JP6047358B2 - Multiplexed element and manufacturing method thereof - Google Patents

Multiplexed element and manufacturing method thereof Download PDF

Info

Publication number
JP6047358B2
JP6047358B2 JP2012216053A JP2012216053A JP6047358B2 JP 6047358 B2 JP6047358 B2 JP 6047358B2 JP 2012216053 A JP2012216053 A JP 2012216053A JP 2012216053 A JP2012216053 A JP 2012216053A JP 6047358 B2 JP6047358 B2 JP 6047358B2
Authority
JP
Japan
Prior art keywords
piezoelectric elements
piezoelectric
flat plate
adhesive
series
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012216053A
Other languages
Japanese (ja)
Other versions
JP2014072302A (en
Inventor
雄一 館山
雄一 館山
信之 黒崎
信之 黒崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2012216053A priority Critical patent/JP6047358B2/en
Publication of JP2014072302A publication Critical patent/JP2014072302A/en
Application granted granted Critical
Publication of JP6047358B2 publication Critical patent/JP6047358B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Description

本発明は、電圧の印加により伸縮する多連化素子およびその製造方法に関する。   The present invention relates to a multiple element that expands and contracts by application of a voltage and a method for manufacturing the same.

積層型圧電素子(以下、圧電素子)は、電圧印加により積層方向(分極方向)へ伸びる際に面方向へは縮む。このような圧電素子は、必要変位量に応じて、接着剤により積層方向へ直列に多連化して使用される場合がある。   A laminated piezoelectric element (hereinafter referred to as a piezoelectric element) contracts in the plane direction when it extends in the laminating direction (polarization direction) by applying a voltage. Such a piezoelectric element may be used in series in the stacking direction in series with an adhesive depending on the required displacement.

このように多連化した圧電素子については、圧電素子に応力緩和層を設けて多連化したものが知られている。たとえば特許文献1記載のアクチュエータは、活性領域の周囲に形成された応力緩和層を備えた圧電素子を接着工程で多連化することで形成されている。   As for the multiple piezoelectric elements as described above, there are known multiple piezoelectric elements provided with a stress relaxation layer on the piezoelectric elements. For example, the actuator described in Patent Document 1 is formed by connecting a plurality of piezoelectric elements each having a stress relaxation layer formed around an active region in an adhesion process.

特開2012−028411号公報JP 2012-028411 A

上記のような多連化素子については、多連化工程で接着剤により圧電素子同士を接着する際、圧電素子の不活性部同士を拘束しないようにするために、接着剤を圧電素子の積層方向の端面の中央部に部分的に塗布(部分接着)することが望ましい。   For the multiple elements as described above, when bonding the piezoelectric elements with the adhesive in the multiple process, the adhesive is laminated to prevent the inactive portions of the piezoelectric elements from being constrained. It is desirable to partially apply (partial adhesion) to the center of the end face in the direction.

そのため、接着剤の粘度によって、接着剤の塗布量および圧電素子へ掛ける予圧値の管理が必要となる。しかし、予圧値を都度管理しても、塗布を手作業で行う場合は得てして塗布量がばらつき、特に接着剤の粘度が小さい場合等は部分接着が難航する。この問題については、保護層の面取りによる対策が考えられるが、圧電素子への加工はコストが高く、内部電極を傷つけるおそれもある。   For this reason, it is necessary to manage the amount of adhesive applied and the preload value applied to the piezoelectric element depending on the viscosity of the adhesive. However, even if the preload value is managed each time, when the application is performed manually, the application amount varies, and particularly when the viscosity of the adhesive is small, partial adhesion is difficult. For this problem, measures by chamfering the protective layer can be considered, but the processing of the piezoelectric element is expensive and may damage the internal electrode.

本発明は、このような事情に鑑みてなされたものであり、接着作業の作業性を向上しつつ、圧電素子の不活性部同士の拘束により発生する応力を解消できる多連化素子およびその製造方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and a multi-element that can eliminate stress generated by restraint between the inactive portions of the piezoelectric element while improving the workability of the bonding work, and its manufacture It aims to provide a method.

(1)上記の目的を達成するため、本発明の多連化素子は、電圧の印加により伸縮する多連化素子であって、直列に積み重ねられた複数の圧電素子と、前記圧電素子の対向面の領域より小さい面積を有し、前記複数の圧電素子の間に設けられた平板と、前記平板とともに前記複数の圧電素子を連結する接着剤と、を備えることを特徴としている。これにより、接着作業の作業性を向上しつつ、圧電素子の不活性部同士の拘束により発生する応力を解消できる。   (1) In order to achieve the above object, a multiple element according to the present invention is a multiple element that expands and contracts when a voltage is applied, and a plurality of piezoelectric elements stacked in series are opposed to the piezoelectric element. A flat plate provided between the plurality of piezoelectric elements, and an adhesive that connects the plurality of piezoelectric elements together with the flat plate. Thereby, the stress which generate | occur | produces by restraint of the inactive parts of a piezoelectric element can be eliminated, improving the workability | operativity of a bonding operation | work.

(2)また、本発明の多連化素子は、前記平板が、前記圧電素子の内部電極の投影領域の範囲内に設けられていることを特徴としている。これにより、製造時に圧電素子同士の対向面の間のスペースに接着剤が逃げるため、素子同士は活性部を硬く接着し、不活性部を緩やかに接着することができる。その結果、不活性部同士の拘束を緩和し、応力を解消できる。   (2) Moreover, the multiple element of this invention is characterized by the said flat plate being provided in the range of the projection area | region of the internal electrode of the said piezoelectric element. As a result, the adhesive escapes into the space between the opposing surfaces of the piezoelectric elements at the time of manufacture, so that the elements can firmly bond the active part and gently bond the inactive part. As a result, the restraint between the inactive portions can be relaxed and the stress can be eliminated.

(3)また、本発明の多連化素子の製造方法は、複数の圧電素子が直列に連結され、電圧の印加により伸縮する多連化素子の製造方法であって、直列に積み重ねられる複数の圧電素子同士の直列方向の端面に接着剤を塗布するステップと、前記圧電素子同士の対向面の間に、前記圧電素子の直列方向の端面の領域より小さい面積を有する平板を挟むステップと、前記接着剤を硬化させるステップと、を含むことを特徴としている。   (3) Moreover, the manufacturing method of the multiple element of this invention is a manufacturing method of the multiple element which a some piezoelectric element connects in series, and expands-contracts by application of voltage, Comprising: Applying an adhesive to the end faces in the series direction of the piezoelectric elements; sandwiching a flat plate having an area smaller than the area of the end faces in the series direction of the piezoelectric elements between the opposing faces of the piezoelectric elements; and Curing the adhesive.

このように、本発明の多連化素子の製造方法では、平板を挟むことで圧電素子間にスペースを形成し、接着剤の塗布量が多い方向にばらついてしまった場合でも、そのスペースに接着剤を逃がし、素子同士の全面接着を防止できる。すなわち、全面接着により素子同士の不活性部が拘束し合い発生する応力を解消できる。また、接着剤量のばらつきの余裕が大きくなるため、手作業における接着剤塗布が簡易となる。   As described above, in the method for manufacturing a multi-element according to the present invention, a space is formed between the piezoelectric elements by sandwiching the flat plate, and even when the adhesive is dispersed in the direction in which the amount of the adhesive is large, the space is bonded The agent can escape and the entire surface can be prevented from being bonded to each other. That is, it is possible to eliminate the stress generated by restraining the inactive portions of the elements due to the entire surface adhesion. In addition, since there is a large margin of variation in the amount of adhesive, it is easy to apply the adhesive manually.

本発明によれば、接着作業の作業性を向上しつつ、圧電素子の不活性部同士の拘束により発生する応力を解消できる。   ADVANTAGE OF THE INVENTION According to this invention, the stress which generate | occur | produces by restraint of the inactive parts of a piezoelectric element can be eliminated, improving the workability | operativity of a bonding work.

(a)、(b)それぞれ本発明の多連化素子を示す正面図および側面図である。(A), (b) is the front view and side view which respectively show the multiple element of this invention. (a)、(b)それぞれ圧電素子および平板を示す平面図および正面図である。(A), (b) is the top view and front view which respectively show a piezoelectric element and a flat plate.

次に、本発明の実施の形態について、図面を参照しながら説明する。説明の理解を容易にするため、各図面において同一の構成要素に対しては同一の参照番号を付し、重複する説明は省略する。   Next, embodiments of the present invention will be described with reference to the drawings. In order to facilitate understanding of the description, the same reference numerals are given to the same components in the respective drawings, and duplicate descriptions are omitted.

本発明は、セラミックス等の薄板を圧電素子同士の間に挟み込んで多連化することにより、圧電素子への加工を行うことなく活性層の界面に発生する応力の緩和を図るものである。多連化素子の一例として、以下では圧電アクチュエータについて説明する。   In the present invention, a thin plate made of ceramic or the like is sandwiched between piezoelectric elements to make multiple connections, thereby reducing stress generated at the interface of the active layer without processing the piezoelectric elements. As an example of the multiple element, a piezoelectric actuator will be described below.

(圧電アクチュエータ(多連化素子)の構造)
図1(a)、(b)は、それぞれ圧電アクチュエータ100を示す正面図および側面図である。圧電アクチュエータ100は、複数の圧電素子110、リード部材120で構成され、リード部材120を介して外部電極115に電圧の印加により伸縮する。複数の圧電素子110は、圧電素子110同士が端面で接着されることで互いに直列(電圧印加による伸縮方向)に連結されている。
(Structure of piezoelectric actuator (multiple element))
FIGS. 1A and 1B are a front view and a side view showing the piezoelectric actuator 100, respectively. The piezoelectric actuator 100 includes a plurality of piezoelectric elements 110 and a lead member 120, and expands and contracts by applying a voltage to the external electrode 115 via the lead member 120. The plurality of piezoelectric elements 110 are connected to each other in series (stretching direction due to voltage application) by bonding the piezoelectric elements 110 to each other at the end faces.

圧電素子110同士は、平板を挟んで接着されている。これにより、圧電素子110同士が対向面で全面接着されず不活性部が拘束し合うことで発生する応力が緩和される。平板200は、圧電素子110の間に設けられ、その主面の面積は、圧電素子110の対向面の領域より小さい。なお、主面とは、板状体のもっとも広い面をいう。   The piezoelectric elements 110 are bonded to each other with a flat plate interposed therebetween. As a result, the stress generated when the piezoelectric elements 110 are not bonded to each other on the opposing surfaces and the inactive portions are restrained is relieved. The flat plate 200 is provided between the piezoelectric elements 110, and the area of the main surface thereof is smaller than the area of the opposing surface of the piezoelectric element 110. The main surface refers to the widest surface of the plate-like body.

圧電アクチュエータ100の先端には、半球状のチップ130が設けられており、底部は座140に接着されている。リード部材120は、金属製で板状に形成されており、圧電素子110の両側面に形成された外部電極115に接着されている。一対のリード部材120は、座140において一対の端子150に接続されている。   A hemispherical chip 130 is provided at the tip of the piezoelectric actuator 100, and the bottom is bonded to the seat 140. The lead member 120 is made of metal and formed in a plate shape, and is bonded to the external electrodes 115 formed on both side surfaces of the piezoelectric element 110. The pair of lead members 120 are connected to the pair of terminals 150 at the seat 140.

図2(a)、(b)は、それぞれ圧電素子110および平板200を示す平面図および正面図である。圧電素子110は、圧電層111と内部電極112とが交互に積層されている。また、圧電素子110の側面には内部電極112に接続された外部電極115が設けられている。圧電層111は、たとえばPZT等の圧電材料で構成されている。内部電極112は、Ag/Pd等で構成されている。   2A and 2B are a plan view and a front view showing the piezoelectric element 110 and the flat plate 200, respectively. In the piezoelectric element 110, piezoelectric layers 111 and internal electrodes 112 are alternately stacked. An external electrode 115 connected to the internal electrode 112 is provided on the side surface of the piezoelectric element 110. The piezoelectric layer 111 is made of a piezoelectric material such as PZT. The internal electrode 112 is made of Ag / Pd or the like.

平板200は、圧電素子110の積層方向の端面(圧電素子110同士の対向面)に設けられ、内部電極112の投影領域117の範囲内に設けられていればさらに好ましい。これにより、多連化時に圧電素子同士の対向面の間のスペースに接着剤が逃げるため、圧電素子110同士は活性部を硬く接着し、不活性部を緩やかに接着することができる。その結果、不活性部同士の拘束を緩和し、応力を解消できる。   It is more preferable that the flat plate 200 is provided on the end face of the piezoelectric element 110 in the stacking direction (opposite face between the piezoelectric elements 110) and provided in the range of the projection region 117 of the internal electrode 112. As a result, the adhesive escapes into the space between the opposing surfaces of the piezoelectric elements when multiple elements are connected, so that the piezoelectric elements 110 can firmly bond the active portions and gently bond the inactive portions. As a result, the restraint between the inactive portions can be relaxed and the stress can be eliminated.

平板200の材質は、熱膨張係数が小さく、導通の無いセラミックス等が望ましい。また各圧電素子110の間には平板200とともに塗布され硬化した接着剤が存在し、圧電素子110同士を連結している。平板200のヤング率は300〜400GPaであれば、多連化した際に十分な剛性が得られる。板厚は0.25〜0.50mm程度が望ましい。   The material of the flat plate 200 is preferably a ceramic having a small coefficient of thermal expansion and no conduction. Between each piezoelectric element 110, there is an adhesive applied and cured together with the flat plate 200, and connects the piezoelectric elements 110 to each other. If the Young's modulus of the flat plate 200 is 300 to 400 GPa, sufficient rigidity can be obtained when multiple plates are formed. The plate thickness is preferably about 0.25 to 0.50 mm.

(圧電アクチュエータの製造方法)
まず、圧電層111と内部電極112とが交互に積層された圧電素子110を作製する。具体的には、圧電セラミックスのグリーンシートにAgやAg/Pd等の電極ペーストを印刷して積層、圧着し、焼成する。次に、圧電素子110の側面に積層方向に沿って、内部電極112に接続された外部電極115を形成する。たとえば、圧電素子110の側面に電極ペーストを印刷して焼成することで外部電極115を形成できる。
(Method for manufacturing piezoelectric actuator)
First, the piezoelectric element 110 in which the piezoelectric layers 111 and the internal electrodes 112 are alternately stacked is manufactured. Specifically, an electrode paste such as Ag or Ag / Pd is printed on a green sheet of piezoelectric ceramic, laminated, pressure-bonded, and fired. Next, the external electrode 115 connected to the internal electrode 112 is formed on the side surface of the piezoelectric element 110 along the stacking direction. For example, the external electrode 115 can be formed by printing and baking an electrode paste on the side surface of the piezoelectric element 110.

得られた複数の圧電素子110の積層方向の端面には、エポキシ等の接着剤を塗布して接着し、直列方向に連結する。その際には、圧電素子110の間に平板200を挟んで接着する。これにより、圧電素子110間に形成されるスペースにより、接着剤の塗布量が多い方向にばらついてしまった場合でも、そのスペースに接着剤が逃げ、素子同士の全面接着を防止できる。すなわち、全面接着により発生する応力が解消される。なお、この応力は、圧電素子110同士の不活性部が拘束し合うことで発生するものである。   An end face in the stacking direction of the obtained plurality of piezoelectric elements 110 is coated and bonded with an adhesive such as epoxy and connected in series. At that time, the flat plate 200 is sandwiched between the piezoelectric elements 110 and bonded. As a result, even when the space formed between the piezoelectric elements 110 varies in the direction in which the amount of adhesive applied is large, the adhesive escapes into the space, thereby preventing the entire elements from being bonded to each other. That is, the stress generated by the entire surface adhesion is eliminated. This stress is generated when the inactive portions of the piezoelectric elements 110 are restrained.

また、接着剤量のばらつきの余裕が大きくなるため、手作業における接着剤塗布が簡易となる。平板200は、圧電素子110の不活性部を拘束しないよう、内部電極112の投影領域117の内側へ配置することが好ましい。さらには、平板200の主面の面積は、内部電極面積に対して8〜9割程度とすることが好ましい。   In addition, since there is a large margin of variation in the amount of adhesive, it is easy to apply the adhesive manually. The flat plate 200 is preferably disposed inside the projection region 117 of the internal electrode 112 so as not to restrain the inactive portion of the piezoelectric element 110. Furthermore, the area of the main surface of the flat plate 200 is preferably about 80 to 90% with respect to the internal electrode area.

多連化は、ディスペンサーを用い、積層方向の両端面に接着剤を塗布した圧電素子110と平板200を交互に積み重ね、一方から予圧をかけて行う。冶具無しでも十分であるが、位置決め構造を有した冶具の使用が好ましい。治具としては、たとえば平板200が内部電極112の断面の内側に接着されるようなものが好ましい。このようにして多連化を行い、接着剤を硬化させる。最後に、金属製で板状のリード部材120を、外部電極115に固着させて、多連化素子100を作製できる。   Multi-slicing is performed by using a dispenser and alternately stacking the piezoelectric elements 110 and the flat plates 200 each having an adhesive applied to both end faces in the stacking direction, and applying preload from one side. Although no jig is sufficient, it is preferable to use a jig having a positioning structure. As the jig, for example, a plate in which the flat plate 200 is bonded to the inside of the cross section of the internal electrode 112 is preferable. In this way, multiple linking is performed and the adhesive is cured. Finally, the plate-like lead member 120 made of metal is fixed to the external electrode 115, so that the multi-element 100 can be manufactured.

100 圧電アクチュエータ(多連化素子)
110 圧電素子
111 圧電層
112 内部電極
115 外部電極
117 内部電極の投影領域
120 リード部材
130 チップ
140 座
150 端子
200 平板
100 Piezoelectric actuator (multiple elements)
110 Piezoelectric element 111 Piezoelectric layer 112 Internal electrode 115 External electrode 117 Projection area 120 of internal electrode Lead member 130 Chip 140 Seat 150 Terminal 200 Flat plate

Claims (3)

電圧の印加により伸縮する多連化素子であって、
直列に積み重ねられた複数の圧電素子と、
前記複数の圧電素子の対向面の領域より小さい面積を有し、前記複数の圧電素子の間に設けられた平板と、
前記平板とともに前記複数の圧電素子を連結する接着剤と、を備え
前記平板は、ヤング率300〜400GPaのセラミックスで形成されていることを特徴とする多連化素子。
A multiple element that expands and contracts by application of voltage,
A plurality of piezoelectric elements stacked in series;
A flat plate provided between the plurality of piezoelectric elements, having an area smaller than a region of the opposing surfaces of the plurality of piezoelectric elements;
An adhesive for connecting the plurality of piezoelectric elements together with the flat plate ,
The flat plate, multiple-reduction element characterized that you have been formed of ceramics Young's modulus 300~400GPa.
前記平板は、前記圧電素子の内部電極の投影領域の範囲内に設けられていることを特徴とする請求項1記載の多連化素子。   The multiple element according to claim 1, wherein the flat plate is provided in a range of a projection region of an internal electrode of the piezoelectric element. 複数の圧電素子が直列に連結され、電圧の印加により伸縮する多連化素子の製造方法であって、
直列に積み重ねられる複数の圧電素子同士の直列方向の端面に接着剤を塗布するステップと、
前記圧電素子同士の対向面の間に、前記圧電素子の直列方向の端面の領域より小さい面積を有する平板を挟むステップと、
前記接着剤を硬化させるステップと、を含み、
前記平板は、ヤング率300〜400GPaのセラミックスで形成されていることを特徴とする多連化素子の製造方法。
A method for manufacturing a multiple element in which a plurality of piezoelectric elements are connected in series and expands and contracts by application of voltage,
Applying an adhesive to the end faces in the series direction of a plurality of piezoelectric elements stacked in series;
Sandwiching a flat plate having an area smaller than the region of the end face in the series direction of the piezoelectric elements between the opposing surfaces of the piezoelectric elements; and
And curing the adhesive, only including,
The flat plate is made of ceramics having a Young's modulus of 300 to 400 GPa .
JP2012216053A 2012-09-28 2012-09-28 Multiplexed element and manufacturing method thereof Expired - Fee Related JP6047358B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012216053A JP6047358B2 (en) 2012-09-28 2012-09-28 Multiplexed element and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012216053A JP6047358B2 (en) 2012-09-28 2012-09-28 Multiplexed element and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2014072302A JP2014072302A (en) 2014-04-21
JP6047358B2 true JP6047358B2 (en) 2016-12-21

Family

ID=50747274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012216053A Expired - Fee Related JP6047358B2 (en) 2012-09-28 2012-09-28 Multiplexed element and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6047358B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7164864B2 (en) * 2018-08-31 2022-11-02 日本特殊陶業株式会社 piezoelectric actuator
JP7109314B2 (en) * 2018-08-31 2022-07-29 日本特殊陶業株式会社 piezoelectric actuator

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0292956U (en) * 1989-01-12 1990-07-24
JPH04167580A (en) * 1990-10-31 1992-06-15 Brother Ind Ltd Laminated piezoelectric actuator element
JPH03270085A (en) * 1990-03-19 1991-12-02 Brother Ind Ltd Laminated piezoelectric actuator element
JP2705333B2 (en) * 1991-02-28 1998-01-28 日本電気株式会社 Piezoelectric effect element, electrostrictive effect element and method of manufacturing the same
JP4325161B2 (en) * 2001-11-22 2009-09-02 株式会社デンソー Multilayer piezoelectric element, method of manufacturing the same, and injector
JP4258238B2 (en) * 2003-03-13 2009-04-30 株式会社デンソー Multilayer piezoelectric element and method for manufacturing the same
JP2005045086A (en) * 2003-07-24 2005-02-17 Nec Tokin Corp Laminated piezoelectric element for injector equipment
JP2006179715A (en) * 2004-12-22 2006-07-06 Denso Corp Manufacturing method of ceramic laminate
JP2007019420A (en) * 2005-07-11 2007-01-25 Tdk Corp Stacked piezoelectric element
DE102006062076A1 (en) * 2006-12-29 2008-07-10 Siemens Ag Piezoceramic multilayer actuator and method for its production

Also Published As

Publication number Publication date
JP2014072302A (en) 2014-04-21

Similar Documents

Publication Publication Date Title
WO2010035437A1 (en) Piezoelectric stack
WO2009131000A1 (en) Stacked piezoelectric element and ultrasonic motor
JP6047358B2 (en) Multiplexed element and manufacturing method thereof
JP5403170B2 (en) Multilayer piezoelectric actuator and piezoelectric vibration device
JP2017098383A (en) Piezoelectric actuator
JP6565964B2 (en) Piezoelectric actuator
JP4258238B2 (en) Multilayer piezoelectric element and method for manufacturing the same
JP2006286774A (en) Laminated electostrictive actuator and bonded product thereof
JP5444593B2 (en) Multilayer piezoelectric element
JP5635319B2 (en) Piezoelectric element and manufacturing method thereof
JPH0257353B2 (en)
JP2005294761A (en) Stacked piezoelectric element
JPH02237083A (en) Laminated piezoelectric element
JP5754879B2 (en) Vibrator
JP5604250B2 (en) Piezoelectric element
JP5604251B2 (en) Piezoelectric element
JPH01261879A (en) Lamination type displacement element
JP2013016548A (en) Piezoelectric element
JP6155612B2 (en) Multilayer piezoelectric element and piezoelectric actuator
JP7293898B2 (en) Piezoelectric element
JP2010199272A (en) Laminated piezoelectric element, method of manufacturing the same, and vibrating body
JP6542618B2 (en) Piezoelectric actuator
JP5825656B2 (en) Piezoelectric actuator and coupled piezoelectric actuator
JP2002246666A (en) Laminated piezo actuator
JPH11274590A (en) Piezoelectric unit and its manufacture

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20150327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150828

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161121

R150 Certificate of patent or registration of utility model

Ref document number: 6047358

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees