JP6058145B2 - 空気調和装置 - Google Patents

空気調和装置 Download PDF

Info

Publication number
JP6058145B2
JP6058145B2 JP2015533845A JP2015533845A JP6058145B2 JP 6058145 B2 JP6058145 B2 JP 6058145B2 JP 2015533845 A JP2015533845 A JP 2015533845A JP 2015533845 A JP2015533845 A JP 2015533845A JP 6058145 B2 JP6058145 B2 JP 6058145B2
Authority
JP
Japan
Prior art keywords
refrigerant
pressure
heat exchanger
pipe
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015533845A
Other languages
English (en)
Other versions
JPWO2015029160A1 (ja
Inventor
山下 浩司
浩司 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Application granted granted Critical
Publication of JP6058145B2 publication Critical patent/JP6058145B2/ja
Publication of JPWO2015029160A1 publication Critical patent/JPWO2015029160A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0003Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station characterised by a split arrangement, wherein parts of the air-conditioning system, e.g. evaporator and condenser, are in separately located units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/46Component arrangements in separate outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/30Arrangement or mounting of heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/006Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant containing more than one component
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/003Indoor unit with water as a heat sink or heat source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/0272Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using bridge circuits of one-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02791Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using shut-off valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/029Control issues
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0313Pressure sensors near the outdoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0314Temperature sensors near the indoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0315Temperature sensors near the outdoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/11Fan speed control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2507Flow-diverting valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Air Conditioning Control Device (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

