JP6066574B2 - Manufacturing method of all-solid-state secondary battery - Google Patents

Manufacturing method of all-solid-state secondary battery Download PDF

Info

Publication number
JP6066574B2
JP6066574B2 JP2012047476A JP2012047476A JP6066574B2 JP 6066574 B2 JP6066574 B2 JP 6066574B2 JP 2012047476 A JP2012047476 A JP 2012047476A JP 2012047476 A JP2012047476 A JP 2012047476A JP 6066574 B2 JP6066574 B2 JP 6066574B2
Authority
JP
Japan
Prior art keywords
layer
electrode layer
solid
positive electrode
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012047476A
Other languages
Japanese (ja)
Other versions
JP2013182842A (en
Inventor
英丈 岡本
英丈 岡本
高野 靖
靖 高野
和之 砂山
和之 砂山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP2012047476A priority Critical patent/JP6066574B2/en
Publication of JP2013182842A publication Critical patent/JP2013182842A/en
Application granted granted Critical
Publication of JP6066574B2 publication Critical patent/JP6066574B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、全固体二次電池の製造方法に関するものである。 The present invention relates to method for manufacturing an all-solid secondary batteries.

近年、携帯電話・PDA・ノートパソコンなどの情報関連機器や通信機器の高機能化に伴い、長時間使用が可能であり、小型・軽量で安全性の高い二次電池が強く要望されている。また、自動車業界においても、電気自動車用やハイブリッド自動車用の高出力且つ高容量の電池の開発が進められている。これらの要望に応え得る電池として、リチウムイオン二次電池が注目を集めている。   In recent years, as information-related devices such as mobile phones, PDAs, and notebook computers and communication devices become more sophisticated, there is a strong demand for secondary batteries that can be used for a long time and that are small, light, and highly safe. Also in the automobile industry, development of high-power and high-capacity batteries for electric vehicles and hybrid vehicles is being promoted. Lithium ion secondary batteries are attracting attention as batteries that can meet these demands.

しかし、可燃性の有機溶媒を含む従来からのリチウムイオン二次電池には、短絡時の温度上昇を抑える安全装置の取り付けや、短絡防止のための構造・材料面での改善が必要となる。このため、リチウムイオン二次電池の高エネルギー密度化に伴い、安全性の確保が重要な課題とされてきた。このような課題を解決する電池として、固体電解質を用いた全固体リチウムイオン二次電池の鋭意研究開発が行われている。なぜなら、固体電解質は、不燃性であるため、漏液や発火のおそれがなく、さらに、有機電解液(有機溶媒にリチウム塩を溶解させたもの)に比べて化学的に安定であるため、固体電解質を用いた全固体リチウムイオン二次電池は、安全装置の簡素化が図れるとともに製造コストや生産性に優れるからである。   However, a conventional lithium ion secondary battery containing a combustible organic solvent needs to be equipped with a safety device that suppresses a temperature rise at the time of a short circuit, and to be improved in structure and material to prevent a short circuit. For this reason, with increasing energy density of lithium ion secondary batteries, ensuring safety has been an important issue. As a battery for solving such problems, intensive research and development of an all-solid-state lithium ion secondary battery using a solid electrolyte has been performed. Because the solid electrolyte is nonflammable, there is no risk of leakage or ignition, and since it is chemically stable compared to an organic electrolyte (lithium salt dissolved in an organic solvent) This is because an all-solid-state lithium ion secondary battery using an electrolyte can simplify the safety device and is excellent in manufacturing cost and productivity.

ところで、全固体リチウムイオン二次電池は、高性能化および高容量化を図るため、薄膜化および大型化が試みられている(例えば特許文献1参照)。特許文献1には、集電体の表面に電荷を帯電させられた活物質および固体電解質の混合粉末材料を搬送用ガスで吹き付けることにより、電池を薄膜化および大型化する方法が開示されている。   By the way, in order to achieve high performance and high capacity, all solid lithium ion secondary batteries have been attempted to be thin and large (see, for example, Patent Document 1). Patent Document 1 discloses a method for thinning and increasing the size of a battery by spraying a mixed powder material of an active material and a solid electrolyte charged with electric charge on the surface of a current collector with a carrier gas. .

特開2011−124028号公報JP 2011-1224028 A

しかしながら、無機材料を用いた全固体二次電池では、膜を形成した後、プレスにて膜を押し固める工程が必要であるから、特許文献1の方法では、薄型化のために固体電解質層を薄くしたり、高容量化のために電極層を厚くしたりすると、短絡が起こりやすくなるといった問題があった。   However, in an all-solid-state secondary battery using an inorganic material, a process of forming a film and then pressing the film with a press is necessary. Therefore, in the method of Patent Document 1, a solid electrolyte layer is formed for thinning. If the electrode layer is made thinner or the electrode layer is made thicker to increase the capacity, there is a problem that a short circuit is likely to occur.

そこで、本発明は、上記問題に鑑みてなされたものであり、薄型化および高容量化しても短絡が起こりにくい全固体二次電池の製造方法を提供することを目的とする。 The present invention has been made in view of the above problems, and an object thereof is to provide a method for producing a thin and Koyo capacity and the short-circuit hardly occurs all-solid secondary batteries.

上記課題を解決するため、請求項1に係る本発明の全固体二次電池の製造方法は、正極層と負極層との間に固体電解質層が配置されるとともにこれら電極層の外面にそれぞれ集電体が配置されてなる全固体二次電池の製造方法であって、
上記電極層のうち先に形成される層を、配置する集電体に向けて広がるように側面を傾斜させて、形成し、
上記固体電解質層を形成し、
上記電極層のうち後に形成される層を、配置する固体電解質層に向けて広がるように側面を傾斜させて、形成し、
上記正極層、負極層および固体電解質層の側面の角度が、層面方向に対して30〜80°であり、
上記正極層、負極層および固体電解質層の各層毎におよび/または各層が全て形成された後に層厚方向に加圧する方法である。
In order to solve the above-mentioned problem, the manufacturing method of the all-solid-state secondary battery according to the first aspect of the present invention includes a solid electrolyte layer disposed between the positive electrode layer and the negative electrode layer, and is collected on the outer surfaces of these electrode layers. A method for producing an all-solid-state secondary battery in which an electric body is disposed,
The layer formed earlier among the electrode layers is formed by inclining the side surface so as to spread toward the current collector to be arranged,
Forming the solid electrolyte layer;
The layer formed later among the electrode layers is formed by inclining the side surface so as to spread toward the solid electrolyte layer to be arranged,
The angles of the side surfaces of the positive electrode layer, the negative electrode layer, and the solid electrolyte layer are 30 to 80 ° with respect to the layer surface direction,
The positive electrode layer, a method of pressurizing the thickness direction after and / or the layers are all formed for each layer of the negative electrode layer and the solid electrolyte layer.

また、請求項に係る本発明の全固体二次電池の製造方法は、請求項1に係る発明の全固体二次電池の製造方法において、固体電解質層が、正極層および負極層よりも、層面方向に沿った最大面積が大きい方法である。 Moreover, the manufacturing method of the all-solid-state secondary battery of this invention which concerns on Claim 2 WHEREIN: The manufacturing method of the all-solid-state secondary battery of invention which concerns on Claim 1 WHEREIN : A solid electrolyte layer is more than a positive electrode layer and a negative electrode layer . This is a method having a large maximum area along the layer surface direction .

また、請求項に係る本発明の全固体二次電池の製造方法は、請求項に係る発明の全固体二次電池の製造方法において、電極層のうち後に形成された層が、電極層のうち先に形成された層よりも、層面方向に沿った最大面積が大きい方法である。 A method of manufacturing all-solid secondary battery of the present invention according to claim 3 is the method for manufacturing an all solid state secondary battery of the invention according to claim 2, the layer formed on the latter of the electrode layer, the electrode layer In this method , the maximum area along the layer surface direction is larger than that of the previously formed layer.

また、請求項に係る本発明の全固体二次電池の製造方法は、請求項1乃至のいずれか一項に係る発明の全固体二次電池の製造方法において、正極層および/または負極層がリチウムイオンを吸蔵放出可能な材料を含み、
固体電解質層がリチウムイオン伝導体を含む方法である。
A method of manufacturing all-solid secondary battery of the present invention according to claim 4 is the method for manufacturing an all solid state secondary battery of the invention according to any one of claims 1 to 3, positive electrode layer and / or the negative electrode The layer comprises a material capable of occluding and releasing lithium ions;
The solid electrolyte layer is a method including a lithium ion conductor.

また、請求項に係る本発明の全固体二次電池の製造方法は、請求項1乃至のいずれか一項に係る発明の全固体二次電池の製造方法において、固体電解質層がLiS−Pである方法である。 According to a fifth aspect of the present invention, there is provided a method for producing an all solid state secondary battery according to the present invention, wherein the solid electrolyte layer is Li 2 in the method for producing an all solid state secondary battery according to any one of the first to fourth aspects. it is an S-P 2 S 5 in a way.

また、請求項に係る本発明の全固体二次電池の製造方法は、請求項1乃至のいずれか一項に係る発明の全固体二次電池の製造方法において、集電体を、材料通過口が形成されたマスクにより、材料通過口が集電体に接触しない状態で覆い、
材料通過口に粉末材料を吹き付けて、側面が層厚方向に対して傾斜した正極層または負極層を形成する方法である。
A method of manufacturing all-solid secondary battery of the present invention according to claim 6, in the manufacturing method of the all-solid-state secondary battery of the invention according to any one of claims 1 to 5, a current collector, the material Cover the material passage port without contact with the current collector by the mask with the passage port formed,
By spraying powder material to the material passage opening is a method of sides forming the positive electrode layer or negative electrode layer is inclined with respect to the layer thickness direction.

上記全固体二次電池の製造方法によると、電極層のうち先に形成された層の側面を層厚方向に対して傾斜させることにより、薄膜化されたものであっても、成形体内の内部応力を分散させて、短絡頻度を減少させることができる。 According to the method for manufacturing the all-solid secondary batteries, by inclining the side surface of the layer formed on the inner destination electrode layer relative to the layer thickness direction, even if they were thinned, the molded body The internal stress can be dispersed to reduce the short circuit frequency.

本発明の実施の形態に係る全固体リチウムイオン二次電池の概略構成を示す断面図であり、(a)は全体図、(b)は側面近くの拡大図である。It is sectional drawing which shows schematic structure of the all-solid-state lithium ion secondary battery which concerns on embodiment of this invention, (a) is a general view, (b) is an enlarged view near a side surface. 同二次電池を構成する層の側面形状の種類を示す模式図である。It is a schematic diagram which shows the kind of side surface shape of the layer which comprises the secondary battery. 同二次電池を構成する正極層の形成に使用される正極形成用マスクを示す図であり、(a)は斜視図、(b)は(a)のA−A断面図である。It is a figure which shows the positive electrode formation mask used for formation of the positive electrode layer which comprises the secondary battery, (a) is a perspective view, (b) is AA sectional drawing of (a). 同二次電池の絶縁フィルムを配置する工程を説明する断面図である。It is sectional drawing explaining the process of arrange | positioning the insulating film of the secondary battery. 同正極層を形成する工程を説明する断面図であり、(a)は正極形成用マスクを使用して正極層を形成する図、(b)は正極層を形成した後に正極形成用マスクを取り外した図である。It is sectional drawing explaining the process of forming the positive electrode layer, (a) forming a positive electrode layer using a positive electrode formation mask, (b) removing the positive electrode formation mask after forming the positive electrode layer It is a figure. 同二次電池の固体電解質層を形成する工程を説明する断面図であり、(a)は電解質形成用マスクを使用して固体電解質層を形成する図、(b)は固体電解質層を形成した後に電解質形成用マスクを取り外した図である。It is sectional drawing explaining the process of forming the solid electrolyte layer of the secondary battery, (a) is a figure which forms a solid electrolyte layer using the mask for electrolyte formation, (b) formed the solid electrolyte layer It is the figure which removed the mask for electrolyte formation later. 同二次電池の負極層を形成する工程を説明する断面図であり、(a)は負極形成用マスクを使用して負極層を形成する図、(b)は負極層を形成した後に負極形成用マスクを取り外した図である。It is sectional drawing explaining the process of forming the negative electrode layer of the secondary battery, (a) is a figure which forms a negative electrode layer using the mask for negative electrode formation, (b) is negative electrode formation after forming a negative electrode layer. It is the figure which removed the mask. 同二次電池を加圧する工程を説明する断面図であり、(a)は加圧前の同二次電池を示す図、(b)は加圧後の同二次電池を示す図である。It is sectional drawing explaining the process of pressurizing the secondary battery, (a) is a figure which shows the secondary battery before pressurization, (b) is a figure which shows the secondary battery after pressurization. 同二次電池を構成する層の形成に使用される他の形状のマスクを示す図であり、(a)は斜視図、(b)は使用状態を示す断面図である。It is a figure which shows the mask of another shape used for formation of the layer which comprises the secondary battery, (a) is a perspective view, (b) is sectional drawing which shows a use condition. 同正極層、固体電解質層、および負極層を形成する他の方法として金型を使用する例の断面図であり、(a)はマスクを使用して正極層を形成する図、(b)は正極層を形成した後にマスクを取り外した図である。It is sectional drawing of the example which uses a metal mold | die as another method of forming the said positive electrode layer, a solid electrolyte layer, and a negative electrode layer, (a) is a figure which forms a positive electrode layer using a mask, (b) is It is the figure which removed the mask after forming the positive electrode layer. 同金型を使用する例の断面図であり、(a)は金型でプレスする前の図、(b)は金型でプレス中の図、(c)は金型でプレスした後の図である。It is sectional drawing of the example which uses the metal mold | die, (a) is a figure before pressing with a metal mold | die, (b) is a figure during pressing with a metal mold | die, (c) is a figure after pressing with a metal mold | die. It is. 同正極層、固体電解質層、および負極層を形成する他の方法としてライン成膜する例の断面図であり、(a)はライン成膜ノズルの第一パスにより薄膜を形成する図、(b)はライン成膜ノズルの第二パスにより上段に薄膜を形成する図、(c)はライン成膜ノズルの第三パスによりさらに上段に薄膜を形成する図である。It is sectional drawing of the example which forms a line film as another method of forming the said positive electrode layer, a solid electrolyte layer, and a negative electrode layer, (a) is a figure which forms a thin film by the 1st pass of a line film-forming nozzle, (b) ) Is a diagram in which a thin film is formed in the upper stage by the second pass of the line deposition nozzle, and (c) is a diagram in which a thin film is further formed in the upper stage by the third pass of the line deposition nozzle. 同正極層、固体電解質層、および負極層を形成する他の方法としてレーザ照射器を使用する例の断面図であり、(a)はマスクを使用して正極層を形成する図、(b)は正極層を形成した後にマスクを取り外した図である。It is sectional drawing of the example which uses a laser irradiator as another method of forming the same positive electrode layer, solid electrolyte layer, and negative electrode layer, (a) is a figure which forms a positive electrode layer using a mask, (b) FIG. 4 is a view in which a mask is removed after forming a positive electrode layer. 同レーザ照射器を使用する例の断面図であり、(a)は金型でプレスする前の図、(b)は金型でプレスした後の図、(c)はレーザ照射により層の側面を削り取る図である。It is sectional drawing of the example which uses the laser irradiation machine, (a) is a figure before pressing with a metal mold | die, (b) is a figure after pressing with a metal mold | die, (c) is a side surface of a layer by laser irradiation. It is a figure which scrapes off. 本発明の実施例1に係る全固体リチウムイオン二次電池の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the all-solid-state lithium ion secondary battery which concerns on Example 1 of this invention. 本発明の実施例2に係る全固体リチウムイオン二次電池の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the all-solid-state lithium ion secondary battery which concerns on Example 2 of this invention. 比較例1に係る全固体リチウムイオン二次電池の概略構成を示す断面図である。4 is a cross-sectional view showing a schematic configuration of an all solid lithium ion secondary battery according to Comparative Example 1. FIG. 比較例2に係る全固体リチウムイオン二次電池の概略構成を示す断面図である。6 is a cross-sectional view showing a schematic configuration of an all solid lithium ion secondary battery according to Comparative Example 2. FIG. 比較例3に係る全固体リチウムイオン二次電池の概略構成を示す断面図である。6 is a cross-sectional view showing a schematic configuration of an all solid lithium ion secondary battery according to Comparative Example 3. FIG.

以下、本発明の実施の形態に係る全固体二次電池を図面に基づき説明する。なお、本実施の形態では、全固体二次電池の一例として、固体電解質にリチウムイオン伝導性のものを用いた全固体二次電池、すなわち全固体リチウムイオン二次電池について説明する。   Hereinafter, an all-solid-state secondary battery according to an embodiment of the present invention will be described with reference to the drawings. In this embodiment, as an example of an all-solid secondary battery, an all-solid secondary battery using a lithium ion conductive material as a solid electrolyte, that is, an all-solid lithium ion secondary battery will be described.

まず、本実施の形態に係る全固体リチウムイオン二次電池の基本的構成について説明する。
この全固体リチウムイオン二次電池は、図1(a)に示すように、正極層2と負極層4との間にリチウムイオン伝導性固体電解質層(以下では単に、固体電解質層3という)が配置(積層)され、また正極層2の固体電解質層3とは反対側の表面に正極集電体1が、負極層4の固体電解質層3とは反対側の表面に負極集電体5が、正極層2の外周に絶縁フィルム6が、それぞれ配置(積層)されたものである。上記正極層2および負極層4は、当然ながら電極となる層、つまり電極層である。また、上記正極層2、固体電解質層3、および負極層4の各側面は、それぞれ層厚方向に対して傾斜している。具体的には、図1(b)に示すように、各層2,3,4の側面の角度は、層面方向(層厚方向に直交する方向)に対して10〜60°である。また、傾斜した上記各側面は、図2(a)に示す平面形状、図2(b)に示す膨らんだ形状、図2(c)に示す窪んだ形状のいずれであってもよい。なお、上記正極層2、固体電解質層3および負極層4は、いずれも粉末材料を吹き付けて形成されたものである。
First, the basic configuration of the all-solid-state lithium ion secondary battery according to the present embodiment will be described.
As shown in FIG. 1A, this all solid lithium ion secondary battery has a lithium ion conductive solid electrolyte layer (hereinafter simply referred to as solid electrolyte layer 3) between the positive electrode layer 2 and the negative electrode layer 4. The positive electrode current collector 1 is disposed (laminated) on the surface of the positive electrode layer 2 opposite to the solid electrolyte layer 3, and the negative electrode current collector 5 is disposed on the surface of the negative electrode layer 4 opposite to the solid electrolyte layer 3. The insulating film 6 is disposed (laminated) on the outer periphery of the positive electrode layer 2. Naturally, the positive electrode layer 2 and the negative electrode layer 4 are layers to be electrodes, that is, electrode layers. The side surfaces of the positive electrode layer 2, the solid electrolyte layer 3, and the negative electrode layer 4 are inclined with respect to the layer thickness direction. Specifically, as shown in FIG. 1B, the angle of the side surface of each of the layers 2, 3 and 4 is 10 to 60 ° with respect to the layer surface direction (direction perpendicular to the layer thickness direction). Each of the inclined side surfaces may have any of the planar shape shown in FIG. 2A, the swollen shape shown in FIG. 2B, and the depressed shape shown in FIG. The positive electrode layer 2, the solid electrolyte layer 3, and the negative electrode layer 4 are all formed by spraying a powder material.

上記正極層2には、正極活物質とリチウムイオン伝導性固体電解質との混合物、または正極活物質のみが用いられる。上記混合物における、正極活物質とリチウムイオン伝導性固体電解質との重量比は、例えば7:3である。ここで、正極活物質には、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMnO)など、電池分野において正極活物質に通常用いられている材料が用いられる。 For the positive electrode layer 2, a mixture of a positive electrode active material and a lithium ion conductive solid electrolyte, or only a positive electrode active material is used. The weight ratio of the positive electrode active material and the lithium ion conductive solid electrolyte in the mixture is, for example, 7: 3. Here, as the positive electrode active material, materials commonly used for the positive electrode active material in the battery field, such as lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), and lithium manganate (LiMnO 2 ), are used. .

上記負極層4には、負極活物質とリチウムイオン伝導性固体電解質との混合物、または負極活物質のみが用いられる。上記混合物における、負極活物質とリチウムイオン伝導性固体電解質との重量比は、例えば6:4である。ここで、負極活物質には、天然黒鉛、人造黒鉛、黒鉛炭素繊維または樹脂焼成炭素などの炭素材料、シリコン、錫、リチウム、酸化物、硫化物、窒化物、合金など、粉体や箔などの形状にかかわらず、電池分野において負極活物質に通常用いられている材料が用いられる。   For the negative electrode layer 4, a mixture of a negative electrode active material and a lithium ion conductive solid electrolyte, or only a negative electrode active material is used. The weight ratio of the negative electrode active material and the lithium ion conductive solid electrolyte in the mixture is, for example, 6: 4. Here, the negative electrode active material includes natural graphite, artificial graphite, carbon materials such as graphite carbon fiber or resin-fired carbon, silicon, tin, lithium, oxide, sulfide, nitride, alloy, powder, foil, etc. Regardless of the shape, a material usually used for a negative electrode active material in the battery field is used.

ここで、正極層2、固体電解質層3、負極層4のリチウムイオン伝導性固体電解質には、有機化合物、無機化合物、有機および無機の両化合物からなる材料、リチウムイオン電池分野で通常用いられている材料などが用いられる。また、無機化合物のうち、例えばLiS−Pなどの硫化物系は、他の無機化合物と比べてイオン伝導性に優れる。 Here, the lithium ion conductive solid electrolytes of the positive electrode layer 2, the solid electrolyte layer 3, and the negative electrode layer 4 are usually used in the field of lithium ion batteries, materials composed of organic compounds, inorganic compounds, and both organic and inorganic compounds. The materials that are used are used. Moreover, among inorganic compounds, for example, a sulfide system such as Li 2 S—P 2 S 5 is superior in ion conductivity as compared with other inorganic compounds.

上記正極集電体1および負極集電体5には、銅、マグネシウム、ステンレス鋼、チタン、鉄、コバルト、ニッケル、亜鉛、アルミニウム、ゲルマニウム、インジウム、リチウム、錫、若しくはこれらの合金などからなる板状体、箔状体、粉体、または成膜体などが用いられる。   The positive electrode current collector 1 and the negative electrode current collector 5 are made of copper, magnesium, stainless steel, titanium, iron, cobalt, nickel, zinc, aluminum, germanium, indium, lithium, tin, or an alloy thereof. A body, a foil, a powder, or a film-formed body is used.

上記絶縁フィルム6は、正極集電体1と負極集電体5との短絡を防止し得るものである。
以下に、上記全固体リチウムイオン二次電池の製造方法について図3〜図8に基づき説明する。
The insulating film 6 can prevent a short circuit between the positive electrode current collector 1 and the negative electrode current collector 5.
Below, the manufacturing method of the said all-solid-state lithium ion secondary battery is demonstrated based on FIGS.

本製造方法では、正極層2、固体電解質層3、および負極層4を形成するために、それぞれ正極形成用マスク、電解質形成用マスク、および負極形成用マスクを使用する。これら正極形成用マスク、電解質形成用マスク、および負極形成用マスクは、同一の形状であり寸法のみが異なるので、代表として、正極形成用マスクについて説明する。   In this production method, a positive electrode forming mask, an electrolyte forming mask, and a negative electrode forming mask are used to form the positive electrode layer 2, the solid electrolyte layer 3, and the negative electrode layer 4, respectively. Since these positive electrode forming mask, electrolyte forming mask, and negative electrode forming mask have the same shape and differ only in dimensions, the positive electrode forming mask will be described as a representative.

図3(a)および(b)に示すように、正極形成用マスクPMは、貫通口Pが形成された板状体である。この貫通口Pは、矩形の材料通過口Mと、この材料通過口Mに中心が一致して連通するとともに材料通過口Mよりも大きな矩形の層形成口Lとから構成される。上記材料通過口Mは、貫通口Pの上部を構成し、正極形成用マスクPMの上方から吹き付けられた粉末材料を通過させる開口である。また、上記層形成口Lは、貫通口Pの下部を構成し、材料通過口Mを通過した粉末材料が堆積してなる正極層2を形成させる開口である。この層形成口Lは、中心が一致して連通する材料通過口Mよりも大きな開口として形成されることで、材料通過口Mを通過した粉末材料により形成される正極層2を、材料通過口Mおよび層形成口Lの中心から広がる形状にし得るものである。言い換えれば、上記正極形成用マスクPMは、上方から材料通過口Mに吹き付けられた粉末材料により、材料通過口Mおよび層形成口Lの中心から広がる形状の正極層2、すなわち、層厚方向に対して側面が傾斜した正極層2を、層形成口Lにおいて形成するようにされている。   As shown in FIGS. 3A and 3B, the positive electrode forming mask PM is a plate-like body in which the through hole P is formed. The through-hole P is composed of a rectangular material passage opening M and a rectangular layer formation opening L which is connected to the material passage opening M with the center being coincident and larger than the material passage opening M. The material passage port M is an opening that constitutes an upper portion of the through hole P and allows the powder material sprayed from above the positive electrode forming mask PM to pass therethrough. The layer formation port L is an opening that forms the positive electrode layer 2 that forms the lower part of the through-hole P and is formed by depositing the powder material that has passed through the material passage port M. The layer formation port L is formed as an opening larger than the material passage port M having the same center and communicates, so that the positive electrode layer 2 formed of the powder material that has passed through the material passage port M is changed to the material passage port. The shape can be expanded from the center of M and the layer forming port L. In other words, the positive electrode forming mask PM is formed in the positive electrode layer 2 having a shape spreading from the center of the material passage port M and the layer formation port L by the powder material sprayed onto the material passage port M from above, that is, in the layer thickness direction. On the other hand, the positive electrode layer 2 whose side surface is inclined is formed in the layer formation port L.

ところで、電解質形成用マスクおよび負極形成用マスクは、図示しないが、正極形成用マスクPMと同様に、材料通過口Mと層形成口Lとから構成される貫通口Pが形成された板状体であり、形成させる層3,4の面積に応じて、貫通口Pが正極形成用マスクPMのものと異なる寸法にされている。   By the way, although not shown, the electrolyte forming mask and the negative electrode forming mask are plate-like bodies each having a through-hole P formed of a material passage port M and a layer formation port L, as in the positive electrode formation mask PM. Depending on the area of the layers 3 and 4 to be formed, the through hole P has a dimension different from that of the positive electrode forming mask PM.

次に、全固体リチウムイオン二次電池の製造方法について詳細に説明する。
まず、図4に示すように、正極集電体1に、正極層3の下面の面積よりも大きい開口部が形成された絶縁フィルムを固定する(貼り付ける)。このように準備した正極集電体1を静電成膜装置に設置し、図5(a)に示すように、正極形成用マスクPMを層形成口Lが下になるようにして正極集電体1および絶縁フィルム6に配置する。このとき、正極集電体1は、材料通過口Mが正極集電体1および絶縁フィルム6に接触しない状態で、正極形成用マスクPMにより覆われている。
Next, the manufacturing method of an all-solid-state lithium ion secondary battery is demonstrated in detail.
First, as shown in FIG. 4, an insulating film having an opening larger than the area of the lower surface of the positive electrode layer 3 is fixed (attached) to the positive electrode current collector 1. The positive electrode current collector 1 thus prepared is installed in an electrostatic film forming apparatus, and as shown in FIG. 5A, the positive electrode current collector 1 is placed with the positive electrode forming mask PM facing the layer forming port L. Arranged on the body 1 and the insulating film 6. At this time, the positive electrode current collector 1 is covered with the positive electrode forming mask PM in a state where the material passage port M is not in contact with the positive electrode current collector 1 and the insulating film 6.

そして、静電成膜装置のキャリアガスによる噴射用ノズルNにより、正極用の粉末材料を材料通過口Mに吹き付ける。この粉末材料は静電成膜装置により電荷が帯電したものであり、この電荷に作用するクーロン力により、粉末材料が正極集電体1に付着する。   And the powder material for positive electrodes is sprayed to the material passage port M by the nozzle N for injection by the carrier gas of an electrostatic film-forming apparatus. The powder material is charged by an electrostatic film forming apparatus, and the powder material adheres to the positive electrode current collector 1 by Coulomb force acting on the charge.

具体的に説明すると、図5(a)に示すように、粉末材料は、上方から下方に向けて材料通過口Mを通過し、層形成口Lにおいて正極集電体1の上面に堆積する。特に、材料通過口Mの周縁近くを通過した粉末材料は、キャリアガスによって、材料通過口Mおよび層形成口Lの中心から離れる方向に広がって正極集電体1に堆積する。したがって、正極集電体1には、側面が層面方向に対して30〜80°傾斜した正極層2が形成される。正極層2が形成された後は、図5(b)に示すように、正極形成用マスクPMを正極集電体1から取り外す。   Specifically, as shown in FIG. 5A, the powder material passes through the material passage port M from the upper side to the lower side, and is deposited on the upper surface of the positive electrode current collector 1 at the layer formation port L. In particular, the powder material that has passed near the periphery of the material passage opening M spreads in the direction away from the center of the material passage opening M and the layer formation opening L by the carrier gas and is deposited on the positive electrode current collector 1. Therefore, the positive electrode current collector 1 is formed with the positive electrode layer 2 whose side surface is inclined by 30 to 80 ° with respect to the layer surface direction. After the positive electrode layer 2 is formed, the positive electrode forming mask PM is removed from the positive electrode current collector 1 as shown in FIG.

その後、図6(a)に示すように、電解質形成用マスクEMを層形成口Lが下になるようにして正極層2および絶縁フィルム6に配置する。このとき、正極層2および絶縁フィルム6は、材料通過口Mが正極層2および絶縁フィルム6に接触しない状態で、電解質形成用マスクEMにより覆われている。   Thereafter, as shown in FIG. 6A, the electrolyte formation mask EM is disposed on the positive electrode layer 2 and the insulating film 6 with the layer formation port L facing downward. At this time, the positive electrode layer 2 and the insulating film 6 are covered with the electrolyte forming mask EM in a state where the material passage port M is not in contact with the positive electrode layer 2 and the insulating film 6.

そして、静電成膜装置の噴射用ノズルNにより、固体電解質用の粉末材料を材料通過口Mに吹き付ける。この粉末材料は静電成膜装置により電荷が帯電したものであり、この電荷に作用するクーロン力により、粉末材料が正極層2に付着する。   Then, the powder material for the solid electrolyte is sprayed onto the material passage port M by the spray nozzle N of the electrostatic film forming apparatus. The powder material is charged by an electrostatic film forming apparatus, and the powder material adheres to the positive electrode layer 2 by Coulomb force acting on the charge.

具体的に説明すると、図6(a)に示すように、粉末材料は、上方から下方に向けて材料通過口Mを通過し、層形成口Lにおいて正極層2および絶縁フィルム6の上面に堆積する。特に、材料通過口Mの周縁近くを通過した粉末材料は、キャリアガスによって、材料通過口Mおよび層形成口Lの中心から離れる方向に広がって正極層2および絶縁フィルム6に堆積する。したがって、正極層2および絶縁フィルム6には、側面が層面方向に対して30〜80°傾斜した固体電解質層3が形成される。固体電解質層3が形成された後は、図6(b)に示すように、電解質形成用マスクEMを正極層2および絶縁フィルム6から取り外す。   More specifically, as shown in FIG. 6A, the powder material passes through the material passage port M from the upper side to the lower side, and is deposited on the upper surfaces of the positive electrode layer 2 and the insulating film 6 at the layer formation port L. To do. In particular, the powder material that has passed near the periphery of the material passage opening M spreads in the direction away from the center of the material passage opening M and the layer formation opening L by the carrier gas, and is deposited on the positive electrode layer 2 and the insulating film 6. Therefore, on the positive electrode layer 2 and the insulating film 6, the solid electrolyte layer 3 whose side surfaces are inclined by 30 to 80 ° with respect to the layer surface direction is formed. After the solid electrolyte layer 3 is formed, the electrolyte formation mask EM is removed from the positive electrode layer 2 and the insulating film 6 as shown in FIG.

その後、図7(a)に示すように、負極形成用マスクNMを層形成口Lが下になるようにして固体電解質層3および絶縁フィルム6に配置する。このとき、固体電解質層3は、材料通過口Mが固体電解質層3および絶縁フィルム6に接触しない状態で、負極形成用マスクNMにより覆われている。   Thereafter, as shown in FIG. 7A, the negative electrode forming mask NM is disposed on the solid electrolyte layer 3 and the insulating film 6 with the layer forming port L facing downward. At this time, the solid electrolyte layer 3 is covered with the negative electrode forming mask NM in a state where the material passage port M is not in contact with the solid electrolyte layer 3 and the insulating film 6.

そして、静電成膜装置の噴射用ノズルNにより、負極層用の粉末材料を材料通過口Mに吹き付ける。この粉末材料は静電成膜装置により電荷が帯電したものであり、この電荷に作用するクーロン力により、粉末材料が固体電解質層3に付着する。   Then, the powder material for the negative electrode layer is sprayed to the material passage port M by the spray nozzle N of the electrostatic film forming apparatus. The powder material is charged by an electrostatic film forming apparatus, and the powder material adheres to the solid electrolyte layer 3 by the Coulomb force acting on the charge.

具体的に説明すると、図7(a)に示すように、粉末材料は、上方から下方に向けて材料通過口Mを通過し、層形成口Lにおいて固体電解質層3の上面に堆積する。特に、材料通過口Mの周縁近くを通過した粉末材料は、キャリアガスによって、材料通過口Mおよび層形成口Lの中心から離れる方向に広がって固体電解質層3に堆積する。したがって、固体電解質層3には、側面が層面方向に対して30〜80°傾斜した負極層4が形成される。負極層4が形成された後は、図7(b)に示すように、負極形成用マスクNMを固体電解質層3から取り外す。   Specifically, as shown in FIG. 7A, the powder material passes through the material passage port M from the upper side to the lower side, and is deposited on the upper surface of the solid electrolyte layer 3 at the layer formation port L. In particular, the powder material that has passed near the periphery of the material passage opening M spreads in the direction away from the centers of the material passage opening M and the layer formation opening L by the carrier gas and is deposited on the solid electrolyte layer 3. Therefore, the negative electrode layer 4 whose side surface is inclined by 30 to 80 ° with respect to the layer surface direction is formed on the solid electrolyte layer 3. After the negative electrode layer 4 is formed, the negative electrode forming mask NM is removed from the solid electrolyte layer 3 as shown in FIG.

さらに、図8(a)に示すように、形成された上記負極層4の上面に負極集電体5が載置されることで、全固体リチウムイオン二次電池の半製品が得られる。そして、この半製品を、正極リードおよび負極リードを有する熱圧着式のラミネートフィルム(図示しない)内に挿入するとともに、ラミネートフィルム内のガスを真空ポンプで吸引しながら封止を行うことにより、全固体リチウムイオン二次電池の完成品が得られる。この封止により、充放電時の圧密性が高められるとともに、水分と反応して変質する固体電解質、例えば硫化物系固体電解質が大気から保護される。最後に、構成材料中の微量なガスが加圧力により外部に排出される目的、および、各層2,3,4の粉末同士の接触性を高めてイオン伝導性を向上させる目的で、ラミネートフィルム内のガスを吸引する際に、図8(b)に示すように、正極集電体1と負極集電体5とが近づく方向に全固体リチウムイオン二次電池を加圧する。この加圧により、正極層2、固体電解質層3、および負極層4の厚さは約三分の一になるとともに、各層2,3,4の傾斜した側面の角度は層面方向に対して10〜60°になる。   Furthermore, as shown to Fig.8 (a), the semi-finished product of an all-solid-state lithium ion secondary battery is obtained by mounting the negative electrode electrical power collector 5 on the upper surface of the formed said negative electrode layer 4. FIG. Then, the semi-finished product is inserted into a thermocompression-bonding laminate film (not shown) having a positive electrode lead and a negative electrode lead, and sealing is performed while sucking the gas in the laminate film with a vacuum pump. A finished product of a solid lithium ion secondary battery is obtained. By this sealing, the compactness at the time of charging / discharging is enhanced, and a solid electrolyte that reacts with moisture and changes its quality, for example, a sulfide-based solid electrolyte, is protected from the atmosphere. Finally, for the purpose of discharging a small amount of gas in the constituent material to the outside by applying pressure, and improving the ionic conductivity by improving the contact between the powders of each layer 2, 3, 4 in the laminate film As shown in FIG. 8B, the all-solid lithium ion secondary battery is pressurized in a direction in which the positive electrode current collector 1 and the negative electrode current collector 5 approach each other. By this pressurization, the thickness of the positive electrode layer 2, the solid electrolyte layer 3, and the negative electrode layer 4 is reduced to about one third, and the angle of the inclined side surfaces of the layers 2, 3, and 4 is 10 with respect to the layer surface direction. It will be ~ 60 °.

このように、上記全固体リチウムイオン二次電池の構成によると、正極層2、固体電解質層3、および負極層4の各側面をそれぞれの層厚方向に対して傾斜させることで、薄膜化されたものであっても、成形体の内部応力を分散させて、短絡頻度を減少させることができる。   As described above, according to the configuration of the all-solid-state lithium ion secondary battery, the side surfaces of the positive electrode layer 2, the solid electrolyte layer 3, and the negative electrode layer 4 are made thinner by being inclined with respect to the respective layer thickness directions. Even if it is a thing, the internal stress of a molded object can be disperse | distributed and a short circuit frequency can be reduced.

また、上記全固体リチウムイオン二次電池の製造方法によると、従来のマスクと形状の異なるマスクPM,EM,NMを使用する他は、従来の製造方法と同一であるから、高い生産性を維持することができる。   Moreover, according to the manufacturing method of the all-solid-state lithium ion secondary battery, high productivity is maintained because it is the same as the conventional manufacturing method except that masks PM, EM, and NM having different shapes from the conventional mask are used. can do.

ところで、上記実施の形態では、材料通過口Mと層形成口Lとが形成されたマスク(正極形成用マスクPM、電解質形成用マスクEM、および負極形成用マスクNM)を使用するものとして説明したが、図9(a)に示すように、材料通過口Mのみが形成されたマスクMKを使用してもよい。この場合、図9(b)に示すように、層を形成させる面[図9(b)では一例として正極集電体1]とマスクMKとの間にスペーサSを置いて空間を形成する(層を形成させる面にマスクMKの材料通過口Mを接触させない)ことにより、この空間が層形成口Lとして作用する。また、図示しないが、材料通過口Mのみが形成されたマスクMKの下に、層形成口Lのみが形成された他のマスクを重ねて使用してもよい。   By the way, in the said embodiment, it demonstrated as what uses the mask (The positive electrode formation mask PM, the electrolyte formation mask EM, and the negative electrode formation mask NM) in which the material passage port M and the layer formation port L were formed. However, as shown in FIG. 9A, a mask MK in which only the material passage port M is formed may be used. In this case, as shown in FIG. 9B, a space is formed by placing a spacer S between the surface on which the layer is formed [the positive electrode current collector 1 as an example in FIG. 9B] and the mask MK ( This space acts as the layer formation port L by preventing the material passage port M of the mask MK from contacting the surface on which the layer is formed. In addition, although not shown, another mask in which only the layer formation port L is formed may be used in an overlapping manner under the mask MK in which only the material passage port M is formed.

また、上記実施の形態では、正極層2、固体電解質層3、および負極層4のいずれの側面も層厚方向に対して傾斜しているとして説明したが、少なくとも、正極層2および負極層4のうち先に形成される層の側面が層厚方向に対して傾斜していればよい。   In the above embodiment, the side surfaces of the positive electrode layer 2, the solid electrolyte layer 3, and the negative electrode layer 4 are described as being inclined with respect to the layer thickness direction, but at least the positive electrode layer 2 and the negative electrode layer 4 are used. Of these, the side surface of the previously formed layer may be inclined with respect to the layer thickness direction.

さらに、上記実施の形態では、全固体二次電池の一例として、全固体リチウムイオン二次電池について説明したが、これに限定されるものではなく、全固体二次電池であればよい。   Furthermore, in the said embodiment, although the all-solid-state lithium ion secondary battery was demonstrated as an example of an all-solid-state secondary battery, it is not limited to this, What is necessary is just an all-solid-state secondary battery.

また、上記実施の形態では、各層2,3,4が全て形成された後に層厚方向に加圧するとして説明したが、各層2,3,4毎に加圧してもよい。さらに、各層2,3,4毎に加圧し、各層2,3,4が全て形成された後に層厚方向に再度加圧してもよい。   In the above-described embodiment, it has been described that pressurization is performed in the layer thickness direction after all the layers 2, 3, 4 are formed, but pressurization may be performed for each of the layers 2, 3, 4. Further, the pressure may be applied to each of the layers 2, 3, and 4, and after all the layers 2, 3, and 4 are formed, the pressure may be applied again in the layer thickness direction.

また、上記実施の形態では、各層2,3,4の形成には、いずれも静電成膜装置により粉末材料をマスクPM,EM,NMに吹き付けるとして説明したが、これに限定されるものではない。他の例として、(1)傾斜面が形成された金型で各層2,3,4をプレスする方法、(2)各層2,3,4を側面が傾斜するようにライン成膜する方法、(3)レーザ照射により各層2,3,4の側面を削り取って傾斜させる方法などがある。上記(1)の方法は、噴射用ノズルNにより、形成する層2,3,4の粉末材料をマスクMK’の開口に吹き付け[図10(a)参照]、マスクMK’を除去した後に[図10(b)参照]、傾斜面が形成された金型Dでプレスする[図11(a)〜(c)参照]ものである。上記(2)の方法は、ライン成膜ノズルJにより、薄膜を多段に重ねて各層2,3,4を形成するが、下段の薄膜よりも隣接する上段の薄膜の面積を小さくしていくことで[図12(a)〜(c)参照]、各層2,3,4の側面を傾斜させるものである。上記(3)の方法は、噴射用ノズルNにより、形成する層2,3,4の粉末材料をマスクMK’の開口に吹き付け[図13(a)参照]、マスクMK’を除去した後に[図13(b)参照]、金型D’でプレスし[図14(a)および(b)参照]、レーザ照射器Eからのレーザ照射により各層2,3,4の側面を削り取って傾斜させる[図14(c)参照]ものである。上記(1)〜(3)は、各層2,3,4を形成する例に過ぎず、当然ながら、各層2,3,4が形成された後の図8(a)および(b)に示す工程を必要とする。   In the above embodiment, each of the layers 2, 3, and 4 has been described as spraying powder material onto the masks PM, EM, and NM by an electrostatic film forming apparatus. However, the present invention is not limited to this. Absent. As another example, (1) a method of pressing each layer 2, 3, 4 with a mold having an inclined surface, (2) a method of forming a line film so that the side surfaces of the layers 2, 3, 4 are inclined, (3) There is a method in which the side surfaces of the respective layers 2, 3 and 4 are scraped and inclined by laser irradiation. In the method (1), the powder material of the layers 2, 3, and 4 to be formed is sprayed onto the opening of the mask MK ′ by the spray nozzle N [see FIG. 10A], and after removing the mask MK ′ [ In FIG. 10 (b)], pressing is performed with a mold D on which an inclined surface is formed [see FIGS. 11 (a) to 11 (c)]. In the method (2), the thin film is stacked in multiple stages by the line film forming nozzle J to form the layers 2, 3, and 4, but the area of the upper thin film adjacent to the lower thin film is made smaller. [See FIGS. 12 (a) to 12 (c)], the side surfaces of the layers 2, 3, and 4 are inclined. In the method (3), the powder material of the layers 2, 3, and 4 to be formed is sprayed onto the opening of the mask MK ′ using the spray nozzle N [see FIG. 13A], and after removing the mask MK ′ [ 13 (b)], press with the mold D ′ [see FIGS. 14 (a) and 14 (b)], and the side surfaces of the respective layers 2, 3 and 4 are scraped and inclined by laser irradiation from the laser irradiator E. [See FIG. 14 (c)]. The above (1) to (3) are merely examples of forming the layers 2, 3, and 4, and of course, shown in FIGS. 8A and 8B after the layers 2, 3, and 4 are formed. Requires a process.

以下、上記実施の形態をより具体的に示した実施例に係る全固体リチウムイオン二次電池について説明する。なお、本発明は、以下の実施例に限定されるものではない。
以下に説明する実施例および比較例に係る全固体リチウムイオン二次電池は、正極層2、固体電解質層3、および負極層4の形状のみが異なり、他の条件については同一である。また、これら実施例および比較例に係る全固体リチウムイオン二次電池は、いずれも、正極活物質にはLiNi0.8Co0.15Al0.05(粒径6μm)を用い、リチウムイオン伝導性固体電解質にはLiS(70mol%)−P(30mol%)を用い、負極活物質にはグラファイト(粒径25μm)を用い、正極集電体1にはアルミニウム箔(30mm角)をステンレス箔(40mm角)に固定したものを用い、負極集電体5には銅箔(40mm角)を用いた。また、実施例および比較例に係る全固体リチウムイオン二次電池は、いずれも有効面積(最も面積が小さい層における面積)が20mm角であるから、ラミネートフィルム内のガスを吸引する際の加圧を40tとし、各層に10t/cmの圧力を作用させた。
Hereinafter, the all-solid-state lithium ion secondary battery which concerns on the Example which showed the said embodiment more concretely is demonstrated. The present invention is not limited to the following examples.
The all-solid-state lithium ion secondary batteries according to Examples and Comparative Examples described below are different only in the shapes of the positive electrode layer 2, the solid electrolyte layer 3, and the negative electrode layer 4, and the other conditions are the same. Moreover, all the solid-state lithium ion secondary batteries according to these examples and comparative examples use LiNi 0.8 Co 0.15 Al 0.05 O 2 (particle diameter 6 μm) as the positive electrode active material, and lithium Li 2 S (70 mol%)-P 2 S 5 (30 mol%) is used for the ion conductive solid electrolyte, graphite (particle size 25 μm) is used for the negative electrode active material, and aluminum foil ( A 30 mm square) fixed to a stainless steel foil (40 mm square) was used, and the negative electrode current collector 5 was a copper foil (40 mm square). Moreover, since all the solid-state lithium ion secondary batteries according to Examples and Comparative Examples have an effective area (area in the layer having the smallest area) of 20 mm square, pressurization when sucking the gas in the laminate film is performed. Was 40 t, and a pressure of 10 t / cm 2 was applied to each layer.

本実施例1では、材料通過口Mが20mm角で層形成口Lが22mm角の正極形成用マスクPMを使用し、材料通過口Mが28mm角で層形成口Lが30mm角の電解質形成用マスクEMを使用し、材料通過口Mが24mm角で層形成口Lが26mm角の負極形成用マスクNMを使用した。このため、図15に示すように、全固体リチウムイオン二次電池において、面積の大きい層から順に、固体電解質層3、負極層4、正極層2となった。   In Example 1, a positive electrode forming mask PM having a material passage opening M of 20 mm square and a layer formation opening L of 22 mm square is used, and for forming an electrolyte having a material passage opening M of 28 mm square and a layer formation opening L of 30 mm square. A mask EM was used, and a negative electrode forming mask NM having a material passage port M of 24 mm square and a layer formation port L of 26 mm square was used. For this reason, as shown in FIG. 15, in the all-solid-state lithium ion secondary battery, the solid electrolyte layer 3, the negative electrode layer 4, and the positive electrode layer 2 were formed in order from the layer having the largest area.

本実施例1に係る全固体リチウムイオン二次電池の短絡頻度および歩留まりを測定し、この測定結果を下表1に示す。なお、短絡頻度は、作製した全固体リチウムイオン二次電池の個数のうち短絡が生じた全固体リチウムイオン二次電池の個数の割合である。また、歩留まりは、作製した全固体リチウムイオン二次電池の個数のうち短絡が生じなかった全固体リチウムイオン二次電池の個数の割合である。表1に示すように、本実施例1に係る全固体リチウムイオン二次電池の短絡頻度は10%、歩留まりは90%であった。   The short-circuit frequency and yield of the all-solid-state lithium ion secondary battery according to Example 1 were measured, and the measurement results are shown in Table 1 below. The short-circuit frequency is a ratio of the number of all solid-state lithium ion secondary batteries in which a short circuit has occurred among the number of all-solid-state lithium ion secondary batteries produced. The yield is the ratio of the number of all solid-state lithium ion secondary batteries that did not cause a short circuit among the number of all-solid-state lithium ion secondary batteries produced. As shown in Table 1, the short-circuit frequency of the all-solid-state lithium ion secondary battery according to Example 1 was 10%, and the yield was 90%.

本実施例2では、材料通過口Mが20mm角で層形成口Lが22mm角の正極形成用マスクPMおよび負極形成用マスクNMを使用し、材料通過口Mが28mm角で層形成口Lが30mm角の電解質形成用マスクEMを使用した。このため、図16に示すように、全固体リチウムイオン二次電池において、面積の大きい層から順に、固体電解質層3、負極層4および正極層2(負極層4と正極層2とは同面積)となった。   In Example 2, a positive electrode forming mask PM and a negative electrode forming mask NM having a material passage port M of 20 mm square and a layer formation port L of 22 mm square are used, and the material passage port M is 28 mm square and the layer formation port L is formed. A 30 mm square electrolyte forming mask EM was used. For this reason, as shown in FIG. 16, in the all-solid lithium ion secondary battery, the solid electrolyte layer 3, the negative electrode layer 4, and the positive electrode layer 2 (the negative electrode layer 4 and the positive electrode layer 2 have the same area in order from the layer having the largest area). )

本実施例2に係る全固体リチウムイオン二次電池の短絡頻度および歩留まりを測定し、この測定結果を下表1に示す。表1に示すように、本実施例2に係る全固体リチウムイオン二次電池の短絡頻度は15%、歩留まりは85%であった。
[比較例1]
The short-circuit frequency and yield of the all-solid-state lithium ion secondary battery according to Example 2 were measured, and the measurement results are shown in Table 1 below. As shown in Table 1, the short-circuit frequency of the all-solid-state lithium ion secondary battery according to Example 2 was 15%, and the yield was 85%.
[Comparative Example 1]

比較例1〜3では、実施例1および2とは異なり、材料通過口Mを有しない(層形成口Lのみを有する)マスクを使用して、全固体リチウムイオン二次電池を作製した。このため、図17に示すように、正極層2’、固体電解質層3’、および負極層4’の各側面は、それぞれの層面方向に対して略直交しており(傾斜しておらず)、すなわち、層厚方向(層面方向に対して直交する方向)に対して略平行である(傾斜していない)。   In Comparative Examples 1 to 3, unlike Examples 1 and 2, an all-solid lithium ion secondary battery was manufactured using a mask having no material passage port M (having only a layer formation port L). For this reason, as shown in FIG. 17, the side surfaces of the positive electrode layer 2 ′, the solid electrolyte layer 3 ′, and the negative electrode layer 4 ′ are substantially orthogonal to each layer surface direction (not inclined). That is, it is substantially parallel (not inclined) to the layer thickness direction (direction orthogonal to the layer surface direction).

本比較例1では、層形成口Lが20mm角のマスクを使用して正極層2’を形成し、層形成口Lが28mm角のマスクを使用して固体電解質層3’を形成し、層形成口Lが24mm角のマスクを使用して負極層4’を形成した。このため、図17に示すように、全固体リチウムイオン二次電池において、面積の大きい層から順に、固体電解質層3’、負極層4’、正極層2’となった。   In Comparative Example 1, the layer formation port L forms a positive electrode layer 2 ′ using a 20 mm square mask, and the layer formation port L uses a 28 mm square mask to form a solid electrolyte layer 3 ′. A negative electrode layer 4 ′ was formed using a mask having a formation opening L of 24 mm square. For this reason, as shown in FIG. 17, in the all-solid-state lithium ion secondary battery, the solid electrolyte layer 3 ′, the negative electrode layer 4 ′, and the positive electrode layer 2 ′ are formed in order from the layer having the largest area.

本比較例1に係る全固体リチウムイオン二次電池の短絡頻度および歩留まりを測定し、この測定結果を下表1に示す。表1に示すように、本比較例1に係る全固体リチウムイオン二次電池の短絡頻度は65%、歩留まりは35%であった。
[比較例2]
The short-circuit frequency and yield of the all-solid-state lithium ion secondary battery according to Comparative Example 1 were measured, and the measurement results are shown in Table 1 below. As shown in Table 1, the all-solid-state lithium ion secondary battery according to Comparative Example 1 had a short-circuit frequency of 65% and a yield of 35%.
[Comparative Example 2]

本比較例2では、層形成口Lが20mm角のマスクを使用して正極層2’、固体電解質層3’、および負極層4’を形成した。このため、図18に示すように、全固体リチウムイオン二次電池において、固体電解質層3’、負極層4’、正極層2’は同面積となった。   In Comparative Example 2, the positive electrode layer 2 ′, the solid electrolyte layer 3 ′, and the negative electrode layer 4 ′ were formed using a mask having a layer formation port L of 20 mm square. For this reason, as shown in FIG. 18, in the all-solid-state lithium ion secondary battery, the solid electrolyte layer 3 ', the negative electrode layer 4', and the positive electrode layer 2 'have the same area.

本比較例2に係る全固体リチウムイオン二次電池の短絡頻度および歩留まりを測定し、この測定結果を下表1に示す。表1に示すように、本比較例2に係る全固体リチウムイオン二次電池の短絡頻度は85%、歩留まりは15%であった。
[比較例3]
The short-circuit frequency and yield of the all-solid-state lithium ion secondary battery according to Comparative Example 2 were measured, and the measurement results are shown in Table 1 below. As shown in Table 1, the short-circuit frequency of the all-solid-state lithium ion secondary battery according to Comparative Example 2 was 85%, and the yield was 15%.
[Comparative Example 3]

本比較例3では、層形成口Lが20mm角のマスクを使用して正極層2’および負極層4’を形成し、層形成口Lが24mm角のマスクを使用して固体電解質層3’を形成した。このため、図19に示すように、全固体リチウムイオン二次電池において、面積の大きい層から順に、固体電解質層3’、負極層4’および正極層2’(負極層4’と正極層2’とは同面積)となった。   In Comparative Example 3, the layer formation port L uses a 20 mm square mask to form the positive electrode layer 2 ′ and the negative electrode layer 4 ′, and the layer formation port L uses a 24 mm square mask to form the solid electrolyte layer 3 ′. Formed. For this reason, as shown in FIG. 19, in the all-solid-state lithium ion secondary battery, the solid electrolyte layer 3 ′, the negative electrode layer 4 ′, and the positive electrode layer 2 ′ (the negative electrode layer 4 ′ and the positive electrode layer 2) in order from the layer having the largest area. 'And the same area).

本比較例3に係る全固体リチウムイオン二次電池の短絡頻度および歩留まりを測定し、この測定結果を下表1に示す。表1に示すように、本比較例3に係る全固体リチウムイオン二次電池の短絡頻度は70%、歩留まりは30%であった。   The short-circuit frequency and yield of the all-solid-state lithium ion secondary battery according to Comparative Example 3 were measured, and the measurement results are shown in Table 1 below. As shown in Table 1, the all-solid-state lithium ion secondary battery according to Comparative Example 3 had a short-circuit frequency of 70% and a yield of 30%.

Figure 0006066574
このように、上記実施例1および2に係る全固体リチウムイオン二次電池の構成によると、正極層2、固体電解質層3、および負極層4の各側面をそれぞれの層厚方向に対して傾斜させることで、薄膜化されたものであっても、短絡頻度を著しく減少させることができた。
Figure 0006066574
Thus, according to the configuration of the all solid lithium ion secondary battery according to Examples 1 and 2, the side surfaces of the positive electrode layer 2, the solid electrolyte layer 3, and the negative electrode layer 4 are inclined with respect to the respective layer thickness directions. As a result, the frequency of short-circuiting can be significantly reduced even when the film thickness is reduced.

また、上記実施例1に係る全固体リチウムイオン二次電池の構成によると、負極層4が正極層2よりも面積を大きくするとともに、固体電解質層3が負極層4よりも面積を大きくする(面積の大きい層から順に、固体電解質層3、負極層4、正極層2とする)ことで、さらに短絡頻度を減少させることができた。   Further, according to the configuration of the all-solid-state lithium ion secondary battery according to Example 1, the negative electrode layer 4 has a larger area than the positive electrode layer 2 and the solid electrolyte layer 3 has a larger area than the negative electrode layer 4 ( The frequency of the short circuit could be further reduced by forming the solid electrolyte layer 3, the negative electrode layer 4, and the positive electrode layer 2 in order from the layer having the largest area.

ところで、上記実施例1では、さらに短絡頻度を減少させるため、面積の大きい層から順に、固体電解質層3、負極層4、正極層2とすることについて説明したが、これに限定されるものではなく、面積の大きい層から順に、固体電解質層3、正極層2および負極層4のうち後に形成される層、正極層2および負極層4のうち先に形成される層であればよい。   By the way, in Example 1 described above, in order to further reduce the frequency of short-circuiting, it has been described that the solid electrolyte layer 3, the negative electrode layer 4, and the positive electrode layer 2 are formed in order from the layer with the larger area. However, the present invention is not limited to this. Instead, the layers formed later in the solid electrolyte layer 3, the positive electrode layer 2, and the negative electrode layer 4, and the layer formed first in the positive electrode layer 2 and the negative electrode layer 4 may be used in order from the layer having the largest area.

PM 正極形成用マスク
EM 電解質形成用マスク
NM 負極形成用マスク
P 貫通口
M 材料通過口
L 層形成口
1 正極集電体
2 正極層
3 固体電解質層
4 負極層
5 負極集電体
6 絶縁フィルム

PM Positive electrode formation mask EM Electrolyte formation mask NM Negative electrode formation mask P Through port M Material passage port L Layer formation port 1 Positive electrode current collector 2 Positive electrode layer 3 Solid electrolyte layer 4 Negative electrode layer 5 Negative electrode current collector 6 Insulating film

Claims (6)

正極層と負極層との間に固体電解質層が配置されるとともにこれら電極層の外面にそれぞれ集電体が配置されてなる全固体二次電池の製造方法であって、
上記電極層のうち先に形成される層を、配置する集電体に向けて広がるように側面を傾斜させて、形成し、
上記固体電解質層を形成し、
上記電極層のうち後に形成される層を、配置する固体電解質層に向けて広がるように側面を傾斜させて、形成し、
上記正極層、負極層および固体電解質層の側面の角度が、層面方向に対して30〜80°であり、
上記正極層、負極層および固体電解質層の各層毎におよび/または各層が全て形成された後に層厚方向に加圧することを特徴とする全固体二次電池の製造方法。
A method for producing an all-solid-state secondary battery in which a solid electrolyte layer is disposed between a positive electrode layer and a negative electrode layer and a current collector is disposed on each outer surface of these electrode layers,
The layer formed earlier among the electrode layers is formed by inclining the side surface so as to spread toward the current collector to be arranged,
Forming the solid electrolyte layer;
The layer formed later among the electrode layers is formed by inclining the side surface so as to spread toward the solid electrolyte layer to be arranged,
The angles of the side surfaces of the positive electrode layer, the negative electrode layer, and the solid electrolyte layer are 30 to 80 ° with respect to the layer surface direction,
A method for producing an all-solid-state secondary battery, wherein the positive electrode layer, the negative electrode layer, and the solid electrolyte layer are pressurized for each layer and / or after all the layers are formed.
固体電解質層が、正極層および負極層よりも、層面方向に沿った最大面積が大きいことを特徴とする請求項1に記載の全固体二次電池の製造方法。 The method for producing an all solid state secondary battery according to claim 1, wherein the solid electrolyte layer has a maximum area along the layer surface direction larger than that of the positive electrode layer and the negative electrode layer . 電極層のうち後に形成された層が、電極層のうち先に形成された層よりも、層面方向に沿った最大面積が大きいことを特徴とする請求項2に記載の全固体二次電池の製造方法。 3. The all-solid-state secondary battery according to claim 2 , wherein a layer formed later in the electrode layer has a maximum area along the layer surface direction larger than a layer formed earlier in the electrode layer . Production method. 正極層および/または負極層がリチウムイオンを吸蔵放出可能な材料を含み、
固体電解質層がリチウムイオン伝導体を含むことを特徴とする請求項1乃至のいずれか一項に記載の全固体二次電池の製造方法。
The positive electrode layer and / or the negative electrode layer contains a material capable of occluding and releasing lithium ions,
The method for producing an all-solid-state secondary battery according to any one of claims 1 to 3 , wherein the solid electrolyte layer contains a lithium ion conductor .
固体電解質層がLiS−Pであることを特徴とする請求項1乃至のいずれか一項に記載の全固体二次電池の製造方法。 All-solid secondary battery manufacturing method according to any one of claims 1 to 4 solid electrolyte layer is characterized in that it is a Li 2 S-P 2 S 5 . 集電体を、材料通過口が形成されたマスクにより、材料通過口が集電体に接触しない状態で覆い、
材料通過口に粉末材料を吹き付けて、正極層または負極層を形成することを特徴とする請求項1乃至5のいずれか一項に記載の全固体二次電池の製造方法。
The current collector is covered with a mask in which the material passage port is formed in a state where the material passage port does not contact the current collector,
By spraying powder material to the material passage openings, a positive electrode layer or the method of manufacturing the all-solid secondary battery according to any one of claims 1 to 5, characterized in that to form a negative electrode layer.
JP2012047476A 2012-03-05 2012-03-05 Manufacturing method of all-solid-state secondary battery Active JP6066574B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012047476A JP6066574B2 (en) 2012-03-05 2012-03-05 Manufacturing method of all-solid-state secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012047476A JP6066574B2 (en) 2012-03-05 2012-03-05 Manufacturing method of all-solid-state secondary battery

Publications (2)

Publication Number Publication Date
JP2013182842A JP2013182842A (en) 2013-09-12
JP6066574B2 true JP6066574B2 (en) 2017-01-25

Family

ID=49273348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012047476A Active JP6066574B2 (en) 2012-03-05 2012-03-05 Manufacturing method of all-solid-state secondary battery

Country Status (1)

Country Link
JP (1) JP6066574B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2611333A (en) * 2021-09-30 2023-04-05 Dyson Technology Ltd Solid-state electrochemical cell

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6194675B2 (en) * 2013-07-29 2017-09-13 富士通株式会社 All-solid secondary battery, method for producing the same, and electronic device
JP2015050153A (en) * 2013-09-04 2015-03-16 トヨタ自動車株式会社 Laminate for all-solid state battery
JP6608188B2 (en) 2015-06-23 2019-11-20 日立造船株式会社 All-solid secondary battery and manufacturing method thereof
JP6726503B2 (en) * 2016-03-31 2020-07-22 日立造船株式会社 All-solid secondary battery and manufacturing method thereof
US20180309163A1 (en) * 2017-04-24 2018-10-25 Korea Institute Of Industrial Technology Bipolar all solid-state battery
US20210280843A1 (en) * 2018-07-13 2021-09-09 Hitachi Zosen Corporation Installation for manufacturing all-solid secondary battery
DE102018221338A1 (en) * 2018-12-10 2020-06-10 Robert Bosch Gmbh Electrode stack for a galvanic cell
JP7052710B2 (en) * 2018-12-26 2022-04-12 トヨタ自動車株式会社 Laminate
JP7178633B2 (en) * 2018-12-27 2022-11-28 パナソニックIpマネジメント株式会社 All-solid-state battery and manufacturing method thereof
JP7163801B2 (en) * 2019-01-31 2022-11-01 トヨタ自動車株式会社 All-solid-state laminated battery
WO2020183795A1 (en) * 2019-03-12 2020-09-17 パナソニックIpマネジメント株式会社 Laminated battery
JP7096195B2 (en) * 2019-04-10 2022-07-05 本田技研工業株式会社 All solid state battery
JP7424839B2 (en) * 2020-01-17 2024-01-30 本田技研工業株式会社 solid state battery
CN114400368B (en) * 2022-01-14 2023-06-20 厦门海辰储能科技股份有限公司 Sulfide solid electrolyte layer, preparation method thereof and lithium ion battery

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62165880A (en) * 1986-01-17 1987-07-22 Matsushita Electric Ind Co Ltd Solid-electrolyte secondary cell
EP2434567A3 (en) * 2006-07-18 2012-07-25 Cymbet Corporation Method and apparatus for solid-state microbattery photolithographic manufacture, singulation and passivation
JP5173181B2 (en) * 2006-11-01 2013-03-27 パナソニック株式会社 Lithium ion secondary battery and method for producing negative electrode plate for lithium ion secondary battery
JP2008288037A (en) * 2007-05-17 2008-11-27 Toyota Motor Corp Manufacturing method of all solid lithium secondary battery
JP2008293793A (en) * 2007-05-24 2008-12-04 Sumitomo Electric Ind Ltd Solid thin film battery, and manufacturing method of solid thin film battery
JP5239375B2 (en) * 2008-02-14 2013-07-17 トヨタ自動車株式会社 All-solid battery and method for manufacturing the same
JP2009211920A (en) * 2008-03-04 2009-09-17 Nippon Telegr & Teleph Corp <Ntt> All solid lithium secondary battery and method of manufacturing the same
JP2010033918A (en) * 2008-07-30 2010-02-12 Idemitsu Kosan Co Ltd Manufacturing method of lithium battery, and lithium battery obtained by the same
JP5387011B2 (en) * 2009-01-28 2014-01-15 日産自動車株式会社 Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the same
JP5414371B2 (en) * 2009-06-04 2014-02-12 出光興産株式会社 Manufacturing method of all-solid-state lithium ion secondary battery
US9136544B2 (en) * 2010-03-11 2015-09-15 Harris Corporation Dual layer solid state batteries
JP5547556B2 (en) * 2010-06-08 2014-07-16 大日本スクリーン製造株式会社 Battery, vehicle, electronic device and battery manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2611333A (en) * 2021-09-30 2023-04-05 Dyson Technology Ltd Solid-state electrochemical cell
WO2023052746A1 (en) * 2021-09-30 2023-04-06 Dyson Technology Limited Solid-state electrochemical cell

Also Published As

Publication number Publication date
JP2013182842A (en) 2013-09-12

Similar Documents

Publication Publication Date Title
JP6066574B2 (en) Manufacturing method of all-solid-state secondary battery
US9373869B2 (en) Bipolar all-solid-state battery
JP5494338B2 (en) Electrode body manufacturing method and electrode body
JP5389391B2 (en) Electrode material sheet for lithium battery, solid lithium battery, and device including solid lithium battery
JP5765349B2 (en) All-solid battery and method for manufacturing the same
WO2010131321A1 (en) Solid‑state battery manufacturing method and solid state battery
JP5679748B2 (en) Manufacturing method of all solid state battery
JP5218586B2 (en) Solid lithium secondary battery and manufacturing method thereof
TW201445795A (en) Electrochemical cell with solid and liquid electrolytes
KR101840494B1 (en) Electrode for a secondary battery, preparation method thereof and secondary battery including the same
CN111095605B (en) Separator for lithium ion battery
KR20110134266A (en) Battery, vehicle, electronic device and battery manufacturing method
JP2015050153A (en) Laminate for all-solid state battery
JP2014127272A (en) Method for manufacturing electrode for all solid state battery
JP5831442B2 (en) All solid state battery and manufacturing method thereof
KR20200134688A (en) High energy density all-solid state battery and process for preparing thereof
US20160315314A1 (en) Lithium electrode for a lithium-ion battery, and method for the production thereof
US11476503B2 (en) All-solid-state battery
JP2012226862A (en) Monopolar solid state battery, laminate solid state battery, and mobile entity
CN101714656A (en) Lithium-ion secondary battery
CN111384451A (en) Laminated body
US20200343560A1 (en) Secondary battery electrode, method for manufacturing same, and secondary battery
JP5494572B2 (en) All solid state battery and manufacturing method thereof
KR20200127671A (en) High energy density all-solid state battery and process for preparing thereof
JP2013200962A (en) Lithium ion secondary battery and manufacturing method thereof and equipment using lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161220

R150 Certificate of patent or registration of utility model

Ref document number: 6066574

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250