JP6065413B2 - ハイブリッドシステム - Google Patents

ハイブリッドシステム Download PDF

Info

Publication number
JP6065413B2
JP6065413B2 JP2012118868A JP2012118868A JP6065413B2 JP 6065413 B2 JP6065413 B2 JP 6065413B2 JP 2012118868 A JP2012118868 A JP 2012118868A JP 2012118868 A JP2012118868 A JP 2012118868A JP 6065413 B2 JP6065413 B2 JP 6065413B2
Authority
JP
Japan
Prior art keywords
driving force
motor generator
brake
engine
required driving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012118868A
Other languages
English (en)
Other versions
JP2013244797A (ja
Inventor
間宮 清孝
清孝 間宮
誠司 江崎
誠司 江崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2012118868A priority Critical patent/JP6065413B2/ja
Publication of JP2013244797A publication Critical patent/JP2013244797A/ja
Application granted granted Critical
Publication of JP6065413B2 publication Critical patent/JP6065413B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Hybrid Electric Vehicles (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

本発明は、ハイブリッドシステム、即ち、駆動源としてエンジンとモータとを備えた車両の駆動システムに関し、車両の駆動技術の分野に属する。
省エネルギを目的とした車両のハイブリッドシステムとして、例えば特許文献1には、エンジンと、単一のモータジェネレータとを備え、主としてエンジンから駆動力を得ると共に、モータジェネレータをエンジン始動用電動機、加速時における補助的駆動源、及び、減速時における回生用発電機として用いるようにしたものが開示されている。
また、特許文献2には、さらなる省エネルギ化を目的としたハイブリッドシステムとして、エンジンと2つのモータジェネレータとを備え、モータ走行を重視したシステムが開示されている。
このハイブリッドシステムは、遊星歯車機構の2つの回転要素にエンジンと第1モータジェネレータとをそれぞれ連結し、もう1つの回転要素に駆動軸を介して駆動輪を連結すると共に、前記駆動軸に変速機構を介して第2モータジェネレータを接続した構成とされている。
そして、前記第2モータジェネレータを走行用電動機として用いると共に、第1モータジェネレータをエンジンの始動用電動機及び第2モータジェネレータ用電力の発電機として用い、通常は前記第2モータジェネレータの駆動力のみで走行すると共に、高駆動力要求時には、エンジン出力を第1モータジェネレータ側と駆動軸側とに分割し、第1モータジェネレータを発電機として作動させながら、第2モータジェネレータの駆動力をアシストして走行するようになっている。
特開2003−11682号公報 特開2005−96574号公報
ところで、前記特許文献2に開示されたハイブリッドシステムでは、前記のように、高駆動力要求時にエンジン出力をアシストさせるようになっているが、さらなる省エネルギ化のためには、第2モータジェネレータのみで走行するモータ走行領域を高駆動力側まで拡大することが望まれる。しかし、そのためには、該第2モータジェネレータの大型化が必要となり、これに伴いインバータも大型化することになって、車両搭載性の悪化や車両重量の増大等を招くことになる。
これに対しては、エンジンに接続されたブレーキを設け、該ブレーキを締結してエンジンに連結された遊星歯車機構の回転要素の回転を制止させることにより、第1モータジェネレータの駆動力を駆動軸に出力可能として、該第1モータジェネレータを駆動参加させることが考えられる。これによれば、第2モータジェネレータを大型化せずに、モータ走行領域を高駆動力側まで拡大することができる。
このとき、図15に示すように、運転者のアクセル操作によりアクセル開度が増大すると、それに応じて要求駆動力も増大する。ここで、図15に符号aで示すように、要求駆動力が所定値Fを超えたときに、ブレーキを締結して第1モータジェネレータを駆動参加させることにより、要求駆動力の増大に対応することが可能となる。
しかし、前記ブレーキとして一般に用いられる油圧ブレーキの場合、締結時に、オイルポンプの作動開始から油圧が制御回路を経て油圧アクチュエータに供給され、該アクチュエータを作動させてブレーキを締結させるまでに所定の時間を要することから、要求駆動力の増大に応じてブレーキ締結指令を出しても、第1モータジェネレータの駆動参加が図15中に符号tで示した時間だけ遅れることとなる。そして、その間、運転者のアクセル操作による高駆動力要求に対応することができない。
さらにこの場合、第1モータジェネレータの駆動参加開始時には、要求駆動力と実際出力されている駆動力との間に、図15に符号bで示すように、要求駆動力と出力駆動力との間に差が生じており、第1モータジェネレータの駆動力を急激に上昇させることで要求駆動力に対応することが可能となるところ、このとき出力される駆動力を急激に変化させると、乗員に違和感を与えることになる。
そこで、本発明は、エンジンと2つのモータジェネレータとを備えた車両のハイブリッドシステムにおいて、モータジェネレータやインバータの大型化を回避しつつ、モータ走行領域を高駆動力側に拡大し、運転者の要求に対する応答性や、駆動力の変化の円滑性に優れたハイブリッドシステムを実現することを課題とする。
前記課題を解決するため、本願発明は次のように構成したことを特徴とする。
まず、請求項1に係る発明は、
エンジンと、第1、第2モータジェネレータと、コントローラと、3つの回転要素を備えた差動回転機構とを有し、該差動回転機構の第1回転要素にエンジンが、第2回転要素に第1モータジェネレータが、第3回転要素に駆動軸がそれぞれ連結され、かつ、該駆動軸に前記第2モータジェネレータが連結されたハイブリッドシステムであって、
締結することにより前記第1回転要素の回転を制止するブレーキと、該ブレーキを作動させる油圧アクチュエータと、前記油圧アクチュエータを駆動する駆動源と、前記第2モータジェネレータの温度を検出するための温度センサと、を有し、
前記第2モータジェネレータは、該第2モータジェネレータの温度が高いほど出力上限値が低くなる特性を有し、
前記コントローラは、
要求駆動力が所定値未満の低要求駆動力領域では、前記第2モータジェネレータを作動させ、前記ブレーキを解放させ、且つ、前記第1モータジェネレータを非作動となるように制御し、
要求駆動力が前記所定値以上の高要求駆動力領域では、前記第2モータジェネレータを作動させ、前記ブレーキを締結させ、且つ、前記第1モータジェネレータを作動となるよう制御し、更に、
前記低要求駆動力領域での走行中に、前記温度センサの出力値が所定温度以上であるとき、前記低要求駆動力領域から前記高要求駆動力領域へ移行する可能性が高いと予測し、
前記高要求駆動力領域へ移行する可能性が高いと予測されたときに、前記ブレーキを締結するように前記油圧アクチュエータを作動させる制御、又は、前記駆動源の駆動を開始する制御を行う、ように構成されていることを特徴とする。
また、請求項に係る発明は、
エンジンと、第1、第2モータジェネレータと、3つの回転要素を備えた差動回転機構とを有し、該差動回転機構の第1回転要素にエンジンが、第2回転要素に第1モータジェネレータが、第3回転要素に駆動軸がそれぞれ連結され、かつ、該駆動軸に前記第2モータジェネレータが連結されたハイブリッドシステムであって、
前記第2モータジェネレータは、該第2モータジェネレータの温度が高いほど出力上限値が低くなる特性を有し、
前記ハイブリッドシステムは、
締結することにより前記第1回転要素の回転を制止するブレーキと、
前記ブレーキに締結油圧を供給する油圧供給手段と、
前記第2モータジェネレータの温度を検出するための温度検出手段と、
要求駆動力が所定値未満の低要求駆動力領域では、前記第2モータジェネレータを作動させ、前記ブレーキを解放し且つ前記第1モータジェネレータを非作動とし、要求駆動力が前記所定値以上の高要求駆動力領域では、前記第2モータジェネレータを作動させ、前記ブレーキを締結させると共に、前記第1モータジェネレータを作動させる制御手段と、
前記低要求駆動力領域での走行中に、前記温度検出手段の出力値が所定温度以上であるとき、前記低要求駆動力領域から前記高要求駆動力領域へ移行する可能性が高いと予測する予測手段と、
該予測手段によって前記高要求駆動力領域へ移行する可能性が高いと予測されたときに、前記第1回転要素の回転を制止させた状態で前記第1モータジェネレータを作動させるために前記油圧供給手段によって前記ブレーキに油圧を供給するための準備動作を行わせる準備手段とを有することを特徴とする。
前記の構成により、本願各請求項の発明によれば、次の効果が得られる。
まず、請求項1に係る発明によれば、駆動軸に連結された第2モータジェネレータを作動させることにより、その出力によって前記駆動軸を介して当該車両が駆動されることになる。また、ブレーキを締結して、差動回転機構における第1回転要素の回転を制止すると共に、第1モータジェネレータを作動させれば、該第1モータジェネレータの出力が前記差動回転機構の第2回転要素から第3回転要素を介して駆動軸に伝達され、車両が第1モータジェネレータの出力によって駆動されることになる。
したがって、低要求駆動力領域では、第2モータジェネレータを作動させ、一方、高要求駆動力領域では、ブレーキを締結し、かつ第1モータジェネレータを作動させれば、車両は、第2モータジェネレータからの駆動力に加えて、第1モータジェネレータからの駆動力によって駆動されることになる。
これにより、第2モータジェネレータやインバータの大型化を回避し、車両搭載性の悪化や車両重量の増大等を抑制しながら、モータ走行領域を高駆動力側まで拡大して、さらなる省エネルギ化を達成することが可能となる。
そして、特にこの発明によれば、低要求駆動力領域での走行中に、該領域から高要求駆動力領域へ移行する可能性が高いか否かを予測することにより、即ち第1モータジェネレータの駆動参加の有無を予測することにより、該駆動参加が予測されるときは、予め駆動源の駆動を開始し、若しくは前記ブレーキを締結して第1モータジェネレータを迅速に駆動参加可能な状態にしておくことができ、これにより、駆動力の増大要求に迅速に対応することが可能となる。
また、請求項に係る発明によれば、第2モータジェネレータの出力上限値は温度によって変化するので、その温度に応じて第1モータジェネレータを作動開始させるタイミングを異ならせる場合があり、この場合、温度センサの出力値により第2モータジェネレータの温度が検出されることにより、該第2モータジェネレータの温度によって、第1モータジェネレータの駆動参加の有無を予測することが可能となる。
また、請求項に係る発明によれば、前記の請求項1で説明した効果と同様の効果が得られる。
本発明の一実施形態に係るハイブリッドシステムの構造を示す骨子図である。 同ハイブリッドシステムの制御ブロック図である。 制御領域を示すマップである。 本発明の第1実施形態に係る制御動作を示すフローチャートである。 本発明の第1実施形態に係る制御動作を示す図である。 運転領域の移行可能性の一判定方法を説明する図である。 駆動力制御機構の各領域における制御状態を示す模式図である。 他の制御例を示す駆動力制御機構の模式図である。 CDモードでの走行例を示すタイムチャートであり、図9(a)は運転領域の移行可能性が高くない場合を、図9(b)は移行可能性が高い場合をそれぞれ示す。 本発明の第2実施形態に係る予測制御を説明するタイムチャートであり、図10(a)はアクセル操作がやさしい運転の場合を、図10(b)はアクセル操作が激しい運転の場合をそれぞれ示す。 本発明の第3実施形態に係る予測制御を示す図である(その1)。 本発明の第3実施形態に係る予測制御を示す図であり(その2)、図12(a)はカーブの曲率が小さい場合、図12(b)は曲率が大きい場合をそれぞれ示す。 本発明の第3実施形態に係る予測制御を示す図である(その3)。 本発明の第4実施形態に係る制御動作を示すフローチャートである。 第1モータジェネレータの駆動参加の遅れを説明する図である。
以下、本発明の第1実施形態について説明する。
図1は、この実施形態に係るハイブリッドシステムの構造を示すもので、このシステムは、電動機及び発電機として作動する第1モータジェネレータ(以下、「第1MG」と記す)1と、同じく電動機及び発電機として作動する第2モータジェネレータ(以下、「第2MG」と記す)2と、エンジン3と、前記第1、第2MG1、2及びエンジン3が連結された駆動力制御機構4と、該駆動力制御機構4の出力により駆動される差動装置5とを有し、該差動装置5から左右に延びる車軸6、6に駆動輪(図示せず)が連結されている。なお、前記エンジン3と駆動力制御機構4との間にはダンパ7が介設されている。
前記駆動力制御機構4は、回転要素として、リングギヤ11、サンギヤ12及びキャリヤ13を有する遊星歯車機構10を有し、該遊星歯車機構10のリングギヤ11に、前記エンジン3が前記ダンパ7及び第1伝動軸21を介して連結され、サンギヤ12に、第2伝動軸22を介して前記第1MG1が連結され、キャリヤ13に、伝動歯車列23を介して出力軸24が連結されている。
また、前記第2MG2が第3伝動軸25及び減速歯車列26を介して前記出力軸24に連結され、該出力軸24が終減速歯車列27を介して前記差動装置5に連結されている。なお、この出力軸24は、特許請求の範囲における「駆動軸」に相当する。
さらに、駆動力制御機構4には、動力伝達経路切換用の摩擦締結要素として、前記遊星歯車機構10のリングギヤ11と該駆動力制御機構4のケース4aとの間に配置され、締結時にリングギヤ11の回転、即ちエンジン3の回転を制止するエンジンブレーキ41と、前記サンギヤ12とキャリヤ13との間に配置され、締結時に該サンギヤ12とキャリヤ13とを結合する直結クラッチ42と、前記サンギヤ12とケース4aとの間に配置され、締結時にサンギヤ12の回転を制止する減速ブレーキ43とが備えられている。
これらの摩擦締結要素41〜43は、それぞれ油圧アクチュエータ(図示せず)を有し、油圧制御回路44(図2参照)から作動油による油圧が供給されたときに締結され、該油圧が排出されたときに解放されるようになっている。そして、油圧制御回路44には、前記油圧アクチュエータの駆動源であるオイルポンプ45から作動油が供給される。該オイルポンプ45は、後述する駆動力制御モジュール62からの制御信号に応じた油圧で作動油を供給する。
また、図2に示すように、このハイブリッドシステムはコントローラ50を有し、該コントローラ50に、当該車両の車速を検出する車速センサ51からの信号、アクセルペダルの踏み込み量、換言すれば要求駆動力を検出するアクセルセンサ52からの信号、エンジン3の回転数を検出するエンジン回転数センサ53からの信号、バッテリ54の残容量を検出する残容量センサ55からの信号、及び、第2MG2の温度を検出するための温度センサ56からの信号が入力されるようになっている。
ここで、温度センサ56は第2MG2の冷却水の温度を測定し、コントローラ50は該冷却水の温度を基に第2MG2の温度を検出するようになっている。
或は、第2MG2の巻線の温度を熱電対等の温度センサで測定することにより、第2MG2の温度を直接測定することも可能である。
そして、コントローラ50は、前記各信号が示す車両の状態に応じて、エンジン3の作動を制御するエンジン制御モジュール61と、前記油圧制御回路44を介して摩擦締結要素41〜43を締結または解放させることにより前記駆動力制御機構4の動力伝達状態を制御する駆動力制御モジュール62と、前記油圧制御回路44を介して油圧アクチュエータに作動油の油圧を供給するオイルポンプ45と、前記第1、第2MG1、2の作動及び前記バッテリ54の充放電を制御するインバータ63とに、それぞれ制御信号を出力するようになっている。
なお、このコントローラ50には、図示しないが、以上のセンサの他、減速回生制御のためのブレーキペダルの踏み込みを検出するブレーキセンサ等の各種のセンサやスイッチからの信号も入力される。また、前記エンジン制御モジュール61と駆動力制御モジュール62とを一体化し、単一の制御モジュールでエンジン3の制御と摩擦要素41〜43の制御とを行うようにしてもよい。
次に、前記コントローラ50によるハイブリッドシステムの制御動作について説明する。
図3に示すように、このハイブリッドシステムでは、駆動力制御モードとして、チャージ・ディプリーティングモード(以下、「CDモード」と記す)と、チャージ・サステイニングモード(以下、「CSモード」と記す)とが設定されている。
CDモードは、バッテリ54の残容量が所定量以上の場合に選択されるモードであって、省エネルギ性を重視して当該車両の全運転領域でモータ走行が実施されるモードであり、図3(a)に示すように、運転領域が、要求駆動力が第1所定駆動力F1(所定車速以上では車速の関数)未満の低駆動力領域A1と、要求駆動力が前記第1所定駆動力F1以上の高駆動力領域A2とに分割されている。そして、低駆動力領域A1では第2MG2の駆動力のみで走行し、高駆動力領域A2では第1、第2MG1、2の駆動力で走行するようになっている。
一方、CSモードは、バッテリ54の残容量が前記所定量未満の場合に選択されるモードであって、運転領域が、要求駆動力が前記第1所定駆動力F1より大きい第2所定駆動力F2未満で、車速が所定車速V(要求駆動力の関数)未満のモータ走行領域Aと、要求駆動力が前記第2所定駆動力F2未満で、車速が前記所定車速V以上のエンジン走行領域Bと、要求駆動力が前記第2所定駆動力F2以上のエンジン・モータ併用走行領域Cとに分割されている。
そして、前記モータ走行領域Aは、さらに要求駆動力が前記第1所定駆動力F1未満の低駆動力領域A1’と、要求駆動力が前記第1所定駆動力F1以上の高駆動力領域A2’とに分割され、前記CDモードと同様、低駆動力領域A1’では、第2MG2の駆動力のみで走行し、高駆動力領域A2’では、第1、第2MG1、2の駆動力で走行するようになっている。
また、前記エンジン走行領域Bは、要求駆動力が前記第2所定駆動力F2より小さい第3所定駆動力F3未満の低駆動力領域B1と、要求駆動力が該第3所定駆動力F3以上の高駆動力領域B2とに分割され、低駆動力領域B1では、エンジン出力をそのまま車両の駆動力として走行し、高駆動力領域B2では、エンジン出力を増大させて(回転数を減速して)走行するようになっている。
以上の構成において、コントローラ50は、残容量センサ55からバッテリ54の残容量を取得し、CDモードとCSモードのいずれか一方のモードを選択すると共に、車速センサ51及びアクセルセンサ52からの信号が示す車速と要求駆動力とに基づき、現在の運転状態が図3に示すいずれの運転領域に属するかを判定する。
そして、それぞれの領域に応じた走行状態となるように、前記エンジン制御モジュール61、駆動力制御モジュール62及びインバータ63にそれぞれ制御信号を出力し、第1、第2MG1、2の作動、エンジン3の作動、駆動力制御機構4におけるエンジンブレーキ41、直結クラッチ42、減速ブレーキ43の締結、解放の制御を行うようになっている。
なお、前記のように、直結クラッチ42は、遊星歯車機構10のサンギヤ12とキャリヤ13との間に配置されているところ(図1参照)、図5では、便宜上、リングギヤ11とサンギヤ12との間に直結クラッチ42を図示しているが、いずれの場合でも同様の作用を奏する。
次に、前記モードと運転領域とに応じた駆動力制御の具体的動作を、図4のフローチャート、図7の駆動力制御機構4の動力伝達状態を示す模式図などを用いて説明する。
まず、コントローラ50は、フローチャートのステップS1で、前記センサ51〜53、55、56からの信号を入力し、ステップS2で、バッテリ54の残容量に応じてCDモード又はCSモードのいずれかのモードを選択する。
そして、全運転領域でモータ走行を実行するCDモードを選択したとき、コントローラ50は、ステップS3で、アクセルセンサ52から信号で示される運転者の要求駆動力が前記第1所定駆動力F1以上か否かを判定する。
ここで、図5に示すように、第2MG2の出力上限値は温度上昇に伴って減少する。このため、第2MG2の温度上昇に応じて前記第1所定駆動力F1を変化させ、該変化させた第1所定駆動力F1に基づいて、ステップS3を実行することも可能である。
そして、要求駆動力が該第1所定駆動力F1未満で、運転状態が図3(a)の低駆動力領域A1にあるとき、ステップS4に従い、前記ステップS1で入力した温度センサ56からの信号に基づいて予測制御を行う。
