171B2 (ja) 固体酸化物形燃料電池システム
JP2007026998A (ja) 溶融炭酸塩型燃料電池発電装置の燃料電池温度制御方法及び装置
JP7066561B2 (ja) 燃料電池モジュール及びプログラム
JP5021895B2 (ja) 燃料電池発電システム
JP2007265854A (ja) 燃料電池システム及びその制御方法
JP6115310B2 (ja) 燃料電池システム
JP6637778B2 (ja) 燃料電池システム
JP6804686B1 (ja) 燃料電池装置及び燃料電池管理システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161220

R150 Certificate of patent or registration of utility model

Ref document number: 6066580

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150