JP6053583B2 - Mold for tire production - Google Patents

Mold for tire production Download PDF

Info

Publication number
JP6053583B2
JP6053583B2 JP2013051809A JP2013051809A JP6053583B2 JP 6053583 B2 JP6053583 B2 JP 6053583B2 JP 2013051809 A JP2013051809 A JP 2013051809A JP 2013051809 A JP2013051809 A JP 2013051809A JP 6053583 B2 JP6053583 B2 JP 6053583B2
Authority
JP
Japan
Prior art keywords
tire
mold
frame member
cavity
tire frame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013051809A
Other languages
Japanese (ja)
Other versions
JP2014177007A (en
Inventor
誓志 今
誓志 今
圭一 長谷川
圭一 長谷川
好秀 河野
好秀 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2013051809A priority Critical patent/JP6053583B2/en
Publication of JP2014177007A publication Critical patent/JP2014177007A/en
Application granted granted Critical
Publication of JP6053583B2 publication Critical patent/JP6053583B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)
  • Tyre Moulding (AREA)

Description

本発明は、タイヤ製造用金型に関し、特に樹脂材料を含んで構成されたタイヤ骨格部材を製造するためのタイヤ製造用金型に関する。   The present invention relates to a tire manufacturing mold, and more particularly, to a tire manufacturing mold for manufacturing a tire frame member including a resin material.

従来からゴム、有機繊維材料、及びスチール部材等で形成されているタイヤが知られているが、近年、軽量化やリサイクルのし易さ等の観点から、熱可塑性エラストマー(TPE)や熱可塑性樹脂等の熱可塑性材料をタイヤ材料として用いることが求められている。例えば高分子材料からなるタイヤ本体と、加硫金型内で加硫によってタイヤ本体と一体化したトレッド本体とを備えた空気入りタイヤが提案されている(例えば、特許文献1参照)。   Conventionally, tires made of rubber, organic fiber materials, steel members, etc. are known, but in recent years, from the viewpoints of weight reduction and ease of recycling, thermoplastic elastomers (TPE) and thermoplastic resins It is required to use a thermoplastic material such as a tire material. For example, a pneumatic tire including a tire body made of a polymer material and a tread body integrated with the tire body by vulcanization in a vulcanization mold has been proposed (see, for example, Patent Document 1).

また、リムに装着されるタイヤにおいて、ビードコアが埋着される1つのビードと該ビードに連なるサイドウォールとを備えると共に、高分子材料により一体成形される一対の環状のタイヤ片を用い、該タイヤ片を互いに接合させることによりタイヤ本体を形成する構造が開示されている(例えば、特許文献2参照)。   Further, in a tire mounted on a rim, the tire includes one bead in which a bead core is embedded and a sidewall connected to the bead, and a pair of annular tire pieces integrally formed of a polymer material. The structure which forms a tire main body by joining a piece mutually is disclosed (for example, refer to patent documents 2).

特開平1−257606号公報JP-A-1-257606 特開平3−79401号公報Japanese Patent Laid-Open No. 3-79401

上記のような環状のタイヤ片からなるタイヤ骨格部材を接合させるタイヤにおいて、その性能を調整する際にゲージ(タイヤ幅)を変更したり、タイヤ自体の形状を変更したりする時にはタイヤ骨格部材を成形する金型を変更する必要がある。   In the tire to which the tire skeleton member composed of the annular tire pieces as described above is joined, when adjusting the performance, the tire skeleton member is changed when the gauge (tire width) is changed or the shape of the tire itself is changed. It is necessary to change the mold to be molded.

しかしながら、高分子材料によって一体成形される環状のタイヤ骨格部材を製造する際に用いられる射出成形用金型は高価であり、タイヤサイズや形状違いごとに専用の金型を用意することはコストの上昇を招く原因となる。   However, the injection mold used for manufacturing an annular tire frame member integrally molded with a polymer material is expensive, and it is costly to prepare a dedicated mold for each tire size and shape difference. It causes a rise.

また、金型を溶接や切削などによって金型を変形できるが、タイヤの仕様ごとにこれらの加工を繰り返すのは金型の精度に影響する虞があるため、望ましくない。   Although the mold can be deformed by welding or cutting, it is not desirable to repeat these processes for each tire specification because it may affect the accuracy of the mold.

本発明は、上記事実を考慮して、分割した金型の一部のみを交換し、タイヤ骨格部材の形状変化に対応する金型を提供することを目的とする。   In view of the above fact, an object of the present invention is to provide a mold that can replace only a part of a divided mold and cope with a shape change of a tire frame member.

請求項1の発明は、樹脂材料で形成されるタイヤ骨格部材を、タイヤ径方向外側から形成する外金型と、タイヤ径方向内側から前記外金型との間にキャビティを形成する内金型と、前記外金型および前記内金型の少なくとも一方において、前記キャビティを形成する面を含む箇所を交換可能とした入子型と、を有し、前記外金型は複数の前記入子型を備え、複数の前記入子型が形成するキャビティの境界面が前記タイヤ骨格部材のパーティングラインを形成するAccording to the first aspect of the present invention, there is provided an outer mold in which a tire frame member formed of a resin material is formed from the outer side in the tire radial direction and an inner mold in which a cavity is formed between the outer mold from the inner side in the tire radial direction. And at least one of the outer mold and the inner mold, a nesting mold capable of exchanging a portion including the surface forming the cavity, and the outer mold is a plurality of the nesting molds. The boundary surfaces of the cavities formed by the plurality of nested molds form parting lines of the tire frame member .

請求項1に記載のタイヤ製造用金型では、タイヤ骨格部材を形成する面を、入子型で交換可能としたことで、金型全体を交換することなくタイヤ骨格部材の形状やサイズを容易に変更することができる。   In the mold for manufacturing a tire according to claim 1, the shape and size of the tire frame member can be easily obtained without replacing the entire mold by allowing the surface forming the tire frame member to be replaced with a telescopic mold. Can be changed.

また、複数の入子型が形成するキャビティの境界面がタイヤ骨格部材のパーティングラインとなるため、タイヤ骨格部材同士の接合面など性能上の影響が少ない箇所にパーティングラインを設定することができる。 In addition , since the boundary surface of the cavity formed by a plurality of nested molds becomes the parting line of the tire frame member, it is possible to set the parting line at a place where there is little influence on the performance such as the joint surface between the tire frame members it can.

請求項の発明は、請求項1記載のタイヤ製造用金型において、前記外金型は前記タイヤ骨格部材のクラウン部を形成する複数の前記入子型を備え、前記キャビティのタイヤ幅方向サイズを可変とする。 According to a second aspect of the invention, the tire manufacturing mold of claim 1, wherein the outer mold is provided with a plurality of pre-filled child-type to form the crown portion of the tire frame member, the tire width direction of the cavity The size is variable.

請求項に記載のタイヤ製造用金型では、外金型においてクラウン部を複数の入子型が形成し、タイヤ骨格部材のタイヤ幅方向サイズを決定するため、入子型の交換によってタイヤ骨格部材の幅方向サイズを調節し、最終的に製造されるタイヤの幅方向外径を決めることができる。 The tire manufacturing mold according to claim 2 , wherein a plurality of nested molds are formed in the crown portion in the outer mold and the tire frame direction size of the tire frame member is determined. The width direction outer diameter of the tire finally manufactured can be determined by adjusting the width direction size of the member.

請求項の発明は、請求項1又は請求項に記載の前記外金型は前記タイヤ骨格部材のクラウン部を形成する複数の前記入子型を備え、前記キャビティのタイヤ径方向外径を可変とする。 According to a third aspect of the present invention, the outer mold according to the first or second aspect includes a plurality of nested molds forming a crown portion of the tire frame member, and the tire radial direction outer diameter of the cavity is determined. Variable.

請求項に記載のタイヤ製造用金型では、外金型においてクラウン部を複数の入子型が形成し、タイヤ骨格部材のタイヤ径方向サイズを決定するため、入子型の交換によってタイヤ骨格部材の径方向外径すなわちタイヤ骨格部材の厚さを調節することができる。 In the tire manufacturing mold according to claim 3 , a plurality of nested molds are formed in the crown portion of the outer mold, and the tire skeleton member size is determined in the tire radial direction. The radial outer diameter of the member, that is, the thickness of the tire frame member can be adjusted.

請求項の発明は、請求項に記載のタイヤ製造用金型において、前記内金型は前記タイヤ骨格部材のクラウン部を形成する前記入子型を備え、前記キャビティのタイヤ径方向内径を可変とする。 According to a fourth aspect of the present invention, in the tire manufacturing mold according to the third aspect , the inner mold includes the nested mold that forms a crown portion of the tire frame member, and the tire radial inner diameter of the cavity is set. Variable.

請求項に記載のタイヤ製造用金型では、内金型においてクラウン部を入子型が形成し、タイヤ骨格部材のタイヤ径方向内径を決定するため、入子型の交換によってタイヤ骨格部材の径方向サイズすなわち厚さに加えて、クラウン部の凹凸などの形状を調節することができる。 In the tire manufacturing mold according to claim 4 , in order to determine the inner diameter in the tire radial direction of the tire skeleton member by forming the crown portion in the inner mold and to determine the tire radial direction inner diameter, In addition to the radial size, that is, the thickness, the shape of the crown can be adjusted.

以上説明したように、本発明に係タイヤ製造用金型によれば、分割した金型の一部のみを交換し、タイヤ骨格部材の形状変化に対応する金型とすることができるという優れた効果が得られる。 As described above, according to the engagement Ru tire manufacturing mold in the present invention, to replace only part of the divided mold, it is possible to mold corresponding to the shape change of the tire frame member, that Excellent effect is obtained.

本願発明の実施形態に係るタイヤ製造用金型のタイヤ径方向に沿って切断した断面を示す断面図である。It is sectional drawing which shows the cross section cut | disconnected along the tire radial direction of the metal mold | die for tire manufacture which concerns on embodiment of this invention. 本願発明の実施形態に係るタイヤ製造用金型で形成されたタイヤ骨格部材を用いたタイヤのタイヤ径方向に沿って切断した断面を示す断面図である。It is sectional drawing which shows the cross section cut | disconnected along the tire radial direction of the tire using the tire frame member formed with the metal mold | die for tire manufacture which concerns on embodiment of this invention. (A)は本願発明の実施形態に係るタイヤ製造用金型で形成されたタイヤ骨格部材のタイヤ径方向に沿って切断した断面を示す斜視図、(B)は当該タイヤ骨格部材を用いたタイヤのタイヤ径方向に沿って切断した断面を示す断面図である。(A) is a perspective view which shows the cross section cut along the tire radial direction of the tire frame member formed with the metal mold for tire manufacture concerning the embodiment of the invention in this application, and (B) is the tire using the tire frame member concerned It is sectional drawing which shows the cross section cut | disconnected along the tire radial direction. (A)は図1に示すタイヤ製造用金型で形成されるタイヤ骨格部材のタイヤ径方向に沿って切断した断面を示す断面図、(B)はタイヤ幅方向に長さLだけ縮小されたタイヤ骨格部材のタイヤ径方向に沿って切断した断面を示す断面図、(C)は(B)に示されるタイヤ骨格部材の成形に使用される本願発明の第1実施形態に係るタイヤ製造用金型を示すタイヤ径方向に沿って切断した断面を示す断面図である。(A) is sectional drawing which shows the cross section cut | disconnected along the tire radial direction of the tire frame | skeleton member formed with the metal mold | die for tire manufacture shown in FIG. 1, (B) was reduced by length L in the tire width direction. Sectional drawing which shows the cross section cut | disconnected along the tire radial direction of a tire frame member, (C) is the metal for tire manufacture which concerns on 1st Embodiment of this invention used for shaping | molding of the tire frame member shown by (B) It is sectional drawing which shows the cross section cut | disconnected along the tire radial direction which shows a type | mold. (A)は図1に示すタイヤ製造用金型で形成されるタイヤ骨格部材のタイヤ径方向に沿って切断した断面を示す断面図、(B)は部分的にタイヤ径方向に肉厚とされたタイヤ骨格部材のタイヤ径方向に沿って切断した断面を示す断面図、(C)は(B)に示されるタイヤ骨格部材の成形に使用される本願発明の第2実施形態に係るタイヤ製造用金型を示すタイヤ径方向に沿って切断した断面を示す断面図である。(A) is sectional drawing which shows the cross section cut | disconnected along the tire radial direction of the tire frame | skeleton member formed with the metal mold | die for tire manufacture shown in FIG. 1, (B) is partially made thick in the tire radial direction. Sectional drawing which shows the cross section cut | disconnected along the tire radial direction of the tire skeleton member, (C) is for tire manufacture which concerns on 2nd Embodiment of this invention used for shaping | molding of the tire skeleton member shown by (B) It is sectional drawing which shows the cross section cut | disconnected along the tire radial direction which shows a metal mold | die. (A)は図1に示すタイヤ製造用金型で形成されるタイヤ骨格部材のタイヤ径方向に沿って切断した断面を示す断面図、(B)は部分的にタイヤ径方向に拡大されたタイヤ骨格部材のタイヤ径方向に沿って切断した断面を示す断面図、(C)は(B)に示されるタイヤ骨格部材の成形に使用される本願発明の第3実施形態に係るタイヤ製造用金型を示すタイヤ径方向に沿って切断した断面を示す断面図である。(A) is sectional drawing which shows the cross section cut along the tire radial direction of the tire frame member formed with the metal mold for tire manufacture shown in FIG. 1, (B) is the tire partially expanded in the tire radial direction Sectional drawing which shows the cross section cut | disconnected along the tire radial direction of the skeleton member, (C) is the metal mold | die for tire manufacture which concerns on 3rd Embodiment of this invention used for shaping | molding of the tire skeleton member shown by (B) It is sectional drawing which shows the cross section cut | disconnected along the tire radial direction which shows this.

<第1実施形態> <First Embodiment>

以下、樹脂材料として熱可塑性材料を用いる実施形態を挙げ、本発明の実施の形態について説明する。なお、本実施形態では、熱可塑性の溶融材料とは熱可塑性材の溶融状態のものをいい、熱可塑性材とは固化状態のものをいう。   Hereinafter, an embodiment using a thermoplastic material as a resin material will be cited and an embodiment of the present invention will be described. In the present embodiment, the thermoplastic molten material means a molten material of the thermoplastic material, and the thermoplastic material means a solidified material.

本発明の一実施形態では、図1に示すようなタイヤ製造用金型の一例たる金型10を用いる。この金型10は、図3に示すように、タイヤのビード部Bからタイヤ径方向および幅方向にタイヤセンターCLまでを構成するタイヤ骨格部材20を成形することができるように、タイヤ外面側を成形する外金型12と、タイヤ内面側を成形する内金型14とを有する。外金型12と内金型14との間には、タイヤ骨格部材形状のキャビティS(空間)が形成されている。尚この金型10はタイヤ回転軸SSを中心として環状に形成されている。   In one embodiment of the present invention, a mold 10 as an example of a tire manufacturing mold as shown in FIG. 1 is used. As shown in FIG. 3, the mold 10 has a tire outer surface side so that the tire frame member 20 constituting the tire center CL from the bead portion B of the tire to the tire center CL in the tire radial direction and the width direction can be formed. It has the outer metal mold | die 12 to shape | mold, and the inner metal mold | die 14 which shape | molds the tire inner surface side. A cavity S (space) in the shape of a tire frame member is formed between the outer mold 12 and the inner mold 14. The mold 10 is formed in an annular shape around the tire rotation axis SS.

キャビティSの一端には凹部17が形成されており、凹部17により成型品であるタイヤ骨格部材20の一端は拡幅されている。この凹部17によりビード部Bが形成される。凹部17にはゲート(樹脂注入路)18が開口し、溶融材料が注入される。   A recess 17 is formed at one end of the cavity S, and one end of the tire frame member 20 that is a molded product is widened by the recess 17. The bead portion B is formed by the concave portion 17. A gate (resin injection path) 18 is opened in the recess 17 and molten material is injected.

また、金型10のゲート18は、例えばスチールコードを樹脂皮膜加工して形成されたビード11が図示しない治具により保持されて凹部17に入った状態で、ビード11の側を熱可塑性の溶融材料が通過するように形成されている。この溶融材料は、例えば熱可塑性エラストマー(TPE)や熱可塑性樹脂の溶融状態のものである。   In addition, the gate 18 of the mold 10 is formed by thermoplastically melting the bead 11 side in a state where the bead 11 formed by, for example, processing a steel cord with a resin film is held by a jig (not shown) and enters the recess 17. The material is formed to pass through. This molten material is, for example, in a molten state of a thermoplastic elastomer (TPE) or a thermoplastic resin.

成形品であるタイヤ骨格部材20は略リング状をしているため、キャビティSもまた略リング状の形状とされている。ゲート18はリング状に開口したディスクゲートであり、キャビティSはリング状のゲート18に連通して、開口の一端が縮径した円筒状に広がるように形成されている。なお、ゲート18はピンゲートであってもよいが、成形性の観点からディスクゲートのほうが好ましい。なお、ゲート18の位置は特に限定されず、図中下側でなくともよい。例えば側面であってもタイヤ骨格部材20の仕上がりに影響し難い位置であればよい。   Since the tire frame member 20 that is a molded product has a substantially ring shape, the cavity S also has a substantially ring shape. The gate 18 is a disk gate opened in a ring shape, and the cavity S is formed so as to communicate with the ring-shaped gate 18 so that one end of the opening expands into a cylindrical shape with a reduced diameter. The gate 18 may be a pin gate, but a disk gate is preferable from the viewpoint of formability. The position of the gate 18 is not particularly limited, and may not be the lower side in the figure. For example, even if it is a side surface, it should just be a position which is hard to influence the finish of tire frame member 20.

図2に示すように、金型10で成形されたタイヤ骨格部材20を使用してビード部BからタイヤセンターCLまでの骨格部分が形成される。すなわち、タイヤ半部を構成するタイヤ骨格部材20が形成され、次いで2つのタイヤ骨格部材20を、接合部材21を用いてタイヤセンターCLの部分で接合することにより、タイヤ全体の骨格となるタイヤ骨格部材Zを形成することができる。   As shown in FIG. 2, a skeleton portion from the bead portion B to the tire center CL is formed using the tire skeleton member 20 formed by the mold 10. That is, the tire skeleton member 20 constituting the tire half is formed, and then the two tire skeleton members 20 are joined at the portion of the tire center CL using the joining member 21 to form a tire skeleton that becomes the skeleton of the entire tire. The member Z can be formed.

図3(A)に示すように、形成されたタイヤ骨格部材20同士を矢印22のようにタイヤセンターCLで接合し、図3(B)に示すように、タイヤ骨格部材Zを形成する。タイヤ骨格部材20同士の接合方法は特に限定されないが、接合部材21として溶融樹脂を用いた溶接法、あるいは熱板溶着法などで行うことができる。熱板溶着法とは高温の熱源(熱板)に樹脂などを接触させて溶融し、溶融部分が冷えて固まる前に熱板で押し付けて接合する方法である。   As shown in FIG. 3 (A), the formed tire frame members 20 are joined together at the tire center CL as indicated by an arrow 22 to form a tire frame member Z as shown in FIG. 3 (B). Although the joining method of the tire frame members 20 is not particularly limited, it can be performed by a welding method using a molten resin as the joining member 21 or a hot plate welding method. The hot plate welding method is a method in which a resin or the like is brought into contact with a high-temperature heat source (hot plate) and melted, and pressed and joined by a hot plate before the molten portion cools and solidifies.

タイヤセンターCLでタイヤ骨格部材20同士を接合する接合部材21としては、タイヤ骨格部材20と同じ種類の樹脂で形成されてもよいし、タイヤ骨格部材20とは異なる種類の樹脂で形成されてもよい。   The joining member 21 that joins the tire frame members 20 at the tire center CL may be formed of the same type of resin as the tire frame member 20 or may be formed of a different type of resin from the tire frame member 20. Good.

また、本実施形態では、タイヤ半部を構成するタイヤ骨格部材20を形成することで説明したが、本発明はこれに限られず、チューブ状のタイヤ骨格部材を形成して、このタイヤ骨格部材内に空気を充填できる構造にしてもよい。また、最初からトロイダル状のタイヤ骨格部材として金型で形成してもよい。   In the present embodiment, the tire skeleton member 20 constituting the tire half is formed. However, the present invention is not limited to this, and a tube-shaped tire skeleton member is formed, and the inside of the tire skeleton member is formed. A structure that can be filled with air may be used. Alternatively, a toroidal tire skeleton member may be formed from a mold from the beginning.

本実施形態では、図1に示すように、この金型10を外金型12、内金型14ともに入れ子構造として、キャビティSを形成する面の一部を交換可能な入子型12B、12Cおよび14Bで形成することを特徴としている。外金型12の入子型12Bおよび12Cと、内金型14の入子型14Bは、タイヤ骨格部材20のクラウン部を形成する部材である。   In the present embodiment, as shown in FIG. 1, the mold 10 is a nested structure for both the outer mold 12 and the inner mold 14, and the nested molds 12 </ b> B and 12 </ b> C that can exchange a part of the surface forming the cavity S are used. And 14B. The insert molds 12B and 12C of the outer mold 12 and the insert mold 14B of the inner mold 14 are members that form a crown portion of the tire frame member 20.

金型10内には熱可塑性の溶融材料(溶融した熱可塑性高分子材料であることが多い)を注入して、タイヤの一方側半部を構成するタイヤ骨格部材20(図3(A)参照)を成形する。   A tire frame member 20 (see FIG. 3 (A)) is formed by injecting a thermoplastic molten material (often a molten thermoplastic polymer material) into the mold 10 to constitute one half of the tire. ).

さらに図3(B)に示すように、タイヤ一方側半部とタイヤ他方側半部とをタイヤセンターCLで接合して、タイヤ全体用のタイヤ骨格部材Zを形成する。   Further, as shown in FIG. 3B, the tire one-side half and the tire other-side half are joined at the tire center CL to form a tire frame member Z for the entire tire.

次いでタイヤ骨格部材Zにおけるクラウン部の補強として、スチールコードKを含む補強層G3を、図2に示すようにタイヤ周方向に螺旋巻きに巻き付け、周方向の剛性を上げる構成としてもよい。さらに、図3(B)に示すようにスチールコードKはタイヤ骨格部材Zに埋設されていてもよい。また、ホイール(リムフランジ)に嵌合する部位にゴム材G1を貼り付けて、リムへのフィット性を向上させてもよい。さらに路面に接する部位にゴム材(トレッドゴムG2)を貼り付けて、耐摩耗性、耐破壊性を向上させてもよい。   Next, as a reinforcement of the crown portion in the tire frame member Z, a reinforcing layer G3 including a steel cord K may be wound in a spiral manner in the tire circumferential direction as shown in FIG. 2 to increase the rigidity in the circumferential direction. Further, the steel cord K may be embedded in the tire frame member Z as shown in FIG. Moreover, the rubber material G1 may be affixed to the site | part fitted to a wheel (rim flange), and the fit property to a rim | limb may be improved. Further, a rubber material (tread rubber G2) may be attached to a portion in contact with the road surface to improve wear resistance and fracture resistance.

以下、金型10内に熱可塑性の溶融樹脂を射出成形してタイヤ骨格部材20を成形することの作用、効果について説明する。なお、本実施形態では熱可塑性の溶融樹脂を射出成形することで説明するが、熱可塑性の溶融材料を単に注入することでタイヤ骨格部材20を成形してもよい。   Hereinafter, the operation and effect of molding the tire frame member 20 by injection molding a thermoplastic molten resin in the mold 10 will be described. Although the present embodiment will be described by injection molding a thermoplastic molten resin, the tire frame member 20 may be molded by simply injecting a thermoplastic molten material.

本実施形態では、まず予め製造された被覆スチールコード等を巻付け用ジグに巻き付ける等の方法で形成されたビード11を金型10の凹部17に入れて保持し、金型10を閉じて、図示しない補助ジグ等を用いてビード11を支える。次いでゲート18から熱可塑性の溶融材料を金型10内に注入して射出成形して、タイヤ骨格部材20を形成する。   In the present embodiment, first, a bead 11 formed by a method such as wrapping a pre-manufactured coated steel cord around a winding jig is held in the recess 17 of the mold 10, and the mold 10 is closed, The bead 11 is supported using an auxiliary jig (not shown). Next, a thermoplastic molten material is injected into the mold 10 from the gate 18 and injection molded to form the tire frame member 20.

このとき、従来の金型を使用していた場合は、外金型、内金型の間に形成されたキャビティの形状に従ってタイヤ骨格部材が形成される。   At this time, when a conventional mold is used, the tire frame member is formed according to the shape of the cavity formed between the outer mold and the inner mold.

これに対して、本実施形態では図1に示すように、キャビティSの一部を外金型12に設けられた入子型挿入部12Fに挿入された入子型12B、12C、および内金型14に設けられた入子型挿入部14Fに挿入された入子型14Bで構成することにより、入子型12B、12Cおよび14Bを交換することで外金型12、内金型14全体を交換することなくキャビティSの形状を変更することができる。   On the other hand, in this embodiment, as shown in FIG. 1, the insert molds 12B and 12C inserted into a insert mold insertion portion 12F provided in the outer mold 12 and a part of the cavity S, and the inner mold By configuring the insert mold 14B inserted into the insert mold insertion portion 14F provided in the mold 14, the insert molds 12B, 12C, and 14B can be replaced to replace the outer mold 12 and the inner mold 14 as a whole. The shape of the cavity S can be changed without replacement.

すなわち、図1においては図2と同様の形状とされたキャビティSを形成する入子型12B、12C、14Bが使用されているが、このキャビティSの形状を変更する際には入子型12B、12C、14Bのうち変更が必要とされる箇所を交換することで、外金型12および内金型14の全体を交換せずキャビティSの形状変更が可能となる。   That is, in FIG. 1, the nested molds 12B, 12C, and 14B that form the cavity S having the same shape as that in FIG. 2 are used, but when the shape of the cavity S is changed, the nested mold 12B is used. , 12C, and 14B by exchanging portions that need to be changed, the shape of the cavity S can be changed without exchanging the entire outer die 12 and inner die 14.

図4に例として示すように、例えば図4(A)のタイヤ骨格部材20の形状(キャビティSの形状)を、図4(B)に示すようにタイヤ幅方向(図中左右方向)に長さLだけ縮小したタイヤ骨格部材20Sとしたい場合は以下のように形状を変更できる。   As shown in FIG. 4 as an example, for example, the shape of the tire frame member 20 in FIG. 4A (the shape of the cavity S) is long in the tire width direction (left-right direction in the figure) as shown in FIG. When the tire frame member 20S is reduced by the length L, the shape can be changed as follows.

すなわち図4(C)に示すように外金型12の入子型12Bは、タイヤ径方向サイズは同じだがタイヤ幅方向に長さLだけ短い入子型12B2と交換し、入子型12Cは逆にタイヤ幅方向に長さLだけ長い入子型12C2と交換する。これにより形成されるキャビティS2は、タイヤ幅方向に長さLだけ短い形状とされ、射出成形されるタイヤ骨格部材20Sもまたタイヤ幅方向に長さLだけ短い形状とされる。   That is, as shown in FIG. 4C, the nested mold 12B of the outer mold 12 is replaced with a nested mold 12B2 having the same size in the tire radial direction but shorter by the length L in the tire width direction. Conversely, the insert mold 12C2 is replaced by a length L in the tire width direction. The cavity S2 thus formed has a shape that is short by the length L in the tire width direction, and the tire frame member 20S that is injection-molded also has a shape that is short by the length L in the tire width direction.

このとき、キャビティS(タイヤ骨格部材20)の形状変更にらない外金型12の残りの部分は交換する必要がないため、外金型12は交換せず、そのまま使用可能となる。このため、外金型12全体を交換する場合に比較して必要コストを低減することができる。 At this time, since the rest of the cavity S (tire frame member 20) the outer die 12 not good et the shape change of the need not to be replaced, the outer die 12 is not exchanged, it becomes possible to use. For this reason, a required cost can be reduced compared with the case where the whole outer metal mold | die 12 is replaced | exchanged.

すなわち入子型12B2、12C2は入子型12B、12Cと外形(この場合は入子型挿入部12Fと接触する箇所の形状)が等しく、入子型12B、12Cと交換で外金型12に設けられた入子型挿入部12Fに挿入することで、キャビティSの形状を変更することができる。またこの場合、内金型14の入子型14Bは交換する必要はない。   That is, the nesting molds 12B2 and 12C2 have the same outer shape (in this case, the shape of the portion in contact with the nesting mold insertion portion 12F) as the nesting molds 12B and 12C, and are exchanged with the nesting molds 12B and 12C. The shape of the cavity S can be changed by inserting it into the provided insert insertion part 12F. In this case, the inner mold 14B of the inner mold 14 need not be replaced.

ここで、入子型12B2、12C2の突き当て面(境界面)は図4(C)に示すようにパーティングラインPとなる。このとき前述のようにタイヤセンターCLでタイヤ骨格部材20同士を接合することになる。2つのタイヤ骨格部材20を、接合部材21を用いてタイヤセンターCLの部分で接合することにより形成されるタイヤ骨格部材Zでは、接合部材21によりタイヤセンターCL部分はパーティングラインPにより生じる小突起と共に被覆される。このため、成型されたタイヤ骨格部材20の表面に不要な凹凸を残す虞はない。   Here, the butting surfaces (boundary surfaces) of the nested molds 12B2 and 12C2 become parting lines P as shown in FIG. At this time, as described above, the tire frame members 20 are joined at the tire center CL. In the tire skeleton member Z formed by joining the two tire skeleton members 20 at the tire center CL using the joining member 21, the tire center CL portion is a small protrusion generated by the parting line P by the joining member 21. It is coated with. For this reason, there is no possibility of leaving unnecessary unevenness on the surface of the molded tire frame member 20.

<第2実施形態> Second Embodiment

次に、図5に例として示すように、例えば図5(A)のタイヤ骨格部材20の形状(キャビティSの形状)を、図5(B)に示すようにタイヤ幅方向中央近傍に、タイヤ径方向外側(図中上)に厚さDだけ突出し斜面23C、23Dを含んで形成された台形断面の突出部23Bを備えたタイヤ骨格部材23としたい場合は、以下のようにキャビティSの形状を図5(C)に示すキャビティS3のように変更できる。   Next, as shown in FIG. 5 as an example, for example, the shape of the tire frame member 20 in FIG. 5A (the shape of the cavity S) is arranged near the center in the tire width direction as shown in FIG. When the tire frame member 23 having a trapezoidal cross-section projecting portion 23B formed to include the slopes 23C and 23D is projected radially outward (upper in the drawing) by a thickness D, the shape of the cavity S is as follows. Can be changed to a cavity S3 shown in FIG.

すなわち外金型12の入子型12Bはタイヤ径方向外側に厚さDだけ突出した突出部S3Bを備えた入子型12B3と交換し、入子型12Cは突出部23Bの斜面形状に合わせて形状を変更した入子型12C3と交換する。このとき入子型12B3、12C3のタイヤ径方向サイズは入子型12B、12Cと同じである。   That is, the insert mold 12B of the outer mold 12 is replaced with a insert mold 12B3 provided with a protrusion S3B protruding by a thickness D on the outer side in the tire radial direction, and the insert mold 12C is adapted to the slope shape of the protrusion 23B. Replace with nested mold 12C3 whose shape has been changed. At this time, the size in the tire radial direction of the nested molds 12B3 and 12C3 is the same as that of the nested molds 12B and 12C.

これにより形成されるキャビティS3は、タイヤ径方向外側に突出した突出部S3Bを備えたキャビティS3とされ、これにより射出成形されるタイヤ骨格部材23もまたタイヤ径方向外側に突出した突出部23Bを備えた形状とされる。   The cavity S3 thus formed is a cavity S3 provided with a protruding portion S3B protruding outward in the tire radial direction, and the tire frame member 23 injection-molded thereby also has a protruding portion 23B protruding outward in the tire radial direction. The shape is provided.

このとき、図4と同様にキャビティS(タイヤ骨格部材20)の形状変更によらない外金型12の残りの部分は交換する必要がないため、外金型12の大部分を占める外金型12Aは交換せず、そのまま使用可能となる。このため、外金型12全体を交換する場合に比較して必要コストを低減することができる。入子型12B3、12C3の当接面が図5(C)に示すようにパーティングラインPとなるのは第1実施形態と同様である。   At this time, as in FIG. 4, it is not necessary to replace the remaining part of the outer mold 12 that does not depend on the shape change of the cavity S (the tire frame member 20), and therefore, the outer mold that occupies most of the outer mold 12. 12A is not exchanged and can be used as it is. For this reason, a required cost can be reduced compared with the case where the whole outer metal mold | die 12 is replaced | exchanged. As in the first embodiment, the contact surfaces of the insert molds 12B3 and 12C3 become parting lines P as shown in FIG. 5C.

またこの場合においても、内金型14の入子型14BはキャビティS(タイヤ骨格部材20)の形状変更に関与しないので交換する必要はない。   Also in this case, the insert mold 14B of the inner mold 14 does not need to be replaced because it is not involved in the shape change of the cavity S (tire frame member 20).

<第3実施形態> <Third Embodiment>

次に、図6に例として示すように、例えば図6(A)のタイヤ骨格部材20の形状(キャビティSの形状)を、図6(B)に示すようにタイヤ幅方向中央近傍に、タイヤ径方向外側(図中上)に内径、外径とも径Rだけ突出した突出部S4Bを備えたタイヤ骨格部材24としたい場合は以下のようにキャビティSの形状を図6(C)に示すキャビティS4のように変更できる。   Next, as shown in FIG. 6 as an example, for example, the shape of the tire frame member 20 in FIG. 6A (the shape of the cavity S) is arranged near the center in the tire width direction as shown in FIG. When the tire frame member 24 is provided with a protrusion S4B that protrudes by a radius R on the radially outer side (upper side in the figure), the cavity S is shaped as shown in FIG. It can be changed as in S4.

すなわち外金型12の入子型12Bはタイヤ径方向外側に突出した(拡径した)突出部S4Bを備えた入子型12B4と交換し、入子型12Cは突出部S4Bの形状に合わせて、拡径するように形状を変更した入子型12C4と交換する。これにより形成されるキャビティS4は、タイヤ径方向外側に内径、外径とも突出した突出部S4Bを備えたキャビティS4とされ、射出成形されるタイヤ骨格部材20もまたタイヤ径方向外側に内径、外径とも突出した突出部S4Bを備えた形状とされる。   That is, the insert mold 12B of the outer mold 12 is replaced with a insert mold 12B4 provided with a protrusion S4B protruding (expanded in diameter) outward in the tire radial direction, and the insert mold 12C is adapted to the shape of the protrusion S4B. Replace with a nested mold 12C4 whose shape has been changed to expand the diameter. The cavity S4 formed thereby is a cavity S4 provided with a protruding portion S4B that protrudes both inside and outside in the tire radial direction, and the tire frame member 20 that is injection-molded also has an inside and outside outside in the tire radial direction. It is set as the shape provided with protrusion part S4B which protruded with the diameter.

このとき、突出部S4Bにおいては内径も拡径しているため、内金型14の入子型14BはキャビティS(タイヤ骨格部材20)の形状変化に伴って当該部分が拡径した入子型14B2に交換される。   At this time, since the inner diameter of the protrusion S4B is also enlarged, the nesting die 14B of the inner die 14 is a nesting die in which the diameter of the nesting die 14B is increased in accordance with the shape change of the cavity S (tire frame member 20). It is exchanged for 14B2.

このとき、キャビティS(タイヤ骨格部材20)の形状変更にらない外金型12の残りの部分は交換する必要がないため、外金型12のうち各入子型を除く部分である外金型12Aは交換せず、そのまま使用可能となる。このため、外金型12全体を交換する場合に比較して必要コストを低減することができる。 Outside this time, a portion except for the rest of the cavity S (tire frame member 20) good should not be outer die 12 to shape changes need not be replaced, each insert type of outer die 12 The mold 12A can be used as it is without being replaced. For this reason, a required cost can be reduced compared with the case where the whole outer metal mold | die 12 is replaced | exchanged.

この場合においても、図4、5と同様にキャビティS(タイヤ骨格部材20)の形状変更にらない外金型12、内金型14の残りの部分は交換する必要がないため、外金型12、内金型14は交換せず、そのまま使用可能となる。このため、外金型12、内金型14の全体を交換する場合に比較して必要コストを低減することができる。入子型12B4、12C4の当接面が図6(C)に示すようにパーティングラインPとなるのは第1実施形態と同様である。 In this case, since it is not necessary to the remaining part of the Fig. 4 and 5 similarly to the cavity S (tire frame member 20) the outer die 12 not good et the shape change of the inner die 14 is exchanged, the outer mold The mold 12 and the inner mold 14 are not exchanged and can be used as they are. For this reason, a required cost can be reduced compared with the case where the whole outer metal mold | die 12 and the inner metal mold | die 14 are replaced | exchanged. As in the first embodiment, the contact surfaces of the nested molds 12B4 and 12C4 become parting lines P as shown in FIG. 6C.

すなわち第1実施形態と同様、入子型12B4、12C4は入子型12B、12Cと外形(この場合は入子型挿入部12Fと接触する箇所の形状)が等しく、また入子型14B2は入子型14Bと外形(この場合は入子型挿入部14Fと接触する箇所の形状)が等しい。このため入子型12B、12C、14Bと交換で外金型12、14に設けられた入子型挿入部12F、14Fに入子型12B4、12C4、14B2をそれぞれ挿入することで、キャビティSの形状を変更することができる。   That is, like the first embodiment, the nested molds 12B4 and 12C4 have the same outer shape as the nested molds 12B and 12C (in this case, the shape of the portion in contact with the nested mold insertion portion 12F), and the nested mold 14B2 The child die 14B and the outer shape (in this case, the shape of the portion in contact with the nested die insertion portion 14F) are equal. Therefore, by inserting the insert molds 12B4, 12C4, and 14B2 into the insert mold insertion portions 12F and 14F provided in the outer molds 12 and 14 in exchange for the insert molds 12B, 12C, and 14B, the cavity S The shape can be changed.

以上、実施例を挙げて本発明の実施の形態を説明したが、上記実施形態は一例であり、要旨を逸脱しない範囲内で種々変更して実施できる。また、本発明の権利範囲が上記実施形態に限定されないことは言うまでもない。   The embodiments of the present invention have been described with reference to the examples. However, the above embodiments are merely examples, and various modifications can be made without departing from the scope of the invention. Needless to say, the scope of rights of the present invention is not limited to the above embodiment.

例えば、図1において、入子型12B、12C、14Bはタイヤ骨格部材20のクラウン部に相当する箇所のみを形成しているが、これに限定せず、ビード部やサイドウォールなど任意の箇所を形成するキャビティ面を入子型として交換可能な部品とすることができる。   For example, in FIG. 1, the telescopic molds 12B, 12C, and 14B form only a portion corresponding to the crown portion of the tire frame member 20, but the present invention is not limited thereto, and an arbitrary portion such as a bead portion or a sidewall is formed. The cavity surface to be formed can be replaced with a telescopic mold.

さらに入子型14Bを複数の入子型に分割し、タイヤ径方向内側の形状変更に対応可能としてもよい。   Further, the nested mold 14B may be divided into a plurality of nested molds so as to be able to cope with a shape change inside the tire radial direction.

あるいは樹脂材料として熱可塑性材料を用いる例を挙げて説明したが、ユリア樹脂、フェノール系樹脂等の熱硬化性樹脂を用いてタイヤを製造してもよく、本発明では用いる樹脂材料は熱可塑性材料には限られない。   Or although the example which uses a thermoplastic material as a resin material was given and demonstrated, you may manufacture a tire using thermosetting resins, such as a urea resin and a phenol-type resin, and the resin material used in this invention is a thermoplastic material. It is not limited to.

すなわち上記各実施形態において、タイヤ骨格部材20は樹脂材料で形成されているが、樹脂材料としては、熱可塑性樹脂(熱可塑性エラストマーを含む)、熱硬化性樹脂、及びその他の汎用樹脂のほか、エンジニアリングプラスチック(スーパーエンジニアリングプラスチックを含む)等が挙げられる。   That is, in each said embodiment, although the tire frame member 20 is formed with the resin material, as a resin material, a thermoplastic resin (a thermoplastic elastomer is included), a thermosetting resin, and other general purpose resin, Examples include engineering plastics (including super engineering plastics).

熱可塑性樹脂(熱可塑性エラストマーを含む)とは、温度上昇と共に材料が軟化、流動し、冷却すると比較的硬く強度のある状態になる高分子化合物をいう。本明細書では、このうち、温度上昇と共に材料が軟化、流動し、冷却すると比較的硬く強度のある状態になり、かつ、ゴム状弾性を有する高分子化合物を熱可塑性エラストマーとし、温度上昇と共に材料が軟化、流動し、冷却すると比較的硬く強度のある状態になり、かつ、ゴム状弾性を有しない高分子化合物をエラストマーでない熱可塑性樹脂として、区別する。   A thermoplastic resin (including a thermoplastic elastomer) refers to a high molecular compound that softens and flows as the temperature rises and becomes relatively hard and strong when cooled. In the present specification, among these, the material softens and flows with increasing temperature, and becomes relatively hard and strong when cooled, and a high molecular compound having rubber-like elasticity is a thermoplastic elastomer, and the material increases with increasing temperature. Is softened, fluidized, and becomes a relatively hard and strong state when cooled, and a high molecular compound having no rubber-like elasticity is distinguished as a thermoplastic resin that is not an elastomer.

熱可塑性樹脂(熱可塑性エラストマーを含む)としては、ポリオレフィン系熱可塑性エラストマー(TPO)、ポリスチレン系熱可塑性エラストマー(TPS)、ポリアミド系熱可塑性エラストマー(TPA)、ポリウレタン系熱可塑性エラストマー(TPU)、ポリエステル系熱可塑性エラストマー(TPC)、及び、動的架橋型熱可塑性エラストマー(TPV)、ならびに、ポリオレフィン系熱可塑性樹脂、ポリスチレン系熱可塑性樹脂、ポリアミド系熱可塑性樹脂、及び、ポリエステル系熱可塑性樹脂等が挙げられる。   Thermoplastic resins (including thermoplastic elastomers) include polyolefin-based thermoplastic elastomers (TPO), polystyrene-based thermoplastic elastomers (TPS), polyamide-based thermoplastic elastomers (TPA), polyurethane-based thermoplastic elastomers (TPU), and polyesters. Thermoplastic thermoplastic elastomer (TPC), dynamically crosslinked thermoplastic elastomer (TPV), polyolefin thermoplastic resin, polystyrene thermoplastic resin, polyamide thermoplastic resin, polyester thermoplastic resin, etc. Can be mentioned.

また、上記の熱可塑性材料としては、例えば、ISO75−2又はASTM D648に規定されている荷重たわみ温度(0.45MPa荷重時)が78℃以上、JIS K7113に規定される引張降伏強さが10MPa以上、同じくJIS K7113に規定される引張破壊伸び(JIS K7113)が50%以上JIS K7206に規定されるビカット軟化温度(A法)が130℃であるものを用いることができる。 In addition, as the thermoplastic material, for example, the deflection temperature under load specified at ISO 75-2 or ASTM D648 (at the time of 0.45 MPa load) is 78 ° C. or higher, and the tensile yield strength specified by JIS K7113 is 10 MPa. As described above, those having a tensile fracture elongation (JIS K7113) defined by JIS K7113 of 50% or more and a Vicat softening temperature (Method A) defined by JIS K7206 of 130 ° C. can be used.

熱硬化性樹脂とは、温度上昇と共に3次元的網目構造を形成し、硬化する高分子化合物をいう。熱硬化性樹脂としては、例えば、フェノール樹脂、エポキシ樹脂、メラミン樹脂、ユリア樹脂等が挙げられる。   The thermosetting resin refers to a polymer compound that forms a three-dimensional network structure as the temperature rises and cures. As a thermosetting resin, a phenol resin, an epoxy resin, a melamine resin, a urea resin etc. are mentioned, for example.

なお、樹脂材料には、既述の熱可塑性樹脂(熱可塑性エラストマーを含む)及び熱硬化性樹脂のほか、(メタ)アクリル系樹脂、EVA樹脂、塩化ビニル樹脂、フッ素系樹脂、シリコーン系樹脂等の汎用樹脂を用いてもよい。なお、ここでの樹脂材料には、加硫ゴムは含まれない。  In addition to the above-mentioned thermoplastic resins (including thermoplastic elastomers) and thermosetting resins, resin materials include (meth) acrylic resins, EVA resins, vinyl chloride resins, fluorine resins, silicone resins, etc. General-purpose resin may be used. The resin material here does not include vulcanized rubber.

10 金型(タイヤ製造用金型)
12 外金型
12B 入子型
12C 入子型
14 内金型
14B 入子型
20 タイヤ骨格部材
20S タイヤ骨格部材
23 タイヤ骨格部材
24 タイヤ骨格部材
112 外金型
114 内金型
CL タイヤセンター
P パーティングライン
S キャビティ
Z タイヤ骨格部材
10 Mold (Tire manufacturing mold)
12 Outer mold 12B Nested mold 12C Nested mold 14 Inner mold 14B Nested mold 20 Tire frame member 20S Tire frame member 23 Tire frame member 24 Tire frame member 112 Outer mold 114 Inner mold CL Tire center P Parting Line S Cavity Z Tire frame member

Claims (4)

樹脂材料を含んで形成されるタイヤ骨格部材を、タイヤ径方向外側から形成する外金型と、
タイヤ径方向内側から前記外金型との間にキャビティを形成する内金型と、
前記外金型および前記内金型の少なくとも一方において、前記キャビティを形成する面を含む箇所を交換可能とした入子型と、を有し、
前記外金型は複数の前記入子型を備え、複数の前記入子型が形成するキャビティの境界面が前記タイヤ骨格部材のパーティングラインを形成するタイヤ製造用金型。
An outer mold for forming a tire frame member formed by including a resin material from the outer side in the tire radial direction;
An inner mold that forms a cavity between the inner side in the tire radial direction and the outer mold; and
In at least one of said outer die and said inner die, have a, and the insert mold which enables exchanging portion comprising a surface forming the cavity,
The outer mold includes a plurality of the nested molds, and a tire manufacturing mold in which a boundary surface of a cavity formed by the plurality of nested molds forms a parting line of the tire frame member .
前記外金型は前記タイヤ骨格部材のクラウン部を形成する複数の前記入子型を備え、これらの入子型の交換により前記キャビティのタイヤ幅方向サイズを可変とする請求項1記載のタイヤ製造用金型。 2. The tire according to claim 1 , wherein the outer mold includes a plurality of the nested molds forming a crown portion of the tire frame member, and the size of the cavity in the tire width direction is variable by exchanging the nested molds. Production mold. 前記外金型は前記タイヤ骨格部材のクラウン部を形成する複数の前記入子型を備え、これらの入子型の交換により前記キャビティのタイヤ径方向サイズを可変とする請求項1又は請求項に記載のタイヤ製造用金型。 The outer mold is provided with a plurality of pre-filled child-type to form the crown portion of the tire frame member, according to claim 1 or claim 2, variable tire radial direction size of the cavity by an exchange of these insert mold The mold for tire manufacture as described in 2. 前記内金型は前記タイヤ骨格部材のクラウン部を形成する前記入子型を備え、これらの入子型の交換により前記キャビティのタイヤ径方向サイズを可変とする請求項に記載のタイヤ製造用金型。 The tire manufacturing method according to claim 3 , wherein the inner mold includes the nesting mold that forms a crown portion of the tire frame member, and the tire radial size can be changed by exchanging the nesting mold. Mold.
JP2013051809A 2013-03-14 2013-03-14 Mold for tire production Active JP6053583B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013051809A JP6053583B2 (en) 2013-03-14 2013-03-14 Mold for tire production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013051809A JP6053583B2 (en) 2013-03-14 2013-03-14 Mold for tire production

Publications (2)

Publication Number Publication Date
JP2014177007A JP2014177007A (en) 2014-09-25
JP6053583B2 true JP6053583B2 (en) 2016-12-27

Family

ID=51697455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013051809A Active JP6053583B2 (en) 2013-03-14 2013-03-14 Mold for tire production

Country Status (1)

Country Link
JP (1) JP6053583B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1405470A (en) * 1919-08-29 1922-02-07 Goerge H Wheatley Method of and apparatus for making resilient tires
JP2008114542A (en) * 2006-11-07 2008-05-22 Toyo Tire & Rubber Co Ltd Mold for annular member
JP5113861B2 (en) * 2010-02-15 2013-01-09 住友ゴム工業株式会社 Pneumatic tire manufacturing method and rigid core used therefor
JP5588261B2 (en) * 2010-08-04 2014-09-10 株式会社ブリヂストン Tire manufacturing method and tire

Also Published As

Publication number Publication date
JP2014177007A (en) 2014-09-25

Similar Documents

Publication Publication Date Title
JP5588261B2 (en) Tire manufacturing method and tire
JP6301306B2 (en) Tire, tire manufacturing apparatus, and tire manufacturing method
JP5588208B2 (en) Tire manufacturing method and tire
JP5404244B2 (en) Tread for tire, tire and method for manufacturing tire
JP6534293B2 (en) tire
JP2011207434A (en) Tire and method for manufacturing the same
JP2019001418A (en) Pneumatic tire and method for manufacturing pneumatic tire
JPS6044132B2 (en) Tire manufacturing method
JP6207906B2 (en) Pneumatic tire
JP6053583B2 (en) Mold for tire production
JP5084637B2 (en) Non-pneumatic tire mold and non-pneumatic tire manufacturing method
US9937757B2 (en) Tire
JP6534249B2 (en) Tire manufacturing method and tire
JP6434284B2 (en) Pneumatic tire
JP2016078572A (en) Pneumatic tire
WO2019230810A1 (en) Tire manufacturing method and tire manufacturing mold
JP5224029B2 (en) Manufacturing method of resin pulley with bearing
WO2015005450A1 (en) Pneumatic tire
JP5577062B2 (en) Tire, tire manufacturing method, and tire manufacturing mold
JP5588209B2 (en) Tire manufacturing method and tire molding die
JP6483395B2 (en) Pneumatic tire
JP2011042092A (en) Tire manufacturing method and tire manufacturing mold

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161129

R150 Certificate of patent or registration of utility model

Ref document number: 6053583

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250