具体的に述べると、前記のように第2MG2の出力上限値は温度上昇に伴って減少するため、第2MG2の温度が高い場合には、要求駆動力が第1所定駆動力F1以上となる可能性が高まるといえる。このため、コントローラ50は、ステップS4で第2MG2の温度が第1所定温度T1以上であるか否かを確認する。
コントローラ50は、ステップS5で、車両の属する運転状態の高駆動力領域A2への移行可能性が高いか否か、換言すると、第1MG1の駆動参加の可能性が高いか否かを判定する。このとき、図6(a)に示すように、ステップS4で第2MG2の温度が第1所定温度T1以上となったことが確認されないときには、前記移行可能性が高くないと判定し、一方、図6(b)に示すように、第2MG2の温度が前記第1所定温度T1以上となったことが確認されたときには、前記移行可能性が高いと判定する。
そして、ステップS5で、前記移行可能性が高くないと判定されたときは、ステップS7〜S9に従い、エンジンブレーキ41、直結クラッチ42及び減速ブレーキ43をいずれも解放する。
このとき、図7(a)に示すように、遊星歯車機構10のリングギヤ11とサンギヤ12はフリーな状態となり、駆動力制御機構4は、第2MG2からの駆動力のみを減速歯車列26を介して出力軸24に出力可能な状態となる。したがって、コントローラ50は、ステップS10で、第2MG2のみを作動させ、車両は第2MG2のみからの駆動力によって駆動される。
また、ステップS5で、前記移行可能性が高いと判定されたときは、コントローラ50は、ステップS6に従いエンジンブレーキ41を締結し、該エンジンブレーキ41の締結/解放についてのフラグを1(エンジンブレーキ41が締結された状態)に切り替える。そして、上記と同様に、ステップS8、S9に従い、直結クラッチ42及び減速ブレーキ43をいずれも解放する。
このとき、遊星歯車機構10のリングギヤ11の回転は制止され、サンギヤ12はフリーな状態となるところ、コントローラ50は、ステップS10で第2MG2のみを作動させ、したがって車両は第2MG2のみからの駆動力によって駆動される。
ここで、図5に符号aで示すように、第2MG2の出力上限値は、上限温度以上で急激に減少する。このため、コントローラ50は、前記第1所定温度T1より高く上限温度未満である第2所定温度T2となったことがステップS4で確認されたときに、ステップS5で第1MG1の駆動参加の可能性が高いと判定してステップS6を実行する制御を行うことも可能である。
また、前記ステップS3で、要求駆動力が第1所定駆動力F1以上と判定され、運転状態が図3(a)の高駆動力領域A2にあるときは、コントローラ50は、まず、ステップS11に従い、前記フラグを確認する。前記フラグが0(未締結状態)のときは、ステップS12〜S14に従い、エンジンブレーキ41を締結し、直結クラッチ42及び減速ブレーキ43を解放する。そして、前記フラグが1(締結状態)のときは、ステップS12を実行せずに、ステップS12〜S14に従い、直結クラッチ42及び減速ブレーキ43を解放する。
このとき、図7(b)に示すように、駆動力制御機構4においては、遊星歯車機構10におけるリングギヤ11の回転が制止されることにより、第1MG1の出力をサンギヤ12及びキャリヤ13を介して出力軸24に伝達可能な状態となり、コントローラ50は、ステップS15で、第2MG2に加えて第1MG1も作動させる。これにより、出力軸24には、第2MG2からの駆動力に加えて第1MG1からの駆動力も出力され、車両は要求された高駆動力で走行することになる。
一方、CSモードを選択したときは、コントローラ50は、ステップS16で、要求駆動力が前記第1所定駆動力F1より大きな第2所定駆動力F2以上か否かを判定し、該第2所定駆動力F2未満の場合は、さらにステップS17で、車速が所定車速V以上か否かを判定する。そして、車速が所定車速V未満のときは、CDモードの場合と同様、前記ステップS4〜S15によるモータ走行制御を実行する。
つまり、要求駆動力が第1所定駆動力F1未満で、運転状態が図3(b)の低駆動力領域A1’にあるときは、エンジンブレーキ41、直結クラッチ42及び減速ブレーキ43をいずれも解放し、第2MGからの駆動力のみによって車両を駆動し(ステップS10)、要求駆動力が第1所定駆動力F1以上で、運転状態が高駆動力領域A2’にあるときは、エンジンブレーキ41を締結し、直結クラッチ42及び減速ブレーキ43を解放して、第2MG2からの駆動力に、第1MG1からの駆動力を加えて車両を駆動する(ステップS15)。
なお、図4に示すフローチャートのステップS5では、低駆動力領域A1から高駆動力領域A2への移行可能性について判定しているが、CSモードでの走行中は、低駆動力領域A1’から高駆動力領域A2’への移行可能性について判定するものとする。
また、要求駆動力が前記第2所定駆動力F2未満で、車速が所定車速V以上のとき、即ち、運転状態が図3(b)のエンジン走行領域Bにあるときは、ステップS18〜S26のエンジン走行制御を実行し、まず、ステップS18で、要求駆動力が前記第2所定駆動力F2より小さな第3所定駆動力F3以上か否かを判定する。
そして、要求駆動力が第3所定駆動力F3未満で、運転状態が図3(b)の低駆動力領域B1にあるときは、ステップS19〜S21に従い、エンジンブレーキ41及び減速ブレーキ43を解放し、直結クラッチ42を締結する。
これにより、図7(c)に示すように、駆動力制御機構4において、遊星歯車機構10はリングギヤ11とサンギヤ12とが結合され、全体が一体回転する状態となる。そして、この状態でエンジン3を作動させれば、該エンジン3の出力は増大されることなく、キャリヤ13を介して出力軸24にそのまま出力される。したがって、ステップS22でエンジン3を作動させることにより、車両はエンジン3の出力によって直接駆動されることになる。
また、前記ステップS18で、要求駆動力が第3所定駆動力F3以上と判定され、運転状態が図3(b)の高駆動力領域B2にあるときは、ステップS23〜S26に従い、エンジンブレーキ41及び直結クラッチ42を解放し、減速ブレーキ43を締結する。
このとき、図7(d)に示すように、駆動力制御機構4の遊星歯車機構10は、サンギヤ12の回転が制止されることにより、エンジン3の出力は、リングギヤ11からキャリヤ13を介して出力軸24へ増大されて(減速されて)出力される。したがって、ステップS26でエンジンを作動させることにより、車両は前記低駆動力領域B1の場合に比べて、大きな駆動力でエンジン走行することになる。
さらに、前記ステップS16で、要求駆動力が前記第2所定駆動力F2以上と判定され、運転状態が、図3(b)のエンジン・モータ併用走行領域Cにあるときは、コントローラ50は、まず、ステップS27〜S29に従い、エンジンブレーキ41、直結クラッチ42及び減速ブレーキ43をいずれも解放する。
そして、次にステップS30で、車速とアクセル踏み込み量とから、出力軸24に出力すべき目標駆動力を決定し、ステップS31で、予め設定されたエンジンの燃費率マップから燃費率が最も低くなるエンジン3の出力と回転数とを読み出し、これらを目標出力及び目標回転数として決定する。そして、ステップS32で、この目標出力となるように、エンジン3にスロットル開度指令を出力する。
また、ステップS33で、前記目標出力のもとでエンジン回転数が前記目標回転数となるように、エンジン3に作用する第1MG1の負荷、即ち第1MG1の発電量を決定し、エンジン3により、この発電量が得られるように第1MG1を作動させる。
このとき、エンジン3の出力は、一部が遊星歯車機構10のキャリヤ13を介して出力軸24に出力されると共に、他の一部はサンギヤ12を介して第1MG1を駆動し、該第1MG1を発電機として作動させる。そして、ステップS34で、前記第1MG1の発電電力を用いて第2MG2を駆動する。
その場合に、第2MG2から出力軸24に出力される駆動力と、前記目標出力に対応するエンジン3から出力軸24に出力される駆動力との和が前記目標駆動力となるように、第2MG2を駆動する電力の過不足がインバータ63を介してバッテリ54との間で調整される。
これにより、出力軸24には、エンジン3と第2MG2とにより、第2所定駆動力F2以上の目標駆動力に制御された駆動力が出力されることになり、ステップS35として、車両は要求に応じた大きな駆動力で走行することになる。
なお、前記ステップS22、S26のエンジン直結走行制御及びエンジン減速走行制御においては、図7(c)、(d)に示すように、第1、第2MG1、2を非作動としたが、図8(c’)に示すように、エンジン直結走行制御では、第1MG1及び/又は第2MG2を電動機として作動させて、これらの駆動力をエンジン3の駆動力に付加して出力軸24に出力してもよい。また、第1MG1及び/又は第2MG2を発電機として作動させることも可能である。
また、図8(d’)に示すように、エンジン減速走行制御においては、第2MG2を電動機として作動させて、その駆動力をエンジン3の駆動力に付加して出力軸24に出力してもよい。また、この第2MG2を発電機として作動させることも可能である。
さらに、ステップS31のエンジン・モータ併用走行状態では、図7(e)に示すように、第1MG1を発電機として作動させ、その発電電力を用いて第2MG2を駆動するようにしたが、図8(e’)に示すように、第2MG2を発電機として作動させ、その発電電力を用いて第1MG1を駆動し、その駆動力をエンジン3の駆動力に付加するようにしてもよい。
次に、当該車両の走行時における具体的な駆動制御例を、図9のタイムチャートを用いて説明する。
まず、図9(a)にタイムチャートを示すCDモードでの走行例では、符号aで示すように、車両の発進時、アクセルペダルの踏み込み量が比較的小さく、要求駆動力が第1所定駆動力F1未満であり(領域A1)、したがって、第2MG2のみが作動し、車両は該第2MG2のみの駆動力によって比較的緩やかに発進する。
その後、アクセルペダルが踏み込まれ、符号bで示すように、要求駆動力が前記第1所定駆動力F1以上となると(領域A2)、エンジンブレーキ41が締結されると共に第1MG1も作動し、第1、第2MG1、2の駆動力により、車両は発進直後よりも大きな加速力で走行する。
そして、車速の上昇に伴ってアクセルペダルの踏み込みが緩められ、要求駆動力が前記第1所定駆動力F1未満に低下すれば(領域A1)、前記エンジンブレーキ41が解放されると共に第1MG1が非作動とされ、これにより、車両は再び第2MG2の駆動力のみで走行する状態となる。
以下、要求駆動力が第1所定駆動力F1未満か以上かに応じて、車両は第2MG2のみで駆動される状態か、これに第1MG1の駆動力が付加される状態のいずれかで走行する。そして、減速時には、符号cで示すように、第2MG2が発電機として作動し、減速回生を行う。また、この走行例での走行では、第2MG2の温度は第1所定温度T1以下が維持されている。
一方、図9(b)にタイムチャートを示すCDモードでの走行例では、アクセルペダルは図9(a)の走行例と同様に踏み込まれ、したがって要求駆動力も図9(a)の走行例と同様に変化する。このため、図9(a)と図9(b)とで同じ変化を示す部分には同じ符号を付している。
また、この走行例では、車両が第2MG2の駆動力のみで走行しているときに、第2MG2の温度が第1所定温度T1以上となり、したがって符号dで示すように要求駆動力が第1所定駆動力F1以上となる前に予めエンジンブレーキ41が締結される。その後、要求駆動力が前記第1所定駆動力F1以上となると、エンジンブレーキ41が締結された状態で迅速に第1MG1が作動する。
さらに、要求駆動力が前記第1所定駆動力F1未満となると、第1MG1は非作動となるが、符号eで示すように、エンジンブレーキ41は、第2MG2の温度が前記第1所定温度T1未満となるまで締結された状態が維持されることになる。
以上のように、この実施形態に係るハイブリッドシステムによれば、エンジン3の始動用電動機として、また、エンジン・モータ併用走行領域Cにおいて第2MG2への電力供給用発電機として用いられる第1MG1が、CSモードにおけるモータ走行領域Aの高駆動力領域A2’において、第2MG2と共に車両駆動用として用いられる。したがって、第2MG2の大型化を回避しながら、モータ走行領域Aが高駆動力側まで拡大されることになる。
さらに、低駆動力領域A1またはA1’での走行中に、第2MG2の温度に基づいて、該領域から高駆動力領域A2またはA2’への移行可能性が高いか否かを判定することにより、即ち第1MG1の駆動参加の有無を予測することにより、該駆動参加が予測されるときは、予めエンジンブレーキ41を締結させる制御が行われる。これにより、要求駆動力の増大に迅速に対応して第1MG1が駆動参加することになる。
次に、図10を用いて本発明の第2実施形態について説明する。
この実施形態では、図4のフローチャートのステップS4で実行する予測制御、及び、ステップS5で実行する運転領域の移行可能性が高いか否かの判定についての方法が第1実施形態と異なる。その他の構成については第1実施形態と同様であり、同一の符号を付して説明は省略する。
まず、コントローラ50は、ステップS1でアクセルセンサ52からの信号を入力し、そして、ステップS2でCDモードが選択され、ステップS3で要求駆動力が第1所定駆動力F1未満であると判定されたときは、ステップS4で、前記アクセルセンサ52からの信号が示す要求駆動力の変化率を基に予測制御を実行する。
なお、第1実施形態で説明したように、第2MG2の温度上昇に応じて前記第1所定駆動力F1を変化させ、該変化させた第1所定駆動力F1に基づいて、ステップS3を実行することも可能である。
予測制御について具体的に述べると、コントローラ50は、要求駆動力の変化率、即ち要求駆動力の微分値が所定値D(図10参照)以上となったときには、アクセル変化のフラグを1に切り替え、そして、フラグが1に切り替わる回数が符号τで示す所定時間内に所定回数以上となったか否かを確認する。
そして、コントローラ50は、前記フラグが1に切り替わる回数が前記所定時間内に所定回数以上となったことがステップS4で確認されたときには、ステップS5に従って、移行可能性は高いと判定してステップS6を実行する。また、前記ステップS5で、前記切り替わる回数が前記所定時間内に所定回数以上となったことがステップS4で確認されないときには、移行可能性は高くないと判定し、ステップS7を実行する。
