JP6052727B2 - Motor control device - Google Patents

Motor control device Download PDF

Info

Publication number
JP6052727B2
JP6052727B2 JP2012208362A JP2012208362A JP6052727B2 JP 6052727 B2 JP6052727 B2 JP 6052727B2 JP 2012208362 A JP2012208362 A JP 2012208362A JP 2012208362 A JP2012208362 A JP 2012208362A JP 6052727 B2 JP6052727 B2 JP 6052727B2
Authority
JP
Japan
Prior art keywords
axis current
command value
motor
current command
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012208362A
Other languages
Japanese (ja)
Other versions
JP2014064400A (en
Inventor
博志 藤本
博志 藤本
正人 兼松
正人 兼松
俊夫 榎本
俊夫 榎本
吉本 貫太郎
貫太郎 吉本
隆行 宮川
隆行 宮川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
University of Tokyo NUC
Original Assignee
Nissan Motor Co Ltd
University of Tokyo NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd, University of Tokyo NUC filed Critical Nissan Motor Co Ltd
Priority to JP2012208362A priority Critical patent/JP6052727B2/en
Publication of JP2014064400A publication Critical patent/JP2014064400A/en
Application granted granted Critical
Publication of JP6052727B2 publication Critical patent/JP6052727B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Ac Motors In General (AREA)

Description

この発明は、ベクトル制御を用いて永久磁石同期モーターを駆動する制御装置に関する。   The present invention relates to a control device that drives a permanent magnet synchronous motor using vector control.

近年、電動モーターを利用した製品が増えてきたことに伴い、レイアウトの制約から薄型のモーターが求められることが増えてきている。このようなモーターを使用する場合には、モーターに生じる振動を抑制する対策が必要となる。   In recent years, with the increase in products using electric motors, there is an increasing demand for thin motors due to layout constraints. When such a motor is used, it is necessary to take measures to suppress vibration generated in the motor.

モーターの振動を抑制する対策として、モーターの負荷トルクの変動に応じて、モーターの発生するトルクと負荷トルクとが一致するようにモーターを制御する技術が知られている(特許文献1参照)。   As a countermeasure for suppressing the vibration of the motor, a technique for controlling the motor so that the torque generated by the motor and the load torque coincide with each other according to the fluctuation of the load torque of the motor is known (see Patent Document 1).

特開2001−37281号公報JP 2001-37281 A

しかしながら、前述した従来の技術では、ステーターコイルに電流を流すことによって発生するモーターの半径方向の電磁加振力が原因の振動については抑制されないという問題があった。   However, the above-described conventional technique has a problem in that vibrations caused by the electromagnetic excitation force in the radial direction of the motor generated by passing a current through the stator coil cannot be suppressed.

本発明は、このような従来の問題点に着目してなされた。本発明の目的は、モーターに生じるモーターの半径方向の電磁加振力を抑制することにある。   The present invention has been made paying attention to such conventional problems. An object of the present invention is to suppress the electromagnetic excitation force in the radial direction of the motor generated in the motor.

本発明は以下のような解決手段によって前記課題を解決する。   The present invention solves the above problems by the following means.

本発明によるモーターの制御装置は、永久磁石同期モーターの各相のティースに巻き付けられたコイルに供給する電流をベクトル制御に基づくq軸電流指令値及びd軸電流指令値を用いて制御する。制御装置は、モーターの目標回転速度とトルク指令値とに基づいてq軸電流指令値及びd軸電流指令値を演算する演算部と、永久磁石がティースに対向する位置にある場合における他相のティース表面のうち永久磁石の磁束が通過する部分の比率に基づいて前記d軸電流指令値を補正する補正部と、を含むことを特徴とする。


The motor control apparatus according to the present invention controls the current supplied to the coils wound around the teeth of each phase of the permanent magnet synchronous motor using the q-axis current command value and the d-axis current command value based on vector control. The control device includes a calculation unit that calculates a q-axis current command value and a d-axis current command value based on the target rotational speed of the motor and a torque command value, and another phase when the permanent magnet is at a position facing the teeth. A correction unit that corrects the d-axis current command value based on a ratio of a portion of the tooth surface through which the magnetic flux of the permanent magnet passes.


この態様によれば、ティース表面のうち永久磁石の磁束が通過する部分の比率に基づくd軸成分の電流がコイルに供給されるので、コイルと永久磁石との間で生じるモーターの半径方向の電磁加振力を抑制することができる。   According to this aspect, since the current of the d-axis component based on the ratio of the portion of the tooth surface through which the magnetic flux of the permanent magnet passes is supplied to the coil, the radial electromagnetic of the motor generated between the coil and the permanent magnet Excitation force can be suppressed.

本発明の実施形態、本発明の利点については、添付された図面を参照しながら以下に詳細に説明する。   Embodiments of the present invention and advantages of the present invention will be described in detail below with reference to the accompanying drawings.

図1は、本発明の実施形態におけるモーター制御装置を示す図である。FIG. 1 is a diagram illustrating a motor control device according to an embodiment of the present invention. 図2は、電磁界解析による永久磁石のみの磁束密度を示す図である。FIG. 2 is a diagram showing the magnetic flux density of only the permanent magnet by electromagnetic field analysis. 図3は、電磁界解析での軸電流による磁束密度を示す図である。FIG. 3 is a diagram showing the magnetic flux density due to the axial current in the electromagnetic field analysis. 図4は、V相、W相ティースに発生する磁束分布を示す観念図である。FIG. 4 is a conceptual diagram showing the distribution of magnetic flux generated in the V-phase and W-phase teeth. 図5は、d軸電流制御によるラジアル力の抑制効果を示す図である。FIG. 5 is a diagram illustrating the effect of suppressing the radial force by the d-axis current control. 図6は、第2実施形態におけるベクトル電流指令部を示す構成図である。FIG. 6 is a configuration diagram illustrating a vector current command unit in the second embodiment. 図7は、d軸電流指令値の補正方法を示すフローチャートである。FIG. 7 is a flowchart showing a method for correcting the d-axis current command value. 図8は、第3実施形態におけるモーター制御装置を示す構成図である。FIG. 8 is a configuration diagram illustrating a motor control device according to the third embodiment.

(第1実施形態)
図1は、本発明の第1実施形態におけるモーター制御装置を示す構成図である。
(First embodiment)
FIG. 1 is a configuration diagram illustrating a motor control device according to a first embodiment of the present invention.

モーター制御装置100は、例えば、ハイブリッド車両に搭載されるモーター150を制御する装置である。   The motor control device 100 is a device that controls a motor 150 mounted on a hybrid vehicle, for example.

モーター150は、永久磁石同期モーターである。本実施形態ではモーター150として、埋込磁石同期モーター(Interior Permanent Magnet Synchronous Motor:IPMSM)が用いられる。なお、埋込磁石同期モーター以外にも適用できる。   The motor 150 is a permanent magnet synchronous motor. In the present embodiment, an interior permanent magnet synchronous motor (IPMSM) is used as the motor 150. In addition, it can be applied to other than the embedded magnet synchronous motor.

モーター150は、U相、V相、W相の三相の交流電流によって駆動する。U相の交流電流については、V相の交流電流よりも位相が120度だけ遅れている。V相の交流電流については、W相の交流電流よりも位相が120度だけ遅れている。W相の交流電流については、U相の交流電流よりも位相が120度だけ遅れている。   The motor 150 is driven by a three-phase alternating current of U phase, V phase, and W phase. The U-phase AC current is delayed by 120 degrees from the V-phase AC current. The V-phase AC current is delayed by 120 degrees from the W-phase AC current. The phase of the W-phase AC current is 120 degrees behind the phase of the U-phase AC current.

モーター150では、ステーターに設けられたティースごとに、ティースの側面にコイル(ステーターコイル)が巻かれている。W相の交流電流が流れるコイルと、U相の交流電流が流れるコイルと、V相の交流電流が流れるコイルとが、ひとつの組として円周方向に並べて配置される。三相の交流電流によって回転方向に向かって永久磁石を引き寄せるコイルが順次切り替えられるため、永久磁石が設けられた回転子(ローター)が回転する。   In the motor 150, a coil (stator coil) is wound around the side surface of each tooth provided on the stator. A coil through which a W-phase AC current flows, a coil through which a U-phase AC current flows, and a coil through which a V-phase AC current flows are arranged side by side in the circumferential direction as one set. Since the coils for attracting the permanent magnets are sequentially switched in the rotational direction by the three-phase alternating current, the rotor (rotor) provided with the permanent magnets rotates.

モーター150の外周には、加速度センサー160が設けられている。加速度センサー160は、モーター150の半径方向の振動を検出する。加速度センサー160は、例えば、検出した振動が大きいほど、信号レベルの大きな振動検出信号を出力する。   An acceleration sensor 160 is provided on the outer periphery of the motor 150. The acceleration sensor 160 detects vibration in the radial direction of the motor 150. For example, the acceleration sensor 160 outputs a vibration detection signal having a higher signal level as the detected vibration is larger.

モーター制御装置100は、ベクトル制御に基づいてモーター150に供給する電流を制御する。モーター制御装置100は、ベクトル電流指令部110と、モーター電流制御部130と、インバーター140と、を備える。   The motor control device 100 controls the current supplied to the motor 150 based on vector control. The motor control device 100 includes a vector current command unit 110, a motor current control unit 130, and an inverter 140.

ベクトル電流指令部110は、ベクトル制御で用いられるq軸電流指令値とd軸電流指令値を算出する。q軸電流指令値は、永久磁石が設けられた回転子と同軸方向の電流成分(q軸電流)を指定する指令値である。d軸電流指令値は、回転子に直交する軸方向の電流成分(d軸電流)を指定する指令値である。   The vector current command unit 110 calculates a q-axis current command value and a d-axis current command value used in vector control. The q-axis current command value is a command value that designates a current component (q-axis current) in the direction coaxial with the rotor provided with the permanent magnet. The d-axis current command value is a command value for designating an axial current component (d-axis current) orthogonal to the rotor.

ベクトル電流指令部110には、トルク指令信号線101からトルク指令値が入力されると共に、回転速度信号線102からモーターの回転速度の目標値(以下「目標回転速度」という)が入力される。   A torque command value is input from the torque command signal line 101 to the vector current command unit 110 and a target value (hereinafter referred to as “target rotation speed”) of the motor rotation speed is input from the rotation speed signal line 102.

ベクトル電流指令部110は、トルク指令値と目標回転速度とに基づいてd軸電流指令値とq軸電流指令値を演算する。例えば、ベクトル電流指令部110には、トルク指令値と目標回転速度とで特定される運転点ごとに、d軸電流指令値とq軸電流指令値とを互いに対応付けたトルクマップ(ベクトル制御情報)が記憶されている。そしてトルク指令値と目標回転速度が入力されると、トルクマップを参照して、トルク指令値と目標回転速度との運転点に対応付けられたd軸電流指令値とq軸電流指令値を算出する。   The vector current command unit 110 calculates a d-axis current command value and a q-axis current command value based on the torque command value and the target rotation speed. For example, the vector current command unit 110 includes a torque map (vector control information) in which the d-axis current command value and the q-axis current command value are associated with each other for each operating point specified by the torque command value and the target rotation speed. ) Is stored. When the torque command value and the target rotation speed are input, the d-axis current command value and the q-axis current command value associated with the operating points of the torque command value and the target rotation speed are calculated with reference to the torque map. To do.

本実施形態では、ベクトル電流指令部110は、トルク指令値が大きくなるほど、大きなq軸電流指令値を出力する。ベクトル電流指令部110は、目標回転速度が大きくなるほど、モーター150で運転効率を低下させる方向に生じる誘起電力を打ち消すために負のd軸電流指令値を出力する。例えば、−5[A](アンペア)程度のd軸電流指令値がベクトル電流指令部110から出力される。   In the present embodiment, the vector current command unit 110 outputs a larger q-axis current command value as the torque command value increases. The vector current command unit 110 outputs a negative d-axis current command value in order to cancel the induced power generated in the direction in which the motor 150 decreases the operation efficiency as the target rotation speed increases. For example, a d-axis current command value of about −5 [A] (ampere) is output from the vector current command unit 110.

ベクトル電流指令部110は、d軸電流指令線121を介して、d軸電流指令値を切替器211に出力すると共に、q軸電流指令線122を介して、q軸電流指令値をモーター電流制御部130に出力する。   The vector current command unit 110 outputs the d-axis current command value to the switch 211 via the d-axis current command line 121 and controls the q-axis current command value via the q-axis current command line 122 for motor current control. To the unit 130.

モーター電流制御部130は、d軸電流指令値とq軸電流指令値に基づいて、モーター150に三相の交流電流を供給するためのPWM(パルス幅変調:pulse width modulation)信号を生成する。   The motor current control unit 130 generates a PWM (pulse width modulation) signal for supplying a three-phase alternating current to the motor 150 based on the d-axis current command value and the q-axis current command value.

モーター電流制御部130には、U相電流検出線141からU相の交流電流がフィードバックされると共に、V相電流検出線142からV相の交流電流がフィードバックされる。モーター電流制御部130は、フィードバックされるU相及びV相の交流電流に応じてPWM信号を調整する。   A U-phase AC current is fed back from the U-phase current detection line 141 to the motor current control unit 130, and a V-phase AC current is fed back from the V-phase current detection line 142. The motor current control unit 130 adjusts the PWM signal according to the fed back U-phase and V-phase AC currents.

モーター電流制御部130は、PWM信号線131を介して、PWM信号をインバーター140に出力する。   The motor current control unit 130 outputs a PWM signal to the inverter 140 via the PWM signal line 131.

インバーター140は、モーター電流制御部130からのPWM信号に応じて、不図示のバッテリーの直流電力を三相交流電力に変換する。また、インバーター140は、モーター150の回転力によって発生した回生電力(三相交流電力)を直流電力に変換してバッテリーに供給する。   Inverter 140 converts DC power of a battery (not shown) into three-phase AC power according to the PWM signal from motor current control unit 130. Further, the inverter 140 converts regenerative power (three-phase AC power) generated by the rotational force of the motor 150 into DC power and supplies it to the battery.

インバーター140は、変換した三相交流電力をモーター150に供給する。すなわち、インバーター140は、U相、V相及びW相の交流電流を、モーター150内のU相、V相及びW相のコイルにそれぞれ供給する。これにより、モーター150は回転する。   The inverter 140 supplies the converted three-phase AC power to the motor 150. That is, the inverter 140 supplies U-phase, V-phase, and W-phase alternating currents to the U-phase, V-phase, and W-phase coils in the motor 150, respectively. As a result, the motor 150 rotates.

このようなモーター制御装置を使用する場合、レイアウトによっては、薄型のモーターを用いなければならない場合がある。しかしながら、モーターでは、回転軸方向の厚さを薄くするほど、筺体の強度が弱くなるため、半径方向の電磁加振力に起因する振動や音が大きくなりやすい。   When such a motor control device is used, a thin motor may have to be used depending on the layout. However, in the motor, as the thickness in the direction of the rotation axis is reduced, the strength of the casing is weakened, so that vibration and sound due to electromagnetic excitation force in the radial direction are likely to increase.

ここにいう電磁加振力とは、モーターのコイルに交流電流を流すことによって生じる、永久磁石をコイルに引き寄せる力と、コイルから永久磁石を引き離す力とによって発生する力のことである。この電磁加振力についてモーターの半径方向に働く力をラジアル力という。ラジアル力は、永久磁石とティースの間に発生する力に起因するため、電気角2次の周波数成分をもつ。   The electromagnetic excitation force mentioned here is a force generated by flowing an alternating current through the coil of the motor and generated by a force that pulls the permanent magnet to the coil and a force that pulls the permanent magnet away from the coil. The force acting in the radial direction of the motor with respect to this electromagnetic excitation force is called radial force. Since the radial force is caused by the force generated between the permanent magnet and the tooth, it has a frequency component of second order electrical angle.

U相、V相、W相のコイルと永久磁石との間で生じるラジアル力は、各ティースで大きさが異なり、回転子の角度に応じて変動する。この変動によってモーターの筺体が波打つように曲がって振動が発生する。   The radial force generated between the U-phase, V-phase, and W-phase coils and the permanent magnet has different magnitudes at each tooth, and varies depending on the angle of the rotor. This fluctuation causes the motor housing to bend and vibrate.

そこで、発明者らは、モーター内の磁束分布を考慮してラジアル力をモデル化し、ラジアル力に起因する振動の抑制手法を発明した。   Therefore, the inventors have modeled a radial force in consideration of the magnetic flux distribution in the motor, and invented a method for suppressing vibration caused by the radial force.

ラジアル力をモデル化するために、まず、IPMSMのdq座標モデルについて説明する。   In order to model the radial force, an IPMSM dq coordinate model will be described first.

回転磁界に同期したdq座標系における電圧方程式は、次式(1)によって表わされる。ここでは、UVW座標系からdq座標系に変換するUVW/dq変換において絶対変換を用いる。   The voltage equation in the dq coordinate system synchronized with the rotating magnetic field is expressed by the following equation (1). Here, absolute conversion is used in the UVW / dq conversion for converting from the UVW coordinate system to the dq coordinate system.

Figure 0006052727
Figure 0006052727

ただし、vはd軸電圧を示し、vはq軸電圧を示す。iはd軸電流を示し、iはq軸電流を示す。Lはd軸インダクタンスを示し、Lはq軸インダクタンスを示す。Rは電気子巻線抵抗を示す。ωは電気角速度を示す。Ψaはq軸電機子鎖交磁束を示す。 However, v d denotes a d-axis voltage, v q denotes a q-axis voltage. i d indicates a d-axis current, and i q indicates a q-axis current. L d represents the d-axis inductance, and L q represents the q-axis inductance. R indicates an electric winding resistance. ω e represents the electrical angular velocity. Ψa represents a q-axis armature flux linkage.

また、dq座標系におけるトルクTは、次式(2)によって表わされる。   The torque T in the dq coordinate system is expressed by the following equation (2).

Figure 0006052727
Figure 0006052727

ただし、Kmt=P×Ψaであり、Krt=P(L−L)である。Pは極対数を示す。 However, K mt = P × Ψa and K rt = P (L d −L q ). P represents the number of pole pairs.

さらに、dq座標系における機械角速度ωは、次式(3)によって表わされる。 Further, the mechanical angular velocity ω m in the dq coordinate system is expressed by the following equation (3).

Figure 0006052727
Figure 0006052727

ただし、Jはイナーシャを示す。Dは摩擦係数を示す。また、電気角速度ωは、次式(4)によって表わされる。 Here, J indicates inertia. D represents a friction coefficient. The electrical angular velocity ω e is expressed by the following equation (4).

Figure 0006052727
Figure 0006052727

次に、dq座標モデルにおけるIPMSMの電磁加振力について説明する。   Next, the IPMSM electromagnetic excitation force in the dq coordinate model will be described.

IPMSMの磁束分布をモデル化するにあたり、機械角0(ゼロ)度の時のU相ティースの中心から、マクスウェル応力を考える点との間の角度をステーター位置角φと定義する。また、ステーター位置角φにおける磁束密度の半径方向成分をB(φ)とし、磁束密度の周方向成分をBθ(φ)とする。 In modeling the IPMSM magnetic flux distribution, the angle between the center of the U-phase tooth at the mechanical angle of 0 (zero) and the point where Maxwell stress is considered is defined as the stator position angle φ m . In addition, the radial component of the magnetic flux density at the stator position angle φ m is B rm ), and the circumferential component of the magnetic flux density is B θm ).

IPMSMの電磁加振力は、マクスウェル応力の式より、以下のとおり表わされる。   The electromagnetic excitation force of IPMSM is expressed as follows from the Maxwell stress equation.

半径方向マクスウェル応力f(φ)と周方向マクスウェル応力fθ(φ)は、次の式(5)と式(6)によって表わされる。 The radial Maxwell stress f rm ) and the circumferential Maxwell stress f θm ) are expressed by the following equations (5) and (6).

Figure 0006052727
Figure 0006052727

Figure 0006052727
Figure 0006052727

そしてU相のラジアル力FrUと、V相のラジアル力FrVと、W相のラジアル力FrWとは、次式(7)によって表わされる。 The U-phase radial force F rU , the V-phase radial force F rV, and the W-phase radial force F rW are expressed by the following equation (7).

Figure 0006052727
Figure 0006052727

ただし、Sは、各ティースに磁束が鎖交する面積を示す。   However, S shows the area where magnetic flux interlinks with each tooth.

なお、各相のラジアル力FrU、FrV、FrWは、ひとつのティースの表面に働くラジアル力である。 The radial forces F rU , F rV , and F rW of each phase are radial forces that act on the surface of one tooth.

次に、ラジアル力の近似モデルに用いられる前提条件について説明する。   Next, preconditions used for the approximate model of radial force will be described.

磁束分布B(φ)は、d軸電流i、q軸電流i、永久磁石の磁束ψ、及び、ローターの回転角θeによって決まる。また、d軸電流と永久磁石とによって生じる磁束分布は線形独立と仮定する。 The magnetic flux distribution B rm ) is determined by the d-axis current i d , the q-axis current i q , the magnetic flux ψ m of the permanent magnet, and the rotation angle θe of the rotor. Further, it is assumed that the magnetic flux distribution generated by the d-axis current and the permanent magnet is linearly independent.

このため、磁束分布B(φ)は、次式(8)によって表わされる。 For this reason, the magnetic flux distribution B rm ) is expressed by the following equation (8).

Figure 0006052727
Figure 0006052727

ここで、Brd(φ,i)は、d軸電流によって生じるステーター位置角φでの磁束密度を示す。Brq(φ,i)は、q軸電流によって生じるステーター位置角φでの磁束密度を示す。Brm(φ)は、永久磁石によって生じるステーター位置角φでの磁束密度を示す。 Here, B rdm , i d ) indicates the magnetic flux density at the stator position angle φ m generated by the d-axis current. B rqm , i q ) indicates the magnetic flux density at the stator position angle φ m generated by the q-axis current. B rmm ) represents the magnetic flux density at the stator position angle φ m generated by the permanent magnet.

なお、以下では、ラジアル力の近似式の導出のため、Brq(φ,i)の項を除いて検討する。また、d軸電流値を明記した上で、Bri(φ)=Brd(φ,i)の簡易表記を用いる場合がある。この場合、d軸電流と、d軸電流による磁束密度とが線形の関係にあると仮定すると共に、Bθ (φ)の値は十分に小さいとして無視する。 In the following, in order to derive an approximate expression for the radial force, the term B rqm , i q ) is excluded. In addition, a simple notation of B rim ) = B rdm , i d ) may be used after specifying the d-axis current value. In this case, it is assumed that the d-axis current and the magnetic flux density due to the d-axis current have a linear relationship, and the value of B θ 2m ) is ignored because it is sufficiently small.

次に、電磁界解析(FEM analysis)を用いて永久磁石により生じる磁束分布の近似モデルについて説明する。なお、電磁界解析では、モーターの理想状態を前提に2次元解析を使用している。例えば、三相の交流電流を正弦波電流とし、インバーターのスイッチングの影響やモーターのパラメーター誤差の影響等は考慮されていない。また、IPMSMのモーター構造は、12極18スロットのインナーロータ型集中巻IPMSMとし、スキューは施していない。また、モーターに用いた磁石はパラレル異性体で着磁している。   Next, an approximate model of magnetic flux distribution generated by a permanent magnet will be described using electromagnetic field analysis (FEM analysis). In the electromagnetic field analysis, two-dimensional analysis is used on the assumption of the ideal state of the motor. For example, a three-phase alternating current is a sine wave current, and the effects of inverter switching and motor parameter errors are not considered. The motor structure of the IPMSM is a 12 pole 18 slot inner rotor type concentrated winding IPMSM, which is not skewed. The magnet used for the motor is magnetized with a parallel isomer.

図2は、電磁界解析による永久磁石のみの磁束密度を示す図である。図2(A)は、永久磁石によって各相のティースに発生する磁束を示す図である。図2(B)は、電磁解析による各相の半径方向成分の磁束密度Bを示す図である。横軸がステーター位置角φであり、θeは0(ゼロ)である。 FIG. 2 is a diagram showing the magnetic flux density of only the permanent magnet by electromagnetic field analysis. FIG. 2A is a diagram illustrating magnetic flux generated in the teeth of each phase by the permanent magnet. Figure 2 (B) is a diagram showing a magnetic flux density B r in the radial direction component of each phase by electromagnetic analysis. The horizontal axis is the stator position angle phi m, .theta.e is 0 (zero).

図2(A)には、W相ティース151と、U相ティース152と、V相ティース153と、4つの永久磁石154と、が示されている。また、破線によって永久磁石による磁力線が示されている。なお、各相のティースに巻かれているコイルは省略している。   2A shows a W-phase tooth 151, a U-phase tooth 152, a V-phase tooth 153, and four permanent magnets 154. Moreover, the magnetic force line by a permanent magnet is shown by the broken line. Note that the coils wound around the teeth of each phase are omitted.

図2(B)に示すように、U相ティース152の表面では、永久磁石による磁束分布Brはほぼ均一である。一方、W相ティース151とV相ティース153の表面では、永久磁石による磁束密度Brは不均一である。   As shown in FIG. 2 (B), the magnetic flux distribution Br by the permanent magnet is substantially uniform on the surface of the U-phase tooth 152. On the other hand, the magnetic flux density Br by the permanent magnet is not uniform on the surfaces of the W-phase tooth 151 and the V-phase tooth 153.

そこで、V相、W相のティース表面全体の面積Sのうち、永久磁石による磁束が面積γSのみに分布すると近似する。なお、磁束が分布する領域γSを鎖交磁束面積と呼ぶ。そしてγは、0<γ≦1の係数であり、鎖交磁束面積係数と呼ばれる。   Therefore, it is approximated that the magnetic flux due to the permanent magnet is distributed only in the area γS out of the area S of the entire V-phase and W-phase teeth surfaces. The region γS in which the magnetic flux is distributed is referred to as the interlinkage magnetic flux area. Γ is a coefficient of 0 <γ ≦ 1, and is called a flux linkage area coefficient.

ここで、電磁界解析より得られた値を用いて、U相ではγ=1と、V相及びW相ではγ=0.5とする。   Here, using the values obtained from the electromagnetic field analysis, γ = 1 for the U phase and γ = 0.5 for the V and W phases.

永久磁石による各相のティース表面に鎖交する総磁束ψmU、ψmV、ψmWは、次の式(9)と式(10)によって表わされる。 The total magnetic fluxes ψ mU , ψ mV , ψ mW interlinked with the teeth surface of each phase by the permanent magnet are expressed by the following equations (9) and (10).

Figure 0006052727
Figure 0006052727

Figure 0006052727
Figure 0006052727

ここで、式(9)及び式(10)中の磁束ψは、次式(11)によって表わされる。   Here, the magnetic flux ψ in the equations (9) and (10) is expressed by the following equation (11).

Figure 0006052727
Figure 0006052727

ここで、√(2/3)は、2相/3相の絶対変換での係数である。Nは、1ティースのターン数を示す。   Here, √ (2/3) is a coefficient in the absolute conversion of 2 phase / 3 phase. N indicates the number of turns of one tooth.

そして、永久磁石による磁束分布をBrmj=ψmj/Sとして近似する。 Then, the magnetic flux distribution by the permanent magnet is approximated as B rmj = ψ mj / S j .

ただし、jは、ティースのU相、V相又はW相を示す。Brmjは、永久磁石によるj相のティース表面の磁束密度を示す。ψmjは、j相に鎖交する磁石磁束を示す。Sjは、j相ティースの鎖交磁束面積を示す。 However, j shows the U phase, V phase, or W phase of teeth. B rmj represents the magnetic flux density on the surface of the j-phase teeth by a permanent magnet. ψ mj indicates a magnetic flux interlinking with the j phase. Sj represents the flux linkage area of the j-phase teeth.

図2(A)及び図2(B)では、S=S、S=γS、S=γSとなり、これを用いた磁束密度の近似結果(approximate model)が実線で示されている。 2A and 2B, S U = S, S V = γS, and S W = γS. An approximation result (approximate model) of magnetic flux density using these is shown by a solid line.

次に、d軸電流によって生じる磁束分布の近似モデルについて説明する。   Next, an approximate model of the magnetic flux distribution generated by the d-axis current will be described.

図3は、電磁界解析によるd軸電流の磁束密度を示す図である。図3(A)は、d軸電流によって各相のティースに発生する磁束を示す図である。図3(B)は、各相の半径方向成分の磁束密度Bを示す図である。 FIG. 3 is a diagram showing the magnetic flux density of the d-axis current by electromagnetic field analysis. FIG. 3A is a diagram illustrating a magnetic flux generated in the teeth of each phase by the d-axis current. 3 (B) is a diagram showing the magnetic flux density B r in the radial direction component of each phase.

図3(A)では、線形独立の仮定の下、i=1[A]における磁束密度から、磁石磁束により生じる磁束密度を除いた磁束密度を、電流により生じる磁束密度とする。 In FIG. 3A, under the assumption of linear independence, the magnetic flux density obtained by removing the magnetic flux density generated by the magnet magnetic flux from the magnetic flux density at i d = 1 [A] is defined as the magnetic flux density generated by the current.

図3(B)に示すように、ティース表面では、U相ティース152の磁束分布はほぼ均一である。W相ティース151とV相ティース153の磁束分布は、いずれもU相ティース側に磁束密度が集中している。簡略化のため、V相、W相においても磁束分布が均一に分布すると仮定して、d軸電流による磁束分布を近似する。   As shown in FIG. 3B, the magnetic flux distribution of the U-phase tooth 152 is substantially uniform on the tooth surface. As for the magnetic flux distribution of the W-phase teeth 151 and the V-phase teeth 153, the magnetic flux density is concentrated on the U-phase teeth side. For simplification, the magnetic flux distribution due to the d-axis current is approximated assuming that the magnetic flux distribution is evenly distributed in the V phase and the W phase.

このため、d軸電流によるU相、V相、W相の総磁束ψiU、ψiV、ψiWは、次の式(12)と式(13)によって表わされる。 Therefore, the total magnetic fluxes ψ iU, ψ iV, ψ iW of the U-phase, V-phase, and W-phase due to the d-axis current are expressed by the following equations (12) and (13).

Figure 0006052727
Figure 0006052727

Figure 0006052727
Figure 0006052727

ここで、式(12)及び式(13)中のlは、次式(14)で表わされる。 Here, l d in the formula (12) and Formula (13) is represented by the following equation (14).

Figure 0006052727
Figure 0006052727

次に、磁束分布の近似により求められるラジアル力の近似式について説明する。   Next, an approximate expression of the radial force obtained by approximating the magnetic flux distribution will be described.

まず、U相ティースに発生するラジアル力の近似式について説明する。   First, an approximate expression of the radial force generated in the U-phase teeth will be described.

U相ティース表面の磁束密度分布B(φ)は、式(9)と式(12)の結果より、次式(15)で近似できる。 The magnetic flux density distribution B rm ) on the U-phase teeth surface can be approximated by the following equation (15) from the results of the equations (9) and (12).

Figure 0006052727
Figure 0006052727

また、U相ティース表面のマクスウェル応力f(φ)は、式(5)の結果より、次式(16)で近似できる。 Further, the Maxwell stress f rm ) on the surface of the U-phase tooth can be approximated by the following equation (16) from the result of the equation (5).

Figure 0006052727
Figure 0006052727

したがって、U相ティースに働くラジアル力FrUは、次式(17)によって表わされる。 Therefore, the radial force F rU acting on the U-phase teeth is expressed by the following equation (17).

Figure 0006052727
Figure 0006052727

このように、U相に働くラジアル力の近似式(17)が得られる。   Thus, the approximate expression (17) of the radial force acting on the U phase is obtained.

次にV相又はW相ティース表面に発生するラジアル力の近似式について説明する。   Next, an approximate expression of the radial force generated on the V-phase or W-phase tooth surface will be described.

V相又はW相のティース表面の磁束分布は、永久磁石による磁束分布が不均一であるため、ティース表面の領域を分けて求める。   The magnetic flux distribution on the V-phase or W-phase tooth surface is obtained by dividing the region of the tooth surface because the magnetic flux distribution by the permanent magnet is not uniform.

図4は、V相、W相ティースに発生する磁束分布を示す観念図である。   FIG. 4 is a conceptual diagram showing the distribution of magnetic flux generated in the V-phase and W-phase teeth.

図4(A)は、ひとつのティース表面において、永久磁石による磁束が鎖交する領域γSと、電流による磁束が鎖交する領域Sと、を別々に示した図である。ここでは、Bri(φ)は、負のd軸電流における方向で表している。 FIG. 4A is a diagram separately showing a region γS where the magnetic flux due to the permanent magnet is linked and a region S where the magnetic flux due to the current is linked on one tooth surface. Here, B rim ) is represented by the direction in the negative d-axis current.

図4(A)の下矢印は、永久磁石によって発生する総磁束(0.5×ψ)を示している。一方、上矢印は、d軸成分のインダクタンスlのコイルにd軸電流iを流すことによって発生する磁束(−0.5×l)を示している。 The down arrow in FIG. 4A indicates the total magnetic flux (0.5 × ψ) generated by the permanent magnet. On the other hand, an up arrow indicates a magnetic flux (−0.5 × l d i d ) generated by flowing a d-axis current i d through a coil having an inductance l d of a d-axis component.

図4(B)は、永久磁石による総磁束とd軸電流による磁束とを足し合わせた磁束分布を示す図である。   FIG. 4B is a diagram showing a magnetic flux distribution obtained by adding the total magnetic flux by the permanent magnet and the magnetic flux by the d-axis current.

図4(B)において、領域γSの磁束分布B(φ)は、次式(18)によって表わされる。 In FIG. 4B, the magnetic flux distribution B rm ) in the region γS is expressed by the following equation (18).

Figure 0006052727
Figure 0006052727

一方、d軸電流による磁束のみが鎖交する領域(1−γ)Sの磁束分布B’(φ)は、次式(19)によって表わされる。 On the other hand, the magnetic flux distribution B ′ rm ) of the region (1-γ) S where only the magnetic flux due to the d-axis current is linked is expressed by the following equation (19).

Figure 0006052727
Figure 0006052727

したがって、V相、W相ティースに働くラジアル力FrV、FrWは、次式(20)によって表わされる。 Therefore, the radial forces F rV and F rW acting on the V-phase and W-phase teeth are expressed by the following equation (20).

Figure 0006052727
Figure 0006052727

このように、V相とW相に働くラジアル力の近似式(20)が得られる。   Thus, the approximate expression (20) of the radial force acting on the V phase and the W phase is obtained.

次に、ラジアル力の2次成分を抑制するためのd軸電流の制御について説明する。   Next, control of the d-axis current for suppressing the secondary component of the radial force will be described.

2次ラジアル力の抑制のためのd軸電流の導出にあたり、電気角θeでの各相のラジアル力をFrUe)、FrVe)、FrWe)と定義する。 In deriving the d-axis current for suppressing the secondary radial force, the radial force of each phase at the electrical angle θ e is defined as F rUe ), F rVe ), and F rWe ). To do.

一般に、振動するラジアル力を抑制するためには、ラジアル力の最大値と最小値の差を小さくすればよい。U相ティースに働くラジアル力の最大値は、電気角が0、π[rad]の時であり、式(17)で導いたFrUと等しい。 Generally, in order to suppress the vibrating radial force, the difference between the maximum value and the minimum value of the radial force may be reduced. The maximum value of the radial force acting on the U-phase teeth is when the electrical angle is 0 and π [rad], and is equal to F rU derived from the equation (17).

また、電気角が1/2π又は3/2π[rad]の時にラジアル力は最小となる。しかしながら、これらの瞬間の磁束分布は、周方向の磁束密度が無視できず、鎖交面積係数を用いた近似では精度が悪い。   Further, the radial force is minimized when the electrical angle is 1 / 2π or 3 / 2π [rad]. However, the magnetic flux distribution at these moments cannot ignore the magnetic flux density in the circumferential direction, and the approximation using the interlinkage area coefficient is inaccurate.

そこで、電気角1/3π[rad]のラジアル力に着目する。IPMSMが三相平衡であれば、FrU(2/3π)=FrV(0)が成立する。V相のラジアル力FrV(0)は、式(20)において近似したラジアル力FrVである。さらにモーター構造の対称性により、電気角が1/3π、2/3π、4/3π、5/3π[rad]において、FrU(θ)は等しい。 Therefore, attention is focused on the radial force of electrical angle 1 / 3π [rad]. If IPMSM is three-phase equilibrium, F rU (2 / 3π) = F rV (0) is established. The V-phase radial force F rV (0) is the radial force F rV approximated in the equation (20). Further, due to the symmetry of the motor structure, F rUe ) is equal when the electrical angles are 1 / 3π, 2 / 3π, 4 / 3π, and 5 / 3π [rad].

このため、次式(21)が成り立つようにd軸電流をコイルに流すことで、2次ラジアル力を大幅に抑制することが可能となる。   For this reason, it is possible to significantly suppress the secondary radial force by flowing the d-axis current through the coil so that the following expression (21) is satisfied.

Figure 0006052727
Figure 0006052727

rU=FrVの方程式とFrU=FrWの方程式とを整理し、d軸電流iについて解くと、以下のとおり、2次ラジアル力の抑制に必要なd軸電流値を導出する式(22)が得られる。 Organize and equations F rU = F equations rV and F rU = F rW, and solving for d-axis current i d, as follows, equations to derive d-axis current value required for suppression of the secondary radial force (22) is obtained.

Figure 0006052727
Figure 0006052727

そこで、本発明では、式(22)で算出されるd軸電流によって、モーターに生じるラジアル力、すなわち、半径方向の電磁加振力を抑制する。   Therefore, in the present invention, the radial force generated in the motor, that is, the radial electromagnetic excitation force is suppressed by the d-axis current calculated by the equation (22).

本発明の第1実施形態では、図1に示したモーター制御装置100に、さらにd軸電流補正部210と切替器211とを加えている。   In the first embodiment of the present invention, a d-axis current correction unit 210 and a switch 211 are further added to the motor control device 100 shown in FIG.

d軸電流補正部210は、式(22)に基づいてd軸電流指令値iを算出する。すなわち、d軸電流補正部210は、ティース表面Sのうち、永久磁石の磁束が通過する部分(鎖交磁束面積)の比率(鎖交磁束面積係数)γに基づいて、d軸電流指令値を補正する。 d-axis current correction unit 210 calculates the d-axis current command value i d based on the equation (22). That is, the d-axis current correction unit 210 determines the d-axis current command value based on the ratio (linkage magnetic flux area coefficient) γ of the portion of the tooth surface S through which the magnetic flux of the permanent magnet passes (linkage magnetic flux area coefficient). to correct.

本実施形態では、d軸電流補正部210には、鎖交磁束面積係数γと、ティースに巻き付けられたコイルのd軸インダクタンスlと、ティースを通過する永久磁石の磁束ψと、が入力される。 In the present embodiment, the d-axis current correction unit 210 receives the flux linkage area coefficient γ, the d-axis inductance l d of the coil wound around the teeth, and the magnetic flux ψ of the permanent magnet passing through the teeth. The

そしてd軸電流補正部210は、「1」から鎖交磁束面積係数γを減算し、減算した値(1−γ)を3γで除算する。さらにd軸電流補正部210は、除算した値((1−γ)/3γ)の平方根の値を算出し、算出した平方根の値を「−1」に加算、又は、「−1」から減算してd軸電流係数を算出する。   Then, the d-axis current correction unit 210 subtracts the flux linkage area coefficient γ from “1”, and divides the subtracted value (1−γ) by 3γ. Further, the d-axis current correction unit 210 calculates a square root value of the divided value ((1-γ) / 3γ), and adds the calculated square root value to “−1” or subtracts from “−1”. To calculate the d-axis current coefficient.

d軸電流補正部210は、d軸電流係数を算出すると、d軸インダクタンスlに対する永久磁石の磁束ψの比率(ψ/l)にd軸電流係数を乗算して、d軸電流指令値を算出する。 When the d-axis current correction unit 210 calculates the d-axis current coefficient, the d-axis current command value is calculated by multiplying the ratio (ψ / l d ) of the permanent magnet magnetic flux ψ to the d-axis inductance l d by the d-axis current coefficient. Is calculated.

例えば、鎖交磁束面積係数γが0.5であり、d軸インダクタンスlが53.1[μH]であり、磁束ψが3.65[mWb]である場合には、d軸電流補正部210は、−29[A]のd軸電流指令値を算出する。このd軸電流指令値の絶対値は、ベクトル電流指令部110から出力される値(例えば−5[A])よりも大きい。 For example, when the interlinkage magnetic flux area coefficient γ is 0.5, the d-axis inductance l d is 53.1 [μH], and the magnetic flux ψ is 3.65 [mWb], the d-axis current correction unit 210 calculates a d-axis current command value of −29 [A]. The absolute value of the d-axis current command value is larger than a value (for example, −5 [A]) output from the vector current command unit 110.

d軸電流補正部210に入力される鎖交磁束面積係数γは、図2(A)で示したように、ティースの形状(ツバを含む)、永久磁石の形状(例えば長さ)や、ティースに対する永久磁石の傾き等によって決まる。このため、これらのティースの形状等のパラメーターに基づいて、d軸電流補正部210で鎖交磁束面積係数γを算出するようにしてもよい。   As shown in FIG. 2A, the interlinkage magnetic flux area coefficient γ input to the d-axis current correction unit 210 includes the shape of teeth (including flanges), the shape of permanent magnets (for example, length), the teeth It depends on the inclination of the permanent magnet with respect to. For this reason, the flux linkage area coefficient γ may be calculated by the d-axis current correction unit 210 based on parameters such as the shape of the teeth.

d軸電流補正部210は、鎖交磁束面積係数γに基づいてd軸電流指令値を算出すると、d軸電流指令値を切替器211に出力する。   After calculating the d-axis current command value based on the flux linkage area coefficient γ, the d-axis current correction unit 210 outputs the d-axis current command value to the switch 211.

切替器211は、加速度センサーで検出した振動の大きさに応じて、モーター電流制御部130との接続を、ベクトル電流指令部110からd軸電流補正部210に切り替える。   The switch 211 switches the connection with the motor current control unit 130 from the vector current command unit 110 to the d-axis current correction unit 210 according to the magnitude of vibration detected by the acceleration sensor.

本実施形態では、切替器211は、加速度センサー160からの振動検出信号が振動閾値を超えると、補正実行条件が成立していると判断し、d軸電流補正部210とモーター電流制御部130との間を接続する。このため、ベクトル電流指令部110で算出したd軸電流指令値を補正した値として、d軸電流補正部210からのd軸電流指令値(例えば、−29[A])がモーター電流制御部130に入力される。   In the present embodiment, when the vibration detection signal from the acceleration sensor 160 exceeds the vibration threshold, the switch 211 determines that the correction execution condition is satisfied, and the d-axis current correction unit 210, the motor current control unit 130, Connect between. Therefore, as a value obtained by correcting the d-axis current command value calculated by the vector current command unit 110, the d-axis current command value (for example, −29 [A]) from the d-axis current correction unit 210 is used as the motor current control unit 130. Is input.

そしてモーター電流制御部130によって、モーター150のコイルに補正後のd軸電流が供給されるため、モーター150において半径方向の電磁加振力(ラジアル力)が抑制され、筺体の振動やその振動によって生じる音が低減される。   Then, since the corrected d-axis current is supplied to the coil of the motor 150 by the motor current control unit 130, the electromagnetic excitation force (radial force) in the radial direction is suppressed in the motor 150. The resulting sound is reduced.

一方、切替器211は、加速度センサー160からの振動検出信号が振動閾値を超えないときは、d軸電流指令線121とモーター電流制御部130との間を接続する。これにより、ベクトル電流指令部110からのd軸電流指令値(例えば、−5[A])がモーター電流制御部130に入力されるため、モーター電流制御部130によって、補正実行時よりも小さなd軸電流がコイルに流れる。   On the other hand, the switch 211 connects between the d-axis current command line 121 and the motor current control unit 130 when the vibration detection signal from the acceleration sensor 160 does not exceed the vibration threshold. Thus, since the d-axis current command value (for example, −5 [A]) from the vector current command unit 110 is input to the motor current control unit 130, the motor current control unit 130 causes the d smaller than that at the time of correction execution. Axial current flows through the coil.

コイルに流れるd軸電流が小さいほど、モーターで消費される電力も小さくなって電力損失も小さくなる。このため、モーター150の振動が小さいときには、ベクトル電流指令部110からのd軸電流指令値に切り替えることで、モーター150の消費電力を抑制して効率よくモーター150を駆動することができる。   The smaller the d-axis current flowing through the coil, the smaller the power consumed by the motor and the smaller the power loss. For this reason, when the vibration of the motor 150 is small, by switching to the d-axis current command value from the vector current command unit 110, the power consumption of the motor 150 can be suppressed and the motor 150 can be driven efficiently.

次に、d軸電流指令値の補正によるラジアル力の変動について電磁界解析の結果を参照して説明する。   Next, the variation of the radial force due to the correction of the d-axis current command value will be described with reference to the result of electromagnetic field analysis.

図5は、近似モデルに基づくd軸電流の制御によるラジアル力の抑制効果を示す図である。図5(a)は、i=0[A](無負荷時)のときのU相ラジアル力の変化を示す図である。図5(b)は、i=10[A]のときのU相ラジアル力の変化を示す。 FIG. 5 is a diagram showing the effect of suppressing the radial force by controlling the d-axis current based on the approximate model. FIG. 5A is a diagram showing a change in the U-phase radial force when i q = 0 [A] (no load). FIG. 5B shows a change in the U-phase radial force when i q = 10 [A].

図5(a)及び図5(b)では、d軸電流が−29.1[A]のときのラジアル力が実線で示され、d軸電流が0[A]のときのラジアル力が点線で示されている。   5 (a) and 5 (b), the radial force when the d-axis current is −29.1 [A] is indicated by a solid line, and the radial force when the d-axis current is 0 [A] is indicated by a dotted line. It is shown in

図5(a)に示すように、式(22)に基づくd軸電流をモーターのコイルに流すことによって、モーターに生じるラジアル力の変動が抑制されている。また、図5(b)に示すように、負荷があるとき(i=10[A])においても、同様にラジアル力の変動が抑制されていることがわかる。 As shown in FIG. 5A, the fluctuation of the radial force generated in the motor is suppressed by flowing the d-axis current based on the equation (22) through the motor coil. Moreover, as shown in FIG.5 (b), when there exists load ( iq = 10 [A]), it turns out that the fluctuation | variation of radial force is suppressed similarly.

本発明の第1実施形態によれば、ベクトル電流指令部110が、モーター150の目標回転速度とトルク指令値とに基づいてq軸電流指令値とd軸電流指令値とを演算する。また、d軸電流補正部210が、モーター150のティース表面Sのうち永久磁石の磁束が通過する部分の比率である鎖交磁束面積係数γに基づいてd軸電流指令値を補正する。   According to the first embodiment of the present invention, the vector current command unit 110 calculates a q-axis current command value and a d-axis current command value based on the target rotational speed of the motor 150 and the torque command value. Further, the d-axis current correction unit 210 corrects the d-axis current command value based on the interlinkage magnetic flux area coefficient γ which is the ratio of the portion of the tooth surface S of the motor 150 through which the permanent magnet magnetic flux passes.

これにより、d軸電流指令値が、式(22)中の鎖交磁束面積係数γによって補正されるため、モーター150のコイルに補正後のd軸電流が流れるので、電磁加振力による振動を抑制することができる。このため、モーター筺体の円周方向に波打つような振動が抑えられ、共振による大きな振動を回避することができる。   As a result, the d-axis current command value is corrected by the interlinkage magnetic flux area coefficient γ in the equation (22), and thus the corrected d-axis current flows through the coil of the motor 150. Can be suppressed. For this reason, the vibration that undulates in the circumferential direction of the motor housing is suppressed, and a large vibration due to resonance can be avoided.

さらに、本実施形態では、d軸電流補正部210は、ティースのd軸インダクタンス値lに対する永久磁石の磁束値ψの比率に基づいて、d軸電流指令値を算出する。 Further, in the present embodiment, the d-axis current correction unit 210 calculates the d-axis current command value based on the ratio of the magnetic flux value ψ of the permanent magnet to the d-axis inductance value l d of the teeth.

これにより、鎖交磁束面積係数γと、d軸インダクタンスlと、永久磁石の磁束値ψとを用いて式(22)で求めた値にd軸電流指令値が補正されるので、図5(a)に示したように、d軸方向に働くラジアル力をほぼ均一にすることができる。 As a result, the d-axis current command value is corrected to the value obtained by the equation (22) using the interlinkage magnetic flux area coefficient γ, the d-axis inductance l d, and the magnetic flux value ψ of the permanent magnet. As shown in (a), the radial force acting in the d-axis direction can be made substantially uniform.

また、本実施形態では、切替器211は、モーター150の振動が大きいときには、補正実行条件が成立していると判断し、d軸電流指令値を補正する。   In the present embodiment, the switch 211 determines that the correction execution condition is satisfied when the vibration of the motor 150 is large, and corrects the d-axis current command value.

これにより、モーターの150の振動が大きいときに限り、ベクトル電流指令部110の指令値に比べて大きなd軸電流をコイルに流すことで、ラジアル力の振動を抑制することができる。一方、モーターの振動が小さいときには、大きなd軸電流がコイルに流れることがないので、モーター150の消費電力を抑制し、効率良くモーター150を駆動することができる。   Thereby, only when the vibration of the motor 150 is large, the vibration of the radial force can be suppressed by flowing a d-axis current larger than the command value of the vector current command unit 110 to the coil. On the other hand, when the vibration of the motor is small, a large d-axis current does not flow through the coil, so that the power consumption of the motor 150 can be suppressed and the motor 150 can be driven efficiently.

本実施形態では切替器211が、加速度センサー160で検出した振動検出信号が振動閾値を超えたときに、ベクトル電流指令部110のd軸電流指令値に代えて、d軸電流補正部210のd軸電流指令値を補正値として出力する。   In this embodiment, when the vibration detection signal detected by the acceleration sensor 160 exceeds the vibration threshold, the switch 211 replaces the d-axis current command value of the vector current command unit 110 with d of the d-axis current correction unit 210. The shaft current command value is output as a correction value.

これにより、切替器211からは、モーター150に振動が生じているときに補正値が出力されるので、的確にモーター150の振動を抑止できる。さらに、モーター150が振動していないときに大きなd軸電流を流すことを防止できるので、モーター150で消費される無駄な電力を低減することができる。   Thereby, since the correction value is output from the switch 211 when the motor 150 is vibrating, the vibration of the motor 150 can be accurately suppressed. Furthermore, since it is possible to prevent a large d-axis current from flowing when the motor 150 is not vibrating, wasteful power consumed by the motor 150 can be reduced.

また、d軸電流補正部210は、ティースの長さと、永久磁石の傾き及び長さと、フラッグスバリアの形状と、に基づいて鎖交磁束面積係数γを計算してもよい。これにより、電磁界解析を用いることなく、簡易に鎖交磁束面積係数γを求めることができるようになる。   Further, the d-axis current correction unit 210 may calculate the interlinkage magnetic flux area coefficient γ based on the length of the teeth, the inclination and length of the permanent magnet, and the shape of the flags barrier. As a result, the flux linkage area coefficient γ can be easily obtained without using electromagnetic field analysis.

(第2実施形態)
図6は、本発明の第2実施形態におけるベクトル電流指令部を示す構成図である。
(Second Embodiment)
FIG. 6 is a block diagram showing a vector current command unit in the second embodiment of the present invention.

ベクトル電流指令部310は、図1に示したベクトル電流指令部110と同様、q軸電流指令値とd軸電流指令値を算出する。ベクトル電流指令部310は、トルク指令値と目標回転速度とに基づいて、d軸電流指令値を補正する。   The vector current command unit 310 calculates the q-axis current command value and the d-axis current command value in the same manner as the vector current command unit 110 shown in FIG. The vector current command unit 310 corrects the d-axis current command value based on the torque command value and the target rotation speed.

ベクトル電流指令部310は、切替情報保持部311と、補正実行判断部312と、セレクター313と、ベクトル制御情報保持部314と、ベクトル補正情報保持部315と、電流指令値算出部316と、を備える。   The vector current command unit 310 includes a switching information storage unit 311, a correction execution determination unit 312, a selector 313, a vector control information storage unit 314, a vector correction information storage unit 315, and a current command value calculation unit 316. Prepare.

切替情報保持部311は、d軸電流指令値を補正するか否かを判断するための切替情報を保持する。切替情報には、d軸電流の補正を実行する運転領域(以下、「補正運転領域」と称する)が規定されている。本実施形態では、切替情報には、トルク指令値と目標回転速度とで特定される補正運転領域が規定されている。   The switching information holding unit 311 holds switching information for determining whether or not to correct the d-axis current command value. The switching information defines an operation region (hereinafter referred to as “correction operation region”) in which the d-axis current is corrected. In the present embodiment, the switching information defines a corrected operation region specified by the torque command value and the target rotation speed.

補正運転領域は、例えば、モーター150に生じる2次又は6次のラジアル成分が大きくなる運転領域であり、実験データーに基づいて決定される。なお、目標回転速度のみによって補正運転領域を規定してもよい。   The corrected operation region is, for example, an operation region in which a secondary or sixth-order radial component generated in the motor 150 is increased, and is determined based on experimental data. Note that the correction operation region may be defined only by the target rotation speed.

補正実行判断部312は、トルク指令信号線101からのトルク指令値と、回転速度信号線102からの目標回転速度とが入力されると、切替情報保持部311を参照して、d軸電流指令値を補正するか否かを判断する。また、補正実行判断部312は、トルク指令値と目標回転速度とを電流指令値算出部316にそれぞれ出力する。   When the torque command value from the torque command signal line 101 and the target rotation speed from the rotation speed signal line 102 are input, the correction execution determination unit 312 refers to the switching information holding unit 311 and refers to the d-axis current command. It is determined whether or not to correct the value. Further, the correction execution determination unit 312 outputs the torque command value and the target rotation speed to the current command value calculation unit 316, respectively.

補正実行判断部312は、モーターのトルク指令値と目標回転速度とで特定される運転点が、切替情報の補正運転領域にあるか否かを判断する。補正実行判断部312は、モーターの運転点が補正運転領域にあるときは、ベクトル補正情報保持部315に設定する制御信号をセレクター313に出力する。   The correction execution determination unit 312 determines whether or not the operation point specified by the motor torque command value and the target rotation speed is in the correction operation region of the switching information. The correction execution determination unit 312 outputs a control signal to be set in the vector correction information holding unit 315 to the selector 313 when the motor operating point is in the correction operation region.

一方、補正実行判断部312は、モーターの運転点が補正運転領域にないときは、補正実行条件が成立していないと判断し、ベクトル制御情報保持部314に設定する制御信号をセレクター313に出力する。   On the other hand, the correction execution determination unit 312 determines that the correction execution condition is not satisfied when the motor operating point is not in the correction operation region, and outputs a control signal set in the vector control information holding unit 314 to the selector 313. To do.

ベクトル制御情報保持部314は、図1で述べたトルクマップ、すなわちベクトル制御において一般に使用されるベクトル制御情報を保持する。   The vector control information holding unit 314 holds the torque map described in FIG. 1, that is, vector control information generally used in vector control.

ベクトル補正情報保持部315は、2次又は6次のラジアル力を抑制するためのd軸電流指令値が含まれるベクトル補正情報を保持する。ベクトル補正情報には、式(22)に基づいて定められたd軸電流指令値とq軸電流指令値とが、モーターの運転点ごとに互いに対応付けられている。   The vector correction information holding unit 315 holds vector correction information including a d-axis current command value for suppressing a secondary or sixth-order radial force. In the vector correction information, the d-axis current command value and the q-axis current command value determined based on Expression (22) are associated with each other for each operating point of the motor.

具体的には、モーター150の半径方向に生じる振動の発生周波数は、モーターの仕様によって決まるため、ベクトル補正情報保持部315には、モーター150によって定まる発生周波数に応じたd軸電流指令値が記録される。   Specifically, since the generation frequency of the vibration generated in the radial direction of the motor 150 is determined by the motor specifications, the d-axis current command value corresponding to the generation frequency determined by the motor 150 is recorded in the vector correction information holding unit 315. Is done.

なお、式(22)は、理想的な状態を想定して近似された近似式であるため、トルクの変動に応じて誤差が生じる。このため、ベクトル補正情報保持部315には、式(22)中の鎖交磁束面積係数γに基づいて修正されたd軸電流指令値がモーターの運転点又はd軸電流指令値ごとに保持されている。あるいは、ベクトル補正情報には、電磁界解析や実験データーで運転点ごとに求められたd軸電流指令値が用いられてもよい。   Since equation (22) is an approximate equation approximated assuming an ideal state, an error occurs according to torque fluctuation. Therefore, the vector correction information holding unit 315 holds the d-axis current command value corrected based on the flux linkage area coefficient γ in the equation (22) for each motor operating point or d-axis current command value. ing. Alternatively, as the vector correction information, a d-axis current command value obtained for each operating point by electromagnetic field analysis or experimental data may be used.

セレクター313は、補正実行判断部312からの制御信号に従って、ベクトル制御情報保持部314又はベクトル補正情報保持部315に保持された情報を電流指令値算出部316に出力する。   The selector 313 outputs the information held in the vector control information holding unit 314 or the vector correction information holding unit 315 to the current command value calculation unit 316 in accordance with the control signal from the correction execution determining unit 312.

電流指令値算出部316は、補正実行判断部312からのトルク指令値と目標回転速度とに基づいて、ベクトル制御情報保持部314又はベクトル補正情報保持部315のいずれかを参照し、d軸電流指令値とq軸電流指令値とを演算する。   The current command value calculation unit 316 refers to either the vector control information holding unit 314 or the vector correction information holding unit 315 based on the torque command value from the correction execution determination unit 312 and the target rotation speed, and d-axis current The command value and the q-axis current command value are calculated.

例えば、電流指令値算出部316は、トルク指令値と目標回転速度とで特定されるモーターの運転点が補正運転領域内にあるときは、ベクトル補正情報に対応付けられたq軸電流指令値と、式(22)に基づくd軸電流指令値とを取得する。すなわち、電流指令値算出部316は、ベクトル補正情報保持部315を参照することで、モーター150の振動の発生周波数に応じてd軸電流指令値を補正する。   For example, when the operating point of the motor specified by the torque command value and the target rotational speed is within the correction operation region, the current command value calculation unit 316 calculates the q-axis current command value associated with the vector correction information, And a d-axis current command value based on Expression (22). That is, the current command value calculation unit 316 refers to the vector correction information holding unit 315 and corrects the d-axis current command value according to the frequency of vibration of the motor 150.

一方、電流指令値算出部316は、モーターの運転点が補正運転領域内にないときは、ベクトル制御情報に対応付けられた、通常のd軸電流指令値とq軸電流指令値を出力する。   On the other hand, the current command value calculation unit 316 outputs a normal d-axis current command value and a q-axis current command value associated with the vector control information when the operating point of the motor is not within the corrected operation region.

このように、電流指令値算出部316は、補正実行判断部312によってモーター150が補正運転領域にあると判断されたときは、セレクター313からベクトル補正情報が出力されるので、式(22)に基づくd軸電流指令値を算力することができる。このため、ベクトル電流指令部310は、モーター150の運転状態に応じてd軸電流指令値を補正することができる。   As described above, when the correction execution determination unit 312 determines that the motor 150 is in the correction operation region, the current command value calculation unit 316 outputs the vector correction information from the selector 313. The d-axis current command value can be calculated. Therefore, the vector current command unit 310 can correct the d-axis current command value according to the operating state of the motor 150.

なお、補正実行判断部312に、加速度センサー160からの振動検出信号がフィードバックされる構成にしてもよい。この場合、補正実行判断部312は、振動検出信号が振動閾値を超えたときは、モーターの運転点が補正運転領域外のときでも、セレクター313をベクトル補正情報保持部315に設定する。これにより、モーター150の振動をより確実に低減することができる。   Note that the vibration detection signal from the acceleration sensor 160 may be fed back to the correction execution determination unit 312. In this case, when the vibration detection signal exceeds the vibration threshold, the correction execution determination unit 312 sets the selector 313 in the vector correction information holding unit 315 even when the motor operation point is outside the correction operation region. Thereby, the vibration of the motor 150 can be reduced more reliably.

次に、ベクトル電流指令部310の動作について説明する。   Next, the operation of the vector current command unit 310 will be described.

図7は、d軸電流指令値の補正方法を示すフローチャートである。   FIG. 7 is a flowchart showing a method for correcting the d-axis current command value.

まず、ステップS911において補正実行判断部312は、トルク指令信号線101からトルク指令値を取得すると共に、回転速度信号線102から目標回転速度を取得する。   First, in step S <b> 911, the correction execution determination unit 312 acquires a torque command value from the torque command signal line 101 and acquires a target rotation speed from the rotation speed signal line 102.

ステップS912において補正実行判断部312は、切替情報保持部311を参照して、トルク指令値と目標回転速度とで特定されるモーター運転点が補正運転領域内か否かを判断する。   In step S912, the correction execution determination unit 312 refers to the switching information holding unit 311 and determines whether or not the motor operation point specified by the torque command value and the target rotation speed is within the correction operation region.

ステップS913において補正実行判断部312は、モーター運転点が補正運転域内のときは、セレクター313をベクトル補正情報保持部315に設定する。これにより、電流指令値算出部316は、セレクター313を介してベクトル補正情報保持部315を参照する。   In step S913, the correction execution determination unit 312 sets the selector 313 in the vector correction information holding unit 315 when the motor operation point is within the correction operation range. As a result, the current command value calculation unit 316 refers to the vector correction information holding unit 315 via the selector 313.

一方、ステップS915において補正実行判断部312は、モーター運転点が補正運転領域外のときは、セレクター313をベクトル補正情報保持部315に設定する。これにより、電流指令値算出部316は、セレクター313を介してベクトル制御情報保持部314を参照する。   On the other hand, in step S915, the correction execution determination unit 312 sets the selector 313 in the vector correction information holding unit 315 when the motor operation point is outside the correction operation region. As a result, the current command value calculation unit 316 refers to the vector control information holding unit 314 via the selector 313.

次にステップS914において、電流指令値算出部316は、ベクトル制御情報保持部314を参照するときは、通常のd軸電流指令値とq軸電流指令値をモーター電流制御部130に出力する。また、電流指令値算出部316は、ベクトル補正情報保持部315を参照するときは、q軸電流指令値と、式(22)に基づくd軸電流指令値を出力する。   In step S <b> 914, the current command value calculation unit 316 outputs the normal d-axis current command value and the q-axis current command value to the motor current control unit 130 when referring to the vector control information holding unit 314. Further, when referring to the vector correction information holding unit 315, the current command value calculation unit 316 outputs a q-axis current command value and a d-axis current command value based on Expression (22).

第2実施形態によれば、補正実行判断部312は、切替情報保持部311を参照し、目標回転速度とトルク指令値とで特定される運転点が、補正運転領域にあるときは、補正実行条件が成立していると判断する。この場合には、電流指令値算出部316は、ベクトル補正情報を用いてd軸指令電流値を補正する。   According to the second embodiment, the correction execution determination unit 312 refers to the switching information holding unit 311 and performs correction execution when the operation point specified by the target rotation speed and the torque command value is in the correction operation region. It is determined that the condition is satisfied. In this case, the current command value calculation unit 316 corrects the d-axis command current value using the vector correction information.

したがって、ベクトル電流指令部310は、モーター150の運転状態に応じてd軸電流指令値を補正することができる。このため、第1実施形態と同様、モーター150の電力利用効率の低下を低減しつつ、モーター150の振動を抑制することができる。また、第1実施形態と異なり、モーター150で振動が発生する前にラジアル力を抑制することができる。さらにd軸電流補正部210、切替器211及び加速度センサー160を設ける必要がないので、簡易な構成でモーター制御装置を実現することができる。   Therefore, the vector current command unit 310 can correct the d-axis current command value according to the operating state of the motor 150. For this reason, as in the first embodiment, it is possible to suppress the vibration of the motor 150 while reducing the decrease in the power utilization efficiency of the motor 150. Further, unlike the first embodiment, the radial force can be suppressed before the motor 150 generates vibration. Furthermore, since it is not necessary to provide the d-axis current correction unit 210, the switch 211, and the acceleration sensor 160, a motor control device can be realized with a simple configuration.

また、本実施形態では、ベクトル補正情報保持部315には、鎖交磁束面積係数γに基づいて定められたd軸電流指令値、又は、電磁界解析で求められたd軸電流指令値をモーターの運転点ごとに記憶される。   In the present embodiment, the vector correction information holding unit 315 receives the d-axis current command value determined based on the flux linkage area coefficient γ or the d-axis current command value obtained by electromagnetic field analysis on the motor. It is memorized for each driving point.

このため、電流指令値算出部316は、ベクトル補正情報保持部315を参照し、近似式(22)に基づいて運転点ごとに補正したd軸電流指令値を、モーター電流制御部130に出力する。これにより、近似式(22)の誤差に伴うモーターの振動を抑制することができる。   Therefore, the current command value calculation unit 316 refers to the vector correction information holding unit 315, and outputs the d-axis current command value corrected for each operating point based on the approximate expression (22) to the motor current control unit 130. . Thereby, the vibration of the motor accompanying the error of the approximate expression (22) can be suppressed.

また、ベクトル補正情報保持部315には、モーターの仕様によって定まる半径方向の振動の発生周波数に適したベクトル補正情報が記録される。このため、電流指令値算出部316は、ベクトル補正情報保持部315を参照することで、振動の発生周波数に応じた値にd軸電流指令値を補正することができる。したがって、モーター150のコイルにd軸電流を流し過ぎることがないので、モーター150の電力損失を抑制することができる。   The vector correction information holding unit 315 records vector correction information suitable for the frequency of occurrence of radial vibration determined by the motor specifications. Therefore, the current command value calculation unit 316 can correct the d-axis current command value to a value corresponding to the vibration generation frequency by referring to the vector correction information holding unit 315. Therefore, since d-axis current does not flow excessively through the coil of the motor 150, power loss of the motor 150 can be suppressed.

(第3実施形態)
図8は、本発明の第3実施形態におけるモーター制御装置を示す構成図である。
(Third embodiment)
FIG. 8 is a block diagram showing a motor control device according to the third embodiment of the present invention.

モーター制御装置400は、図1で示したモーター制御装置のd軸電流補正部210と切替器211に代えて、d軸電流補正部410と演算器411を備えている。なお、他の構成は、モーター制御装置100と同じであるため、同一符号を付してここでの説明を省略する。   The motor control device 400 includes a d-axis current correction unit 410 and a calculator 411 instead of the d-axis current correction unit 210 and the switch 211 of the motor control device shown in FIG. Since other configurations are the same as those of the motor control device 100, the same reference numerals are given and description thereof is omitted here.

d軸電流補正部410には、加速度センサー160から振動検出信号がフィードバックされる。d軸電流補正部410は、フィードバックされる振動検出信号に応じてd軸電流指令値を増減させる。   A vibration detection signal is fed back from the acceleration sensor 160 to the d-axis current correction unit 410. The d-axis current correction unit 410 increases or decreases the d-axis current command value according to the vibration detection signal fed back.

d軸電流補正部410は、例えば、式(22)で求めた値(−29[A])を上限値として設定された増幅器を備える。d軸電流補正部410は、振動検出信号に応じてd軸電流指令値の補正係数(利得)を調整する。d軸電流補正部410は、振動検出信号の信号レベルが高くなるほど、補正係数を式(22)で求めたd軸電流指令値に近づける。一方、d軸電流補正部410は、振動検出信号が低くなるほど、ベクトル電流指令部110で算出されたd軸電流指令値(例えば、−5[A])に補正係数を近づける。   The d-axis current correction unit 410 includes, for example, an amplifier set with the value (−29 [A]) obtained by Expression (22) as an upper limit value. The d-axis current correction unit 410 adjusts the correction coefficient (gain) of the d-axis current command value according to the vibration detection signal. The d-axis current correction unit 410 brings the correction coefficient closer to the d-axis current command value obtained by Expression (22) as the signal level of the vibration detection signal increases. On the other hand, the d-axis current correction unit 410 brings the correction coefficient closer to the d-axis current command value (for example, −5 [A]) calculated by the vector current command unit 110 as the vibration detection signal becomes lower.

d軸電流補正部410は、振動検出信号の信号レベルに応じて調整された補正係数をd軸電流指令値として演算器411に出力する。   The d-axis current correction unit 410 outputs a correction coefficient adjusted according to the signal level of the vibration detection signal to the calculator 411 as a d-axis current command value.

演算器411は、ベクトル電流指令部110からのd軸電流指令値に、d軸電流補正部410からの補正係数を加算する。演算器411は、加算されたd軸電流指令値をモーター電流制御部130に出力する。すなわち、演算器411は、振動検出信号と鎖交磁束面積係数γとに基づいて補正されたd軸電流指令値をモーター電流制御部130に出力する。   The calculator 411 adds the correction coefficient from the d-axis current correction unit 410 to the d-axis current command value from the vector current command unit 110. The calculator 411 outputs the added d-axis current command value to the motor current control unit 130. That is, the calculator 411 outputs the d-axis current command value corrected based on the vibration detection signal and the flux linkage area coefficient γ to the motor current control unit 130.

本発明の第3実施形態によれば、d軸電流補正部410は、振動検出信号の大きさに応じてd軸電流指令値を増減させる。   According to the third embodiment of the present invention, the d-axis current correction unit 410 increases or decreases the d-axis current command value according to the magnitude of the vibration detection signal.

モーター150のコイルに供給されるd軸電流は、ベクトル電流指令部110で算出された値(例えば−5[A])から、式(22)で求めた値(例えば−29[A])に近くなるほど、ラジアル力に起因する振動は低減される。   The d-axis current supplied to the coil of the motor 150 is changed from the value (for example, −5 [A]) calculated by the vector current command unit 110 to the value (for example, −29 [A]) obtained by Expression (22). The closer it is, the less vibration caused by radial force.

このため、モーター150の振動の大きさに応じてd軸電流指令値を調整することで、他の実施形態よりもモーター150の振動に伴うd軸電流の過剰な供給を低減することが可能となる。したがって、モーターのラジアル力の抑制と運転の効率化とを両立することができる。   For this reason, by adjusting the d-axis current command value according to the magnitude of the vibration of the motor 150, it is possible to reduce the excessive supply of the d-axis current due to the vibration of the motor 150 as compared with other embodiments. Become. Therefore, it is possible to achieve both suppression of the radial force of the motor and efficiency of operation.

以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。   The embodiment of the present invention has been described above. However, the above embodiment only shows a part of application examples of the present invention, and the technical scope of the present invention is limited to the specific configuration of the above embodiment. Absent.

例えば、本発明は、埋込型磁石同期モーター以外の電動モーターにも適用することができる。本実施形態ではモーター150としてIPMSMが用いられたが、SPMSM(Surface Permanent Magnet Synchronous Motor)が用いられても、同様の効果を得ることができる。   For example, the present invention can be applied to an electric motor other than an embedded magnet synchronous motor. In the present embodiment, IPMSM is used as the motor 150, but the same effect can be obtained even if SPMSM (Surface Permanent Magnet Synchronous Motor) is used.

なお、上記実施形態は、適宜組み合わせ可能である。   In addition, the said embodiment can be combined suitably.

100、400 モーター制御装置
110 ベクトル電流指令部
130 モーター電流制御部
140 インバーター
150 モーター
151 加速度センサー
210、410 d軸電流補正部(補正部)
211 切替器
310 ベクトル電流指令部(補正部)
411 演算器
100, 400 Motor control device 110 Vector current command unit 130 Motor current control unit 140 Inverter 150 Motor 151 Acceleration sensor 210, 410 d-axis current correction unit (correction unit)
211 switch 310 vector current command part (correction part)
411 arithmetic unit

Claims (9)

永久磁石同期モーターの各相のティースに巻き付けられたコイルに供給する電流をベクトル制御に基づくq軸電流指令値及びd軸電流指令値を用いて制御するモーター制御装置であって、
モーターの目標回転速度とトルク指令値とに基づいてq軸電流指令値及びd軸電流指令値を演算する演算部と、
永久磁石がティースに対向する位置にある場合における他相のティース表面のうち当該永久磁石の磁束が通過する部分の比率に基づいて前記d軸電流指令値を補正する補正部と、
を含むモーター制御装置。
A motor control device that controls a current supplied to a coil wound around each phase of a permanent magnet synchronous motor using a q-axis current command value and a d-axis current command value based on vector control,
A calculation unit for calculating a q-axis current command value and a d-axis current command value based on the target rotational speed of the motor and the torque command value;
A correction unit based on the ratio of the portion where the magnetic flux of the permanent magnet passes out of the tooth surface of the other phase, to correct the d-axis current command value in the case where a position the permanent magnet is opposed to the teeth,
Including motor control device.
請求項1に記載のモーター制御装置において、
前記補正部は、前記ティースのd軸インダクタンス値に対する前記永久磁石の磁束値の比率に基づいて、d軸電流指令値を算出する、
モーター制御装置。
The motor control device according to claim 1,
The correction unit calculates a d-axis current command value based on a ratio of a magnetic flux value of the permanent magnet to a d-axis inductance value of the teeth.
Motor control device.
請求項1又は請求項2に記載のモーター制御装置において、
前記補正部は、補正実行条件が成立しているときにd軸電流指令値を補正する、
モーター制御装置。
In the motor control device according to claim 1 or 2,
The correction unit corrects the d-axis current command value when the correction execution condition is satisfied,
Motor control device.
請求項3に記載のモーター制御装置において、
前記永久磁石同期モーターに生じる振動を検出する検出部をさらに含み、
前記補正部は、前記検出部で検出した振動の大きさが閾値を超えたときは、補正実行条件が成立していると判断する、
モーター制御装置。
The motor control device according to claim 3,
A detection unit for detecting vibration generated in the permanent magnet synchronous motor;
The correction unit determines that the correction execution condition is satisfied when the magnitude of vibration detected by the detection unit exceeds a threshold;
Motor control device.
請求項4に記載のモーター制御装置において、
前記補正部は、前記検出部で検出した振動の大きさに応じてd軸電流指令値を増減させる、
モーター制御装置。
The motor control device according to claim 4, wherein
The correction unit increases or decreases the d-axis current command value according to the magnitude of vibration detected by the detection unit.
Motor control device.
請求項3又は請求項4に記載のモーター制御装置において、
前記補正部は、モーターの目標回転速度とトルク指令値とで特定される運転点が所定の運転領域にあるときは、補正実行条件が成立していると判断する、
モーター制御装置。
In the motor control device according to claim 3 or claim 4,
The correction unit determines that the correction execution condition is satisfied when the operation point specified by the target rotation speed of the motor and the torque command value is in a predetermined operation region.
Motor control device.
請求項6に記載のモーター制御装置において、
前記補正部は、ティース表面のうち永久磁石の磁束が通過する部分の比率に基づいて定められたd軸電流指令値、又は、電磁界解析で求められたd軸電流指令値をモーターの運転点ごとに保持する保持部を含む、
モーター制御装置。
The motor control device according to claim 6,
The correction unit uses a d-axis current command value determined based on a ratio of a portion of the tooth surface through which the magnetic flux of the permanent magnet passes or a d-axis current command value obtained by electromagnetic field analysis as an operating point of the motor. Including a holding part to hold each,
Motor control device.
請求項6又は請求項7に記載のモーター制御装置において、
前記補正部は、モーターに生じる振動の周波数に応じてd軸電流指令値を補正する、
モーター制御装置。
In the motor control device according to claim 6 or 7,
The correction unit corrects the d-axis current command value according to the frequency of vibration generated in the motor.
Motor control device.
請求項1から請求項8のいずれか1項に記載のモーター制御装置において、
前記ティース表面のうち永久磁石の磁束が通過する部分の比率は、ティースの長さと、永久磁石の傾き及び長さと、フラッグスバリアの形状と、に基づいて計算される、
モーター制御装置。
The motor control device according to any one of claims 1 to 8,
The ratio of the portion of the tooth surface through which the magnetic flux of the permanent magnet passes is calculated based on the length of the tooth, the inclination and length of the permanent magnet, and the shape of the flags barrier.
Motor control device.
JP2012208362A 2012-09-21 2012-09-21 Motor control device Active JP6052727B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012208362A JP6052727B2 (en) 2012-09-21 2012-09-21 Motor control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012208362A JP6052727B2 (en) 2012-09-21 2012-09-21 Motor control device

Publications (2)

Publication Number Publication Date
JP2014064400A JP2014064400A (en) 2014-04-10
JP6052727B2 true JP6052727B2 (en) 2016-12-27

Family

ID=50619146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012208362A Active JP6052727B2 (en) 2012-09-21 2012-09-21 Motor control device

Country Status (1)

Country Link
JP (1) JP6052727B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6470913B2 (en) * 2014-04-28 2019-02-13 日立オートモティブシステムズ株式会社 Motor drive system
JP6438226B2 (en) * 2014-07-24 2018-12-12 日産自動車株式会社 Motor control device and motor control method
JP6456650B2 (en) * 2014-10-14 2019-01-23 日立アプライアンス株式会社 Motor control device, compressor, air conditioner and program
JP6644987B2 (en) * 2016-12-15 2020-02-12 本田技研工業株式会社 Rotary electric machine control device and rotary electric machine control method
JP7169587B2 (en) * 2019-03-28 2022-11-11 株式会社アイシン Rotating electric machine control system
JP6641053B1 (en) * 2019-04-25 2020-02-05 三菱電機株式会社 Electric motor control device and electric power steering device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100634588B1 (en) * 2003-12-30 2006-10-13 현대자동차주식회사 Control system and method for permanent magnet synchronous motor
JP2008236923A (en) * 2007-03-22 2008-10-02 Meidensha Corp Eddy current reduction method and device of pm motor

Also Published As

Publication number Publication date
JP2014064400A (en) 2014-04-10

Similar Documents

Publication Publication Date Title
CN102170256B (en) Controller for motor
JP6052727B2 (en) Motor control device
JP4789720B2 (en) Motor control device
US11040625B2 (en) Optimized regenerative braking control of electric motors using look-up tables
JPWO2009040884A1 (en) Electric motor control device
BR112013022009B1 (en) method and system for controlling an electric motor in or near stall operating conditions
JP2007274844A (en) Electric drive controller and control method
JP2002095300A (en) Method of controlling permanent magnet synchronous motor
JP5790123B2 (en) Motor drive control device and motor drive method
JP4462207B2 (en) Electric drive control device and electric drive control method
JP2007274779A (en) Electromotive drive control device, and electromotive drive control method
JP5305933B2 (en) Motor drive system
JP4522273B2 (en) Motor control device and motor drive system having the same
JP2010105763A (en) Power converter and elevator using the same
JP5095134B2 (en) Motor control device and motor control method
JP4896562B2 (en) Electric drive control device and electric drive control method
JP2017147870A (en) Motor vibration evaluation testing method and motor vibration evaluation testing device
WO2016189671A1 (en) Motor control device and method for stopping same
JP2006050705A (en) Motor control unit
JP5225046B2 (en) Variable magnetic flux motor drive system
JP2009268183A (en) Drive apparatus for three-phase ac motor
JP4380650B2 (en) Electric drive control device and electric drive control method
JP6032809B2 (en) Control device for permanent magnet synchronous motor
JP7267487B1 (en) Control device for rotating electrical machine and method for controlling rotating electrical machine
JP6989574B2 (en) Control device, vehicle system and control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150602

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161121

R150 Certificate of patent or registration of utility model

Ref document number: 6052727

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150