本発明は、空気調和装置に関するものである。
従来の冷房暖房切替型のビル用マルチエアコン等の空気調和装置においては、冷房運転時に凝縮器(熱源側熱交換器)から流出した高圧液冷媒を、室外機と室内機との間を接続する延長配管に流していた。
冷房暖房混在運転を行うことが可能な空気調和装置においても、冷房運転時に凝縮器から流出した高圧液冷媒を延長配管に流していた(例えば、特許文献1参照)。
また、室外機と室内機との間に介在する熱媒体変換機を備えた空気調和装置が知られている(例えば、特許文献2参照)。この空気調和装置では、室外機と熱媒体変換機との間は熱源側冷媒を導通させる2本の冷媒配管で接続されており、熱媒体変換機と各室内機との間は熱媒体を導通させる2本の熱媒体配管で接続されている。熱媒体変換機では、熱源側冷媒と熱媒体との熱交換が行われる。
また、凝縮器出口に熱交換器内蔵高圧レシーバを備えた冷凍サイクルが知られている(例えば、特許文献3参照)。この冷凍サイクルにおいて、凝縮器を経た高温冷媒は、膨張弁を通過した低温のバイパス冷媒と熱交換器内蔵高圧レシーバで熱交換することにより過冷却される。
また、熱源側膨張弁を熱源ユニットに備えた空気調和装置が知られている(例えば、特許文献4参照)。熱源側膨張弁は、熱源側熱交換器の液側に設けられており、冷媒圧力や冷媒流量の調節を行うようになっている。
特開平4−6636号公報(第3−6頁、図1−4等) 国際公開第2011/030430号(段落0031−0047、図3等) 特開平6−331223号公報(段落0017、図1等) 国際公開第2004/070293号(第7−8頁、図1等)
従来のビル用マルチエアコンにおいては、冷房運転時の凝縮器(熱源側熱交換器)から流出した高圧液冷媒を延長配管に流していたため、延長配管が長い場合(例えば100m)には冷媒回路全体の冷媒量が多くなってしまうという問題点があった。このため、万が一冷媒が外に漏れた場合の環境への影響が大きくなってしまうという問題点があった。
特許文献1に記載の空気調和装置においては、冷房暖房混在運転モードでは、延長配管に二相冷媒が流れる。ところが、最も多くの冷媒量を必要とする全冷房運転モード(全部の室内機が冷房運転(停止を含む)を行っている運転モード)では、延長配管に液冷媒が流れる。したがって、冷媒回路に封入する冷媒量を削減することはできないという問題点があった。
特許文献2に記載の空気調和装置においては、熱媒体変換機と各室内機の間には冷媒ではなく熱媒体が流れているため、冷媒回路全体の冷媒量を削減することができる。しかしながら、これは特殊な形態の空気調和装置であるためであって、室内機まで冷媒が流れる通常の空気調和装置の冷媒量を削減することはできないという問題点があった。
特許文献3に記載の冷凍サイクルにおいては、凝縮器出口に設けられた熱交換器内蔵高圧レシーバで冷媒を過冷却することができるため、凝縮器出口の冷媒の過冷却度を小さくすることができる。これにより、冷媒回路全体の冷媒量を削減することができる。しかしながら、凝縮器出口の冷媒の過冷却度を小さくして冷媒量を削減することは一般的な方法であり、この状態からさらに冷媒量を削減するための方法については示されていない。
特許文献4に記載の空気調和装置において、熱源側膨張弁は、冷房運転では開にされ、暖房運転では液冷媒配管を流れてきた液冷媒を減圧するように開度調節される。しかしながら、熱源側膨張弁を制御することにより冷媒回路の冷媒量を削減することについては何ら示唆されていない。
本発明は、上述のような問題点を解決するためになされたものであり、冷媒回路の冷媒量を削減できる空気調和装置を提供することを目的とする。
本発明に係る空気調和装置は、圧縮機、第一の熱交換器、少なくとも1つの第一の絞り装置、及び少なくとも1つの第二の熱交換器が冷媒配管を介して接続され、内部に冷媒を循環させる冷媒回路を備え、前記圧縮機及び前記第一の熱交換器は、熱源機に収容されており、前記第一の絞り装置及び前記第二の熱交換器は、前記熱源機から離れた位置に設置される筐体に収容されており、前記熱源機と前記筐体との間は、前記冷媒配管の一部を構成する複数本の延長配管を介して接続されており、前記冷媒回路は、前記第一の熱交換器が凝縮器として動作し、停止状態にない全ての前記第二の熱交換器が蒸発器として動作する冷房運転が可能であり、前記熱源機には、前記冷房運転の冷媒の流れ方向において前記第一の熱交換器よりも下流側でありかつ前記第一の絞り装置よりも上流側となる位置に設けられた第二の絞り装置が収容されており、前記第二の絞り装置と前記第一の絞り装置との間は、前記延長配管のうちの1本である第一の延長配管を介して接続されており、前記第二の絞り装置は、前記冷房運転において前記第一の延長配管に流入する前の冷媒を減圧し、前記凝縮器内の冷媒圧力よりも低く前記蒸発器内の冷媒圧力よりも高い中圧で、かつ二相状態の冷媒とするものであり、前記冷房運転において、前記第一の延長配管には、前記中圧でかつ二相状態の冷媒を流通させるものであり、R32とテトラフルオロプロペン系冷媒との混合冷媒が用いられ、前記混合冷媒におけるR32の混合比率をR(1/100wt%)としたとき、前記冷房運転において、前記第一の延長配管に流通させる冷媒の乾き度は、(−0.0782×R+0.1399)〜(−0.0933×R+0.3999)の乾き度範囲内の値であり、前記冷房運転の冷媒の流れ方向における前記第二の絞り装置の下流側に設けられ、冷媒の圧力又は飽和温度を検出する中圧検出装置と、前記中圧検出装置の検出圧力又は検出温度に基づいて前記第二の絞り装置の開度を制御する制御装置と、前記圧縮機の吸入側に設けられ、冷媒の圧力を検出する低圧検出装置と、をさらに備え、前記制御装置は、前記中圧でかつ二相状態の冷媒の圧力又は飽和温度の制御目標値を前記低圧検出装置の検出圧力に基づいて変更し、前記中圧検出装置の検出圧力又は検出温度が前記制御目標値に近づくように前記第二の絞り装置の開度を制御することを特徴とするものである。
本発明によれば、第一の延長配管に流入する前の冷媒を第二の絞り装置で減圧して二相化することにより、第一の延長配管内の冷媒の密度を小さくすることができる。したがって、冷媒回路の冷媒量を削減することができる。
本発明の実施の形態1に係る空気調和装置の設置例を示す概略図である。 本発明の実施の形態1に係る空気調和装置の回路構成の一例を示す概略回路構成図である。 本発明の実施の形態1に係る空気調和装置の冷房運転モードにおける冷媒の流れを示す回路構成図である。 本発明の実施の形態1に係る空気調和装置の冷房運転モードにおける冷媒状態を示すp−h線図である。 本発明の実施の形態1に係る空気調和装置の分岐部18の構成の例を示す図である。 本発明の実施の形態1に係る空気調和装置の分岐部18の構成の例を示す図である。 本発明の実施の形態1に係る空気調和装置において、各凝縮温度CT、各過冷却度SC、各圧力Pの飽和温度における延長配管(二相側)5a内の中圧二相冷媒の乾き度Xを計算した結果を示す図である。 本発明の実施の形態1に係る空気調和装置の暖房運転モードにおける冷媒の流れを示す回路構成図である。 本発明の実施の形態1に係る空気調和装置の回路構成の別の一例を示す概略回路構成図である。 本発明の実施の形態1に係る空気調和装置の回路構成のさらに別の一例を示す概略回路構成図である。
実施の形態1.
本発明の実施の形態1に係る空気調和装置について説明する。図1は、本実施の形態に係る空気調和装置の設置例を示す概略図である。この空気調和装置は、冷媒を循環させる冷凍サイクルを利用することで、運転モードとして冷房モードあるいは暖房モードのいずれかを選択できるものである。なお、図1を含む以下の図面では、各構成部材の寸法の関係や形状等が実際のものとは異なる場合がある。
図1に示すように、本実施の形態に係る空気調和装置は、熱源機である1台の室外機1と、室外機1から離れた位置に設置される複数台の室内機2a〜2d(筐体の一例)と、を有している。以下、室内機2a〜2dを総称して室内機2という場合がある。室外機1と室内機2とは、冷媒を導通する延長配管(冷媒配管)5a、5bを介して接続されている。室外機1で生成された冷熱あるいは温熱は、延長配管5a、5bを介して室内機2に搬送されるようになっている。
室外機1は、通常、ビル等の建物9の外の空間(例えば、屋上等)である室外空間6に配置され、室内機2に冷熱又は温熱を供給するものである。室内機2は、建物9の内部の空間(例えば、居室等)である室内空間7に温調された空気を供給できる位置に配置され、空調対象空間となる室内空間7に冷房用空気あるいは暖房用空気を供給するものである。
本実施の形態に係る空気調和装置においては、室外機1と各室内機2とが2本の延長配管5a、5bを用いて、それぞれ接続されている。
なお、図1においては、室内機2が天井カセット型である場合を例示しているが、これに限定するものではない。例えば、室内機2は、天井埋込型や天井吊下式等、室内空間7に直接又はダクト等を介して暖房用空気あるいは冷房用空気を吹き出せるようになっていればどんな種類のものでもよい。
また、図1においては、室外機1が室外空間6に設置されている場合を例示しているが、これに限定するものではない。例えば、室外機1は、換気口の設けられた機械室等の囲まれた空間に設置してもよく、排気ダクトで廃熱を建物9の外に排気することができるのであれば建物9の内部に設置してもよい。あるいは、水冷式の室外機1を用いて建物9の内部に設置するようにしてもよい。このような場所に室外機1を設置するとしても、特段の問題が発生することはない。
また、室外機1及び室内機2の接続台数は、図1に図示してある台数に限定するものではない。室外機1及び室内機2の接続台数は、本実施の形態に係る空気調和装置が設置される建物9に応じて決定すればよい。
図2は、実施の形態に係る空気調和装置(以下、空気調和装置100と称する)の回路構成の一例を示す概略回路構成図である。図2に基づいて、空気調和装置100の詳しい構成について説明する。図2に示すように、室外機1と室内機2とは、内部に冷媒が流れる延長配管(冷媒配管)5a及び延長配管(冷媒配管)5bで接続されている。
[室外機1]
室外機1には、アキュムレータ15と、圧縮機10と、四方弁等の冷媒流路切替装置11と、熱源側熱交換器12(第一の熱交換器の一例)と、絞り装置14(第二の絞り装置の一例)とが冷媒配管で直列に接続されて搭載されている。アキュムレータ15、圧縮機10、冷媒流路切替装置11、熱源側熱交換器12及び絞り装置14は、冷媒回路の一部を構成している。
圧縮機10は、冷媒を吸入し、その冷媒を圧縮して高温高圧の状態にするものであり、例えば容量制御可能なインバータ圧縮機等で構成するとよい。圧縮機10としては、例えば、密閉容器内に圧縮室を有し、密閉容器内が低圧の冷媒圧雰囲気となり、密閉容器内の低圧冷媒を吸入して圧縮する低圧シェル構造のものが使用される。冷媒流路切替装置11は、冷房運転時における冷媒の流れと暖房運転時における冷媒の流れとを切り替えるものである。熱源側熱交換器12は、冷房運転時には凝縮器(又は放熱器)として機能し、暖房運転時には蒸発器として機能する。熱源側熱交換器12は、内部を流通する冷媒と不図示の送風機から供給される空気との間で熱交換を行い、冷媒を蒸発ガス化又は凝縮液化するものである。アキュムレータ15は、圧縮機10の吸入側に設けられており、冷媒回路中で余剰となる冷媒を貯留するものである。余剰冷媒が発生しない場合、あるいは、余剰冷媒が少ない場合は、アキュムレータ15が設けられていなくてもよい。
絞り装置14は、冷房運転時において熱源側熱交換器12で凝縮された液冷媒を減圧し、中圧の二相冷媒にして、延長配管5aに流入させるためのものである。ここで、中圧とは、冷凍サイクルにおける高圧(凝縮器内の冷媒圧力、又は圧縮機10の吐出冷媒圧力)よりも低く、低圧(蒸発器内の冷媒圧力、又は圧縮機10の吸入冷媒圧力)よりも高い圧力のことである。
室外機1には、圧縮機10、冷媒流路切替装置11、熱源側熱交換器12、絞り装置14及びアキュムレータ15の他に、吐出冷媒温度検出装置21、高圧検出装置22、低圧検出装置23及び液冷媒温度検出装置24が備えられている。吐出冷媒温度検出装置21は、圧縮機10から吐出された冷媒の温度を検出して検出温度情報を出力する。高圧検出装置22は、圧縮機10から吐出された冷媒の圧力(高圧)を検出して検出圧力情報を出力する。低圧検出装置23は、アキュムレータ15に流入する冷媒圧力(低圧)を検出して検出圧力情報を出力する。液冷媒温度検出装置24は、冷房運転時の冷媒の流れ方向において絞り装置14の下流側となる位置に設けられており、液冷媒(二相冷媒)の温度を検出して検出温度情報を出力する。なお、冷房運転時の冷媒の流れ方向において熱源側熱交換器12の下流側でありかつ絞り装置14の上流側である位置には、液冷媒温度検出装置40を設けてもよい。液冷媒温度検出装置40については後述する。
また、室外機1には、制御装置50が備えられている。制御装置50は、CPU、ROM、RAM、I/Oポート等を備えたマイコン等で構成されている。制御装置50は、各種検出装置(例えば、吐出冷媒温度検出装置21、高圧検出装置22、低圧検出装置23、液冷媒温度検出装置24等)での検出情報及びリモコン等からの指示に基づいて、各種制御を行う。例えば、制御装置50は、圧縮機10の駆動周波数、送風機の回転数(ON/OFF含む)、絞り装置14の開度等の制御や、冷媒流路切替装置11の切替え制御等を行い、後述する各運転モードを実行するようになっている。また、制御装置50は、後述する各室内機2の制御装置との間で通信できるようになっている。
[室内機2]
複数の室内機2a〜2dには、それぞれ利用側熱交換器17a、17b、17c、17d(第二の熱交換器の一例)が搭載されている。以下、利用側熱交換器17a〜17dを総称して利用側熱交換器17という場合がある。利用側熱交換器17は、延長配管5a、5bを介して室外機1に接続されている。この利用側熱交換器17は、内部を流通する冷媒と不図示の送風機から供給される空気との間で熱交換を行い、室内空間7に供給するための冷房用空気あるいは暖房用空気を生成するものである。利用側熱交換器17は、冷房運転時には蒸発器として機能し、暖房運転時には凝縮器(又は放熱器)として機能する。
また、各室内機2a〜2dには、それぞれ絞り装置16a、16b、16c、16d(第一の絞り装置の一例)が搭載されている。以下、絞り装置16a〜16dを総称して絞り装置16という場合がある。絞り装置16は、冷房運転時の冷媒の流れ方向において利用側熱交換器17の上流側となる位置に設けられており、延長配管5bに接続されている。利用側熱交換器17及び絞り装置16は、室外機1に搭載されたアキュムレータ15、圧縮機10、冷媒流路切替装置11、熱源側熱交換器12及び絞り装置14等と共に、冷媒回路の一部を構成している。
各室内機2a〜2dには、それぞれ利用側の液冷媒温度検出装置27a、27b、27c、27d及び利用側のガス冷媒温度検出装置28a、28b、28c、28dが備えられている。以下、液冷媒温度検出装置27a〜27dを総称して液冷媒温度検出装置27という場合があり、ガス冷媒温度検出装置28a〜28dを総称してガス冷媒温度検出装置28という場合がある。液冷媒温度検出装置27は、冷房運転時の冷媒の流れ方向において絞り装置16の下流側でありかつ利用側熱交換器17の上流側となる位置に設けられている。ガス冷媒温度検出装置28は、冷房運転時の冷媒の流れ方向において利用側熱交換器17の下流側となる位置に設けられている。
また、各室内機2a〜2dには、不図示の制御装置が備えられている。制御装置は、CPU、ROM、RAM、I/Oポート等を備えたマイコン等で構成されている。制御装置は、各種検出装置(例えば、液冷媒温度検出装置27、ガス冷媒温度検出装置28等)からの検出情報、室外機1の制御装置50から通信により取得した情報、及びリモコン等からの指示に基づいて、各種制御を行う。
図2では、4台の室内機2が接続されている場合を例示しているが、図1と同様に、室内機2の接続台数を図2に示す4台に限定するものではない。
延長配管5aは、室外機1に接続された主管5a0と、主管5a0と各室内機2a、2b、2c、2dのそれぞれとの間を接続する枝管5aa、5ab、5ac、5adと、を有している。枝管5aaは分岐部18aで主管5a0から分岐しており、枝管5abは分岐部18bで主管5a0から分岐しており、枝管5acは分岐部18cで主管5a0から分岐しており、枝管5adは分岐部18dで主管5a0から分岐している。
延長配管5bは、室外機1に接続された主管5b0と、主管5b0と各室内機2a、2b、2c、2dのそれぞれとの間を接続する枝管5ba、5bb、5bc、5bdと、を有している。枝管5baは合流部19aで主管5b0と合流(分岐)しており、枝管5bbは合流部19bで主管5b0と合流(分岐)しており、枝管5bcは合流部19cで主管5b0と合流(分岐)しており、枝管5bdは合流部19dで主管5b0と合流(分岐)している。
空気調和装置100が実行する各運転モードについて説明する。運転モードには、少なくとも冷房運転モードと暖房運転モードがある。この空気調和装置100は、例えば、各室内機2からの指示に基づいて、室外機1の運転モードを冷房運転モード又は暖房運転モードのいずれかに決定する。すなわち、空気調和装置100は、室内機2の全部で同一運転(冷房運転か暖房運転)をすることができ、これにより室内の温度調節を行う。なお、冷房運転モード及び暖房運転モードのいずれにおいても、各室内機2の運転/停止は自由に行うことができる。
冷房運転モードは、運転している全ての室内機2で冷房運転が実行される運転モードである。すなわち、冷房運転モードでは、停止状態にない全ての利用側熱交換器17が蒸発器として動作する。暖房運転モードは、運転している全ての室内機2で暖房運転が実行される運転モードである。すなわち、暖房運転モードでは、停止状態にない全ての利用側熱交換器17が凝縮器として動作する。以下、各運転モードについて、冷媒の流れとともに説明する。
[冷房運転モード]
まず、冷房運転モードについて説明する。図3は、空気調和装置100の冷房運転モードにおける冷媒の流れを示す回路構成図である。この図3では、全ての利用側熱交換器17において冷熱負荷が発生している場合を例示している。なお、図3では、冷媒が流れる配管を太線で示しており、冷媒の流れ方向を実線矢印で示している。
図3に示す冷房運転モードの場合、室外機1では、冷媒流路切替装置11を、圧縮機10から吐出された冷媒が熱源側熱交換器12へ流入するように切り替える。低温低圧の冷媒は、圧縮機10によって圧縮され、高温高圧のガス冷媒となって吐出される。圧縮機10から吐出された高温高圧のガス冷媒は、冷媒流路切替装置11を介して熱源側熱交換器12に流入する。熱源側熱交換器12に流入した高温高圧のガス冷媒は、熱源側熱交換器12で室外空気に放熱しながら凝縮液化し、高圧液冷媒となって熱源側熱交換器12から流出する。熱源側熱交換器12から流出した高圧液冷媒は、絞り装置14に流入して減圧され、中圧の二相冷媒となって室外機1から流出する。
このとき、絞り装置14の開度(開口面積)は、例えば、液冷媒温度検出装置24の検出温度が目標とする中圧の飽和温度(制御目標値)に近づくように制御される。絞り装置14の制御の詳細は後述する。
室外機1から流出した中圧二相冷媒は、延長配管(二相側)5aの主管5a0に流入する。主管5a0に流入した中圧二相冷媒は、分岐部18a〜18dで枝管5aa〜5adに分流され、室内機2(2a〜2d)のそれぞれに流入する。室内機2に流入した中圧二相冷媒は、絞り装置16(16a〜16d)で膨張させられて、低温低圧の二相冷媒となる。このとき、絞り装置16の開度(開口面積)は、例えば、ガス冷媒温度検出装置28の検出温度と、液冷媒温度検出装置27の検出温度と、の温度差(過熱度)が制御目標値に近づくように各室内機2の制御装置によって制御される。低温低圧の二相冷媒は、蒸発器として動作する利用側熱交換器17(17a〜17d)のそれぞれに流入し、利用側熱交換器17に送風される空気から吸熱して蒸発する。これにより、低温低圧の二相冷媒が低温低圧のガス冷媒となるとともに、室内空間7に吹き出される空気が冷却される。利用側熱交換器17から流出した低温低圧のガス冷媒は、室内機2から流出する。
室内機2から流出した低温低圧のガス冷媒は、延長配管(ガス側)5bの枝管5ba〜5bd、合流部19a〜19d及び主管5b0を通って再び室外機1に流入する。室外機1に流入した低温低圧のガス冷媒は、冷媒流路切替装置11を通ってアキュムレータ15に流入し、その後、圧縮機10に再度吸入される。
このように、室外機1から流出する冷媒を絞り装置14によって二相化することにより、室外機1と室内機2とを接続する延長配管(二相側)5a内の冷媒を二相状態とすることができる。二相冷媒は、液冷媒と液冷媒よりも密度の小さいガス冷媒とが混在したものである。このため、延長配管(二相側)5a内の冷媒を二相状態とすることにより、延長配管(二相側)5a内の冷媒を液状態としたときと比較して、混在しているガス冷媒の分、延長配管(二相側)5a内の冷媒量を少なくすることができる。
次に、冷房運転モードにおける冷媒状態の詳細について説明する。図4は、本実施の形態に係る空気調和装置の冷房運転モードにおける冷媒状態を示すp−h線図(圧力−エンタルピ線図)である。図4に示すように、冷房運転モードにおいて、圧縮機10に吸入された低圧のガス冷媒は(図4の点F)、圧縮機10で圧縮されて高圧(圧力P)のガス冷媒となり(図4の点G)、熱源側熱交換器12で凝縮して高圧の液冷媒となる(図4の点H)。この高圧の液冷媒は、絞り装置14で減圧されて中圧(圧力P)の二相冷媒となり(図4の点M)、室外機1から流出する。
室外機1から流出した中圧の二相冷媒は、延長配管(二相側)5aを通って室内機2(2a〜2d)に流入する。室内機2に流入した中圧の二相冷媒は、絞り装置16(16a〜16d)で減圧されて低圧(P)の二相冷媒となる(図4の点L)。この低圧の二相冷媒は、利用側熱交換器17(17a〜17d)で蒸発して低圧のガス冷媒となり、室内機2から流出する。
室内機2から流出した低圧のガス冷媒は、延長配管(ガス側)5bを通って室外機1に流入する。室外機1に流入した低圧のガス冷媒は、冷媒流路切替装置11を経由してアキュムレータ15に流入し(図4の点F)、再び圧縮機10に吸入される。
ここで、絞り装置14で減圧される冷媒は、熱の出入りがないとすると、図4の点Hから点Mに等エンタルピ変化をする。点Mの中圧二相冷媒の圧力Pは、同一エンタルピの飽和液点(図4の点K)の圧力Pよりも小さく、利用側熱交換器17の入口での圧力Pよりも大きい値となる。
なお、絞り装置14は、開口面積を変化させられるもの(例えば、電子式膨張弁等)が望ましい。絞り装置14として電子式膨張弁等を用いれば、延長配管5aに流す冷媒の圧力を自由に制御することができる。しかしながら、絞り装置14は、電子式膨張弁等に限るものではない。例えば、絞り装置14として、小型の電磁弁等の開閉弁を複数組み合わせたものを用い、これらの開閉パターンを適宜切り換えることによって開口面積を複数選択できるようにしてもよい。また、絞り装置14としてキャピラリチューブを用い、冷媒の圧損に応じて所定の過冷却度が形成されるようにしてもよい。これらのものを用いた場合であっても、制御性は少し悪化するが、中圧の二相冷媒を生成することはできる。
冷房運転モードの実行中において、熱負荷のない利用側熱交換器17(サーモオフを含む)には冷媒を流す必要がないため、運転を停止させる。このとき、停止している室内機2の絞り装置16は、全閉、又は冷媒が流れない程度に小さい開度としておく。
また、延長配管(二相側)5aの途中には、主管5a0を流れる中圧の二相冷媒を枝管5aa〜5adのそれぞれに分流させるための分岐部18(18a〜18d)が設けられている。分岐部18は、冷房運転時に、主管5a0を流れる二相状態の冷媒の一部を二相状態のまま枝管5aa〜5adに分流させる構造を有している。図5及び図6は、分岐部18の構成の例を示している。図5に示す分岐部18はY形(Y字形)継手構造を有しており、図6に示す分岐部18はT形(T字形)継手構造を有している。図5及び図6に示す分岐部18はいずれも、重力方向において下方から上方に流れる中圧の二相冷媒がほぼ左右方向に分流されるような向きに設置されている。
分岐部18は、冷房運転モードにおいて、冷媒が流入する1つの流入口30と冷媒が流出する2つの流出口31、32とを備えている。例えば流出口31、32は、流入口30を基準として互いに左右対称に設けられている。分岐部18は、流入口30が流出口31、32よりも下方に位置するように配置されている。流入口30は、冷房運転時の冷媒の流れ方向における主管5a0の上流側(室外機1側)に接続されており、流出口31は主管5a0の下流側に接続されており、流出口32は枝管5aa〜5adに接続されている。主管5a0の上流側から流入口30に上向きに流入した二相冷媒は、分岐部18内でほぼ左右方向に分流される。分流された二相冷媒の一部は左側の流出口32から流出し、枝管5aa〜5adの室内機2a〜2d側に流れる。残りの二相冷媒は、右側の流出口31から流出し、そのまま主管5a0の下流側に流れる。このように、二相冷媒を分岐部18の下方から流入させてほぼ左右方向に分流させることにより、二相冷媒中のガス冷媒と液冷媒とをほぼ均等な比率(気液比)で2方向に分配することができる。
なお、分岐部18の構造は図5及び図6に示す構造に限るものではない。分岐部18には、ガス冷媒と液冷媒が適度に混在した二相冷媒を分岐後の流路の双方に流すことができるものであれば、どのような構造のものが用いられてもよい。例えば、流入口30が流出口31、32よりも上方に位置するように分岐部18を配置し、上方から下方に流れる二相冷媒を左右方向に分流させるようにしても、二相冷媒中のガス冷媒と液冷媒とをある程度均等に分配できる。また、分岐部18は設置方向に対して少し傾いていても、傾き角度が小さければ(例えば15度以内等)問題なく、同様の効果を奏する。また、室内機2(2a〜2d)にはそれぞれ絞り装置16が設けられており、各室内機2での必要冷媒量は絞り装置16によって調整される。このため、分岐部18での分岐後の各流路においては、ガス冷媒と液冷媒とが完全に均等な比率で分配されていなくてもよく、液冷媒とガス冷媒とがある程度の量で混在していればよい。また、分岐部18は2分岐のものに限られるものではなく、例えばヘッダー分岐方式等で4分岐、6分岐等の複数の流路に分岐させるように構成されていてもよい。
次に、室外機1の絞り装置14で減圧された中圧二相冷媒の乾き度について説明する。延長配管(二相側)5aの内部の冷媒量を削減するためには、なるべく乾き度の大きい、すなわちガスの割合の大きい二相冷媒を延長配管(二相側)5aに流す方が望ましい。ただし、先に説明した通り、熱源側熱交換器12で凝縮した冷媒を絞って(減圧して)中圧二相冷媒とするため、中圧二相冷媒のエンタルピは、熱の出入りがなければ絞り装置14の入口(熱源側熱交換器12の出口)の冷媒のエンタルピと等しい。したがって、下記の式(1)に示すように、中圧の圧力Pは、絞り装置14の入口(熱源側熱交換器12の出口)の圧力Pと同じ又はそれより小さく、絞り装置14の入口(熱源側熱交換器12の出口)と同一エンタルピの飽和液点の圧力Pよりも小さく、かつ、室内機2の利用側熱交換器17の入口の圧力Pよりも大きい。
Figure 0006058145
次に、冷媒としてR32を使用することを想定する。凝縮温度(冷房運転時に凝縮器として動作する熱源側熱交換器12内の冷媒が凝縮するときの温度)をCTとし、凝縮温度CTが55℃である場合と45℃である場合とを考える。また、凝縮器(熱源側熱交換器12)の出口での冷媒の過冷却度をSCとし、過冷却度SCが20℃である場合と、10℃である場合と、0℃である場合とを考える。さらに、絞り装置14で絞られて生成された中圧二相冷媒の圧力Pの飽和温度が15℃である場合と10℃である場合とを考える。絞り装置14で絞られて生成された中圧二相冷媒の圧力Pは、式(1)の関係にあり、低圧の圧力Pよりも大きい値を示す。また、室内機2には絞り装置16が設けられているため、中圧の圧力Pは低圧の圧力Pよりもある程度大きい値である必要がある。低圧の圧力Pの飽和温度である蒸発温度は0℃から5℃程度であるため、中圧の圧力Pはこれよりも大きい10℃から15℃程度を想定した。
図7は、各凝縮温度CT、各過冷却度SC、各圧力Pの飽和温度における延長配管(二相側)5a内の中圧二相冷媒の乾き度Xを計算した結果を示している。図7では、冷媒種としてR32の計算結果だけでなく、後述するR32と他冷媒との混合冷媒の計算結果についても併記している。なお、乾き度Xの計算には、NIST(National Institute of Standards and Technology)製のREFPROPのVersion 9.0を使用した。
図7に示すように、凝縮温度CTが45℃、過冷却度SCが20℃、中圧の圧力Pの飽和温度が15℃の場合、中圧二相冷媒の乾き度Xは0.0633となる。凝縮温度CTが55℃、過冷却度SCが0℃、中圧の圧力Pの飽和温度が10℃の場合、中圧二相冷媒の乾き度Xは0.3062となる。他の条件では、中圧二相冷媒の乾き度Xはこれらの間の数値となる。これにより、中圧二相冷媒の乾き度Xは、0.0633〜0.3062の範囲内の数値をとり、条件によって変化することがわかる。
また、延長配管5a、5bのうち、主管5a0、5b0の長さをそれぞれ100mとし、枝管5aa〜5ad、5ba〜5bdの長さをそれぞれ50mとし、二相側の主管5a0及び枝管5aa〜5adを外径9.52mm、肉厚0.8mmの配管とし、ガス側の主管5b0を外径22.2mm、肉厚1mmの配管とし、ガス側の枝管5ba〜5bdを外径15.88mm、肉厚1mmの配管とした場合を想定する。このとき、10HP(冷房能力28kW)の室外機1及び室内機2を使用するものとし、絞り装置14を全開状態とし、主管5a0及び枝管5aa〜5adに液冷媒を流したとすると、冷房運転時の各部における概略の冷媒量は、凝縮器(熱源側熱交換器12)内に6.616kg、蒸発器(利用側熱交換器17)内に0.828kg、主管5a0内に4.680kg、枝管5aa〜5ad内に4.680kg、主管5b0内に0.960kg、枝管5ba〜5bd内に0.460kg、その他の部分に0.317kg、であり、合計で18.541kgの冷媒が冷媒回路内に存在する。主管5a0内の冷媒量は冷媒回路全体の冷媒量の25.2%、枝管5aa〜5ad内の冷媒量は冷媒回路全体の冷媒量の25.2%であり、延長配管(二相側)5aの主管5a0と枝管5aa〜5adを合わせた冷媒量は、冷媒回路全体の50.4%にもなる。したがって、延長配管(二相側)5a内の冷媒を二相化することが、冷媒量削減に大きく寄与する。なお、延長配管5aの長さが短い場合には、延長配管5a内の冷媒量が冷媒回路全体の冷媒量に占める割合は小さくなる。このため、延長配管5a内の冷媒を二相化することによる冷媒量削減効果は、延長配管5aの長さにより異なり、延長配管5aの長さが長いほど大きくなる。
この運転状態で、絞り装置14の開度を調整し、延長配管(二相側)5a内に中圧二相冷媒を流す場合を考える。乾き度Xが0.0633である中圧二相冷媒を延長配管(二相側)5aの主管5a0及び枝管5aa〜5adに流すものとすると、主管5a0の冷媒量は4.394kg、枝管5aa〜5adの冷媒量は4.394kgとなる。これにより、冷媒回路全体の冷媒量は17.969kgとなり、延長配管(二相側)5aに液冷媒を流した場合に比べ、0.572kg(冷媒回路全体の冷媒量の3.1%)削減できたことになる。
また、乾き度Xが0.3062の中圧二相冷媒を延長配管(二相側)5aの主管5a0及び枝管5aa〜5adに流すものとすると、主管5a0の冷媒量は3.297kg、枝管5aa〜5adの冷媒量は3.297kgとなる。これにより、冷媒回路全体の冷媒量は15.775kgとなり、延長配管(二相側)5aに液冷媒を流した場合に比べ、2.766kg(冷媒回路全体の冷媒量の14.9%)削減できたことになる。
このように、冷房運転時の室外機1の出口側に設けられた絞り装置14で高圧液冷媒を減圧し、延長配管(二相側)5a内に中圧二相冷媒を流すと、延長配管(二相側)5a内の冷媒量を減らすことができるため、冷媒回路内の冷媒量を削減することができる。特に、ビル用マルチエアコン等の延長配管5aが長い空気調和装置(例えば、延長配管5aの長さが100m等)においては、より多くの冷媒量を削減できるため、高い効果が得られる。なお、本実施の形態では、冷媒回路の冷媒充填量を低減するのが目的であるため、冷房運転において、冷媒回路で必要な冷媒が少なく余剰冷媒が発生する場合(例えば、多くの室内機2が停止している場合等)を除いて、通常の安定した冷房運転時にはほぼ常時、延長配管(二相側)5a内に中圧二相冷媒を流す運転を行う。
このとき、R32を主成分とする冷媒を使用する場合には、中圧二相冷媒の乾き度Xは0.0633〜0.3062の範囲内の値とするとよい。また、冷媒回路内の冷媒量をなるべく少なくするため、冷房運転時の凝縮器(熱源側熱交換器12)の過冷却度SCはあまり大きい値としない場合が多い。したがって、過冷却度SCを10℃以下(0℃〜10℃)に制御する場合を考えると、図7より、中圧二相冷媒の乾き度Xは0.1310〜0.3062の範囲内の値とするとよい。
次に、冷媒として、R32とR1234yfとの混合冷媒を使用する場合を考える。R1234yfは、化学式CFCF=CHで表されるテトラフルオロプロペン系冷媒である。まず、R32の混合比率が74wt%、R1234yfの混合比率が26wt%の混合冷媒を考える。図7に示すように、先のR32と同様の考え方をすると、中圧二相冷媒の乾き度Xは0.0791〜0.3316の範囲内の値とするとよい。また、過冷却度SCを10℃以下(0℃〜10℃)で制御する場合を考えると、中圧二相冷媒の乾き度Xは0.1529〜0.3316の範囲内の値とするとよい。
次に、R32の混合比率が44wt%、R1234yfの混合比率が56wt%の混合冷媒を考える。図7に示すように、中圧二相冷媒の乾き度Xは0.1069〜0.3585の範囲内の値とするとよい。また、過冷却度SCを10℃以下(0℃〜10℃)で制御する場合を考えると、中圧二相冷媒の乾き度Xは0.1869〜0.3585の範囲内の値とするとよい。
上述の結果から、R32(単一冷媒)及びR32とR1234yfとの混合冷媒について、R32の混合比率に対する乾き度Xの関係を最小二乗近似により求める。混合冷媒におけるR32の混合比率をR(1/100wt%)とすると(0≦R<1)、中圧二相冷媒の乾き度Xは(−0.0782×R+0.1399)〜(−0.0933×R+0.3999)の範囲内の値とするとよい。また、過冷却度SCを10℃以下(0℃〜10℃)で制御する場合を考えると、中圧二相冷媒の乾き度は(−0.1002×R+0.2297)〜(−0.0933×R+0.3999)の範囲内の値とするとよい。
なお、テトラフロオロプロペン系冷媒としては、R1234yfの他にR1234zeがある。R1234yfとR1234zeとは、物性値が大きくは違わないため、上記の乾き度の関係はどちらの冷媒を使用した場合にも適用できる。
以上のように、使用する冷媒の種類によって、延長配管(二相側)5a内に流す中圧二相冷媒の適正乾き度は変化する。
室外機1には、制御装置50と液冷媒温度検出装置24(中圧検出装置の一例)とが設けられている。液冷媒温度検出装置24は、冷房運転モードにおいて絞り装置14の出口側(下流側)となる位置に設けられており、絞り装置14で絞られた中圧二相冷媒の圧力である中圧の飽和温度を検出するようになっている。冷媒の乾き度を測定することは困難なため、中圧二相冷媒の乾き度を直接制御することはできない。しかし、絞り装置14では冷媒は等エンタルピ変化をするため、絞り装置14の入口冷媒の圧力(高圧)と温度(凝縮温度から過冷却度を引いた値)が分かっていれば、絞り装置14の出口側の圧力を規定することにより、間接的に乾き度を決めることができる。そこで、予め、高圧と過冷却度とを仮定し、延長配管(二相側)5aでの冷媒の乾き度の範囲に対応する中圧の飽和温度の範囲(例えば、10℃〜15℃等)を求めておく。制御装置50は、中圧の飽和温度の範囲を制御目標範囲(制御目標値)とし、液冷媒温度検出装置24の検出温度が制御目標範囲に入るように(すなわち、制御目標値に近づくように)絞り装置14の開度を制御する。なお、温度センサを用いて中圧の飽和温度を測定するように構成した方が安価に構成できるが、液冷媒温度検出装置24の代わりに圧力センサ(中圧検出装置の他の例)を設置し、中圧冷媒の圧力(中圧)を検出するようにしてもよい。この場合、圧力センサの検出圧力が中圧の制御目標値に近づくように絞り装置14の開度を制御し、これにより延長配管(二相側)5a内の冷媒の乾き度を制御する。
また、目標とする中圧の設定値によって、中圧二相冷媒の乾き度が異なるが、中圧二相冷媒は室内機2で絞り装置16によって減圧されるため、中圧は、利用側熱交換器17内の圧力(低圧)よりも大きい値である必要がある。低圧は、空調対象空間(室内空間7)の温度等の負荷状況、室内機2の運転台数、室外機1に接続されている全ての室内機2の合計容量、室外機1の周囲温度である外気温度、等の各種要因で変化する。したがって、圧縮機10の吸入側(上流側)に低圧検出装置23を設け、低圧検出装置23の検出圧力(低圧)に基づいて、中圧の制御目標値を設定(変更)するようにするとよい。すなわち、中圧の飽和温度の制御目標値は、低圧の飽和温度に所定温度(例えば5℃)を加えた値に設定する。冷媒がR32である場合、例えば、低圧が0.9515MPaであるときには、低圧の飽和温度が5℃であるため中圧の飽和温度の制御目標値を10℃に設定し、低圧が1.1069MPaであるときには、低圧の飽和温度が10℃であるため中圧の飽和温度の制御目標値を15℃に設定する、等とするとよい。
また、中圧が同じであっても、凝縮器出口(絞り装置14の入口)のエンタルピが異なると、絞り装置14の出口側の中圧二相冷媒の乾き度は異なったものとなる。そこで、圧縮機10の吐出側(下流側)に高圧検出装置22を設け、冷房運転時の冷媒の流れ方向において熱源側熱交換器12の下流側でありかつ絞り装置14の上流側である位置に液冷媒温度検出装置40を設けるようにしてもよい(図2参照)。高圧検出装置22で高圧を検出し、液冷媒温度検出装置40で高圧液温度を検出するようにすれば、高圧と高圧液温度により、凝縮器出口(絞り装置14の入口)のエンタルピが決まるため、ある中圧に対する中圧二相冷媒の乾き度が決まる。したがって、高圧検出装置22の検出圧力(高圧)と、液冷媒温度検出装置24の検出温度(高圧液温度)とに基づき、中圧の制御目標値を設定(変更)するようにするとよい。すなわち、中圧の飽和温度の制御目標値は、高圧及び高圧液冷媒温度によって異なった値に設定するようにすると、より正確に適正乾き度を設定することができる。
また、なるべく冷媒回路内の冷媒量を少なくするためには、延長配管(二相側)5a内の冷媒の乾き度を大きくすることが望ましい。そこで、延長配管(二相側)5a内に、先に示した乾き度範囲の中央値(下限値と上限値との平均値)から上限値までの値の中圧二相冷媒を流すようにすると、冷媒量削減効果が大きくなる。すなわち、乾き度が乾き度範囲の中央値から上限値までの範囲内に入るように、中圧の飽和温度の制御目標値を設定し、絞り装置14を制御するとよい。また、延長配管(二相側)5a内に、先に示した乾き度範囲の上限になるべく近い冷媒を流すようにすると、更によい。
また、ここでは、中圧二相冷媒の乾き度をなるべく大きくした方が冷媒量を少なくすることができるため、中圧二相冷媒の飽和温度を10℃と15℃に仮定して説明を行った。しかし、実際は、絞り装置16で減圧する必要があり、さらに、延長配管(二相側)5aでの圧力損失もあるため、中圧の飽和温度をなるべく大きい値、例えば30℃等、にした方が、安定して動作させることができる。凝縮器出口の過冷却度を小さめにし、中圧を高めにすると、乾き度を大きくでき、かつ、安定して動作させることができる。なお、この場合においても、延長配管(二相側)5a内の冷媒が、先に説明した乾き度と同等の値になるように制御すると、冷媒回路の冷媒量を少なくすることができる。
また、本実施の形態においては、冷房運転時は、延長配管(二相側)5aを流れた二相冷媒を絞り装置16に流入させている。通常、絞り装置に二相冷媒を流入させると、騒音(冷媒音)が発生する。そこで、絞り装置16としては、騒音(二相冷媒による冷媒音)が発生し難い工夫をした低騒音型の絞り装置を用いる。低騒音型の絞り装置には、例えば、冷媒の流路が絞られる部分よりも上流側に発泡金属部材(連続気泡体)が挿入され、当該発泡金属部材で二相冷媒を攪拌することにより低騒音化を図った絞り装置等がある。
[暖房運転モード]
次に、暖房運転モードについて説明する。図8は、空気調和装置100の暖房運転モードにおける冷媒の流れを示す回路構成図である。この図8では、全部の利用側熱交換器17において温熱負荷が発生している場合を例示している。なお、図8では、冷媒が流れる配管を太線で示しており、冷媒の流れ方向を実線矢印で示している。
図8に示す暖房運転モードの場合、室外機1では、冷媒流路切替装置11を、圧縮機10から吐出された冷媒が熱源側熱交換器12を経由せずに室内機2へ流入するように切り替える。低温低圧の冷媒は、圧縮機10によって圧縮され、高温高圧のガス冷媒となって吐出される。圧縮機10から吐出された高温高圧のガス冷媒は、冷媒流路切替装置11を通り、室外機1から流出する。
室外機1から流出した高温高圧のガス冷媒は、延長配管(ガス側)5bの主管5b0に流入する。主管5b0に流入した高温高圧のガス冷媒は、合流部19a〜19dで枝管5ba〜5bdに分流され、室内機2(2a〜2d)のそれぞれに流入する。室内機2に流入した高温高圧のガス冷媒は、凝縮器として動作する利用側熱交換器17(17a〜17d)のそれぞれに流入し、利用側熱交換器17に送風される空気に放熱して凝縮液化する。これにより、高温高圧のガス冷媒が高温高圧の液冷媒となるとともに、室内空間7に吹き出される空気が加熱される。利用側熱交換器17から流出した高温高圧の液冷媒は、絞り装置16(16a〜16d)で膨張させられて、低圧の二相冷媒となる。このとき、絞り装置16a〜16dの開度(開口面積)は、例えば、室外機1の制御装置50から通信により取得した凝縮温度と、利用側の液冷媒温度検出装置27(27a〜27d)の検出温度と、の間の温度差(過冷却度)が制御目標値に近づくように、各室内機2の制御装置によって制御される。絞り装置16で膨張した低圧の二相冷媒は、室内機2から流出する。
室内機2から流出した低圧の二相冷媒は、延長配管(二相側)5aの枝管5aa〜5ad、分岐部18a〜18d及び主管5a0を通って再び室外機1に流入する。
室外機1に流入した低圧の二相冷媒は、全開状態の絞り装置14を介して熱源側熱交換器12に流入する。熱源側熱交換器12に流入した低圧の二相冷媒は、熱源側熱交換器12の周囲に流れる室外空気から吸熱して蒸発し、低温低圧のガス冷媒となって熱源側熱交換器12から流出する。熱源側熱交換器12から流出した低温低圧のガス冷媒は、冷媒流路切替装置11を通ってアキュムレータ15に流入し、その後、圧縮機10に再度吸入される。なお、暖房運転モードにおいては、絞り装置14が全開状態であるため、p−h線図は通常の暖房運転の場合と同じになる。このため、p−h線図を用いての冷媒状態の説明は省略する。
暖房運転モードを実行する際、熱負荷のない利用側熱交換器17(サーモオフを含む)へは冷媒を流す必要がない。しかし、暖房運転モードにおいて、暖房負荷のない利用側熱交換器17と対応する絞り装置16を全閉又は冷媒が流れない小さい開度とすると、運転していない利用側熱交換器17の内部で冷媒が周囲空気によって冷やされて凝縮し、冷媒が溜まり込んでしまい、冷媒回路全体として冷媒不足に陥ってしまう可能性がある。そこで、暖房運転モードにおいては、熱負荷のない利用側熱交換器17と対応する絞り装置16の開度(開口面積)は全開等の大きい開度にし、冷媒の溜まり込みを防止する。
なお、暖房運転モードにおいて、凝縮器(利用側熱交換器17)から流出した冷媒を絞り装置16で減圧し、低圧の二相状態の冷媒として延長配管(二相側)5aに流通させ、室外機1の絞り装置14を全開状態とする場合について説明した。通常は、熱源側熱交換器12の内容積は、利用側熱交換器17の内容積よりも大きいため、暖房運転においては、このような運転を行う。しかし、熱源側熱交換器12を構成する配管が細管化された場合等、熱源側熱交換器12の内容積よりも利用側熱交換器17の内容積の方が大きい場合も存在する。このような場合は、暖房運転モードにおいて、凝縮器から流出した冷媒を絞り装置16で減圧し、中圧の二相状態の冷媒として延長配管(二相側)5aに流通させ、絞り装置14にて再度減圧して、低圧の二相状態の冷媒としてから蒸発器(熱源側熱交換器12)に流すようにしてもよい。このようにすると、冷房運転時と暖房運転時とで、冷媒回路中の各部位に存在する冷媒量の合計を同程度にすることができ、圧縮機10の吸入側に、余剰冷媒を貯めるアキュムレータを保有しなくてもよくなる。
また、冷媒流路切替装置11としては四方弁を用いるのが一般的であるが、これに限るものではない。二方流路切替弁や三方流路切替弁を複数個用い、四方弁と同様に流路を切り換えることができるように構成してもよい。
また、ここでは、余剰冷媒を貯留するアキュムレータ15を圧縮機10の吸入側に備える場合について説明したが、余剰冷媒が少ない場合等にはアキュムレータを備えていなくてもよい。
また、室内機2が4台接続されている場合を例に説明したが、室内機2の接続台数が何台であっても上記と同様のことが成り立つのは言うまでもない。
また、室外機1が複数台接続されており、複数の室外機1の冷媒回路が室外機1の外部で互いに合流するように配管接続されている場合でも同じであり、同様のことが成り立つ。
また、圧縮機10として、低圧シェル型の圧縮機を使用する場合を例に説明したが、当然、高圧シェル型の圧縮機を使用してもよく、同様の効果を奏する。
冷媒としては、例えばR−22、R−134a、R−32等の単一冷媒、R−410A、R−404A等の擬似共沸混合冷媒、R−407C等の非共沸混合冷媒、地球温暖化係数が小さく化学式CFCF=CHで表されるテトラフルオロプロペン系冷媒(R1234yf、R1234ze等)、プロパン等の自然冷媒、あるいはこれらの冷媒のいずれかの成分を含む混合冷媒等、凝縮器内で亜臨界状態で動作し、凝縮器の出口側が液冷媒になるものであれば、どんな冷媒を使用してもよく、同様の効果を奏する。また、CO冷媒やCOを含む混合冷媒のように高圧側で超臨界状態になる冷媒に関しては、圧力を下げると密度が増加する場合もあるため、単純に中圧二相にすれば、延長配管(二相側)5a内の冷媒量が少なくなるとは限らない。しかし、高圧側で超臨界状態になる冷媒は高圧と低圧との圧力差が大きいため、中圧を低めに設定することができ、亜臨界状態の冷媒と同様、高圧側の熱交換器(ガスクーラ)の出口の冷媒の密度よりも中圧二相冷媒の密度が小さくなるような中圧に制御すれば、同様の効果を得ることができる。
また、一般的に、熱源側熱交換器12及び利用側熱交換器17a〜17dには、送風機が取り付けられており、送風により凝縮あるいは蒸発を促進させる場合が多いが、これに限るものではない。例えば、利用側熱交換器17a〜17dとしては、放射を利用したパネルヒータのようなものも用いることができるし、熱源側熱交換器12としては、水や不凍液により熱を移動させる水冷式のタイプのものも用いることができる。すなわち、熱源側熱交換器12及び利用側熱交換器17a〜17dとしては、それぞれ放熱あるいは吸熱をできる構造のものであればどんなものでも用いることができる。
また、ここでは、室外機1と室内機2との間で冷媒を循環させる冷房暖房切替型の直膨式空気調和装置を例に説明を行ったが、これに限るものではない。本実施の形態は、冷房暖房混在運転が可能な直膨式空気調和装置にも適用可能である。冷房暖房混在運転が可能な直膨式空気調和装置では、室外機1と室内機2との間を中継機を介して冷媒が循環し、各室内機2毎に冷房と暖房とを選択できる。冷房暖房混在運転が可能な空気調和装置において、全ての室内機2が冷房運転(停止を含む)を行う全冷房運転モードのときに、凝縮器から流出した冷媒を室外機1の絞り装置で減圧し、延長配管に中圧二相冷媒を流すようにすれば、同様の効果を得ることができる。なお、このタイプの空気調和装置においては、冷房暖房混在運転を行う必要があることから、全冷房運転モードで高圧冷媒が流れる延長配管は、冷房暖房切替型の空気調和装置よりも太い配管を使用している。したがって、冷房暖房混在運転が可能な空気調和装置では、延長配管に中圧二相冷媒を流すことにより、冷房暖房切替型の空気調和装置よりも多くの冷媒量を削減することができる。また、このタイプの空気調和装置においては、室外機1から中継機までを主管(延長配管の一部)で接続し、中継機から室内機2までを枝管(延長配管の一部)で接続する。この際、主管から枝管への冷媒の分岐は中継機内で行われる。この中継機内の分岐部に関しても、冷房暖房切替型の空気調和装置と同様の構造の分岐部18を用いることで、全冷房運転モードにおける中圧二相冷媒を二相状態のまま枝管に分配することができる。
また、冷房暖房切替型の空気調和装置において、冷房運転では、凝縮器(熱源側熱交換器12)から流出した高圧の液冷媒は、絞り装置14で減圧されて中圧の二相冷媒となって室外機1から流出し、延長配管(二相側)5aを流れる。延長配管(二相側)5aを介して室内機2に流入した中圧の二相冷媒は、絞り装置16でさらに減圧されて低圧の二相冷媒となり、蒸発器(利用側熱交換器17)で低圧のガス冷媒となって室内機2から流出する。室内機2から流出した低圧のガス冷媒は、延長配管(ガス側)5bを流れ、室外機1に流入する。暖房運転では、圧縮機10から吐出された高圧のガス冷媒は、室外機1から流出し、延長配管(ガス側)5bを流れる。延長配管(ガス側)5bを介して室内機2に流入した高圧のガス冷媒は、凝縮器(利用側熱交換器17)で高圧の液冷媒となり、絞り装置16で減圧されて中圧又は低圧の二相冷媒となって室内機2から流出し、延長配管(二相側)5aを流れる。延長配管(二相側)5aを介して室外機1に流入した中圧又は低圧の二相冷媒は、絞り装置14を介して蒸発器(熱源側熱交換器12)に流入する。
一方、冷房暖房混在運転が可能な空気調和装置において、冷房運転では、凝縮器(熱源側熱交換器12)から流出した高圧の液冷媒は、絞り装置14で減圧されて中圧の二相冷媒となって室外機1から流出し、延長配管(二相側)5aを流れる。延長配管(二相側)5aを介して室内機2に流入した中圧の二相冷媒は、絞り装置16でさらに減圧されて低圧の二相冷媒となり、蒸発器(利用側熱交換器17)で低圧のガス冷媒となって室内機2から流出する。室内機2から流出した低圧のガス冷媒は、延長配管(ガス側)5bを流れ、室外機1に流入する。暖房運転では、圧縮機10から吐出された高圧のガス冷媒は、室外機1から流出し、延長配管(二相側)5aを流れる。延長配管(二相側)5aを介して室内機2に流入した高圧のガス冷媒は、凝縮器(利用側熱交換器17)で高圧の液冷媒となり、絞り装置16で減圧されて中圧又は低圧の二相冷媒となって室内機2から流出し、延長配管(ガス側)5bを流れる。延長配管(ガス側)5bを介して室外機1に流入した中圧又は低圧の二相冷媒は、絞り装置14を介して蒸発器(熱源側熱交換器12)に流入する。
また、本実施の形態は、冷媒−熱媒体変換型の空気調和装置にも適用可能である。図9は、本実施の形態に係る空気調和機の回路構成の別の一例として、冷媒−熱媒体変換型で冷房暖房切替型の空気調和装置の回路構成を示す概略回路構成図である。図9に示すように、冷媒−熱媒体変換型の空気調和機は、冷媒を循環させる冷媒回路を備えるとともに、熱媒体(例えば、水、ブライン等)を循環させる熱媒体回路60と、冷媒回路と熱媒体回路60との間に介在する中継機70(筐体の一例)とを有している。この構成において、冷媒回路は室外機1と中継機70との間を接続している。中継機70には、絞り装置16、冷媒−熱媒体熱交換器71(第二の熱交換器の一例)、及び熱媒体回路60用のポンプ61等が収容されている。冷媒−熱媒体熱交換器71では、冷媒回路を循環する冷媒と、熱媒体回路60を循環する熱媒体との熱交換が行われる。熱媒体回路60は、中継機70と室内機80との間を接続している。熱媒体回路60には、冷媒−熱媒体熱交換器71、熱媒体を循環させるポンプ61、室内機80内に収容された利用側熱交換器81、等が設けられている。利用側熱交換器81は、内部を流通する熱媒体と不図示の送風機から供給される空気との間で熱交換を行い、室内空間7に供給するための冷房用空気あるいは暖房用空気を生成するものである。図9に示す冷媒−熱媒体変換型の空気調和装置では、室外機1で生成された冷熱あるいは温熱は、冷媒回路、中継機70及び熱媒体回路60を介して室内機80に搬送されるようになっている。冷房運転及び暖房運転における冷媒の流れについては、図3及び図8等を用いて説明した冷媒の流れと同様であるので、その説明を省略する。
図10は、本実施の形態に係る空気調和機の回路構成のさらに別の一例を示す概略回路構成図である。図10に示す冷媒−熱媒体変換型の空気調和装置の室外機1には、接続配管41a、41bと、逆止弁42a、42b、42c、42dと、が設けられている。逆止弁42aは、絞り装置14と延長配管5aとの間の冷媒配管に設けられており、絞り装置14から延長配管5aに向かう方向のみに冷媒の流れを許容するものである。逆止弁42bは、延長配管5bと冷媒流路切替装置11との間の冷媒配管に設けられており、延長配管5bから冷媒流路切替装置11に向かう方向のみに冷媒の流れを許容するものである。接続配管41a及び当該接続配管41aに設けられた逆止弁42cは、暖房運転時において圧縮機10から吐出された高圧のガス冷媒を延長配管5aに流入させるものである。接続配管41b及び当該接続配管41bに設けられた逆止弁42dは、暖房運転時において延長配管5bから流入してきた中圧又は低圧の二相冷媒を、絞り装置14及び熱源側熱交換器12を介して圧縮機10の吸入側に流通させるものである。接続配管41aは、室外機1内において、冷媒流路切替装置11と逆止弁42bとの間の冷媒配管と、逆止弁42aと延長配管5aとの間の冷媒配管と、を接続するものである。接続配管41bは、室外機1内において、逆止弁42bと延長配管5bとの間の冷媒配管と、絞り装置14と逆止弁42aとの間の冷媒配管と、を接続するものである。
また、中継機70には、接続配管72a、72bと、開閉弁73a、73b、73c、73dと、が設けられている。開閉弁73aは、延長配管5aと絞り装置16との間の冷媒配管に設けられている。開閉弁73bは、冷媒−熱媒体熱交換器71と延長配管5bとの間の冷媒配管に設けられている。接続配管72aは、延長配管5aと開閉弁73aとの間の冷媒配管と、冷媒−熱媒体熱交換器71と開閉弁73bとの間の冷媒配管と、を接続するものである。接続配管72aには、開閉弁73cが設けられている。接続配管72bは、開閉弁73aと絞り装置16dとの間の冷媒配管と、開閉弁73bと延長配管5bとの間の冷媒配管と、を接続するものである。接続配管72bには、開閉弁73dが設けられている。
冷房運転時には、開閉弁73a、73bが開状態になり、開閉弁73c、73dが閉状態となるように制御される。これにより、冷房運転時には、絞り装置14で減圧された中圧の二相冷媒は、逆止弁42a、延長配管5a、開閉弁73aを通って絞り装置16に流入する。また、冷媒−熱媒体熱交換器71から流出した低圧のガス冷媒は、開閉弁73b、延長配管5b、逆止弁42b、冷媒流路切替装置11を通って圧縮機10に吸入される。すなわち、図10に示す空気調和装置では、冷房運転において、延長配管5aには中圧の二相冷媒を流通させ、延長配管5bには低圧のガス冷媒を流通させるようになっている。
暖房運転時には、開閉弁73a、73bが閉状態になり、開閉弁73c、73dが開状態となるように制御される。これにより、暖房運転時には、圧縮機10から吐出された高圧のガス冷媒は、冷媒流路切替装置11、接続配管41a(逆止弁42c)、延長配管5a、接続配管72a(開閉弁73c)を通って冷媒−熱媒体熱交換器71に流入する。また、絞り装置16で減圧された中圧又は低圧の二相冷媒は、接続配管72b(開閉弁73d)、延長配管5b、接続配管41b(逆止弁42d)を通って絞り装置14に流入する。すなわち、図10に示す空気調和装置では、暖房運転において、延長配管5aには高圧のガス冷媒を流通させ、延長配管5bには中圧又は低圧の二相冷媒を流通させるようになっている。
なお、図9及び図10では、1台の室内機80が接続されている構成を例示しているが、熱媒体回路60には複数の室内機80(複数の利用側熱交換器81)が並列に接続されていてももちろんよい。また、各室内機80毎の熱媒体流路には、利用側熱交換器81を流れる熱媒体の流量を制御する流量制御弁が設けられていてもよい。また、冷媒−熱媒体熱交換器71は複数であっても構わない。図10の構成で、冷媒−熱媒体熱交換器71を複数備えるようにすると、冷房暖房混在運転が可能な冷媒−熱媒体変換型の空気調和装置を構成することができる。
冷媒−熱媒体変換型の空気調和装置においても、冷房暖房混在運転が可能なものに関しては、全冷房運転モードで高圧冷媒が流れる延長配管は、冷房暖房切替型の空気調和装置よりも太い配管を使用している。したがって、延長配管に中圧二相冷媒を流すことにより、多くの冷媒量を削減することができる。また、このタイプの空気調和装置においては、室外機1と中継機70との間は冷媒が流れる延長配管5a、5bで接続されており、中継機70と室内機80との間は熱媒体が流れる別の延長配管で接続されている。よって、冷房運転モードにおいて、室外機1の出口側の冷媒を絞り装置14で減圧して中圧二相冷媒にすることにより、室外機1と中継機70との間を接続する延長配管5a内の冷媒量を削減することができる。また、中継機70内で中圧二相冷媒の分岐が必要な場合は、先に説明した構造の分岐部18を用いることで、二相冷媒を二相状態のまま分配することできる。また、冷媒−熱媒体変換型の空気調和装置において、冷房運転時及び暖房運転時の延長配管(二相側)5a及び延長配管(ガス側)5bを流れる冷媒の状態は、冷房暖房混在運転が可能な空気調和装置と同様である。
また、冷房暖房混在運転が可能な空気調和装置においては、室外機1と室内機2(又は中継機)との間が2本の延長配管(冷媒配管)で接続される2管式であってもよいし、室外機1と室内機2(又は中継機)との間が3本の延長配管(冷媒配管)で接続される3管式であってもよい。これは、室内機2まで冷媒が流れる直膨型、又は中継機から室内機2までは熱媒体が流れる冷媒−熱媒体変換型のいずれであっても同様である。2管式又は3管式のいずれにおいても、複数本(2本又は3本)の延長配管のうち、冷房運転において、凝縮器(熱源側熱交換器12)から流出した冷媒を減圧して中圧二相状態とする絞り装置14を室外機1に設置し、凝縮器から流出した冷媒が室内機2(又は中継機)まで流れる延長配管に中圧二相冷媒を流すようにする。これにより、当該延長配管内の冷媒量を減らすことができ、その結果、冷媒回路全体としての冷媒量を削減することができる。
以上説明したように、本実施の形態に係る空気調和装置は、圧縮機10、熱源側熱交換器12、絞り装置16a〜16d、及び利用側熱交換器17a〜17dが冷媒配管を介して接続され、内部に冷媒を循環させる冷媒回路を備え、圧縮機10及び熱源側熱交換器12は、室外機1に収容されており、絞り装置16a〜16d及び利用側熱交換器17a〜17dは、室外機1から離れた位置に設置される筐体(例えば、室内機2a〜2d)に収容されており、室外機1と筐体との間は、冷媒配管の一部を構成する複数本の延長配管5a、5bを介して接続されており、冷媒回路は、熱源側熱交換器12が凝縮器として動作し、停止状態にない全ての利用側熱交換器17a〜17dが蒸発器として動作する冷房運転が可能であり、室外機1には、冷房運転の冷媒の流れ方向において熱源側熱交換器12よりも下流側でありかつ絞り装置16a〜16dよりも上流側となる位置に設けられた絞り装置14が収容されており、絞り装置14と絞り装置16a〜16dとの間は、延長配管5a、5bのうちの1本である延長配管5aを介して接続されており、絞り装置14は、冷房運転において延長配管5aに流入する前の冷媒を減圧し、熱源側熱交換器12(凝縮器)内の冷媒圧力よりも低く利用側熱交換器17a〜17d(蒸発器)内の冷媒圧力よりも高い中圧で、かつ二相状態の冷媒とするものであり、冷房運転において、延長配管5aには、中圧でかつ二相状態の冷媒を流通させることを特徴とするものである。
この構成によれば、延長配管5aに流入する前の冷媒を絞り装置14で減圧して二相化することにより、延長配管5a内の冷媒の密度を小さくすることができ、延長配管5a内の冷媒量を削減することができる。したがって、冷媒回路全体の冷媒量を削減することができる。また、冷媒回路の冷媒量を削減することができるため、万が一冷媒が漏れた場合の環境への影響を低減することができる。
また、本実施の形態に係る空気調和装置は、絞り装置16a〜16d及び利用側熱交換器17a〜17dはそれぞれ複数設けられており、筐体は、室内空間に冷房用空気又は暖房用空気を供給する複数の室内機2a〜2dであり、絞り装置16a〜16d及び利用側熱交換器17a〜17dは、室内機2a〜2dのそれぞれに収容されており、延長配管5aは、室外機1に接続された主管5a0と、室内機2a〜2dのそれぞれに接続された複数の枝管5aa〜5adと、を有しており、冷房運転において、室外機1から流出した中圧の二相状態の冷媒を、室外機1から室内機2a〜2dまで循環させ、冷媒の蒸発後、冷媒を室外機1に戻すことを特徴とするものである。
この構成によれば、直膨型空気調和装置において、冷媒回路の冷媒量を削減することができる。
また、本実施の形態に係る空気調和装置は、冷媒−熱媒体熱交換器71で冷媒と熱交換される熱媒体を循環させる熱媒体回路60をさらに備え、筐体は、冷媒回路と熱媒体回路60との間に介在する中継機70であり、冷房運転において、室外機1から流出した中圧の二相状態の冷媒を、室外機1から中継機70まで循環させ、冷媒の蒸発後、冷媒を室外機1に戻すことを特徴とするものである。
この構成によれば、冷媒−熱媒体変換型空気調和装置において、冷媒回路の冷媒量を削減することができる。
上記の各実施の形態や変形例は、互いに組み合わせて実施することが可能である。
1 室外機、2、2a、2b、2c、2d 室内機、5、5a、5b 延長配管、5a0、5b0 主管、5aa、5ab、5ac、5ad、5ba、5bb、5bc、5bd 枝管、6 室外空間、7 室内空間、9 建物、10 圧縮機、11 冷媒流路切替装置、12 熱源側熱交換器、14 絞り装置、15 アキュムレータ、16、16a、16b、16c、16d 絞り装置、17、17a、17b、17c、17d 利用側熱交換器、18、18a、18b、18c、18d 分岐部、19a、19b、19c、19d 合流部、21 吐出冷媒温度検出装置、22 高圧検出装置、23 低圧検出装置、24 液冷媒温度検出装置、27、27a、27b、27c、27d 液冷媒温度検出装置、28、28a、28b、28c、28d ガス冷媒温度検出装置、30 流入口、31、32 流出口、40 液冷媒温度検出装置、41a、41b 接続配管、42a、42b、42c、42d 逆止弁、50 制御装置、60 熱媒体回路、61 ポンプ、70 中継機、71 冷媒−熱媒体熱交換器、72a、72b 接続配管、73a、73b、73c、73d 開閉弁、80 室内機、81 利用側熱交換器、100 空気調和装置。

Claims (10)

  1. 圧縮機、第一の熱交換器、少なくとも1つの第一の絞り装置、及び少なくとも1つの第二の熱交換器が冷媒配管を介して接続され、内部に冷媒を循環させる冷媒回路を備え、
    前記圧縮機及び前記第一の熱交換器は、熱源機に収容されており、
    前記第一の絞り装置及び前記第二の熱交換器は、前記熱源機から離れた位置に設置される筐体に収容されており、
    前記熱源機と前記筐体との間は、前記冷媒配管の一部を構成する複数本の延長配管を介して接続されており、
    前記冷媒回路は、前記第一の熱交換器が凝縮器として動作し、停止状態にない全ての前記第二の熱交換器が蒸発器として動作する冷房運転が可能であり、
    前記熱源機には、前記冷房運転の冷媒の流れ方向において前記第一の熱交換器よりも下流側でありかつ前記第一の絞り装置よりも上流側となる位置に設けられた第二の絞り装置が収容されており、
    前記第二の絞り装置と前記第一の絞り装置との間は、前記延長配管のうちの1本である第一の延長配管を介して接続されており、
    前記第二の絞り装置は、前記冷房運転において前記第一の延長配管に流入する前の冷媒を減圧し、前記凝縮器内の冷媒圧力よりも低く前記蒸発器内の冷媒圧力よりも高い中圧で、かつ二相状態の冷媒とするものであり、
    前記冷房運転において、前記第一の延長配管には、前記中圧でかつ二相状態の冷媒を流通させるものであり、
    R32とテトラフルオロプロペン系冷媒との混合冷媒が用いられ、
    前記混合冷媒におけるR32の混合比率をR(1/100wt%)としたとき、
    前記冷房運転において、前記第一の延長配管に流通させる冷媒の乾き度は、(−0.0782×R+0.1399)〜(−0.0933×R+0.3999)の乾き度範囲内の値であり、
    前記冷房運転の冷媒の流れ方向における前記第二の絞り装置の下流側に設けられ、冷媒の圧力又は飽和温度を検出する中圧検出装置と、
    前記中圧検出装置の検出圧力又は検出温度に基づいて前記第二の絞り装置の開度を制御する制御装置と、
    前記圧縮機の吸入側に設けられ、冷媒の圧力を検出する低圧検出装置と、をさらに備え、
    前記制御装置は、前記中圧でかつ二相状態の冷媒の圧力又は飽和温度の制御目標値を前記低圧検出装置の検出圧力に基づいて変更し、前記中圧検出装置の検出圧力又は検出温度が前記制御目標値に近づくように前記第二の絞り装置の開度を制御することを特徴とする空気調和装置。
  2. 圧縮機、第一の熱交換器、少なくとも1つの第一の絞り装置、及び少なくとも1つの第二の熱交換器が冷媒配管を介して接続され、内部に冷媒を循環させる冷媒回路を備え、
    前記圧縮機及び前記第一の熱交換器は、熱源機に収容されており、
    前記第一の絞り装置及び前記第二の熱交換器は、前記熱源機から離れた位置に設置される筐体に収容されており、
    前記熱源機と前記筐体との間は、前記冷媒配管の一部を構成する複数本の延長配管を介して接続されており、
    前記冷媒回路は、前記第一の熱交換器が凝縮器として動作し、停止状態にない全ての前記第二の熱交換器が蒸発器として動作する冷房運転が可能であり、
    前記熱源機には、前記冷房運転の冷媒の流れ方向において前記第一の熱交換器よりも下流側でありかつ前記第一の絞り装置よりも上流側となる位置に設けられた第二の絞り装置が収容されており、
    前記第二の絞り装置と前記第一の絞り装置との間は、前記延長配管のうちの1本である第一の延長配管を介して接続されており、
    前記第二の絞り装置は、前記冷房運転において前記第一の延長配管に流入する前の冷媒を減圧し、前記凝縮器内の冷媒圧力よりも低く前記蒸発器内の冷媒圧力よりも高い中圧で、かつ二相状態の冷媒とするものであり、
    前記冷房運転において、前記第一の延長配管には、前記中圧でかつ二相状態の冷媒を流通させるものであり、
    R32とテトラフルオロプロペン系冷媒との混合冷媒が用いられ、
    前記混合冷媒におけるR32の混合比率をR(1/100wt%)としたとき、
    前記冷房運転において、前記第一の延長配管に流通させる冷媒の乾き度は、(−0.0782×R+0.1399)〜(−0.0933×R+0.3999)の乾き度範囲内の値であり、
    前記冷房運転の冷媒の流れ方向における前記第二の絞り装置の下流側に設けられ、冷媒の圧力又は飽和温度を検出する中圧検出装置と、
    前記中圧検出装置の検出圧力又は検出温度に基づいて前記第二の絞り装置の開度を制御する制御装置と、
    前記圧縮機の吐出側に設けられ、冷媒の圧力を検出する高圧検出装置と、
    前記冷房運転の冷媒の流れ方向における前記第一の熱交換器の下流側でかつ前記第二の絞り装置の上流側に設けられ、冷媒の温度を検出する液冷媒温度検出装置と、をさらに備え、
    前記制御装置は、前記中圧でかつ二相状態の冷媒の圧力又は飽和温度の制御目標値を前記高圧検出装置の検出圧力及び前記液冷媒温度検出装置の検出温度に基づいて変更し、前記中圧検出装置の検出圧力又は検出温度が前記制御目標値に近づくように前記第二の絞り装置の開度を制御することを特徴とする空気調和装置。
  3. 過冷却度を10℃以下に制御する場合、前記乾き度は、(−0.1002×R+0.2297)〜(−0.0933×R+0.3999)の乾き度範囲内の値であることを特徴とする請求項1又は請求項2に記載の空気調和装置。
  4. 前記乾き度は、前記乾き度範囲の中央値から上限値までの値であることを特徴とする請求項1〜請求項3のいずれか一項に記載の空気調和装置。
  5. 前記第一の絞り装置及び前記第二の熱交換器はそれぞれ複数設けられており、
    前記筐体は、室内空間に冷房用空気又は暖房用空気を供給する複数の室内機であり、
    前記第一の絞り装置及び前記第二の熱交換器は、前記室内機のそれぞれに収容されており、
    前記第一の延長配管は、前記熱源機に接続された主管と、前記室内機のそれぞれに接続された複数の枝管と、を有しており、
    前記冷房運転において、前記熱源機から流出した中圧の二相状態の冷媒を、前記熱源機から前記室内機まで循環させ、前記冷媒の蒸発後、前記冷媒を前記熱源機に戻すことを特徴とする請求項1〜請求項のいずれか一項に記載の空気調和装置。
  6. 前記第二の熱交換器で冷媒と熱交換される熱媒体を循環させる熱媒体回路をさらに備え、
    前記筐体は、前記冷媒回路と前記熱媒体回路との間に介在する中継機であり、
    前記冷房運転において、前記熱源機から流出した中圧の二相状態の冷媒を、前記熱源機から前記中継機まで循環させ、前記冷媒の蒸発後、前記冷媒を前記熱源機に戻すことを特徴とする請求項1〜請求項のいずれか一項に記載の空気調和装置。
  7. 前記第一の延長配管は、前記熱源機に接続された主管と、前記主管と前記筐体との間を接続する枝管と、前記主管から前記枝管を分岐させる分岐部と、を有しており、
    前記分岐部は、前記冷房運転において、前記主管を流れる二相状態の冷媒の一部を二相状態のまま前記枝管に分流させる構造を有していることを特徴とする請求項1〜請求項のいずれか一項に記載の空気調和装置。
  8. 前記分岐部は、Y形又はT形の継手構造を有しており、
    前記分岐部は、前記冷房運転の冷媒の流れ方向において、下方から上方又は上方から下方に流れる冷媒がほぼ左右方向に分流されるような向きに設置されることを特徴とする請求項に記載の空気調和装置。
  9. 前記冷媒回路は、前記第一の熱交換器が蒸発器として動作し、停止状態にない全ての前記第二の熱交換器が凝縮器として動作する暖房運転が可能であり、
    前記第一の絞り装置は、前記暖房運転において前記第一の延長配管に流入する前の冷媒を減圧し、前記中圧又は前記蒸発器内の冷媒圧力である低圧で、かつ二相状態の冷媒とするものであり、
    前記暖房運転において、前記第一の延長配管には、前記中圧又は前記低圧でかつ二相状態の冷媒を流通させることを特徴とする請求項1〜請求項のいずれか一項に記載の空気調和装置。
  10. 前記冷媒回路は、前記第一の熱交換器が蒸発器として動作し、停止状態にない全ての前記第二の熱交換器が凝縮器として動作する暖房運転が可能であり、
    前記暖房運転の際には、前記第一の絞り装置と前記第二の絞り装置との間は、前記延長配管のうち前記第一の延長配管とは別の第二の延長配管を介して接続されるものであり、
    前記第一の絞り装置は、前記暖房運転において前記第二の延長配管に流入する前の冷媒を減圧し、前記中圧又は前記蒸発器内の冷媒圧力である低圧で、かつ二相状態の冷媒とするものであり、
    前記暖房運転において、前記第二の延長配管には、前記中圧又は前記低圧でかつ二相状態の冷媒を流通させることを特徴とする請求項1〜請求項のいずれか一項に記載の空気調和装置。
JP2015533845A 2013-08-28 2013-08-28 空気調和装置 Active JP6058145B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/072993 WO2015029160A1 (ja) 2013-08-28 2013-08-28 空気調和装置

Publications (2)

Publication Number Publication Date
JP6058145B2 true JP6058145B2 (ja) 2017-01-11
JPWO2015029160A1 JPWO2015029160A1 (ja) 2017-03-02

Family

ID=52585779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015533845A Active JP6058145B2 (ja) 2013-08-28 2013-08-28 空気調和装置

Country Status (4)

Country Link
US (1) US10107514B2 (ja)
EP (1) EP3040642B1 (ja)
JP (1) JP6058145B2 (ja)
WO (1) WO2015029160A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020159615A (ja) * 2019-03-26 2020-10-01 株式会社富士通ゼネラル 空気調和装置
JPWO2020202553A1 (ja) * 2019-04-05 2020-10-08
JP2020201009A (ja) * 2019-06-12 2020-12-17 ダイキン工業株式会社 冷媒サイクルシステム

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104089328B (zh) * 2013-04-01 2018-10-12 开利公司 空调***以及对空调***进行控制的方法
CN103759455B (zh) * 2014-01-27 2015-08-19 青岛海信日立空调***有限公司 热回收变频多联式热泵***及其控制方法
US9970689B2 (en) * 2014-09-22 2018-05-15 Liebert Corporation Cooling system having a condenser with a micro-channel cooling coil and sub-cooler having a fin-and-tube heat cooling coil
JP6609417B2 (ja) * 2015-04-03 2019-11-20 日立ジョンソンコントロールズ空調株式会社 空気調和機
JP6747226B2 (ja) * 2016-09-30 2020-08-26 ダイキン工業株式会社 冷凍装置
JP6337937B2 (ja) 2016-09-30 2018-06-06 ダイキン工業株式会社 空気調和装置
JP6460073B2 (ja) 2016-09-30 2019-01-30 ダイキン工業株式会社 空気調和装置
JP6787007B2 (ja) * 2016-09-30 2020-11-18 ダイキン工業株式会社 空気調和装置
JP6388010B2 (ja) 2016-09-30 2018-09-12 ダイキン工業株式会社 空気調和装置
JP6783271B2 (ja) * 2017-07-20 2020-11-11 ダイキン工業株式会社 空調システム
JP6721546B2 (ja) 2017-07-21 2020-07-15 ダイキン工業株式会社 冷凍装置
EP3889512A1 (en) 2017-09-29 2021-10-06 Daikin Industries, Ltd. Air conditioning system
JP6652115B2 (ja) 2017-09-29 2020-02-19 ダイキン工業株式会社 配管ユニット又は空調システム
JP6847023B2 (ja) * 2017-11-22 2021-03-24 大阪瓦斯株式会社 ヒートポンプ装置の制御方法、及びヒートポンプ装置
JP7107964B2 (ja) * 2017-11-30 2022-07-27 三菱電機株式会社 冷凍サイクル装置
CN108105971A (zh) * 2017-12-19 2018-06-01 关新华 多联机空调冷媒配管***的安装方法
JP2019120448A (ja) * 2017-12-28 2019-07-22 ダイキン工業株式会社 冷凍装置の熱源ユニット
JP6620824B2 (ja) * 2018-02-16 2019-12-18 ダイキン工業株式会社 空気調和装置
CN109237676B (zh) * 2018-09-27 2020-03-20 珠海格力电器股份有限公司 变容空调及其变容控制方法
JP7126481B2 (ja) * 2019-09-25 2022-08-26 ダイキン工業株式会社 空気調和装置
CN110762792B (zh) * 2019-10-29 2021-02-23 青岛海信日立空调***有限公司 一种空调器的控制方法及空调器
JP6778888B1 (ja) * 2019-12-19 2020-11-04 パナソニックIpマネジメント株式会社 中継器及び空気調和装置
KR20210112036A (ko) 2020-03-04 2021-09-14 엘지전자 주식회사 공기조화장치
WO2022109217A1 (en) * 2020-11-20 2022-05-27 The Chemours Company Fc, Llc Refrigerant compositions and uses thereof

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62189568U (ja) * 1986-05-21 1987-12-02
JPH02298769A (ja) * 1989-05-10 1990-12-11 Mitsubishi Electric Corp 空気調和装置
JPH06137690A (ja) * 1992-10-26 1994-05-20 Hitachi Ltd 空気調和機
JPH06137691A (ja) * 1992-10-27 1994-05-20 Mitsubishi Electric Corp 冷媒回路の制御装置
JP2005226950A (ja) * 2004-02-16 2005-08-25 Mitsubishi Electric Corp 冷凍空調装置
JP2008180435A (ja) * 2007-01-24 2008-08-07 Hitachi Appliances Inc 空気調和機
JP2008185292A (ja) * 2007-01-31 2008-08-14 Daikin Ind Ltd 冷凍装置
WO2010131378A1 (ja) * 2009-05-12 2010-11-18 三菱電機株式会社 空気調和装置
WO2012104893A1 (ja) * 2011-01-31 2012-08-09 三菱電機株式会社 空気調和装置
WO2013038577A1 (ja) * 2011-09-13 2013-03-21 三菱電機株式会社 ヒートポンプ装置及びヒートポンプ装置の制御方法
WO2013051177A1 (ja) * 2011-10-03 2013-04-11 三菱電機株式会社 室外機、その室外機を備えた空気調和機及び給湯機
WO2013069044A1 (ja) * 2011-11-07 2013-05-16 三菱電機株式会社 空気調和装置
WO2013084431A1 (ja) * 2011-12-08 2013-06-13 パナソニック株式会社 空気調和機
WO2013111176A1 (ja) * 2012-01-23 2013-08-01 三菱電機株式会社 空気調和装置
JP2013178073A (ja) * 2012-02-06 2013-09-09 Daikin Industries Ltd 冷凍装置

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1088183A (en) * 1976-06-24 1980-10-21 Trane Company Of Canada Limited Refrigerant charge adjuster apparatus
US4208886A (en) * 1978-12-04 1980-06-24 Borg-Warner Corporation Subcooling valve for split system air conditioning apparatus with remote condensing unit
JPH046636A (ja) 1990-04-25 1992-01-10 Nippon Telegr & Teleph Corp <Ntt> 光記録再生装置
JPH06331223A (ja) 1993-05-21 1994-11-29 Mitsubishi Electric Corp 冷凍サイクル
ES2176850T3 (es) * 1994-07-21 2002-12-01 Mitsubishi Electric Corp Acondicionador de aire utilizando un refrigerante no azeotropico e integrando un aparato detector de informacion de control.
US6053000A (en) * 1999-01-15 2000-04-25 Levitin; Mikhail Refrigeration unit
JP3757784B2 (ja) * 2000-04-06 2006-03-22 株式会社デンソー 減圧装置およびそれを用いた冷凍サイクル装置
JP2004070293A (ja) 2002-06-12 2004-03-04 Seiko Epson Corp 電子装置、電子装置の駆動方法及び電子機器
JP2004263885A (ja) 2003-02-07 2004-09-24 Daikin Ind Ltd 冷媒配管の洗浄方法、空気調和装置の更新方法、及び、空気調和装置
JP3916170B2 (ja) * 2004-09-01 2007-05-16 松下電器産業株式会社 ヒートポンプ
JP4120680B2 (ja) * 2006-01-16 2008-07-16 ダイキン工業株式会社 空気調和機
JP2008032336A (ja) * 2006-07-31 2008-02-14 Sanyo Electric Co Ltd 二段膨張冷凍装置
JP4811204B2 (ja) * 2006-09-11 2011-11-09 ダイキン工業株式会社 冷凍装置
JP5145674B2 (ja) * 2006-09-11 2013-02-20 ダイキン工業株式会社 冷凍装置
JP2009014210A (ja) * 2007-06-29 2009-01-22 Daikin Ind Ltd 冷凍装置
WO2009047542A1 (en) * 2007-10-12 2009-04-16 Ineos Fluor Holdings Limited Heat transfer compositions
JP5312471B2 (ja) * 2008-10-29 2013-10-09 三菱電機株式会社 空気調和装置
WO2010131335A1 (ja) * 2009-05-13 2010-11-18 三菱電機株式会社 空気調和装置
JP2011030430A (ja) 2009-07-29 2011-02-17 Tohoku Univ 脳性麻痺発症仔の作製方法
JP2011033235A (ja) * 2009-07-30 2011-02-17 Sanden Corp 冷凍サイクル
CN102483272A (zh) 2009-09-10 2012-05-30 三菱电机株式会社 空气调节装置
ES2790900T3 (es) * 2009-09-24 2020-10-29 Mitsubishi Electric Corp Dispositivo de ciclo de refrigeración
JP2011094871A (ja) * 2009-10-29 2011-05-12 Mitsubishi Electric Corp 冷凍・空調装置、冷凍・空調装置の設置方法
US9353302B2 (en) * 2010-08-13 2016-05-31 Carrier Corporation Fluorinated hydrocarbon composition
CN102523753A (zh) * 2010-09-08 2012-06-27 松下电器产业株式会社 制冷循环装置
EP2629028B1 (en) * 2010-10-12 2020-02-26 Mitsubishi Electric Corporation Air conditioner
KR101252173B1 (ko) * 2010-11-23 2013-04-05 엘지전자 주식회사 히트 펌프 및 그 제어방법
CN103229004B (zh) * 2011-01-26 2016-05-04 三菱电机株式会社 空调装置
WO2012101676A1 (ja) * 2011-01-27 2012-08-02 三菱電機株式会社 空気調和装置
KR20120114576A (ko) * 2011-04-07 2012-10-17 엘지전자 주식회사 공기 조화기
US9958194B2 (en) * 2011-10-03 2018-05-01 Mitsubishi Electric Corporation Refrigeration cycle apparatus with a heating unit for melting frost occurring in a heat exchanger
CN104603557B (zh) * 2012-08-27 2016-10-12 大金工业株式会社 制冷装置
US9605885B2 (en) * 2013-03-14 2017-03-28 Mitsubishi Electric Corporation Air conditioning system including pressure control device and bypass valve

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62189568U (ja) * 1986-05-21 1987-12-02
JPH02298769A (ja) * 1989-05-10 1990-12-11 Mitsubishi Electric Corp 空気調和装置
JPH06137690A (ja) * 1992-10-26 1994-05-20 Hitachi Ltd 空気調和機
JPH06137691A (ja) * 1992-10-27 1994-05-20 Mitsubishi Electric Corp 冷媒回路の制御装置
JP2005226950A (ja) * 2004-02-16 2005-08-25 Mitsubishi Electric Corp 冷凍空調装置
JP2008180435A (ja) * 2007-01-24 2008-08-07 Hitachi Appliances Inc 空気調和機
JP2008185292A (ja) * 2007-01-31 2008-08-14 Daikin Ind Ltd 冷凍装置
WO2010131378A1 (ja) * 2009-05-12 2010-11-18 三菱電機株式会社 空気調和装置
WO2012104893A1 (ja) * 2011-01-31 2012-08-09 三菱電機株式会社 空気調和装置
WO2013038577A1 (ja) * 2011-09-13 2013-03-21 三菱電機株式会社 ヒートポンプ装置及びヒートポンプ装置の制御方法
WO2013051177A1 (ja) * 2011-10-03 2013-04-11 三菱電機株式会社 室外機、その室外機を備えた空気調和機及び給湯機
WO2013069044A1 (ja) * 2011-11-07 2013-05-16 三菱電機株式会社 空気調和装置
WO2013084431A1 (ja) * 2011-12-08 2013-06-13 パナソニック株式会社 空気調和機
WO2013111176A1 (ja) * 2012-01-23 2013-08-01 三菱電機株式会社 空気調和装置
JP2013178073A (ja) * 2012-02-06 2013-09-09 Daikin Industries Ltd 冷凍装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020159615A (ja) * 2019-03-26 2020-10-01 株式会社富士通ゼネラル 空気調和装置
CN113614469A (zh) * 2019-03-26 2021-11-05 富士通将军股份有限公司 空调装置
CN113614469B (zh) * 2019-03-26 2022-09-09 富士通将军股份有限公司 空调装置
JPWO2020202553A1 (ja) * 2019-04-05 2020-10-08
JP2020201009A (ja) * 2019-06-12 2020-12-17 ダイキン工業株式会社 冷媒サイクルシステム

Also Published As

Publication number Publication date
EP3040642A1 (en) 2016-07-06
WO2015029160A1 (ja) 2015-03-05
EP3040642B1 (en) 2021-06-02
US10107514B2 (en) 2018-10-23
US20160146496A1 (en) 2016-05-26
JPWO2015029160A1 (ja) 2017-03-02
EP3040642A4 (en) 2017-03-29

Similar Documents

Publication Publication Date Title
JP6058145B2 (ja) 空気調和装置
JP5188571B2 (ja) 空気調和装置
JP5318099B2 (ja) 冷凍サイクル装置、並びにその制御方法
JP5197576B2 (ja) ヒートポンプ装置
JP6072077B2 (ja) 空気調和装置
JP5855312B2 (ja) 空気調和装置
EP2778567B1 (en) Air-conditioning apparatus
EP2650620B1 (en) Heat pump device
JP5921719B2 (ja) 空気調和装置
WO2014128830A1 (ja) 空気調和装置
JP5236080B2 (ja) 空気調和装置
WO2014141374A1 (ja) 空気調和装置
WO2013069351A1 (ja) 空気調和装置
WO2014128831A1 (ja) 空気調和装置
WO2014141373A1 (ja) 空気調和装置
EP2495515B1 (en) Air conditioning device
JP6017048B2 (ja) 空気調和装置
JP6017049B2 (ja) 空気調和装置
JPWO2011052050A1 (ja) 空気調和装置
JP5885753B2 (ja) 空気調和装置

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161206

R150 Certificate of patent or registration of utility model

Ref document number: 6058145

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250