つまり、図10(a)に示すようなアクセル操作のやさしい運転では、移行可能性は高いと判定されず、図10(b)に示すようなアクセル操作の激しい運転では、例えば前記所定回数を3回とした場合、符号aで示した時点で移行可能性が高いと判定されることになる。
また、ステップS4では、要求駆動力が前記所定時間内に第4所定駆動力F4(図10参照)以上となる回数が所定回数であるか否かを確認し、ステップS5で運転領域の移行可能性が高いか否かを判定してもよい。
或は、ステップS4で前記所定時間内の要求駆動力(正の値に限る)の時間積分値が所定積分値以上であるか否かを確認し、ステップS5で運転領域の移行可能性が高いか否かを判定してもよい。またこの場合、前記第4所定駆動力F4以上の要求駆動力の時間積分値を用いることも可能である。
以上のように、この実施形態に係るハイブリッドシステムによれば、第2MG2の大型化を回避しながら、モータ走行領域Aが高駆動力側まで拡大されることになることに加えて、低駆動力領域での走行中に、運転者のアクセルの操作傾向に基づいて第1MG1の駆動参加の有無を予測することにより、該駆動参加が予測されるときは、予めエンジンブレーキ41を締結させておく。これにより、要求駆動力の増大に迅速に対応して、第1MG1が駆動参加することになる。
次に、図11〜図13を用いて本発明の第3実施形態について説明する。
この実施形態では、第2実施形態と同様、図4のフローチャートのステップS4で実行する予測制御、及び、ステップS5で実行する運転領域の移行可能性が高いか否かの判定についての方法が第1実施形態と異なる。その他の構成については第1実施形態と同様であり、同一の符号を付して説明は省略する。
まず、コントローラ50は、ステップS1で、カーナビゲーションシステム57(図2参照)からの信号を入力する。そして、ステップS2でCDモードが選択され、ステップS3で要求駆動力が第1所定駆動力F1未満であると判定されたときは、ステップS4で、前記カーナビゲーションシステム57からの信号が示す車両の進路情報を確認する。
なお、第1実施形態で説明したように、第2MG2の温度上昇に応じて前記第1所定駆動力F1を変化させ、該変化させた第1所定駆動力F1に基づいて、ステップS3を実行することも可能である。
予測制御について具体的に述べると、コントローラ50は、カーナビゲーションシステム57が車両の現在位置、及び予め入力される目的地に基づいて取得する進路情報から、車両が進むことになる路面の傾斜度やカーブの曲率を把握する。
そして、コントローラ50は、ステップS5に従って、運転領域の移行可能性が高いか否かを次のように判定する。即ち、路面の傾斜度の場合、図11に符号aで示す傾斜度の比較的小さい場所では移行可能性が小さいと判定し、一方、符号bで示す傾斜度の大きい場所では、傾斜が大きくなる地点でアクセルが大きく踏み込まれ、要求駆動力が急激に増大する可能性が高いことから、前記移行可能性が高いと判定する。
また、カーブの曲率の場合、図12(a)に示すように、曲率の小さいカーブでは移行可能性が小さいと判定し、一方、図12(b)に示すように、曲率の大きいカーブでは、カーブの終端付近でアクセルが大きく踏み込まれ、要求駆動力が急激に増大する可能性が高いことから、前記移行可能性が高いと判定する。
また、例えば車両が交差点で左折(右折)する場合での左折後の符号aで示す位置付近や(図13参照)、高速道路の入口付近において、要求駆動力が急激に増大する可能性が高いことから、ステップS4の予測制御で、車両が右左折することになる交差点の位置や高速道路の入口の位置を把握し、ステップS5でこれらの位置を基に前記移行可能性が高いか否かを判定してもよい。
そして、ステップS5で移行可能性が高いと判定されたときは、コントローラ50はステップS6を実行し、移行可能性が高くないと判定されたときはステップS7を実行する。
以上のように、この実施形態に係るハイブリッドシステムによれば、第2MG2の大型化を回避しながら、モータ走行領域Aが高駆動力側まで拡大されることになることに加えて、低駆動力領域での走行中に、カーナビゲーションシステム57が取得する車両の進路情報に基づいて路面の傾斜度やカーブの曲率などを把握して第1MG1の駆動参加の有無を予測することにより、該駆動参加が予測されるときは、予めエンジンブレーキ41を締結させておく。これにより、要求駆動力の増大に迅速に対応して、第1MG1が駆動参加することになる。
次に、図14のフローチャートを用いて、本発明の第4実施形態を説明する。
前記のとおり、第1〜第3実施形態では、ステップS3で要求駆動力が第1所定駆動力F1未満であると判定され、かつ、ステップS4の予測制御の結果を基に、ステップS5で車両の属する運転状態の低駆動力領域A1から高駆動力領域A2への移行可能性が高いと判定されたときは、ステップS6でエンジンブレーキ41を予め締結し、要求駆動力が第1所定値F1以上となったときに、迅速に第1MG1を駆動参加させられるようにした。
また、前記のとおり、油圧制御回路44を介してオイルポンプ45から油圧アクチュエータに作動油の油圧が供給され、これにより、エンジンブレーキ41が締結されるところ、油圧が油圧アクチュエータに供給され、該アクチュエータを作動させてエンジンブレーキ41を締結させるまでには所定の時間を要する。
このため、この実施形態では、ステップS5で、前記移行可能性が高いと判定されたとき、コントローラ50はステップS6’に従い、オイルポンプ45を予め作動させておく制御を行う。その他の構成は、第1実施形態と同様であり、同一の符号を付して、説明を省略する。
そして、ステップS7〜S9に従い、エンジンブレーキ41、直結クラッチ42及び減速ブレーキ43をいずれも解放し、ステップS10で、車両は、第2MG2のみの駆動力で走行する。このとき、CDモードでの走行中、要求駆動力が第1所定駆動力F1以上となったときは、コントローラ50は、ステップS12に従い、エンジンブレーキ41を締結するところ、予めオイルポンプ45が作動しているため、エンジンブレーキ41は、迅速に締結されることになる。これにより、運転者による高駆動力要求に対して、第1MG1を迅速に駆動参加させることが可能となる。
また、この実施形態で説明した、要求駆動力が第1所定駆動力F1以上となる前に予めオイルポンプ45を作動させておくという制御は、第1〜第3実施形態で説明した、フローチャートのステップS4で実行する予測制御、及び、ステップS5で実行する運転領域の移行可能性が高いか否かの判定についての方法と組み合わせて実行してもよい。
本願発明は、エンジンと2つのモータジェネレータとを備えた車両のハイブリッドシステムにおいて、該システムの車両搭載性や車両重量の増大を抑制しながら、さらなる省エネルギ化が可能となるので、この種の車両の製造産業分野において、好適に利用される可能性がある。
1 第1モータジェネレータ(第1MG)
2 第2モータジェネレータ(第2MG)
3 エンジン
10 差動回転機構(遊星歯車機構)
11 第1回転要素(リングギヤ)
12 第2回転要素(サンギヤ)
13 第3回転要素(キャリヤ)
41 ブレーキ(エンジンブレーキ)
45 駆動源(オイルポンプ)
50 コントローラ
52 アクセルセンサ
56 温度センサ
57 カーナビケーションシステム

Claims (2)

  1. エンジンと、第1、第2モータジェネレータと、コントローラと、3つの回転要素を備えた差動回転機構とを有し、該差動回転機構の第1回転要素にエンジンが、第2回転要素に第1モータジェネレータが、第3回転要素に駆動軸がそれぞれ連結され、かつ、該駆動軸に前記第2モータジェネレータが連結されたハイブリッドシステムであって、
    締結することにより前記第1回転要素の回転を制止するブレーキと、該ブレーキを作動させる油圧アクチュエータと、前記油圧アクチュエータを駆動する駆動源と、前記第2モータジェネレータの温度を検出するための温度センサと、を有し、
    前記第2モータジェネレータは、該第2モータジェネレータの温度が高いほど出力上限値が低くなる特性を有し、
    前記コントローラは、
    要求駆動力が所定値未満の低要求駆動力領域では、前記第2モータジェネレータを作動させ、前記ブレーキを解放させ、且つ、前記第1モータジェネレータを非作動となるように制御し、
    要求駆動力が前記所定値以上の高要求駆動力領域では、前記第2モータジェネレータを作動させ、前記ブレーキを締結させ、且つ、前記第1モータジェネレータを作動となるよう制御し、更に、
    前記低要求駆動力領域での走行中に、前記温度センサの出力値が所定温度以上であるとき、前記低要求駆動力領域から前記高要求駆動力領域へ移行する可能性が高いと予測し、
    前記高要求駆動力領域へ移行する可能性が高いと予測されたときに、前記ブレーキを締結するように前記油圧アクチュエータを作動させる制御、又は、前記駆動源の駆動を開始する制御を行う、ように構成されていることを特徴とするハイブリッドシステム。
  2. エンジンと、第1、第2モータジェネレータと、3つの回転要素を備えた差動回転機構とを有し、該差動回転機構の第1回転要素にエンジンが、第2回転要素に第1モータジェネレータが、第3回転要素に駆動軸がそれぞれ連結され、かつ、該駆動軸に前記第2モータジェネレータが連結されたハイブリッドシステムであって、
    前記第2モータジェネレータは、該第2モータジェネレータの温度が高いほど出力上限値が低くなる特性を有し、
    前記ハイブリッドシステムは、
    締結することにより前記第1回転要素の回転を制止するブレーキと、
    前記ブレーキに締結油圧を供給する油圧供給手段と、
    前記第2モータジェネレータの温度を検出するための温度検出手段と、
    要求駆動力が所定値未満の低要求駆動力領域では、前記第2モータジェネレータを作動させ、前記ブレーキを解放し且つ前記第1モータジェネレータを非作動とし、要求駆動力が前記所定値以上の高要求駆動力領域では、前記第2モータジェネレータを作動させ、前記ブレーキを締結させると共に、前記第1モータジェネレータを作動させる制御手段と、
    前記低要求駆動力領域での走行中に、前記温度検出手段の出力値が所定温度以上であるとき、前記低要求駆動力領域から前記高要求駆動力領域へ移行する可能性が高いと予測する予測手段と、
    該予測手段によって前記高要求駆動力領域へ移行する可能性が高いと予測されたときに、前記第1回転要素の回転を制止させた状態で前記第1モータジェネレータを作動させるために前記油圧供給手段によって前記ブレーキに油圧を供給するための準備動作を行わせる準備手段とを有することを特徴とするハイブリッドシステム。
JP2012118868A 2012-05-24 2012-05-24 ハイブリッドシステム Expired - Fee Related JP6065413B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012118868A JP6065413B2 (ja) 2012-05-24 2012-05-24 ハイブリッドシステム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012118868A JP6065413B2 (ja) 2012-05-24 2012-05-24 ハイブリッドシステム

Publications (2)

Publication Number Publication Date
JP2013244797A JP2013244797A (ja) 2013-12-09
JP6065413B2 true JP6065413B2 (ja) 2017-01-25

Family

ID=49844930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012118868A Expired - Fee Related JP6065413B2 (ja) 2012-05-24 2012-05-24 ハイブリッドシステム

Country Status (1)

Country Link
JP (1) JP6065413B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101673349B1 (ko) 2015-03-20 2016-11-07 현대자동차 주식회사 하이브리드 차량의 엔진클러치 제어 시스템 및 그 방법
JP6365566B2 (ja) * 2016-02-23 2018-08-01 トヨタ自動車株式会社 車両の制御装置
KR102079393B1 (ko) * 2019-03-18 2020-02-19 유시웅 무급유 차량의 동력장치

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11262105A (ja) * 1998-03-10 1999-09-24 Honda Motor Co Ltd ハイブリッド車両の制御装置
JP3456168B2 (ja) * 1999-02-08 2003-10-14 トヨタ自動車株式会社 油圧制御装置
JP3633473B2 (ja) * 2000-11-02 2005-03-30 トヨタ自動車株式会社 無段変速機構付きハイブリッド駆動機構の制御装置
JP4400296B2 (ja) * 2004-02-19 2010-01-20 トヨタ自動車株式会社 電気自動車および自動車
JP2008265600A (ja) * 2007-04-23 2008-11-06 Toyota Motor Corp 車両およびその制御方法
JP5369504B2 (ja) * 2008-06-06 2013-12-18 トヨタ自動車株式会社 車両用走行制御装置
JP2010233373A (ja) * 2009-03-27 2010-10-14 Toyota Motor Corp 車両制御装置

Also Published As

Publication number Publication date
JP2013244797A (ja) 2013-12-09

Similar Documents

Publication Publication Date Title
JP5496454B2 (ja) ハイブリッド車両の制御装置
JP5045431B2 (ja) ハイブリッド車両のエンジン始動制御装置
JP5928576B2 (ja) ハイブリッド車両の制御装置
JP5679072B2 (ja) ハイブリッド車両の制御装置
JP5698358B2 (ja) ハイブリッド車両の制御装置
JP5353276B2 (ja) 電動車両の制御装置
JP5488712B2 (ja) ハイブリッド車両の制御装置
JP5125727B2 (ja) ハイブリッド車両の発進制御装置
JP5759547B2 (ja) 車両の制御装置
JPWO2014006716A1 (ja) ハイブリッド車両の制御装置
JP2016055759A (ja) ハイブリッド車両の制御装置
JP2009035188A (ja) ハイブリッド車両の制御装置
JP2007314066A (ja) ハイブリッド車両のクラッチ締結制御装置
JP5251495B2 (ja) ハイブリッド車両の駆動制御装置および駆動制御方法
JP6065413B2 (ja) ハイブリッドシステム
JP2010143307A (ja) ハイブリッド車両の制御装置
JP2012091573A (ja) トルク制御装置及びトルク制御方法
JP6032147B2 (ja) ハイブリッド車両の制御装置
KR20090111175A (ko) 하이브리드 차량의 엔진 클러치 제어장치 및 방법
JP6145968B2 (ja) ハイブリッドシステム
JP5609529B2 (ja) ハイブリッド車両の制御装置
JP5287825B2 (ja) ハイブリッド車両のアイドル制御装置
JP3925723B2 (ja) パラレルハイブリッド車両
JP5011500B2 (ja) ハイブリッド車両のモータ/ジェネレータ制御装置
JP6065412B2 (ja) ハイブリッドシステム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161212

R150 Certificate of patent or registration of utility model

Ref document number: 6065413

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees