JP6055054B1 - Light emitting device and manufacturing method thereof - Google Patents

Light emitting device and manufacturing method thereof Download PDF

Info

Publication number
JP6055054B1
JP6055054B1 JP2015177157A JP2015177157A JP6055054B1 JP 6055054 B1 JP6055054 B1 JP 6055054B1 JP 2015177157 A JP2015177157 A JP 2015177157A JP 2015177157 A JP2015177157 A JP 2015177157A JP 6055054 B1 JP6055054 B1 JP 6055054B1
Authority
JP
Japan
Prior art keywords
led die
emitting device
organic layer
cathode
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015177157A
Other languages
Japanese (ja)
Other versions
JP2017054897A (en
Inventor
奥本 健二
健二 奥本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2015177157A priority Critical patent/JP6055054B1/en
Priority to PCT/JP2016/074919 priority patent/WO2017043333A1/en
Application granted granted Critical
Publication of JP6055054B1 publication Critical patent/JP6055054B1/en
Publication of JP2017054897A publication Critical patent/JP2017054897A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/26Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
    • H05B33/28Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode of translucent electrodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Led Device Packages (AREA)

Abstract

【課題】高効率で長寿命の発光デバイスを安価かつ大量に提供する【解決手段】いずれかが実質的に透明である陽極と陰極と、前記陽極と陰極の間に配置されたp側とn側を有するLEDダイと、前記陽極と陰極の間に配置され、前記LEDダイに接する有機半導体材料を含む有機層からなる発光デバイスであって、前記LEDダイはn側が陰極側、p側が陽極側になるように配置され、前記有機層はLEDダイが存在する断面においてはn側と陰極の間あるいはp側と陽極の間の少なくともいずれか一方を充填するように配置され、LEDダイが存在しない断面においては陰極と陽極の間を充填するように配置され、LEDダイが存在する部分と存在しない部分にわたって連続的に配置され、LEDダイが存在しない断面における前記有機層の膜厚がLEDダイが存在する断面における前記有機層の膜厚より厚く、所定の膜厚範囲であることを特徴とする発光デバイス。【選択図】図1A light-emitting device with high efficiency and long life is provided at low cost and in large quantities. One of them is a substantially transparent anode and cathode, and a p-side and n arranged between the anode and cathode. A light emitting device comprising an LED die having a side and an organic layer comprising an organic semiconductor material disposed between the anode and the cathode and in contact with the LED die, wherein the LED die has a cathode side on the n side and an anode side on the p side The organic layer is arranged to fill at least one of the n side and the cathode or the p side and the anode in the cross section where the LED die exists, and there is no LED die. In the cross section, it is arranged so as to fill between the cathode and the anode, and is continuously arranged over the portion where the LED die is present and the portion where the LED die is not present, Thicker than the thickness of the organic layer thickness of the cross-section LED die is present, the light emitting device which is a predetermined film thickness range. [Selection] Figure 1

Description

本発明は、発光デバイスとその製造方法に関するものである。   The present invention relates to a light emitting device and a manufacturing method thereof.

LEDは省電力で長寿命などの長所を有する発光デバイスであり、照明やディスプレイのバックライトとして工業的に広く用いられている。LEDは、サファイアなど小型の結晶性基板の上に発光性の薄膜を結晶成長させて製造されている。基板上に面状に作製されたLEDデバイスは、一辺が100マイクロメートルオーダーの小片(以降、LEDダイと呼ぶ)に分割される。LEDダイは、1個あるいは数個ずつ、外部電源に接続できる端子に固定され(以降、実装と呼ぶ)、電圧を印加することで発光する実用的な発光デバイスとなる。   An LED is a light-emitting device that has advantages such as power saving and a long life, and is widely used industrially as a backlight for illumination and a display. The LED is manufactured by growing a light-emitting thin film on a small crystalline substrate such as sapphire. An LED device fabricated in a planar shape on a substrate is divided into small pieces (hereinafter referred to as LED dies) each having an order of 100 micrometers. One or several LED dies are fixed to terminals that can be connected to an external power supply (hereinafter referred to as mounting), and become a practical light emitting device that emits light by applying a voltage.

前述のLEDダイを実装する工程と、得られる発光デバイスにはいくつかの課題がある。   There are several problems with the process of mounting the aforementioned LED die and the resulting light emitting device.

第一に、ウェハーから切り出されたダイをひとつひとつピックアップし、端子部など所望の位置に移動させ、固定する必要があるため、製造コストが高い。   First, since it is necessary to pick up each die cut from the wafer, move it to a desired position such as a terminal portion, and fix it, the manufacturing cost is high.

第二に、実装時にLEDダイの電極と端子をワイヤボンディング技術によって接続する際、ワイヤおよびワイヤ固定部が光を遮蔽するため光のロスがある。また、ワイヤボンディングを実施する製造コストは高価である。   Secondly, when the electrodes and terminals of the LED die are connected by wire bonding technology at the time of mounting, there is a loss of light because the wire and the wire fixing part shield light. Also, the manufacturing cost for performing wire bonding is expensive.

第三に、数が少なく、面積が小さいLEDダイから所望の輝度や照度を得るために、LEDダイは高電流密度で駆動される。このために、発光効率の低下とデバイス温度上昇によるデバイス劣化が課題となる。照明に用いた場合には、光源を直視した場合に非常に眩しかったり、ぎらつきを感じる結果になる。   Third, the LED die is driven at a high current density in order to obtain the desired brightness and illuminance from the LED die having a small number and a small area. For this reason, the deterioration of the light emission efficiency and the device deterioration due to the device temperature increase become problems. When used for illumination, when the light source is viewed directly, the result is very dazzling or glare.

これら3つの課題の解決方法がこれまでに開示されている。   Solutions for these three problems have been disclosed so far.

特許文献1は、不透明ワイヤを透明電極で置き替えることを開示している。これは第二の課題の解決に寄与する。   Patent Document 1 discloses replacing an opaque wire with a transparent electrode. This contributes to the solution of the second problem.

特許文献2は、特許文献1をさらに発展させたものであり、多数個のLEDダイを2つの透明基板で挟んだ発光デバイスの構造と製造方法を開示している。導電性表面を有する底部基板を提供し、ホットメルト接着剤シートを提供し、上部電極と底部電極を有するLEDダイをホットメルト接着剤シートに埋め込み、透明導電層を有する上部透明基板を提供し、ホットメルト接着剤シートは、導電性表面と透明導電層との間に挿入され、上部基板を底部基板に結合するために、加熱圧力ローラシステムを通し、ホットメルト・シートが柔らかくなるにつれ、LEDダイは分断され、それにより、上部電極は、上部基板の透明導電層と電気接触し、底部電極は、底部基板の導電性表面と電気接触し、それにより各LEDダイのp側およびn側は、上部導電層および底部導電性表面と自動的に接続される。また、上部透明基板と導電性表面はホットメルト接着剤により絶縁されている。   Patent Document 2 is a further development of Patent Document 1, and discloses a structure and manufacturing method of a light emitting device in which a large number of LED dies are sandwiched between two transparent substrates. Providing a bottom substrate having a conductive surface, providing a hot melt adhesive sheet, embedding an LED die having a top electrode and a bottom electrode in the hot melt adhesive sheet, and providing a top transparent substrate having a transparent conductive layer; The hot melt adhesive sheet is inserted between the conductive surface and the transparent conductive layer, passed through a heated pressure roller system to bond the top substrate to the bottom substrate, and as the hot melt sheet softens, the LED die Are separated so that the top electrode is in electrical contact with the transparent conductive layer of the top substrate and the bottom electrode is in electrical contact with the conductive surface of the bottom substrate, whereby the p-side and n-side of each LED die is Automatically connected to the top conductive layer and the bottom conductive surface. The upper transparent substrate and the conductive surface are insulated by a hot melt adhesive.

米国特許第4 4 9 5 5 1 4号U.S. Pat. No. 4,4,9,5,5,4 特表2007−531321Special table 2007-531321

Chemical Review、2007年、107巻 953〜1010ページChemical Review, 2007, 107, 953-1010.

特許文献2に記載の発光デバイスの構造と製造方法は、ワイヤ結合、はんだ付け、リードワイヤ、あるいは他の電気接続要素またはステップは必要でなく、高歩留りで低コストな方法、との記載があり第一の課題の解決に寄与する。また、高密度実装にも有効であることが言及されており、一個あたりのLEDの輝度を低減できれば、第三の課題の解決にも寄与する。 The structure and manufacturing method of the light emitting device described in Patent Document 2 does not require wire bonding, soldering, lead wires, or other electrical connection elements or steps, and has a description of a high yield and low cost method. Contributes to solving the first problem. Moreover, it is mentioned that it is effective also for high-density mounting, and if the brightness | luminance of one LED can be reduced, it will contribute also to the solution of a 3rd subject.

特許文献2に開示された発光デバイスの構造と製造方法には以下のような課題がある。   The structure and manufacturing method of the light emitting device disclosed in Patent Document 2 have the following problems.

特許文献2の49段落目に、ホットメルト材料は、LEDダイの表面を湿潤させず、したがってホットメルト材料が溶融するとき、LEDダイのp表面およびn表面は露出され、上部基板および底部基板の導電性表面と電気接続が得られる、と記載がある。しかしながら、ホットメルト材料はある確率においてLEDダイ表面を湿潤させることが十分に考えらえる。この場合、ホットメルト材料が絶縁材料であるために、LEDダイへの電気的接続が得られなくなり、発光デバイスとして機能しなくなる。この問題は、多数の発光デバイスを製造する場合の歩留りの低減と、多数個のLEDダイを配置し全数を光らせたい場合に大きな問題となる。さらに、長期にわたって発光デバイスを使用する際、ホットメルト材料がLEDダイの表面を湿潤しておらず、電極とLEDダイが直接接触している構造であるために、電極とLEDダイの接触は不安定であり、機械的衝撃や曲げなどの応力によって容易に剥離して電気的に絶縁されるため、使用寿命が短い課題もある。   In paragraph 49 of Patent Document 2, the hot melt material does not wet the surface of the LED die, so when the hot melt material melts, the p and n surfaces of the LED die are exposed and the top and bottom substrates are exposed. There is a description that electrical connection with the conductive surface is obtained. However, hot melt materials are well thought to wet the LED die surface with some probability. In this case, since the hot melt material is an insulating material, an electrical connection to the LED die cannot be obtained, and the device does not function as a light emitting device. This problem becomes a serious problem when a large number of light emitting devices are manufactured, and when yield is reduced by arranging a large number of LED dies. Furthermore, when the light emitting device is used for a long period of time, the hot melt material does not wet the surface of the LED die, and the electrode and the LED die are in direct contact with each other. There is also a problem that the service life is short because it is stable and is easily peeled off and electrically insulated by stress such as mechanical impact or bending.

この課題を解決するためには、完全に絶縁性であるホットメルト材料の代わりの材料を用いた構造にする必要がある。   In order to solve this problem, it is necessary to make a structure using a material instead of a hot-melt material that is completely insulating.

特許文献2には、発光デバイスの他の形態として、ホットメルト材料に相当する部分にイオン輸送材料(固体ポリマー電解質、流体電解質、固体電解質)を用いる構造や、導電性接着剤を用いる構造について開示している。   Patent Document 2 discloses a structure using an ion transport material (solid polymer electrolyte, fluid electrolyte, solid electrolyte) in a portion corresponding to a hot-melt material or a structure using a conductive adhesive as another form of the light-emitting device. doing.

固体電解質や導電性接着剤をホットメルト材料の代わりに用いた場合、表面電極と透明導電層の間の電気的な絶縁性を保つことは不可能であり、単純な置き換えはできない。   When a solid electrolyte or a conductive adhesive is used instead of a hot melt material, it is impossible to maintain electrical insulation between the surface electrode and the transparent conductive layer, and simple replacement cannot be performed.

特許文献2には、発光デバイスの他の形態として、ホットメルト材料に相当する部分に本質的に導電性のポリマー、あるいは半導電性接着剤を用いる構造が開示されている。   Patent Document 2 discloses a structure in which an essentially conductive polymer or a semiconductive adhesive is used in a portion corresponding to a hot melt material as another form of the light emitting device.

本質的に導電性のポリマーをホットメルト材料の代わりに用いようとした場合、一般的に導電性のポリマーは接着性に乏しく、ホットメルト材料のような接着性を得ることができない。   When an essentially conductive polymer is to be used in place of a hot melt material, the conductive polymer generally has poor adhesion and cannot achieve adhesion like a hot melt material.

また、半導電性接着剤については、具体的にどういう材料であるか特許文献2の中には開示されていない。一般に導電性のポリマーというと、ポリアセチレンをよう素ドープしたものや、ポリ(3,4−エチレンジオキシチオフェン)をポリスチレンスルホン酸でドープしたものなどであり、これらをホットメルト材料の代わりに用いた場合、表面電極と透明導電層の間の電気的な絶縁性を保つことは不可能であり、単純な置き換えはできない。   Further, the semiconductive adhesive is not disclosed in Patent Document 2 as to what kind of material it is concretely. Generally speaking, conductive polymers include polyacetylene iodine-doped and poly (3,4-ethylenedioxythiophene) doped with polystyrene sulfonic acid. These were used instead of hot melt materials. In this case, it is impossible to maintain electrical insulation between the surface electrode and the transparent conductive layer, and a simple replacement is not possible.

特許文献2には、発光デバイスの他の形態として、LEDダイのN電極とITOカソードとの間にギャップを設け、LEDダイのN電極とITOカソードとの間の電気接触を完成する導電性マトリックス材料としてキノリンの液滴を用いる構造について記載がある。   In Patent Document 2, as another embodiment of the light-emitting device, a conductive matrix that completes an electrical contact between the N electrode of the LED die and the ITO cathode by providing a gap between the N electrode of the LED die and the ITO cathode. There is a description of a structure using quinoline droplets as a material.

キノリンは融点が−15℃の常温で液体の材料である。液体材料は粘性が低く容易に形状が変化するために、表面電極と透明電極を接着することができないため、ホットメルト材料の代わりに用いることはできない。またキノリンに電気が流れる理由については記載がなく、ホットメルト材料のようにLEDダイがない部分の表面電極と透明電極間の絶縁性を保ち、漏れ電流を抑える効果が得られるかは特許文献2には記載がない。   Quinoline is a liquid material at room temperature with a melting point of −15 ° C. Since the liquid material has a low viscosity and easily changes its shape, the surface electrode and the transparent electrode cannot be bonded to each other. Therefore, the liquid material cannot be used in place of the hot melt material. Further, there is no description about the reason why electricity flows through the quinoline. Patent Document 2 describes whether the effect of suppressing the leakage current can be obtained by maintaining the insulation between the surface electrode and the transparent electrode where there is no LED die, such as a hot melt material. There is no description.

本発明が解決しようとする課題は、前述の課題を解決し、高効率で長寿命の発光デバイスを安価かつ大量に提供することである。   The problem to be solved by the present invention is to solve the above-mentioned problems and to provide a large amount of light-emitting devices with high efficiency and long life at low cost.

本発明の発光デバイスは、いずれかが実質的に透明である陽極と陰極と、前記陽極と陰極の間に配置されたp側とn側を有するLEDダイと、前記陽極と陰極の間に配置され、前記LEDダイに接する有機半導体材料を含む有機層からなる発光デバイスであって、前記LEDダイはn側が陰極側、p側が陽極側になるように配置され、前記有機層はLEDダイが存在する断面においてはn側と陰極の間あるいはp側と陽極の間の少なくともいずれか一方を充填するように配置され、LEDダイが存在しない断面においては陰極と陽極の間を充填するように配置され、LEDダイが存在する部分と存在しない部分にわたって連続的に配置され、LEDダイが存在しない断面における前記有機層の膜厚が1マイクロメートル以上であり、かつ、LEDダイが存在する断面における前記有機層の膜厚が10マイクロメートル以下であり、かつ、LEDダイが存在しない断面における前記有機層の膜厚がLEDダイが存在する断面における前記有機層の膜厚より厚いことを特徴とする発光デバイスである。 The light-emitting device of the present invention includes an anode and a cathode that are substantially transparent, an LED die having a p-side and an n-side disposed between the anode and the cathode, and a portion disposed between the anode and the cathode. A light-emitting device comprising an organic layer containing an organic semiconductor material in contact with the LED die, wherein the LED die is arranged so that the n side is the cathode side and the p side is the anode side, and the organic layer has the LED die Is arranged so as to fill at least one of the n side and the cathode or between the p side and the anode in the cross section to be arranged, and arranged between the cathode and the anode in the cross section where the LED die is not present. The organic layer has a thickness of 1 micrometer or more in a cross section where the LED die is present and the LED die is not continuously present. The film thickness of the organic layer in the cross section where the ED die exists is 10 micrometers or less, and the film thickness of the organic layer in the cross section where the LED die does not exist is the film thickness of the organic layer in the cross section where the LED die exists. It is a light emitting device characterized by being thicker.

ここで、LEDダイのp側とは陽極と接合され正孔を受け取る側、LEDダイのn側とは陰極と接合され電子を受け取る側と定義する。窒化ガリウムを用いるLEDダイでいうと、p型窒化ガリウム層が形成された側がp側であり、n型窒化ガリウム層が形成された側がn側である。なお、インジウムスズ酸化物層など一般に電極と呼ばれる層がLEDダイの表面に形成されていてもよい。 Here, the p-side of the LED die is defined as the side that is bonded to the anode and receives holes, and the n-side of the LED die is defined as the side that is bonded to the cathode and receives electrons. In an LED die using gallium nitride, the side on which the p-type gallium nitride layer is formed is the p-side, and the side on which the n-type gallium nitride layer is formed is the n-side. A layer generally called an electrode such as an indium tin oxide layer may be formed on the surface of the LED die.

本発明により、電極とLEDダイの間にある有機半導体を含む有機層が電子あるいは正孔の注入と輸送を担うため、陽極からLEDダイのp側、あるいは、陰極からLEDダイのn側に電荷が効率的に輸送できるので、LEDのn側とp側に発光に必要な電圧を小さな電圧ロスで印加することができる。有機半導体を含む有機層は電極とLEDの間を電気的に絶縁しないため、歩留りが高く製造ができ、加えて長期にわたり安定的に発光する発光デバイスを得ることができる。   According to the present invention, the organic layer containing the organic semiconductor between the electrode and the LED die is responsible for the injection and transport of electrons or holes, so that the charge from the anode to the p side of the LED die or from the cathode to the n side of the LED die. Can be efficiently transported, the voltage required for light emission can be applied to the n side and p side of the LED with a small voltage loss. Since the organic layer containing an organic semiconductor does not electrically insulate between the electrode and the LED, it can be manufactured with a high yield, and in addition, a light-emitting device that emits light stably over a long period of time can be obtained.

本発明において、有機層はLEDダイが存在する部分と存在しない部分にわたって連続的に配置されているため、LEDダイが存在する部分と存在しない部分でパターニングなどによる部材の変更が必要ないため安価に発光デバイスを提供することができる。   In the present invention, since the organic layer is continuously arranged over the portion where the LED die is present and the portion where the LED die is not present, it is not necessary to change the member by patterning or the like between the portion where the LED die is present and the portion where the LED die is not present. A light emitting device can be provided.

本発明の発光デバイスにおいて、LEDダイがない部分において2つの電極間の有機半導体を含む有機層に流れる漏れ電流が懸念されるが、実質的に問題とならない。なぜならば、本発明の発光デバイスにおいては、LEDダイが存在しない断面における有機層の膜厚がLEDダイが存在する断面における有機層の膜厚より厚いためである。有機半導体において電子あるいは正孔を注入し輸送する場合の電流は空間電荷制限電流というメカニズムによるが、その電流密度は膜厚の3乗に反比例するため、膜厚の差を設けておくことで、LEDダイがある部分とない部分とで大きな電流コントラストを得ることができ、LEDダイがない部分の漏れ電流量は無視できる程度になる。例えば、LEDダイが存在しない断面における有機層の膜厚がLEDダイが存在する断面における有機層の膜厚より10倍厚い場合、3乗反比例によりLEDダイが存在しない断面における電流密度はLEDダイが存在する断面の電流密度の1000分の1となる。なお、使用する用途などによって、LEDダイがある部分の面積とない部分の面積の比率は変わる。LEDダイが存在する断面と存在しない断面におけるそれぞれの有機層の膜厚の設計は、LEDダイがある部分の面積とない部分の面積の比率、所望のLED電流と漏れ電流の比率から決定すればよい。この膜厚の比は、スペーサーの利用、有機材料の粘度、LEDダイの厚みなどで実現できる。本発明の発光デバイスにおける、LEDダイが存在しない断面における前記有機層の膜厚は1マイクロメートル以上であれば漏れ電流を有効に抑制できる。これ以下の膜厚だと、ピンホールの発生を抑制することが困難となり、また、ピンホールによらない電流も無視できなくなる。LEDダイが存在する断面における前記有機層の膜厚は10マイクロメートル以下であれば小さい電圧降下でLEDに電流を注入できる。これ以上の膜厚だと、有機層における電圧降下が大きくなりすぎ、デバイスの消費電力が大きくなりすぎる。 In the light emitting device of the present invention, there is a concern about leakage current flowing in the organic layer containing the organic semiconductor between the two electrodes in a portion where there is no LED die, but this is not substantially a problem. This is because, in the light emitting device of the present invention, the thickness of the organic layer in the cross section where the LED die does not exist is thicker than the thickness of the organic layer in the cross section where the LED die exists. Current in the case of injecting and transporting electrons or holes in an organic semiconductor is due to a mechanism called space charge limited current, but since the current density is inversely proportional to the cube of the film thickness, by providing a difference in film thickness, A large current contrast can be obtained between the portion where the LED die is present and the portion where the LED die is not present, and the amount of leakage current in the portion where the LED die is absent is negligible. For example, when the film thickness of the organic layer in the cross section where the LED die is not present is 10 times thicker than the film thickness of the organic layer in the cross section where the LED die is present, the current density in the cross section where the LED die is not present due to the inverse cube power is It becomes 1/1000 of the current density of the existing cross section. The ratio of the area where the LED die is present to the area where the LED die is absent varies depending on the application to be used. The thickness of each organic layer in the cross section where the LED die is present and the cross section where the LED die is not present can be determined from the ratio of the area where the LED die is present to the area where the LED die is not present, and the ratio of the desired LED current and leakage current. Good. This film thickness ratio can be realized by using a spacer, the viscosity of the organic material, the thickness of the LED die, and the like. In the light emitting device of the present invention, the leakage current can be effectively suppressed if the thickness of the organic layer in the cross section where the LED die is not present is 1 micrometer or more. If the film thickness is less than this, it becomes difficult to suppress the generation of pinholes, and currents not caused by pinholes cannot be ignored. If the film thickness of the organic layer in the cross section where the LED die is present is 10 micrometers or less, a current can be injected into the LED with a small voltage drop. If the film thickness is larger than this, the voltage drop in the organic layer becomes too large, and the power consumption of the device becomes too large.

本発明の別の形態としては、本発明の発光デバイスのうち、前記有機層のガラス転移温度が25℃以下であり、25℃において安定な過冷却液体状態を維持できる有機層を含むことを特徴とする発光デバイスである。   As another form of the present invention, the organic light-emitting device of the present invention includes an organic layer having a glass transition temperature of 25 ° C. or lower and capable of maintaining a stable supercooled liquid state at 25 ° C. The light emitting device.

このような有機層を用いることで、標準的な室温である25℃において、有機層は過冷却液体状態となっている。この状態の有機層は十分に高い粘度を有しているため、2つの電極を接着して離れないようにすることができ、デバイスを力学的に安定に保つことができる。アモルファス状態であるため、多結晶のような粒界が存在せず、電気的な短絡などの原因にならない。また、外部の力や温度変化により応力がデバイスに負荷された場合においても、有機層の過冷却液体が適度に変形できるために応力を緩和して剥離や亀裂などによるデバイスの破壊を防ぐことができる。したがって、このような本発明の効果によって、本発明の発光デバイスは機械的な衝撃に強く、フレキシブル性をもつ。例えば、プラスチック基板を用いた場合には曲げたりできる特長を有する。   By using such an organic layer, the organic layer is in a supercooled liquid state at a standard room temperature of 25 ° C. Since the organic layer in this state has a sufficiently high viscosity, the two electrodes can be adhered to each other so as not to be separated, and the device can be kept mechanically stable. Since it is in an amorphous state, there is no grain boundary like a polycrystal, and it does not cause an electrical short circuit. In addition, even when stress is applied to the device due to external force or temperature change, the supercooled liquid in the organic layer can be deformed appropriately, so that stress can be relaxed to prevent device destruction due to peeling or cracking. it can. Therefore, due to the effects of the present invention, the light emitting device of the present invention is resistant to mechanical impact and has flexibility. For example, when a plastic substrate is used, it can be bent.

本発明の前段落の有機層として適用できる材料は限られる。なぜならば、有機層は、ガラス転移温度が25℃以下という熱力学的な特性と、過冷却液体状態を保つことができるモルフォロジー安定性、加えて電極から正孔あるいは電子が注入できるエネルギー準位と、正孔または電子の移動度が大きいという多くの要求性能を満たす必要があるためである。   The materials that can be used as the organic layer in the previous paragraph of the present invention are limited. This is because the organic layer has a thermodynamic property that the glass transition temperature is 25 ° C. or less, a morphological stability that can maintain a supercooled liquid state, and an energy level that allows holes or electrons to be injected from the electrode. This is because it is necessary to satisfy many required performances of high mobility of holes or electrons.

本発明では、このような要求性能を満たす有機層に含まれる有機半導体としてトリアリールアミン部位と炭素数が2〜16の範囲のアルキル基あるいはアルコキシ基を有する材料を用いる発光デバイスを発明した。トリアリールアミン部位は、窒素に結合した三つのアリール基が互いにプロペラ状の位置関係にあり平面性が低いため、結晶性を阻害できるので過冷却液体状態の安定性が高い。炭素数が2〜16と長いアルキル基あるいはアルコキシ基は、様々なコンフォメーションを取ることができ、これもアモルファス状態の安定性の向上に寄与するとともに、ガラス転移温度を下げて室温以下に調整できることにも寄与する。ガラス転移温度は、分子群が協働的に動き始める温度と考えられている。アリール基などよりも動きやすいアルキル基あるいはアルコキシ基が分子内にある場合、分子内の動きを起点として分子群の協働的な動きがより低い温度でも起こりやすくなるため、ガラス転移温度を下げる効果が生まれる。さらに、本有機半導体を含む有機層をp型有機層として用いる場合には、トリアリールアミンが陽極から正孔を受け入れることができる適度なエネルギー準位と高い正孔移動度を有しているため、電気伝導の機能を担うことができる。   In the present invention, a light-emitting device using a material having a triarylamine moiety and an alkyl group or alkoxy group having 2 to 16 carbon atoms as an organic semiconductor contained in an organic layer satisfying such required performance has been invented. The triarylamine moiety is highly stable in a supercooled liquid state because three aryl groups bonded to nitrogen are in a propeller-like positional relationship with each other and have low planarity, so that crystallinity can be inhibited. Alkyl or alkoxy groups having 2 to 16 carbon atoms can take various conformations, which also contributes to the improvement of the stability of the amorphous state and can be adjusted to room temperature or lower by lowering the glass transition temperature. Also contributes. The glass transition temperature is considered to be the temperature at which molecular groups begin to move cooperatively. When there is an alkyl group or alkoxy group that is more mobile than an aryl group in the molecule, the cooperative movement of the molecular group is likely to occur at a lower temperature starting from the movement in the molecule, thus lowering the glass transition temperature. Is born. Furthermore, when the organic layer containing the organic semiconductor is used as a p-type organic layer, the triarylamine has an appropriate energy level capable of accepting holes from the anode and high hole mobility. It can take on the function of electrical conduction.

本発明の別の形態としては、本発明の発光デバイスのうち、前記陽極あるいは陰極の少なくとも片方に電荷注入層が形成されていることを特徴とする発光デバイスである。 Another embodiment of the present invention is a light emitting device characterized in that a charge injection layer is formed on at least one of the anode and the cathode among the light emitting devices of the present invention.

この構造を適用することで電荷注入が容易となり、電荷注入に要する電圧ロスを防止できるとともに、前述の有機層の材料の要求性能のうち、注入障壁に関わるエネルギ準位の要求値が緩和されるため、より広い材料系を本発明に適用できるようになる。 By applying this structure, charge injection becomes easy, voltage loss required for charge injection can be prevented, and the required value of the energy level related to the injection barrier among the required performance of the material of the organic layer described above is relaxed. Therefore, a wider material system can be applied to the present invention.

発明者は本発明の発光デバイスの製造方法についても発明した。本発明の製造方法は、陽極を有する基板と陰極を有する基板を準備する工程と、前記2つの基板のいずれか片方の上にLEDダイを配置する工程と、有機半導体を含む有機材料をLEDダイを配置した基板あるいはもう片方の基板の上に配置する工程と、前記有機材料を加熱して粘度を下げる工程と、前記有機材料を2つの基板で挟む工程をこの順に含むことを特徴とする発光デバイスの製造方法である。 The inventor has also invented a method for manufacturing a light emitting device of the present invention. The manufacturing method of the present invention includes a step of preparing a substrate having an anode and a substrate having a cathode, a step of disposing an LED die on one of the two substrates, and an organic material containing an organic semiconductor as an LED die. A step of placing the substrate on the other substrate, the step of lowering the viscosity by heating the organic material, and the step of sandwiching the organic material between two substrates in this order. A device manufacturing method.

この製造方法を適用して発光デバイスを作製することにより、有機材料を加熱して低粘度で2つの基板で挟む工程において、有機半導体が濡れ広がり、連続膜として形成され、2つの基板を接着する層として配置されることで発光デバイスの機械的な強度が得られる。かつ、2つの基板間の距離が一定になるように有機半導体が濡れ広がるので、LEDがある部分は薄くなり、LEDダイがない部分は厚くなる本発明の構造が自動的に得られる。したがって、LEDダイに小さい電圧ロスで電荷を受け渡しでき、LEDがない部分では漏れ電流を小さくできる本発明の構造を簡単に実現できるため、実装工程が大幅に簡略にでき、本発明の発光デバイスを安価に製造できる。なお、基板の面積が大きい場合は、スペーサーを用いて基板間の距離を一定に保てるようにしてもよい。 By manufacturing the light emitting device by applying this manufacturing method, in the process of heating the organic material and sandwiching it between two substrates with low viscosity, the organic semiconductor is spread and formed as a continuous film, and the two substrates are bonded. The mechanical strength of the light emitting device can be obtained by arranging the layers. In addition, since the organic semiconductor wets and spreads so that the distance between the two substrates is constant, the structure of the present invention is automatically obtained in which the portion where the LED is present is thin and the portion where the LED die is not present is thick. Therefore, since the structure of the present invention that can deliver charges to the LED die with a small voltage loss and can reduce the leakage current in a portion where there is no LED can be easily realized, the mounting process can be greatly simplified, and the light emitting device of the present invention can be realized. Can be manufactured at low cost. When the area of the substrates is large, the distance between the substrates may be kept constant using a spacer.

本発明により、高効率で長寿命の発光デバイスを安価かつ大量に提供することができるようになる。   According to the present invention, light-emitting devices with high efficiency and long life can be provided at low cost and in large quantities.

本発明を実施するための形態について詳細に記載する。本発明は、いずれかが実質的に透明である陽極と陰極と、前記陽極と陰極の間に配置されたp側とn側を有するLEDダイと、前記陽極と陰極の間に配置され、前記LEDダイに接する有機半導体材料を含む有機層からなる発光デバイスであって、前記LEDダイはn側が陰極側、p側が陽極側になるように配置され、前記有機層はLEDダイが存在する断面においてはn側と陰極の間あるいはp側と陽極の間の少なくともいずれか一方を充填するように配置され、LEDダイが存在しない断面においては陰極と陽極の間を充填するように配置され、LEDダイが存在する部分と存在しない部分にわたって連続的に配置され、LEDダイが存在しない断面における前記有機層の膜厚が1マイクロメートル以上であり、かつ、LEDダイが存在する断面における前記有機層の膜厚が10マイクロメートル以下であり、かつ、LEDダイが存在しない断面における前記有機層の膜厚がLEDダイが存在する断面における前記有機層の膜厚より厚いことを特徴とする発光デバイスである。 A mode for carrying out the present invention will be described in detail. The present invention provides an anode and a cathode, which are substantially transparent, an LED die having a p-side and an n-side disposed between the anode and the cathode, and disposed between the anode and the cathode, A light emitting device comprising an organic layer containing an organic semiconductor material in contact with an LED die, wherein the LED die is arranged so that the n side is the cathode side and the p side is the anode side, and the organic layer is in a cross section where the LED die exists Is arranged so as to fill at least one of between the n side and the cathode or between the p side and the anode, and is arranged so as to fill between the cathode and the anode in the cross section where the LED die does not exist. The organic layer in the cross section where the LED die does not exist is 1 micrometer or more, and the LED die exists. The film thickness of the organic layer in the cross section is 10 micrometers or less, and the film thickness of the organic layer in the cross section where the LED die is not present is thicker than the film thickness of the organic layer in the cross section where the LED die is present. It is the light-emitting device characterized.

実質的に透明な陽極あるいは陰極の材質としては、インジウムスズ酸化物などの金属酸化物電極、アルミニウム、銀などからなる100nm以下の膜厚の薄膜金属電極、カーボンナノチューブやグラフェンなどの炭素材料、銀や銅などのナノワイヤー材料などが挙げられる。電極の製造方法としては、真空蒸着法、スパッタ法やCVD法などの乾式法、前駆体のインクを塗布したのちベークする湿式法を用いることができる。透明な電極のLED発光に対する透過率は、高い方が消費電力を低く抑えることができるので100%に近いほど好ましいが、10%以上であればよい。電極の抵抗値は低い方が電圧ロスを低減できるので好ましいが1000オーム/□以下のシート抵抗であればよい。一般に透明電極の導電性は高くないため、補助配線として導電性が高い金属からなる比較的厚い配線を形成しておくと、実質的な抵抗値を大きく低減でき、消費電力の低減に寄与する。 The material of the substantially transparent anode or cathode includes a metal oxide electrode such as indium tin oxide, a thin film metal electrode having a thickness of 100 nm or less made of aluminum or silver, a carbon material such as carbon nanotube or graphene, silver And nanowire materials such as copper. As an electrode manufacturing method, a vacuum method, a dry method such as a sputtering method or a CVD method, or a wet method in which a precursor ink is applied and then baked can be used. The higher the transmittance of the transparent electrode for LED light emission, the lower the power consumption, so the closer it is to 100%, the more preferable, but it should be 10% or more. A lower electrode resistance value is preferable because voltage loss can be reduced, but a sheet resistance of 1000 ohms / square or less is sufficient. In general, since the conductivity of the transparent electrode is not high, if a relatively thick wiring made of a highly conductive metal is formed as an auxiliary wiring, the substantial resistance value can be greatly reduced, which contributes to the reduction of power consumption.

陽極あるいは陰極の片方に不透明性の電極を用いてもよい。この場合、一般的な金属膜などを基板の上に形成してもよいし、金属板や金属フィルムをそのまま電極兼基板として用いることができる。 An opaque electrode may be used for one of the anode and the cathode. In this case, a general metal film or the like may be formed on the substrate, or a metal plate or metal film can be used as it is as an electrode and substrate.

陽極と陰極の両方に実質的に透明な電極を用いた場合、光透過性がある発光デバイスを得ることができる。これにより面状の発光デバイスを通して観測者がいる側と逆側を見ることができるシースルー性を得ることができ、実用上価値が高い。 When substantially transparent electrodes are used for both the anode and the cathode, a light-emitting device having optical transparency can be obtained. As a result, a see-through property that allows the viewer to see the side opposite to the side where the observer is present can be obtained through the planar light emitting device, which is practically valuable.

p側とn側を有するLEDダイとしては、一般に市販されている垂直型LEDダイを好適に用いることができる。なお、同じ面側にpとnを取り出した水平型LEDダイは本発明に用いることはできない。なぜならば、本発明の効果を得るためには、LEDダイのn側が陰極側、p側が陽極側になるように配置し、連続膜として形成した有機層に電子あるいは正孔のうちいずれか一方を流す構造としなければならないためである。 As the LED die having the p side and the n side, a commercially available vertical LED die can be suitably used. Note that a horizontal LED die in which p and n are taken out on the same surface side cannot be used in the present invention. This is because in order to obtain the effect of the present invention, the LED die is arranged so that the n side is the cathode side and the p side is the anode side, and either one of electrons or holes is placed in the organic layer formed as a continuous film. This is because the structure must flow.

本発明の発光デバイスにおける有機層はLEDダイが存在する部分と存在しない部分にわたって連続的に配置されており、LEDダイが存在しない断面における有機層の膜厚がLEDダイが存在する断面における有機層の膜厚より厚いことが必要である。図1は、本発明の発光デバイスの断面図の模式図であり、上述の膜厚の関係を満たしている。加えて、本発明の有機層には有機半導体が含まれていることが必要である。有機半導体を含む有機層はドープされていない状態では電荷を膜中に含んでおらず、電流の源となる正孔あるいは電子は電極からの注入によって与えられる。この場合、一般的に空間電荷制限電流というメカニズムで電流が流れ、このときの電流密度JはJ=9/8μεV/L(式1)で与えられる。式1において、μは移動度、εは誘電率、Vは印加電圧、Lは膜厚を示す。本発明の発光デバイスにおいて、LEDダイがある部分とない部分において、電極間に印加されている電圧、有機層の移動度と誘電率は同じであり、膜厚だけが異なる。式1において電流密度は膜厚の3乗に反比例するため、膜厚の差は電流値の大きな差になる。たとえば、LEDダイがある部分の有機層の膜厚を1マイクロメートル、LEDダイがない部分の膜厚を200マイクロメートルとすると、LEDダイがある部分は、LEDダイがない部分の電流密度に比べ8、000、000倍高い電流密度の電流が流れる。LEDダイがない部分に流れる電流は漏れ電流であり、発光デバイス全体の消費電力の損失につながるが、本発明を適用することで、漏れ電流による消費電力の損失を抑制する本発明の効果が得られる。本発明の発光デバイスにおける、LEDダイが存在しない断面における前記有機層の膜厚は1マイクロメートル以上であれば漏れ電流を有効に抑制できる。これ以下の膜厚だと、ピンホールの発生を抑制することが困難となり、また、ピンホールによらない電流も無視できなくなる。LEDダイが存在する断面における前記有機層の膜厚は10マイクロメートル以下であれば小さい電圧降下でLEDに電流を注入できる。これ以上の膜厚だと、有機層における電圧降下が大きくなりすぎ、デバイスの消費電力が大きくなりすぎる。なお、LEDダイがある部分とない部分でどの程度の電流密度の差があればよいかは発光デバイスの設計および用途で決定され、それによって膜厚差をどの程度設ければよいか決定される。なお、LEDダイがある部分ではLEDダイの電圧降下があるが、同じ膜厚の有機層の電圧降下に比べて十分小さいので、上記説明では無視しうるとして記載した。また、実際の有機半導体の電流−電圧特性は、理想的な式1からずれることがあるが、膜厚変化に伴い電流値が大きく変わる電流特性であれば、本発明の発光デバイスに供することができることを補足しておく。 The organic layer in the light emitting device of the present invention is continuously arranged over the portion where the LED die is present and the portion where the LED die is not present, and the thickness of the organic layer in the cross section where the LED die is not present is the organic layer in the cross section where the LED die is present It is necessary to be thicker than the film thickness. FIG. 1 is a schematic diagram of a cross-sectional view of a light-emitting device of the present invention, which satisfies the above-described film thickness relationship. In addition, the organic layer of the present invention needs to contain an organic semiconductor. When the organic layer containing the organic semiconductor is not doped, it does not contain charges in the film, and holes or electrons that are sources of current are given by injection from the electrodes. In this case, a current generally flows by a mechanism called a space charge limited current, and the current density J at this time is given by J = 9/8 μεV 2 / L 3 (Equation 1). In Equation 1, μ is the mobility, ε is the dielectric constant, V is the applied voltage, and L is the film thickness. In the light emitting device of the present invention, the voltage applied between the electrodes, the mobility of the organic layer, and the dielectric constant are the same between the portion with and without the LED die, and only the film thickness is different. In Equation 1, since the current density is inversely proportional to the cube of the film thickness, the difference in film thickness is a large difference in current value. For example, if the thickness of the organic layer where the LED die is present is 1 micrometer and the thickness where the LED die is not present is 200 micrometers, the portion where the LED die is present is compared to the current density of the portion where the LED die is absent. A current having a current density 8,000,000 times higher flows. The current that flows in the portion where there is no LED die is a leakage current, which leads to a loss of power consumption of the entire light emitting device, but by applying the present invention, the effect of the present invention that suppresses the loss of power consumption due to the leakage current is obtained. It is done. In the light emitting device of the present invention, the leakage current can be effectively suppressed if the thickness of the organic layer in the cross section where the LED die is not present is 1 micrometer or more. If the film thickness is less than this, it becomes difficult to suppress the generation of pinholes, and currents not caused by pinholes cannot be ignored. If the film thickness of the organic layer in the cross section where the LED die is present is 10 micrometers or less, a current can be injected into the LED with a small voltage drop. If the film thickness is larger than this, the voltage drop in the organic layer becomes too large, and the power consumption of the device becomes too large. It should be noted that the difference in current density between the portion with and without the LED die is determined by the design and use of the light-emitting device, thereby determining how much the film thickness difference should be provided. . In addition, although the voltage drop of the LED die is present in the portion where the LED die is present, it is described as being negligible in the above description because it is sufficiently smaller than the voltage drop of the organic layer having the same film thickness. In addition, the actual current-voltage characteristics of organic semiconductors may deviate from the ideal formula 1, but the current characteristics can be used for the light-emitting device of the present invention as long as the current value changes greatly with the change in film thickness. I will supplement what I can do.

式1は従来から知られていた理論であり、膜厚差が大きな電流密度の差を生じさせる。LEDダイの厚みは通常100マイクロメートル以上であり、一般的な有機半導体の用途である有機ELに用いられる有機半導体の膜の厚みは0.01〜0.1マイクロメートル程度の範囲である。LEDダイを覆えるような厚い膜厚範囲で有機半導体を用いる発想は従来なく、さらにLEDダイの実装方法として適用した先行例がないため、本発明は画期的であり、進歩性をもった発明と言える。 Equation 1 is a conventionally known theory, and a difference in film thickness causes a difference in current density. The thickness of the LED die is usually 100 micrometers or more, and the thickness of the organic semiconductor film used in the organic EL, which is a general organic semiconductor application, is in the range of about 0.01 to 0.1 micrometers. There has been no idea of using an organic semiconductor in a thick film thickness range that can cover an LED die, and there is no precedent applied as a method for mounting an LED die, so the present invention is epoch-making and has an inventive step. It can be said that it is an invention.

LEDダイに接する有機半導体材料を含む有機層としては、p型およびn型材料を用いることができる。p型の場合には有機層はLEDダイのp側と陽極の間に配置され、陽極から注入された正孔をLEDダイのp側に運んで受け渡す。n型の場合には有機層はLEDダイのn側と陰極の間に配置され、陰極から注入された電子をLEDダイのn側に運んで受け渡す。有機半導体材料は、本発明の効果を得るために必要であるが、それ以外の材料は必要に応じて混合してもよい。例えば、導電性を示さない高分子をバインダー樹脂として混合してもよい。無機材料を混合してもよく、無機材料としては、酸化タングステンや酸化モリブデンなどの正孔ドープ材料や炭酸セシウムやアルカリ金属、アルカリ土類金属などの電子ドープ材料を混合してもよい。電荷ドープ材料を加えて有機膜中の電荷密度を増やすと、空間電荷制限電流の(1)式の膜厚依存性からずれて漏れ電流は増えるが、LEDダイと電極間の電気的接合を改善して接触抵抗を低減する効果がある。また、他の有機半導体材料を混ぜてもよい。あるいは、フタル酸ビス(2-エチルヘキシル)などの可塑剤を入れて柔軟性を増してもよい。 As the organic layer containing the organic semiconductor material in contact with the LED die, p-type and n-type materials can be used. In the case of the p-type, the organic layer is disposed between the p-side of the LED die and the anode, and carries holes injected from the anode to the p-side of the LED die. In the case of the n-type, the organic layer is disposed between the n side of the LED die and the cathode, and carries electrons injected from the cathode to the n side of the LED die. The organic semiconductor material is necessary for obtaining the effects of the present invention, but other materials may be mixed as necessary. For example, a polymer that does not exhibit conductivity may be mixed as a binder resin. An inorganic material may be mixed, and as the inorganic material, a hole doping material such as tungsten oxide or molybdenum oxide, or an electron doping material such as cesium carbonate, alkali metal, or alkaline earth metal may be mixed. Increasing the charge density in the organic film by adding a charge-doping material increases the leakage current by deviating from the film thickness dependence of the space charge limiting current (1), but improves the electrical junction between the LED die and the electrode. This has the effect of reducing the contact resistance. Further, other organic semiconductor materials may be mixed. Alternatively, a plasticizer such as bis (2-ethylhexyl) phthalate may be added to increase flexibility.

本発明においてはLEDダイのp側あるいはn側の片側は有機層以外の電気的な接続方法でもよい。例えば、金属性のはんだを使ってLEDと電極を電気的に接続してもよいし、銀ペーストなどの導電性ペーストを使ってもよい。 In the present invention, the p-side or n-side of the LED die may be an electrical connection method other than the organic layer. For example, the LED and the electrode may be electrically connected using a metallic solder, or a conductive paste such as a silver paste may be used.

LEDダイのp型およびn型の両側とも有機層で電気的に接続してもよい。この場合、
図2のように、p型およびn型の両側とも本発明の有機層の膜厚の大小関係を満たしてもよいし、図3のように片側だけが本発明の有機層の膜厚の大小関係を満たしてもよい。
Both the p-type and n-type sides of the LED die may be electrically connected by an organic layer. in this case,
As shown in FIG. 2, both sides of the p-type and n-type may satisfy the relationship of the thickness of the organic layer of the present invention, or only one side of the thickness of the organic layer of the present invention is as shown in FIG. You may satisfy the relationship.

さらに発明者は、前述のように本発明の発光デバイスに用いる前記有機層のガラス転移温度が25℃以下であり、25℃において安定な過冷却液体状態を維持できる有機層を含む発光デバイスを発明した。 Furthermore, the inventor invented a light-emitting device including an organic layer in which the glass transition temperature of the organic layer used in the light-emitting device of the present invention is 25 ° C. or lower and can maintain a stable supercooled liquid state at 25 ° C. did.

有機半導体は結晶性のものと非晶質(ガラス)のものの2種類に分けられる。このうち、結晶性のものは多結晶膜となるため、膜内の結晶粒の界面において電気的な短絡などが起きやすく、実用向きではない。非晶質のものは、膜内に界面が存在しない均質性を有するため、電気的な短絡などがなく、電気デバイスへの実用性が高い。 Organic semiconductors are classified into two types, crystalline and amorphous (glass). Among these, since the crystalline film becomes a polycrystalline film, an electrical short circuit is likely to occur at the interface between crystal grains in the film, which is not suitable for practical use. Amorphous materials have homogeneity in which no interface exists in the film, so there is no electrical short circuit and the practicality for electrical devices is high.

これまで、デバイスの耐熱性を高めるためにガラス転移温度が高い有機半導体材料が開発されてきた。有機ELなど総膜厚が0.1〜0.3マイクロメートル程度の超薄膜デバイスにおいては、ガラス転移温度以上で電気的短絡が起きやすくなるためである。一方、本発明のような100マイクロメートル以上の膜厚部位を持つ有機半導体を含む膜を考えた場合、ガラス転移温度以上で起こりやすくなる電気的短絡は厚膜のため無視できる。一方、有機半導体のガラス状態は一般的に機械的な強度が弱く脆いため、100マイクロメートル以上の厚膜においては外部からの応力に対して膜の破壊を防ぐ手段を考える必要がある。発明者は、室温(代表値として25℃とする)でガラス転移温度以上、すなわち過冷却液体状態となる有機半導体を含む有機層を用いることで機械的な強度の課題を解決できることを発明した。 Until now, organic semiconductor materials having a high glass transition temperature have been developed in order to increase the heat resistance of the device. This is because in an ultra-thin device having a total film thickness of about 0.1 to 0.3 micrometers such as an organic EL, an electrical short circuit is likely to occur at a temperature higher than the glass transition temperature. On the other hand, when considering a film containing an organic semiconductor having a thickness of 100 micrometers or more as in the present invention, an electrical short circuit that easily occurs at a glass transition temperature or higher can be ignored because it is a thick film. On the other hand, since the glass state of organic semiconductors is generally weak and weak in mechanical strength, it is necessary to consider means for preventing the film from being damaged by external stress in a thick film of 100 micrometers or more. The inventor has invented that the problem of mechanical strength can be solved by using an organic layer containing an organic semiconductor that is at or above the glass transition temperature at room temperature (typically 25 ° C.), that is, in a supercooled liquid state.

過冷却液体を用いることは、ガラス基板などを用いる剛直なデバイス内の膜内のクラック発生およびそれに伴う膜剥離を防ぐのみでなく、プラスチックフィルム基板や金属フィルム基板を用いるフレキシブルなデバイスにおいては、曲げたときの膜内のクラック発生およびそれに伴う膜剥離を防ぐ効果が大きい。 The use of a supercooled liquid not only prevents cracking in the film in a rigid device using a glass substrate and the like, and accompanying film peeling, but also in a flexible device using a plastic film substrate or a metal film substrate. The effect of preventing the occurrence of cracks in the film and the accompanying film peeling is great.

一般に、有機半導体の過冷却液体状態においては分子が動きやすい状態にあるため、再配列して結晶化しやすい。したがって、安定な過冷却液体状態を保持できる材料が本発明に必要となる。 In general, in a supercooled liquid state of an organic semiconductor, molecules are in a state of being easily moved, so that they are easily rearranged and crystallized. Therefore, a material capable of maintaining a stable supercooled liquid state is required for the present invention.

発明者らは、本発明に適合性が高い有機半導体としてトリアリールアミン部位と炭素数が2〜16の範囲のアルキル基あるいはアルコシキ基を有する材料を発明した。この材料系は、室温以下のガラス転移温度と過冷却液体状態の安定性を両立しうる。トリアリールアミン部位は、3つのアリール基がアミン(窒素原子)に対して非平面状に配置されており、分子間の配列を阻害するために結晶化が抑制され、過冷却液体状態の安定性を高める。炭素数が多いアルキル基あるいはアルコキシ基は、アルキル鎖内で炭素原子同士の結合が回転しやすくガラス転移温度を下げる効果があり、さらに多くのコンフォメーションを取るため、結晶化を抑制し、過冷却液体状態の安定性を高める。アルキル鎖が長くなるほど、ガラス転移温度の低下と過冷却液体状態の安定性は高まっていくが、長すぎるとアルキル鎖同士が配列しやすくなり、結晶化を促進するので、分子構造に応じて最適なアルキル鎖の数を選択しなければならない。また、これらの化合物はガラス、ITO電極、金属、高分子樹脂などとの接着性にも優れており、2つの電極あるいは基板を接着して固定させるためにも高い性能を示す。 The inventors have invented a material having a triarylamine moiety and an alkyl group or alkoxy group having 2 to 16 carbon atoms as an organic semiconductor highly compatible with the present invention. This material system can achieve both the glass transition temperature below room temperature and the stability of the supercooled liquid state. In the triarylamine moiety, three aryl groups are arranged non-planar with respect to the amine (nitrogen atom), and crystallization is suppressed to inhibit intermolecular alignment, and the stability of the supercooled liquid state To increase. Alkyl groups or alkoxy groups with a large number of carbon atoms have the effect of lowering the glass transition temperature because bonds between carbon atoms are easy to rotate within the alkyl chain. Increase the stability of the liquid state. The longer the alkyl chain, the lower the glass transition temperature and the stability of the supercooled liquid state. However, if the alkyl chain is too long, the alkyl chains tend to align with each other and promote crystallization. The number of alkyl chains must be selected. These compounds are also excellent in adhesion to glass, ITO electrodes, metals, polymer resins, etc., and show high performance for bonding and fixing two electrodes or substrates.

本発明では、下記に示す一般式(1)〜(8)の化合物を好適に用いることができることを発明した。ここで、一般式(1)〜(8)において、R1〜R8はアルキル基あるいはアルコキシ基を表し互いに同じでも異なっていてもよく、このうち一つ以上は炭素数が2以上のアルキル基であり、Ar1〜Ar4はアリール基を表し、互いに同じでも異なっていてもよい。一般式(1)〜(8)に共通するトリフェニルアミン部位は、非平面構造を作り出し、安定な過冷却液体の状態を維持する効果と融点を室温以上に高める効果がある。また、トリフェニルアミン部位は、これらの材料をp型半導体に用いる場合には、正孔を受け入れ、運ぶ機能性を担う。アルキル基としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、およびtert−ブチル基などが挙げられる。アルコキシ基としては、メトキシ基、エトキシ基、n−プロピロキシ基、イソプロピロキシ基、n−ブトキシ基、sec−ブトキシ基、およびtert−ブトキシ基などが挙げられる。アルキル基あるいはアルコキシ基に含まれる炭素数としては、炭素数が多いほどガラス転移温度が下がる傾向にあるが、炭素数が多くアルキル鎖が長くなると、結晶性が高まり安定な過冷却液体状態を保持できなくなるため、1個〜20個の範囲であることが好ましい。アリール基とは、フェニル基、ビフェニル基、フルオレニル基、ナフチル基、アンスリル基などの芳香族炭化水素の置換基であり、これらがさらに置換基を有していてもよい。なお、R1〜R8とAr1〜Ar4はベンゼン環のオルト、メタ、パラ位のいずれの位置に置換されていてもよい。アリール基の炭素数は6〜40のものを好適に用いることができる。
In this invention, it invented that the compound of General formula (1)-(8) shown below can be used suitably. Here, in the general formulas (1) to (8), R1 to R8 represent an alkyl group or an alkoxy group and may be the same or different from each other, and one or more of them are an alkyl group having 2 or more carbon atoms. , Ar1 to Ar4 represent an aryl group and may be the same or different from each other. The triphenylamine moiety common to the general formulas (1) to (8) creates a non-planar structure, and has an effect of maintaining a stable supercooled liquid state and an effect of increasing the melting point to room temperature or higher. In addition, the triphenylamine moiety has a function of accepting and carrying holes when these materials are used for a p-type semiconductor. Examples of the alkyl group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, and a tert-butyl group. Examples of the alkoxy group include a methoxy group, an ethoxy group, an n-propyloxy group, an isopropyloxy group, an n-butoxy group, a sec-butoxy group, and a tert-butoxy group. As the number of carbons contained in the alkyl group or alkoxy group, the glass transition temperature tends to decrease as the number of carbons increases. However, as the number of carbons increases and the alkyl chain becomes longer, the crystallinity increases and a stable supercooled liquid state is maintained. Since it becomes impossible, it is preferable that it is in the range of 1 to 20. The aryl group is a substituent of an aromatic hydrocarbon such as a phenyl group, a biphenyl group, a fluorenyl group, a naphthyl group, or an anthryl group, and these may further have a substituent. R1 to R8 and Ar1 to Ar4 may be substituted at any position of the ortho, meta, and para positions of the benzene ring. The aryl group having 6 to 40 carbon atoms can be suitably used.

一般式(1)〜(8)のうち、より具体的な化学構造としては、化9〜化17に示すものが挙げられるが、本発明はこれらに限定されるものではない。
Of the general formulas (1) to (8), more specific chemical structures include those shown in chemical formulas 9 to 17, but the present invention is not limited to these.

発明者は、陽極あるいは陰極の少なくとも片方に電荷注入層が形成されていることを特徴とする発光デバイスを発明した。 The inventor has invented a light emitting device in which a charge injection layer is formed on at least one of an anode and a cathode.

電荷注入を容易にするための電荷注入層としては、有機ELや有機太陽電池で用いられているような材料を好適に用いることができる。 As the charge injection layer for facilitating charge injection, materials such as those used in organic EL and organic solar cells can be suitably used.

陽極とp型の有機層の間に用いる正孔注入層として好適なものとしては、これらに限定されるものではないが、酸化タングステンや酸化モリブデン、銅フタロシアニン、トリフェニルアミン誘導体、化18に示すシアン化合物などが挙げられる。正孔注入層を用いた場合のデバイスの断面構造の一例を図4に示す。
Suitable examples of the hole injection layer used between the anode and the p-type organic layer include, but are not limited to, tungsten oxide, molybdenum oxide, copper phthalocyanine, triphenylamine derivatives, and And cyan compounds. An example of the cross-sectional structure of the device when the hole injection layer is used is shown in FIG.

陰極とn型の有機層の間に用いる電子注入層として好適なものとしては、これらに限定されるものではないが、フッ化リチウム、酸化リチウムのようなリチウム塩、リチウムキノリンなどのリチウム錯体、炭酸セシウムのようなセシウム塩、バリウムのようなアルカリ土類金属、酸化バリウムなどのアルカリ土類金属の酸化物などが挙げられる。電子注入層を用いた場合のデバイスの断面構造の一例を図5に示す。 Suitable as the electron injecting layer used between the cathode and the n-type organic layer is not limited to these, but lithium salts such as lithium fluoride and lithium oxide, lithium complexes such as lithium quinoline, Examples thereof include cesium salts such as cesium carbonate, alkaline earth metals such as barium, and oxides of alkaline earth metals such as barium oxide. An example of the cross-sectional structure of the device when the electron injection layer is used is shown in FIG.

本発明の製造方法として、まず、電極を有する2つの基板を準備する。準備とは、基板をマザーサイズから切り出す工程と、電極のパターニングが必要であればフォトリソグラフィーなどの方法によるパターニングを実施する工程、スペーサーやその他絶縁層が必要であれば絶縁層を製膜しフォトリソグラフィーなどの方法でパターニングする工程、および紫外線照射、オゾン暴露、プラズマ暴露などの手法による表面洗浄の工程などを含む。次に、2つの基板のいずれかの上にLEDダイを配置する。所定の位置にLEDダイを配置するためには、配置する基板の外形あるいは基板上のアライメントマークを基準として配置したい位置を認識する工程と、LEDダイを購入時にLEDダイが固定されているブルーシートから離して持ち上げる工程と、配置したい位置に移動させる工程と、LEDダイを基板に下ろして固定する工程などを含む。LEDダイを基板に固定する際には位置的に固定することと、電極と安定な電気的な接続を得ることが必要である。この2つを同時に満たすためには、導電性接着剤を用いる方法がある。導電性接着剤としては、銀などの金属を含むペースト状の導電性接着剤やはんだなど熱溶融性金属を用いることができる。金属を含むペースト状の導電性接着剤を用いる場合には、LEDダイの基板に接触する側に導電性接着剤を付けてから基板上に配置した後、加熱などにより固化する工程をとってもよいし、基板上の所望の位置に導電性接着剤を所定量塗布してからLEDダイをその上に置き、加熱などの方法によって固化してもよい。はんだなど熱溶融性の材料を固定および電気接続に用いる場合も同様に、先にLEDダイ側に付けてから基板と接合してもよいし、先に基板側に配置した後にLEDダイと接合してもよい。ほかのLEDダイの基板への接合方法としては、基板上に有機半導体や有機導電層を形成しておいて、その層の上に接合するか、あるいは層に埋め込ませる形で固定および電気接続を得てもよい。所定の位置にLEDダイを置くための機械設備としては、半導体チップやLEDダイのマウンターを転用することができる。有機半導体を含む有機材料をLEDダイを配置した基板あるいはもう片方の基板の上に配置するためには、有機半導体をある間隔で基板上にまんべんなく配置すればよい。これを実施する機械設備としてはディスペンサーなどの既存の設備の転用ができる。なお、有機半導体を置く基板は、LEDダイを置いた基板側でももう片方の基板側でもよい。有機材料を加熱して粘度を下げる工程には、有機半導体が配置された基板を加熱する方法を適用することができる。有機材料を2つの基板で挟む工程は、片方あるいは両方の基板を持ち上げて、貼り合わせればよい。空気あるいは気体が入り込むことを防ぐために真空ラミネートとしてもよい。この後、室温に冷やすと有機半導体を含む粘着層が過冷却液体となり、粘度が高くなり接着性を発現するために2つの基板が位置的に固定され、全体として一つの発光デバイスとして扱うことができるようになる。 As a manufacturing method of the present invention, first, two substrates having electrodes are prepared. Preparation includes a step of cutting a substrate from a mother size, a step of performing patterning by a method such as photolithography if electrode patterning is necessary, and a step of forming an insulating layer if a spacer or other insulating layer is required, and forming a photo It includes a patterning process by a method such as lithography, and a surface cleaning process by a method such as ultraviolet irradiation, ozone exposure, and plasma exposure. Next, an LED die is placed on one of the two substrates. In order to place the LED die at a predetermined position, a step of recognizing the position of the substrate to be arranged based on the outer shape of the substrate to be arranged or the alignment mark on the substrate, and a blue sheet on which the LED die is fixed at the time of purchase And a step of lifting the LED die to a position to be arranged, a step of lowering and fixing the LED die to the substrate, and the like. When fixing the LED die to the substrate, it is necessary to fix the LED die in a positional manner and to obtain a stable electrical connection with the electrode. In order to satisfy these two simultaneously, there is a method using a conductive adhesive. As the conductive adhesive, a paste-type conductive adhesive containing a metal such as silver or a heat-meltable metal such as solder can be used. In the case of using a paste-like conductive adhesive containing a metal, a step of attaching the conductive adhesive to the side of the LED die that contacts the substrate and then placing it on the substrate and then solidifying it by heating or the like may be taken. Alternatively, a predetermined amount of conductive adhesive may be applied to a desired position on the substrate, and then the LED die may be placed thereon and solidified by a method such as heating. Similarly, when using a heat-meltable material such as solder for fixing and electrical connection, it may be attached to the LED die first and then joined to the substrate, or it may be first placed on the substrate side and then joined to the LED die. May be. As another method of bonding the LED die to the substrate, an organic semiconductor or an organic conductive layer is formed on the substrate, and the fixed and electrical connection is performed by bonding on the layer or embedding in the layer. May be obtained. As mechanical equipment for placing the LED die at a predetermined position, a semiconductor chip or a mounter for the LED die can be used. In order to dispose the organic material containing the organic semiconductor on the substrate on which the LED die is disposed or on the other substrate, the organic semiconductor may be evenly disposed on the substrate at a certain interval. Existing machinery such as a dispenser can be diverted as mechanical equipment for implementing this. The substrate on which the organic semiconductor is placed may be on the substrate side on which the LED die is placed or on the other substrate side. A method of heating the substrate on which the organic semiconductor is disposed can be applied to the step of heating the organic material to lower the viscosity. In the step of sandwiching the organic material between the two substrates, one or both substrates may be lifted and bonded together. In order to prevent air or gas from entering, a vacuum laminate may be used. After that, when cooled to room temperature, the adhesive layer containing the organic semiconductor becomes a supercooled liquid, the viscosity is increased, and the two substrates are fixed in position in order to develop adhesiveness, and can be handled as one light emitting device as a whole. become able to.

本実施例では有機層に化9に示す有機半導体材料を用いる発光デバイスについて述べる。 In this example, a light-emitting device using an organic semiconductor material represented by Chemical Formula 9 as an organic layer is described.

化9に示す化合物は、下記の方法により合成した。冷却管を備えた200ml容量の三つ口フラスコに、4,4’、4’’−トリヨードトリフェニルアミンを5.0g、N−エチル−m−トルイジンを7ml、炭酸カリウムを7g、18−クラウン−6−エーテルを1.3g、銅粉を1.5g、メシチレンを20ml投入する。三つ口フラスコに窒素を導入し、十分置換する。次に反応系を170℃に加熱し、撹拌しながらメシチレンを還流させ、10時間反応させる。反応溶液からろ過により固形分である炭酸カリウム、銅粉、生成したヨウ化カリウムを除去する。その後、シリカゲルカラムクロマトグラフィー(展開溶媒 トルエン:ヘキサン=1:9)を繰り返すことで化9に示す化合物3.1g(収率60%)を得た。得られた化合物の質量分析を大気圧化学 イオン化法にて実施した結果、分子イオンピークm/z=644.4が得られた。 The compound shown in Chemical formula 9 was synthesized by the following method. In a 200 ml three-necked flask equipped with a condenser tube, 5.0 g of 4,4 ′, 4 ″ -triiodotriphenylamine, 7 ml of N-ethyl-m-toluidine, 7 g of potassium carbonate, 18- Add 1.3 g of crown-6-ether, 1.5 g of copper powder, and 20 ml of mesitylene. Introduce nitrogen into the three-necked flask and fully replace it. Next, the reaction system is heated to 170 ° C., and the mesitylene is refluxed with stirring to react for 10 hours. Solid potassium carbonate, copper powder, and produced potassium iodide are removed from the reaction solution by filtration. Then, 3.1 g (yield 60%) of the compound shown in Chemical formula 9 was obtained by repeating silica gel column chromatography (developing solvent toluene: hexane = 1: 9). As a result of performing mass spectrometry of the obtained compound by atmospheric pressure chemical ionization method, molecular ion peak m / z = 644.4 was obtained.

化9の化合物は、室温において透明なガラス状の外観を示すが、薬さじなどで押すとへこむなどしてその形状を変化できる柔軟性を有している。示差走査熱量測定にて化9の化合物のガラス転移温度を測定したところ9℃であり、室温よりも十分低いガラス転移温度であり、室温では過冷却液体であることが分かった。−50℃のガラス状態から加熱した際の示差走査熱量分析の結果を図6に示す。なお、この過冷却液体は、室温で数か月放置したり100℃以上に加熱しても結晶化は全く確認されず、本化合物の過冷却液体状態が極めて安定であることが分かった。 Although the compound of Chemical formula 9 shows a transparent glass-like appearance at room temperature, it has the flexibility to change its shape by being dented when pressed with a medicine spoon or the like. When the glass transition temperature of the compound of Chemical formula 9 was measured by differential scanning calorimetry, it was 9 ° C., which was a glass transition temperature sufficiently lower than room temperature, and was found to be a supercooled liquid at room temperature. The results of differential scanning calorimetry when heated from the glass state at −50 ° C. are shown in FIG. In addition, even if this supercooled liquid was allowed to stand at room temperature for several months or heated to 100 ° C. or higher, no crystallization was confirmed, and it was found that the supercooled liquid state of this compound was extremely stable.

また、化9の化合物は電子供与性の4つのアミノ基がπ共役系に含まれており電子を放出する性質がある。有機EL用の正孔注入材料としてインジウムスズ酸化物電極からの正孔注入を容易にする化合物として知られている4,4’、4’’−トリス[3−メチルフェニル(フェニル)アミノ]トリフェニルアミン(以下、m−MTDATAとよぶ)は固体状態でイオン化ポテンシャル5.1eVを示すが、m−MTDATAと化9の化学構造を比較すると、化9の化合物は3つのフェニル基をエチル基にした構造であり、同等のイオン化ポテンシャルを有し、インジウムスズ酸化物などの電極から正孔が容易に注入できる化合物である。 In addition, the compound of Chemical formula 9 contains four electron-donating amino groups in the π-conjugated system and has the property of emitting electrons. 4,4 ′, 4 ″ -tris [3-methylphenyl (phenyl) amino] tri is known as a compound that facilitates hole injection from an indium tin oxide electrode as a hole injection material for organic EL. Phenylamine (hereinafter referred to as m-MTDATA) exhibits an ionization potential of 5.1 eV in the solid state. When the chemical structures of m-MTDATA and Chemical 9 are compared, the compound of Chemical formula 9 has three phenyl groups as ethyl groups. It is a compound having an equivalent ionization potential and capable of easily injecting holes from an electrode such as indium tin oxide.

本発明の発光デバイスとして、図7に示す上面図と図8に示す断面図の発光デバイスを以下の方法により作成した。LEDダイとしてエピスター社の赤色LEDであるES−CAHR509を用いた。LEDダイのサイズは縦×横が230マイクロメートルx230マイクロメートル、厚みは170マイクロメートルである。基板として、ITOからなる電極100nmを製膜した10mmx20mmのガラス基板を用いた(以下、ITO基板1と呼ぶ)。まず、銀ペーストをITO基板1の所定の位置に配置した。次にピンセットにてLEDダイをn側がITO基板1のITO電極側になるように銀ペーストの上に置き、基板を120℃でベークすることにより銀ペースト中の溶媒を揮発させて銀ペーストを固化させることでLEDダイを固定した。次に対向基板として、LEDダイを配置した基板と同じく、ITOを100nmを製膜した10mmx20mmのガラス基板を準備した(以下、ITO基板2と呼ぶ)。150℃に加熱したホットプレート上にITO基板1およびITO基板2を置き加熱する。この状態でITO基板2の上に化9の化合物を少量配置する。配置された化9の化合物は加熱されると粘度が下がるため濡れ広がる。この状態でLEDダイが配置されたITO基板1をITO基板2の上に図7の位置関係で置くとITO基板1の重みで化9の化合物がさらに濡れ広がり、2枚のITO基板が重なっている部分の全体に広がる。その後、互いに重なったITO基板をホットプレートから下ろして冷却すると、化9の化合物が冷えて粘度が高まることで、力を加えても2つの基板が離れず接着された。 As the light-emitting device of the present invention, a light-emitting device having a top view shown in FIG. 7 and a cross-sectional view shown in FIG. 8 was prepared by the following method. ES-CAHR509, which is a red LED manufactured by Epistar, was used as the LED die. The size of the LED die is 230 μm × 230 μm in length × width, and the thickness is 170 μm. As the substrate, a 10 mm × 20 mm glass substrate on which an ITO electrode 100 nm was formed was used (hereinafter referred to as ITO substrate 1). First, a silver paste was placed at a predetermined position on the ITO substrate 1. Next, the LED die is placed on the silver paste with tweezers so that the n side is the ITO electrode side of the ITO substrate 1, and the substrate is baked at 120 ° C. to evaporate the solvent in the silver paste and solidify the silver paste. This fixed the LED die. Next, as a counter substrate, a 10 mm × 20 mm glass substrate on which ITO was deposited to a thickness of 100 nm was prepared (hereinafter referred to as ITO substrate 2) in the same manner as the substrate on which the LED die was arranged. The ITO substrate 1 and the ITO substrate 2 are placed on a hot plate heated to 150 ° C. and heated. In this state, a small amount of the compound of Chemical formula 9 is placed on the ITO substrate 2. When the compound of the arranged chemical formula 9 is heated, the viscosity decreases, so that it spreads wet. In this state, when the ITO substrate 1 on which the LED dies are arranged is placed on the ITO substrate 2 in the positional relationship shown in FIG. 7, the chemical compound 9 is further wetted by the weight of the ITO substrate 1 and the two ITO substrates overlap. It spreads over the whole part. Thereafter, when the ITO substrates that overlap each other were lowered from the hot plate and cooled, the compound of chemical formula 9 cooled and the viscosity increased, so that even when force was applied, the two substrates were bonded without being separated.

前段落の方法で作成した発光デバイスに対し、ITO基板1がマイナス、ITO基板2がプラスとなるように直流電圧を印加した。1.6V以上の電圧印加によりLEDダイの発光に基づく赤色の発光が得られた。発光状態の写真を図9に示す。なお、本実施例の発光デバイスは2枚のITO基板および化9で示される化合物の透明性が高いため、発光デバイスを通して観測者の向こう側が見られるシースルー性を有している。 A direct current voltage was applied to the light emitting device produced by the method of the previous paragraph so that the ITO substrate 1 was negative and the ITO substrate 2 was positive. Red light emission based on the light emission of the LED die was obtained by applying a voltage of 1.6 V or more. A photograph of the light emission state is shown in FIG. Note that since the light emitting device of this example has high transparency of the two ITO substrates and the compound represented by Chemical Formula 9, the light emitting device has a see-through property where the other side of the observer can be seen through the light emitting device.

本実施例では、ITO基板1とITO基板2としてポリエチレンテレフタレートからなる50マイクロメートルのプラスチックフィルム基板上にITO基板を形成した日東電工株式会社製のITOフィルム基板を用いたこと以外は、実施例1と同じようにして発光デバイスを作成した。 In this example, Example 1 was used except that an ITO film substrate manufactured by Nitto Denko Corporation in which an ITO substrate was formed on a 50 micrometer plastic film substrate made of polyethylene terephthalate as the ITO substrate 1 and the ITO substrate 2 was used. A light emitting device was created in the same manner as described above.

前段落の方法で作成した発光デバイスに対し、ITO基板1がマイナス、ITO基板2がプラスとなるように直流電圧を印加した。1.8V以上の電圧印加によりLEDダイの発光に基づく赤色の発光が得られた。なお、本実施例の発光デバイスも2枚のITO基板および化9で示される化合物の透明性が高いため、発光デバイスを通して観測者の向こう側が見られるシースルー性を有している。加えて、本発明の発光デバイスは可堯性を有しており、基板を曲げても発光が得られることが確認できた。 A direct current voltage was applied to the light emitting device produced by the method of the previous paragraph so that the ITO substrate 1 was negative and the ITO substrate 2 was positive. Red light emission based on the light emission of the LED die was obtained by applying a voltage of 1.8 V or more. Note that the light-emitting device of this example also has two ITO substrates and the compound represented by Chemical Formula 9 has high transparency, and thus has a see-through property that allows the viewer to see the other side through the light-emitting device. In addition, the light-emitting device of the present invention has flexibility, and it was confirmed that light emission was obtained even when the substrate was bent.

本実施例では、有機半導体を含む有機層として、化19で示される従来からある有機半導体材料2−TNATAを用い、2−TNATAの融点である245℃より高い280℃に加熱したホットプレートを用いたこと以外は、実施例1と同じ方法で発光デバイスを作製した。
In this embodiment, a conventional organic semiconductor material 2-TNATA shown in Chemical Formula 19 is used as an organic layer containing an organic semiconductor, and a hot plate heated to 280 ° C., which is higher than 245 ° C., which is the melting point of 2-TNATA, is used. A light emitting device was manufactured in the same manner as in Example 1 except that the above was found.

前段落の方法で作成した発光デバイスに対し、ITO基板1がマイナス、ITO基板2がプラスとなるように直流電圧を印加した。1.6V以上の電圧印加によりLEDダイの発光に基づく赤色の発光が得られた。なお、本実施例の発光デバイスは2枚のITO基板および化19で示される化合物の透明性が高いため、発光デバイスを通して観測者の向こう側が見られるシースルー性を有している。 A direct current voltage was applied to the light emitting device produced by the method of the previous paragraph so that the ITO substrate 1 was negative and the ITO substrate 2 was positive. Red light emission based on the light emission of the LED die was obtained by applying a voltage of 1.6 V or more. Note that since the light emitting device of this example has high transparency of the two ITO substrates and the compound represented by Chemical formula 19, it has a see-through property that allows the viewer to see the other side through the light emitting device.

実施例3の発光デバイスの作成時において、化19の2−TNATAはガラス転移温度110℃以下でガラスを形成するが、冷却時に融点以下ガラス転移温度以上の温度領域(110〜245℃)において結晶化が起こる場合があった。結晶化するとITO基板との密着性が低下し基板と有機層が剥離するため発光デバイスとして機能できなくなり、デバイスの歩留りが低くなる課題がある。また、結晶化なくガラス膜を形成しても、ガラス膜が機械的に脆いため、ITOあるいはガラスの熱膨張係数と有機層の熱膨張係数の差に基づく内部応力によって機械的に破壊されてしまうものがあり、デバイスの歩留りを低下させる。 At the time of producing the light emitting device of Example 3, 2-TNATA of Chemical Formula 19 forms glass at a glass transition temperature of 110 ° C. or lower, but crystallizes in a temperature region (110 to 245 ° C.) below the melting point or higher during cooling. In some cases, crystallization occurred. When crystallized, the adhesion with the ITO substrate is lowered, and the substrate and the organic layer are separated, so that it cannot function as a light emitting device, and there is a problem that the yield of the device is lowered. Even if a glass film is formed without crystallization, the glass film is mechanically fragile, so that it is mechanically broken by internal stress based on the difference between the thermal expansion coefficient of ITO or glass and the thermal expansion coefficient of the organic layer. There are things that reduce device yield.

実施例1と実施例3の比較において、室温で過冷却液体状態にある有機半導体を含む膜を用いた方が、室温以上のガラス転移温度を有する有機半導体を含む膜を用いるよりも歩留りが高く、安定な発光が得られることが分かった。これは、過冷却液体状態が膜の形状を変えられる柔軟性を有しているために応力を緩和できるからであり、さらに実施例2のように過冷却液体の柔軟性を活かして曲がる発光デバイスを得ることもできる。 In comparison between Example 1 and Example 3, using a film containing an organic semiconductor in a supercooled liquid state at room temperature has a higher yield than using a film containing an organic semiconductor having a glass transition temperature equal to or higher than room temperature. It was found that stable light emission can be obtained. This is because the stress can be relieved because the supercooled liquid state has the flexibility to change the shape of the film, and the light emitting device that bends by utilizing the flexibility of the supercooled liquid as in Example 2 You can also get

本発明により提供される発光デバイスは、照明やディスプレイなどに好適に用いることができる。 The light emitting device provided by the present invention can be suitably used for illumination, a display, and the like.

本発明の発光デバイスの断面図の模式図Schematic diagram of a cross-sectional view of the light-emitting device of the present invention 本発明のp型およびn型有機層を有する発光デバイスの断面図の模式図Schematic diagram of a cross-sectional view of a light emitting device having p-type and n-type organic layers of the present invention 本発明のp型およびn型有機層を有する発光デバイスの断面図の模式図Schematic diagram of a cross-sectional view of a light emitting device having p-type and n-type organic layers of the present invention 本発明の正孔注入層を有する発光デバイスの断面図の模式図Schematic diagram of a cross-sectional view of a light emitting device having a hole injection layer of the present invention 本発明の電子注入層を有する発光デバイスの断面図の模式図Schematic diagram of a sectional view of a light emitting device having an electron injection layer of the present invention 本発明の化9の化合物の示差走査熱量分析のDSCサーモグラムDSC thermogram of differential scanning calorimetry of compound 9 of the present invention 実施例1〜3の本発明の発光デバイスを上面視した模式図The schematic diagram which looked at the light emitting device of this invention of Examples 1-3 from the top 図7の点線部の断面図の模式図(実寸の比を表すものではない)Schematic diagram of the cross-sectional view of the dotted line in FIG. 7 (does not represent the actual size ratio) 実施例1の発光時の写真Photograph at the time of light emission of Example 1

1 電極1
2 有機半導体を含む有機層
3 電極2
4 LEDダイ
5 陰極
6 陽極
7 n型有機層
8 p型有機層
9 LEDダイのn側
10 LEDダイのp側
11 正孔注入層
12 電子注入層
13 ITO基板1(陽極側の基板)
14 ITO基板2(陰極側の基板)
15 銀ペースト
1 Electrode 1
2 Organic layer containing organic semiconductor 3 Electrode 2
4 LED die 5 Cathode 6 Anode 7 n-type organic layer 8 p-type organic layer 9 n-side of LED die 10 p-side of LED die 11 hole injection layer 12 electron injection layer 13 ITO substrate 1 (substrate on the anode side)
14 ITO substrate 2 (cathode side substrate)
15 Silver paste

Claims (6)

いずれかが実質的に透明である陽極と陰極と、前記陽極と陰極の間に配置されたp側とn側を有するLEDダイと、前記陽極と陰極の間に配置され、前記LEDダイに接する有機半導体材料を含む有機層からなる発光デバイスであって、前記LEDダイはn側が陰極側、p側が陽極側になるように配置され、前記有機層はLEDダイが存在する断面においてはn側と陰極の間あるいはp側と陽極の間の少なくともいずれか一方を充填するように配置され、LEDダイが存在しない断面においては陰極と陽極の間を充填するように配置され、LEDダイが存在する部分と存在しない部分にわたって連続的に配置され、LEDダイが存在しない断面における前記有機層の膜厚が1マイクロメートル以上であり、かつ、LEDダイが存在する断面における前記有機層の膜厚が10マイクロメートル以下であり、かつ、LEDダイが存在しない断面における前記有機層の膜厚がLEDダイが存在する断面における前記有機層の膜厚より厚いことを特徴とする発光デバイス。 An anode and a cathode, one of which is substantially transparent, an LED die having a p-side and an n-side disposed between the anode and the cathode, and disposed between the anode and the cathode and in contact with the LED die A light emitting device comprising an organic layer containing an organic semiconductor material, wherein the LED die is arranged so that the n side is the cathode side and the p side is the anode side, and the organic layer is n side in the cross section where the LED die exists In the cross section where the LED die is not present and between the cathode and the p side and the anode, the portion where the LED die is present is arranged so as to be filled between the cathode and the anode. In the section where the LED die is present, the film thickness of the organic layer in the section where the LED die is not present is 1 micrometer or more. The film thickness of the organic layer is 10 micrometers or less, and the film thickness of the organic layer in the cross section where the LED die does not exist is thicker than the film thickness of the organic layer in the cross section where the LED die exists. A light emitting device. 請求項1に記載の発光デバイスのうち、前記有機層のガラス転移温度が25℃以下であり、25℃において安定な過冷却液体状態を維持できる有機層を含むことを特徴とする発光デバイス。 The light emitting device according to claim 1, wherein the organic layer has an organic layer having a glass transition temperature of 25 ° C. or lower and capable of maintaining a stable supercooled liquid state at 25 ° C. 請求項2に記載の発光デバイスのうち、前記有機層に含まれる有機半導体としてトリアリールアミン部位と炭素数が2〜16の範囲のアルキル基あるいはアルコキシ基を有する材料を用いることを特徴とする発光デバイス。 The light emitting device according to claim 2, wherein a material having a triarylamine moiety and an alkyl group or an alkoxy group having 2 to 16 carbon atoms is used as an organic semiconductor contained in the organic layer. device. 請求項3に記載の発光デバイスのうち、一般式(1)〜(8)で表される有機化合物を用いる発光デバイス。ここで、一般式(1)〜(8)において、R1〜R8はアルキル基あるいはアルコキシ基を表し互いに同じでも異なっていてもよく、このうち一つ以上は炭素数が2以上のアルキル基あるいはアルコキシ基であり、Ar1〜Ar4はアリール基を表し、互いに同じでも異なっていてもよく、R1〜R8とAr1〜Ar4はベンゼン環のオルト、メタ、パラ位のいずれの位置に置換されていてもよい。
The light emitting device using the organic compound represented by General formula (1)-(8) among the light emitting devices of Claim 3. Here, in the general formulas (1) to (8), R1 to R8 represent an alkyl group or an alkoxy group and may be the same or different from each other, and one or more of them are an alkyl group or alkoxy having 2 or more carbon atoms. Ar1-Ar4 represents an aryl group, which may be the same or different from each other, and R1-R8 and Ar1-Ar4 may be substituted at any position of the ortho, meta, and para positions of the benzene ring. .
請求項1に記載の発光デバイスのうち、前記陽極あるいは陰極の少なくとも片方に電荷注入層が形成されていることを特徴とする発光デバイス。 The light-emitting device according to claim 1, wherein a charge injection layer is formed on at least one of the anode and the cathode. 請求項1に記載の発光デバイスの製造方法であって、陽極を有する基板と陰極を有する基板を準備する工程と、前記2つの基板のいずれか片方の上にLEDダイを配置する工程と、有機半導体を含む有機材料をLEDダイを配置した基板あるいはもう片方の基板の上に配置する工程と、前記有機材料を加熱して粘度を下げる工程と、前記有機材料を2つの基板で挟む工程をこの順に含むことを特徴とする発光デバイスの製造方法。 2. The method of manufacturing a light emitting device according to claim 1, wherein a step of preparing a substrate having an anode and a substrate having a cathode, a step of disposing an LED die on one of the two substrates, and an organic The step of arranging an organic material containing a semiconductor on the substrate on which the LED die is arranged or the other substrate, the step of lowering the viscosity by heating the organic material, and the step of sandwiching the organic material between two substrates A method for manufacturing a light-emitting device comprising the steps of:
JP2015177157A 2015-09-09 2015-09-09 Light emitting device and manufacturing method thereof Expired - Fee Related JP6055054B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015177157A JP6055054B1 (en) 2015-09-09 2015-09-09 Light emitting device and manufacturing method thereof
PCT/JP2016/074919 WO2017043333A1 (en) 2015-09-09 2016-08-26 Light emitting device and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015177157A JP6055054B1 (en) 2015-09-09 2015-09-09 Light emitting device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP6055054B1 true JP6055054B1 (en) 2016-12-27
JP2017054897A JP2017054897A (en) 2017-03-16

Family

ID=57582132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015177157A Expired - Fee Related JP6055054B1 (en) 2015-09-09 2015-09-09 Light emitting device and manufacturing method thereof

Country Status (2)

Country Link
JP (1) JP6055054B1 (en)
WO (1) WO2017043333A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6149247B1 (en) * 2016-11-21 2017-06-21 株式会社奥本研究所 Light emitting device and manufacturing method thereof
JP6241973B1 (en) * 2017-02-28 2017-12-06 株式会社奥本研究所 Light emitting device and manufacturing method thereof

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11177147A (en) * 1997-12-16 1999-07-02 Rohm Co Ltd Photo-semiconductor module and its manufacturing method
JP2006299073A (en) * 2005-04-20 2006-11-02 Nagase Chemtex Corp Resin composition for sealing photosemiconductor
JP2006302636A (en) * 2005-04-20 2006-11-02 Konica Minolta Holdings Inc Organic electroluminescent element, manufacturing method of organic electroluminescent element, display device, and lighting device
JP2007531321A (en) * 2004-03-29 2007-11-01 アーティキュレイテッド・テクノロジーズ、エル・エル・シー Roll-to-roll optical sheets and encapsulated semiconductor circuit devices
JP2008034473A (en) * 2006-07-26 2008-02-14 Toyoda Gosei Co Ltd Surface light source
JP2008115225A (en) * 2006-11-01 2008-05-22 Toshiba Corp Luminescent ink and use of the same
JP2011108914A (en) * 2009-11-19 2011-06-02 Nichia Corp Semiconductor light-emitting device and method of manufacturing the same
JP5499227B1 (en) * 2012-08-21 2014-05-21 保土谷化学工業株式会社 Compound having triphenylsilylpyridyl group and carbazole ring structure and organic electroluminescence device
JP2014224836A (en) * 2011-09-16 2014-12-04 シャープ株式会社 Light emitting device, display device, illumination device, and power generating device
JP2015504580A (en) * 2011-11-18 2015-02-12 エルジー・ケム・リミテッド Photo-curable adhesive film for organic electronic device sealing, organic electronic device and sealing method thereof
JP2015510257A (en) * 2011-12-30 2015-04-02 ダウ コーニング コーポレーションDow Corning Corporation Solid light and forming method

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11177147A (en) * 1997-12-16 1999-07-02 Rohm Co Ltd Photo-semiconductor module and its manufacturing method
JP2007531321A (en) * 2004-03-29 2007-11-01 アーティキュレイテッド・テクノロジーズ、エル・エル・シー Roll-to-roll optical sheets and encapsulated semiconductor circuit devices
JP2006299073A (en) * 2005-04-20 2006-11-02 Nagase Chemtex Corp Resin composition for sealing photosemiconductor
JP2006302636A (en) * 2005-04-20 2006-11-02 Konica Minolta Holdings Inc Organic electroluminescent element, manufacturing method of organic electroluminescent element, display device, and lighting device
JP2008034473A (en) * 2006-07-26 2008-02-14 Toyoda Gosei Co Ltd Surface light source
JP2008115225A (en) * 2006-11-01 2008-05-22 Toshiba Corp Luminescent ink and use of the same
JP2011108914A (en) * 2009-11-19 2011-06-02 Nichia Corp Semiconductor light-emitting device and method of manufacturing the same
JP2014224836A (en) * 2011-09-16 2014-12-04 シャープ株式会社 Light emitting device, display device, illumination device, and power generating device
JP2015504580A (en) * 2011-11-18 2015-02-12 エルジー・ケム・リミテッド Photo-curable adhesive film for organic electronic device sealing, organic electronic device and sealing method thereof
JP2015510257A (en) * 2011-12-30 2015-04-02 ダウ コーニング コーポレーションDow Corning Corporation Solid light and forming method
JP5499227B1 (en) * 2012-08-21 2014-05-21 保土谷化学工業株式会社 Compound having triphenylsilylpyridyl group and carbazole ring structure and organic electroluminescence device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6149247B1 (en) * 2016-11-21 2017-06-21 株式会社奥本研究所 Light emitting device and manufacturing method thereof
JP2018085171A (en) * 2016-11-21 2018-05-31 株式会社奥本研究所 Light-emitting device and method for manufacturing the same
JP6241973B1 (en) * 2017-02-28 2017-12-06 株式会社奥本研究所 Light emitting device and manufacturing method thereof

Also Published As

Publication number Publication date
JP2017054897A (en) 2017-03-16
WO2017043333A1 (en) 2017-03-16

Similar Documents

Publication Publication Date Title
Yang et al. Effects of organic cations on the structure and performance of quasi-two-dimensional perovskite-based light-emitting diodes
EP2750214B1 (en) Organic light-emitting device and method for manufacturing same
KR101170666B1 (en) Bis-carbazole chemiclal and organic electroric element using the same, terminal thererof
JP5774267B2 (en) Organic electroluminescent compound and light emitting diode using the same
EP2927982B1 (en) Organic light-emitting device including flexible substrate, and method for manufacturing same
US8999530B2 (en) Compounds and organic electronic device using same
KR20100079458A (en) Bis-carbazole chemiclal and organic electroric element using the same, terminal thererof
Xu et al. Prominent heat dissipation in perovskite light-emitting diodes with reduced efficiency droop for silicon-based display
JP2017031138A (en) Organic electroluminescent materials and devices
US20090225556A1 (en) Thermoelectric cooler and illumination device using same
CN114478415A (en) Compound for organic electronic element, organic electronic element using the same, and electronic device thereof
US10374159B2 (en) Optoelectronics integration by transfer process
JP6055054B1 (en) Light emitting device and manufacturing method thereof
KR101125682B1 (en) Organic Light Emitting Material and Organic Light Emitting Diode Having The Same
US8766517B2 (en) Organic light emitting device with conducting cover
KR101160387B1 (en) Organic Light Emitting Material and Organic Light Emitting Diode Having The Same
CN102800764A (en) Semiconductor light emitting device and method for manufacturing the same
JP4396115B2 (en) Polymer compound, 1,4-phenylenediamine derivative, charge transport material, organic electroluminescent element material, and organic electroluminescent element
TW201024836A (en) Display drivers
JP6241973B1 (en) Light emitting device and manufacturing method thereof
JP6149247B1 (en) Light emitting device and manufacturing method thereof
CN109293562B (en) Thermal activity delayed fluorescence organic compound with malononitrile as acceptor and preparation and application thereof
TW200425791A (en) Organic light emitting device
JP2001230082A (en) Organic el element
WO2024066916A1 (en) Aromatic amine compound comprising quaterphenyl structure and organic electroluminescent device comprising same

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161028

R150 Certificate of patent or registration of utility model

Ref document number: 6055054

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

LAPS Cancellation because of no payment of annual fees