JP6037813B2 - Rolled copper foil for producing multilayer graphene and method for producing multilayer graphene - Google Patents

Rolled copper foil for producing multilayer graphene and method for producing multilayer graphene Download PDF

Info

Publication number
JP6037813B2
JP6037813B2 JP2012273094A JP2012273094A JP6037813B2 JP 6037813 B2 JP6037813 B2 JP 6037813B2 JP 2012273094 A JP2012273094 A JP 2012273094A JP 2012273094 A JP2012273094 A JP 2012273094A JP 6037813 B2 JP6037813 B2 JP 6037813B2
Authority
JP
Japan
Prior art keywords
copper foil
multilayer graphene
graphene
rolled copper
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012273094A
Other languages
Japanese (ja)
Other versions
JP2014118314A (en
Inventor
喜寛 千葉
喜寛 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2012273094A priority Critical patent/JP6037813B2/en
Publication of JP2014118314A publication Critical patent/JP2014118314A/en
Application granted granted Critical
Publication of JP6037813B2 publication Critical patent/JP6037813B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、多層グラフェンを製造するための圧延銅箔、及び多層グラフェンの製造方法に関する。   The present invention relates to a rolled copper foil for producing multilayer graphene and a method for producing multilayer graphene.

グラファイトは平らに並んだ炭素6員環の層がいくつも積み重なった層状構造をもつが、その単原子層〜数原子層程度のものはグラフェン又はグラフェンシートと呼ばれる。グラフェンシートは独自の電気的、光学的及び機械的特性を有し、特にキャリア移動速度が高速である。そのため、グラフェンシートは、例えば、燃料電池用セパレータ、透明電極、表示素子の導電性薄膜、無水銀蛍光灯、コンポジット材、ドラッグデリバリーシステム(DDS)のキャリアなど、産業界での幅広い応用が期待されている。   Graphite has a layered structure in which a number of flat carbon 6-membered ring layers are stacked, and those having a single atomic layer to several atomic layers are called graphene or graphene sheets. Graphene sheets have unique electrical, optical and mechanical properties, and in particular have a high carrier moving speed. Therefore, graphene sheets are expected to have a wide range of applications in the industry, such as fuel cell separators, transparent electrodes, conductive thin films for display elements, mercury-free fluorescent lamps, composite materials, and drug delivery system (DDS) carriers. ing.

グラフェンシートを製造する方法として、グラファイトを粘着テープで剥がす方法が知られているが、得られるグラフェンシートの層数が一定でなく、大面積のグラフェンシートが得難く、大量生産にも適さないという問題がある。
そこで、シート状の単結晶グラファイト化金属触媒上に炭素系物質を接触させた後、熱処理することによりグラフェンシートを成長させる技術(化学気相成長(CVD)法)が開発されている(特許文献1)。この単結晶グラファイト化金属触媒としては、Ni、Cu、Wなどの金属基板が記載されている。
同様に,NiやCuの金属箔やSi基板上に形成した銅層上に化学気相成長法でグラフェンを製膜する技術が報告されている。なお,グラフェンの製膜は1000℃程度で行われる(非特許文献1)。
As a method of producing a graphene sheet, a method of peeling graphite with an adhesive tape is known, but the number of layers of the obtained graphene sheet is not constant, it is difficult to obtain a large area graphene sheet, and it is not suitable for mass production There's a problem.
Thus, a technique (chemical vapor deposition (CVD) method) has been developed in which a graphene sheet is grown by bringing a carbon-based material into contact with a sheet-like single crystal graphitized metal catalyst and then performing heat treatment (Patent Literature). 1). As this single crystal graphitized metal catalyst, a metal substrate of Ni, Cu, W or the like is described.
Similarly, a technique for forming graphene by chemical vapor deposition on a copper layer formed on a Ni or Cu metal foil or Si substrate has been reported. The graphene film is formed at about 1000 ° C. (Non-patent Document 1).

特開2009−143799号公報JP 2009-143799 A

SCIENCE Vol.324 (2009) P1312-1314SCIENCE Vol.324 (2009) P1312-1314

しかしながら、特許文献1のように単結晶の金属基板を製造することは容易でなく極めて高コストであり、又、大面積の基板が得られ難く、ひいては大面積のグラフェンシートが得難いという問題がある。一方,非特許文献1には、Cuを基板として使用することが記載されているが,Cu箔上では短時間にグラフェンが面方向に成長せず、Si基板上に形成したCu層を焼鈍で粗大粒として基板としている。これは、銅箔上にグラフェンの成長を妨げる段差が存在するためと考えられ、Cu層をSi基板上に形成する場合、グラフェンの大きさはSi基板サイズに制約され,製造コストも高い。一方、単結晶の銅は粒界が存在しないものの、高コストであると共に寸法も限られてしまう。   However, as in Patent Document 1, it is not easy to manufacture a single crystal metal substrate, which is extremely expensive, and it is difficult to obtain a large-area substrate, and thus it is difficult to obtain a large-area graphene sheet. . On the other hand, Non-Patent Document 1 describes using Cu as a substrate, but graphene does not grow in the surface direction in a short time on a Cu foil, and the Cu layer formed on the Si substrate is annealed. The substrate is formed as coarse particles. This is thought to be because there is a step that hinders the growth of graphene on the copper foil. When the Cu layer is formed on the Si substrate, the size of the graphene is restricted by the size of the Si substrate, and the manufacturing cost is high. On the other hand, although there is no grain boundary, single crystal copper is expensive and has limited dimensions.

又、Cu上へのグラフェンの成膜は、Cuの触媒作用を利用しているが、一旦Cu表面にグラフェンが付着すると、その部分のCuの触媒作用が消滅するので、グラフェンはCu表面に沿って横に成長する。このため、Cu表面に単層のグラフェンが成膜される。ところで、成膜されたグラフェンは、銅箔から剥離された後に、基板となるPETフィルム、金属板、セラミックス板等に転写されて使用されるが、グラフェン成膜時の欠陥、剥離及び転写の際に発生するオレ、シワ等の欠陥に起因して、単層グラフェンのシート抵抗を十分に低下させることは難しい。そのため、単層グラフェンを複数枚重ねて使用することにより、シート抵抗を低下させることが必要となる。しかしながら、この場合には個々の単層グラフェンを成膜するために多数の銅箔が必要となり、製造コストの低減を図ることが困難となる。
そこで、銅箔上に多層グラフェンを一度に成膜できれば、シート抵抗の低いグラフェンを低コストで生産できることになる。
従って、本発明は、多層グラフェンを低コストで生産可能な多層グラフェン製造用圧延銅箔及びそれを用いた多層グラフェンの製造方法の提供を目的とする。
Graphene film formation on Cu uses the catalytic action of Cu, but once graphene adheres to the Cu surface, the catalytic action of Cu disappears, so graphene follows the Cu surface. Grow sideways. For this reason, a single layer of graphene is deposited on the Cu surface. By the way, the formed graphene is peeled off from the copper foil and then transferred to a PET film, metal plate, ceramic plate, etc., which becomes a substrate. It is difficult to sufficiently reduce the sheet resistance of single-layer graphene due to defects such as creases and wrinkles that occur in the film. Therefore, it is necessary to reduce the sheet resistance by using a plurality of single-layer graphenes. However, in this case, a large number of copper foils are required to form individual single-layer graphene, which makes it difficult to reduce the manufacturing cost.
Therefore, if multilayer graphene can be formed on a copper foil at once, graphene with low sheet resistance can be produced at low cost.
Therefore, an object of this invention is to provide the rolled copper foil for multilayer graphene manufacture which can produce multilayer graphene at low cost, and the manufacturing method of multilayer graphene using the same.

本発明の多層グラフェン製造用圧延銅箔は、X線光電子分光により、表面に有機ケイ素化合物の構造を持つSi又はTi-O-Cの構造を持つ有機チタネートからなるTiが0.1原子%以上存在する。
前記表面がシランカップリング剤又はチタネートカップリング剤で処理されていることが好ましい。
JIS-H3100に規格するタフピッチ銅、JIS−H3100に規格する無酸素銅、JIS−H3510に規格する無酸素銅、又は前記タフピッチ銅若しくは前記無酸素銅に対してSn及びAgの群から選ばれる1種以上の元素を合計で0.0001質量%以上0.05質量%以下含有する組成からなることが好ましい。
The rolled copper foil for multilayer graphene production of the present invention has 0.1 atomic% or more of Ti composed of an organic titanate having a structure of Si or Ti—OC having a structure of an organosilicon compound on the surface by X-ray photoelectron spectroscopy. .
The surface is preferably treated with a silane coupling agent or a titanate coupling agent.
1 selected from the group of Sn and Ag for tough pitch copper standardized to JIS-H3100, oxygen-free copper standardized to JIS-H3100, oxygen-free copper standardized to JIS-H3510, or the tough pitch copper or oxygen-free copper. The composition preferably contains a total of 0.0001% by mass or more and 0.05% by mass or less of seed or more elements.

本発明の多層グラフェンの製造方法は、前記多層グラフェン製造用圧延銅箔を用い、所定の室内に、加熱した前記多層グラフェン製造用圧延銅箔を配置すると共に水素ガスと炭素含有ガスを供給し、前記グラフェン製造用圧延銅箔の表面に多層グラフェンを形成する多層グラフェン形成工程と、前記多層グラフェンの表面に転写シートを積層し、前記多層グラフェンを前記転写シート上に転写しながら、前記多層グラフェン製造用圧延銅箔をエッチング除去する多層グラフェン転写工程と、を有する。   The method for producing multilayer graphene of the present invention uses the rolled copper foil for producing multilayer graphene, arranges the heated rolled copper foil for producing multilayer graphene in a predetermined chamber, and supplies hydrogen gas and carbon-containing gas, A multilayer graphene forming step of forming multilayer graphene on the surface of the rolled copper foil for manufacturing graphene, and a multilayer graphene manufacturing process while laminating a transfer sheet on the surface of the multilayer graphene and transferring the multilayer graphene onto the transfer sheet And a multilayer graphene transfer step of etching and removing the rolled copper foil.

本発明によれば、多層グラフェンを銅箔上に低コストで生産可能である。   According to the present invention, multilayer graphene can be produced on a copper foil at low cost.

本発明の実施形態に係る多層グラフェンの製造方法を示す工程図である。It is process drawing which shows the manufacturing method of the multilayer graphene which concerns on embodiment of this invention. 実施例2のグラフェンの断面のTEM像を示す図である。6 is a diagram showing a TEM image of a cross section of graphene in Example 2. FIG. 比較例3のグラフェンの断面のTEM像を示す図である。It is a figure which shows the TEM image of the cross section of the graphene of the comparative example 3.

以下、本発明の実施形態に係る多層グラフェン製造用圧延銅箔及び多層グラフェンの製造方法について説明する。なお、本発明において%とは、特に断らない限り、質量%を示すものとする。   Hereinafter, the rolled copper foil for multilayer graphene manufacture which concerns on embodiment of this invention, and the manufacturing method of multilayer graphene are demonstrated. In the present invention, “%” means “% by mass” unless otherwise specified.

<銅箔の組成>
銅箔としては、JIS-H3100(合金番号:C1100)に規格するタフピッチ銅(TPC)、又はJIS-H3510(合金番号:C1011)若しくはJIS−H3100(合金番号:C1020)に規格する無酸素銅(OFC)を用いることができる。上記TPC又はOFCを用いることで、銅箔が比較的高純度となりやすい。
なお、銅箔の純度が99.999%を超える高純度の場合、常温で軟化し、圧延集合組織の制御が困難であるという傾向にある。
<Composition of copper foil>
As copper foil, tough pitch copper (TPC) standardized to JIS-H3100 (alloy number: C1100), or oxygen-free copper standardized to JIS-H3510 (alloy number: C1011) or JIS-H3100 (alloy number: C1020) OFC). By using the TPC or OFC, the copper foil tends to have a relatively high purity.
In addition, when the purity of copper foil exceeds 99.999%, it tends to soften at room temperature and control of the rolling texture is difficult.

又、これらタフピッチ銅又は無酸素銅に対し、Sn及びAgの群から選ばれる1種以上の元素を合計で0.050質量%以下含有する組成を用いることもできる。上記元素を含有すると、銅箔の強度が向上し適度な伸びを有すると共に、上記元素を含有しない場合に比べて結晶方位をより適切なものにすることが出来る。上記元素の含有割合が合計で0.050質量%を超えると強度は更に向上するものの、伸びが低下して加工性が悪化する場合がある。より好ましくは上記元素の含有割合が合計で0.04質量%以下であり、更に好ましくは合計で0.03質量%以下であり、最も好ましくは合計で0.02質量%以下である。
なお、上記元素を合計した含有割合の下限は特に制限されないが、例えば0.0001質量%を下限とすることができる。上記元素の含有割合が0.0001質量%未満であると、含有割合が小さいためその含有割合を制御することが困難になる場合がある。好ましくは、上記元素の含有割合の下限値は0.001質量%以上、より好ましくは0.003質量%以上、更に好ましくは0.004質量%以上、最も好ましくは0.005質量%以上である。また、結晶方位に大きな影響を与えない範囲(例えば濃度で0.1質量%以下)で、Ag、Sn、Ni、Si、P、Mg、Zr、Cr、Mn、Co、Zn、Ti、V及びBの群から選ばれる1種以上の元素を添加してもよいが、添加元素はこれらに限られない。
Moreover, the composition which contains 0.050 mass% or less of 1 or more types of elements chosen from the group of Sn and Ag with respect to these tough pitch copper or oxygen free copper can also be used. When the element is contained, the strength of the copper foil is improved and the copper foil has an appropriate elongation, and the crystal orientation can be made more appropriate as compared with the case where the element is not contained. When the content ratio of the above elements exceeds 0.050 mass% in total, the strength is further improved, but the elongation is lowered and workability may be deteriorated. More preferably, the content ratio of the above elements is 0.04% by mass or less in total, more preferably 0.03% by mass or less, and most preferably 0.02% by mass or less in total.
In addition, although the minimum of the content rate which totaled the said element is not restrict | limited in particular, 0.0001 mass% can be made into a minimum, for example. When the content ratio of the element is less than 0.0001% by mass, it may be difficult to control the content ratio because the content ratio is small. Preferably, the lower limit of the content ratio of the element is 0.001% by mass or more, more preferably 0.003% by mass or more, still more preferably 0.004% by mass or more, and most preferably 0.005% by mass or more. . Further, Ag, Sn, Ni, Si, P, Mg, Zr, Cr, Mn, Co, Zn, Ti, V, and the like within a range that does not greatly affect the crystal orientation (for example, concentration is 0.1% by mass or less). One or more elements selected from the group B may be added, but the additive elements are not limited to these.

<銅箔の厚み>
銅箔の厚みは特に制限されないが、一般的には5〜150μmである。さらに、ハンドリング性を確保しつつ、後述するエッチング除去を容易に行うため、銅箔基材の厚みを12〜50μmとすると好ましい。銅箔基材の厚みが12μm未満であると、破断し易くなってハンドリング性に劣る場合があり、厚みが50μmを超えるとエッチング除去がし難くなる場合がある。
なお、銅箔の厚みと、銅箔を冷間圧延して製造する際の油膜当量との間に一定の関係を有するよう、油膜当量を調整すると好ましい。なお、最終冷間圧延の最終パスの油膜当量と、最終パスの1つ前のパスの油膜当量がいずれも、最終的な圧延銅箔の板厚に対して以下の関係式を満たすとよい。具体的には、6000≦油膜当量≦60000、かつ、0.0006×油膜当量+1≦(銅箔の厚み)≦0.0006×油膜当量+38、で表される関係式を満たすとよい。
銅箔の厚みと油膜当量が上記関係式を満たせば、圧延銅箔が150以上の光沢度を有するようになり、その表面においてグラフェンの成長が促進される。
<Copper foil thickness>
The thickness of the copper foil is not particularly limited, but is generally 5 to 150 μm. Furthermore, it is preferable to set the thickness of the copper foil base to 12 to 50 μm in order to easily perform etching removal described later while ensuring handling properties. When the thickness of the copper foil base material is less than 12 μm, it may be easily broken and may have poor handling properties, and when the thickness exceeds 50 μm, it may be difficult to remove by etching.
In addition, it is preferable to adjust an oil film equivalent so that it may have a fixed relationship between the thickness of copper foil and the oil film equivalent at the time of cold-rolling and manufacturing copper foil. Note that both the oil film equivalent of the final pass of the final cold rolling and the oil film equivalent of the pass immediately before the final pass may satisfy the following relational expression with respect to the final thickness of the rolled copper foil. Specifically, it is preferable that the relational expression represented by 6000 ≦ oil film equivalent ≦ 60000 and 0.0006 × oil film equivalent + 1 ≦ (thickness of copper foil) ≦ 0.0006 × oil film equivalent + 38 is satisfied.
When the thickness of the copper foil and the oil film equivalent satisfy the above relational expression, the rolled copper foil has a gloss of 150 or more, and the growth of graphene is promoted on the surface.

<銅箔表面のSi又はTi>
本発明者らは、圧延銅箔上に多層グラフェンを成長させるための因子について検討し、銅箔表面にSi又はTiが存在すると、グラフェン成膜の起点となり、多層グラフェンを製造できることを見出した。
このようなことから、本発明の多層グラフェン製造用圧延銅箔は、X線光電子分光により、表面にSi又はTiが0.1原子%以上存在する。銅箔表面のSi又はTiの量が0.1原子%未満であると、グラフェン成膜の起点が減少し、多層グラフェンが成長せずに単層グラフェンとなる。
特に、多層グラフェンを均一に成長させるためには、Si又はTiを銅箔上に微細かつ均一に分布させることが好ましく、この点でシランカップリング剤又はチタネートカップリング剤で銅箔表面を処理するとよい。シランカップリング剤は有機ケイ素化合物であり、例えば、ジアミノシラン、エポキシシラン、TEOS(テトラエトキシシラン)、アルコキシシリルアルキルチオール等が挙げられるが、これらに限定されず、公知のシランカップリング剤を使用できる。
チタネートカップリング剤は、Ti-O-Cの構造を持つ有機チタネートであり、アルコキシチタニウムエステル、チタニウムキレートおよびチタニウムアシレートが挙げられる。チタネートカップリング剤として具体的には、オルトチタン酸テトラメチルが挙げられるが、これらに限定されず、公知のチタネートカップリング剤を使用できる。
<Si or Ti on the surface of the copper foil>
The present inventors have studied factors for growing multilayer graphene on a rolled copper foil, and found that when Si or Ti is present on the surface of the copper foil, it becomes a starting point for graphene film formation and can be produced.
For this reason, the rolled copper foil for producing multilayer graphene of the present invention contains 0.1 atomic% or more of Si or Ti on the surface by X-ray photoelectron spectroscopy. When the amount of Si or Ti on the surface of the copper foil is less than 0.1 atomic%, the starting point of the graphene film formation decreases, and the multilayer graphene does not grow and becomes single-layer graphene.
In particular, in order to uniformly grow multilayer graphene, it is preferable to distribute Si or Ti finely and uniformly on the copper foil. In this respect, when the surface of the copper foil is treated with a silane coupling agent or a titanate coupling agent. Good. The silane coupling agent is an organosilicon compound, and examples thereof include, but are not limited to, diaminosilane, epoxy silane, TEOS (tetraethoxysilane), alkoxysilylalkylthiol, and the like, and a known silane coupling agent is used. it can.
The titanate coupling agent is an organic titanate having a Ti-OC structure, and examples thereof include alkoxytitanium esters, titanium chelates, and titanium acylates. Specific examples of titanate coupling agents include, but are not limited to, tetramethyl orthotitanate, and known titanate coupling agents can be used.

<銅箔の60度光沢度>
銅箔表面の圧延平行方向及び圧延直角方向の60度光沢度(JIS Z 8741)が共に130%以上であることが好ましい。
後述するように、本発明のグラフェン製造用圧延銅箔を用いてグラフェンを製造した後、銅箔から転写シートへグラフェンを転写する必要があるが、銅箔の表面が粗いと転写がし難く、グラフェンが破損する場合があることがわかった。そこで、銅箔の表面凹凸が平滑であることが好ましい。
なお、圧延平行方向及び圧延直角方向の60度光沢度の上限は特に制限されないが、500%未満とすれば銅箔基材の製造時に圧延加工度等の製造条件を厳密に規定しなくてもよく、製造の自由度が高くなるので好ましい。又、圧延平行方向及び圧延直角方向の60度光沢度の上限は実用上、800%程度である。
又、このように転写シートへグラフェンを転写し易くするため、圧延平行方向の銅箔表面の算術平均粗さRaが0.22μm以下であることが好ましい。
<60 degree gloss of copper foil>
It is preferable that both the 60-degree glossiness (JIS Z 8741) of the copper foil surface in the rolling parallel direction and the rolling perpendicular direction is 130% or more.
As described later, after producing graphene using the rolled copper foil for producing graphene of the present invention, it is necessary to transfer graphene from the copper foil to the transfer sheet, but it is difficult to transfer if the surface of the copper foil is rough, It was found that graphene might break. Therefore, it is preferable that the surface unevenness of the copper foil is smooth.
In addition, the upper limit of 60 degree glossiness in the rolling parallel direction and the direction perpendicular to the rolling direction is not particularly limited, but if it is less than 500%, it is not necessary to strictly define the production conditions such as the degree of rolling work when producing the copper foil base material. It is preferable because the degree of freedom in manufacturing is high. Further, the upper limit of 60 degree gloss in the rolling parallel direction and the direction perpendicular to the rolling is practically about 800%.
In order to facilitate the transfer of graphene to the transfer sheet in this way, the arithmetic average roughness Ra of the copper foil surface in the rolling parallel direction is preferably 0.22 μm or less.

以上のように規定したグラフェン製造用圧延銅箔を用いることで、多層グラフェンを低コストで、かつ高い歩留りで生産することができる。   By using the rolled copper foil for producing graphene defined as described above, multilayer graphene can be produced at a low cost and with a high yield.

<多層グラフェン製造用圧延銅箔の製造>
本発明の実施形態に係る多層グラフェン製造用圧延銅箔は、例えば以下のようにして製造することができる。まず、所定の組成の銅インゴットを製造し、熱間圧延を行った後に冷間圧延を行い、その後、焼鈍と冷間圧延を繰り返し、圧延板を得る。この圧延板を焼鈍して再結晶させ,所定の厚みまで最終冷間圧延して銅箔基材を得る。そして、この銅箔基材の表面を、シランカップリング剤又はチタネートカップリング剤で処理することで、表面にSi又はTiを0.1原子%以上存在させることができる。
ここで、最終冷間圧延において、最終パスの油膜当量と、最終パスの1つ前のパスの油膜当量がいずれも、最終的な圧延銅箔の板厚に対して上述の関係式を満たすと好ましい。なお、最終パスの油膜当量と、最終パスの1つ前のパスの油膜当量とは同じ値である必要はない。圧延銅箔は一般に油潤滑のもと高速で加工され、潤滑油膜が厚くなるほどせん断帯変形が支配的になりやすい。また、銅箔の板厚が厚いほど、圧延時の銅箔の変形速度が大きくなる傾向にある。そして、せん断帯の存在の程度と、圧延時の銅箔の変形速度との影響によるものと考えられる。
<Manufacture of rolled copper foil for multilayer graphene production>
The rolled copper foil for producing multilayer graphene according to the embodiment of the present invention can be produced, for example, as follows. First, a copper ingot having a predetermined composition is manufactured, and after hot rolling, cold rolling is performed, and then annealing and cold rolling are repeated to obtain a rolled sheet. The rolled sheet is annealed and recrystallized, and finally cold-rolled to a predetermined thickness to obtain a copper foil base material. And the surface of this copper foil base material can be made to exist by 0.1 atomic% or more of Si or Ti on the surface by processing with a silane coupling agent or a titanate coupling agent.
Here, in the final cold rolling, when the oil film equivalent of the final pass and the oil film equivalent of the pass immediately before the final pass both satisfy the above relational expression with respect to the final thickness of the rolled copper foil preferable. Note that the oil film equivalent of the final pass and the oil film equivalent of the pass immediately before the final pass do not have to be the same value. The rolled copper foil is generally processed at high speed under oil lubrication, and the shear band deformation tends to become dominant as the lubricating oil film becomes thicker. Moreover, it exists in the tendency for the deformation | transformation speed of the copper foil at the time of rolling to become large, so that the board | plate thickness of copper foil is thick. And it is thought that it is based on the influence of the deformation | transformation rate of the copper foil at the time of rolling, and the extent of a shear band.

油膜当量は下記式で表される。
油膜当量={(圧延油粘度、40℃の動粘度[cSt])×(通板速度[mpm]+ロール周速度[mpm])}/{(ロールの噛み込み角[rad])×(材料の降伏応力[kg/mm2])}で求められる。
油膜当量を25,000以下とするためには、低粘度の圧延油を用いたり、通板速度を遅くしたりする等、公知の方法を用いればよい。
The oil film equivalent is represented by the following formula.
Oil film equivalent = {(rolling oil viscosity, kinematic viscosity at 40 ° C. [cSt]) × (feeding speed [mpm] + roll peripheral speed [mpm])} / {(roll biting angle [rad]) × (material Yield stress [kg / mm 2 ])}.
In order to set the oil film equivalent to 25,000 or less, a known method such as using a low-viscosity rolling oil or slowing the sheet passing speed may be used.

<多層グラフェンの製造方法>
次に、図1を参照し、本発明の実施形態に係る多層グラフェンの製造方法について説明する。
まず、室(真空チャンバ等)100内に、上記した本発明の多層グラフェン製造用圧延銅箔10を配置し、多層グラフェン製造用圧延銅箔10をヒータ104で加熱すると共に、室100内を減圧又は真空引きする。そして、ガス導入口102から室100内に炭素含有ガスGを水素ガスと共に供給する(図1(a))。炭素含有ガスGとしては、一酸化炭素、メタン、エタン、プロパン、エチレン、アセチレン等が挙げられるがこれらに限定されず、これらのうち1種又は2種以上の混合ガスとしてもよい。又、多層グラフェン製造用圧延銅箔10の加熱温度は炭素含有ガスGの分解温度以上とすればよく、例えば1000℃以上とすることができる。又、室100内で炭素含有ガスGを分解温度以上に加熱し、分解ガスを多層グラフェン製造用圧延銅箔10に接触させてもよい。このとき、多層グラフェン製造用圧延銅箔10を加熱することで、多層グラフェン製造用圧延銅箔10の表面に分解ガス(炭素ガス)が接触し、多層グラフェン製造用圧延銅箔10の表面に多層グラフェン20を形成する(図1(b))。
<Method for producing multilayer graphene>
Next, with reference to FIG. 1, the manufacturing method of the multilayer graphene which concerns on embodiment of this invention is demonstrated.
First, the rolled copper foil 10 for producing multilayer graphene of the present invention described above is placed in a chamber (vacuum chamber or the like) 100, the rolled copper foil 10 for producing multilayer graphene is heated by the heater 104, and the inside of the chamber 100 is decompressed. Or evacuate. Then, the carbon-containing gas G is supplied together with hydrogen gas from the gas inlet 102 into the chamber 100 (FIG. 1A). Examples of the carbon-containing gas G include carbon monoxide, methane, ethane, propane, ethylene, acetylene, and the like. However, the carbon-containing gas G is not limited to these, and may be one or two or more mixed gases. Moreover, the heating temperature of the rolled copper foil 10 for producing multilayer graphene may be set to be equal to or higher than the decomposition temperature of the carbon-containing gas G, and may be set to 1000 ° C. or higher, for example. Alternatively, the carbon-containing gas G may be heated to a decomposition temperature or higher in the chamber 100 and the decomposition gas may be brought into contact with the rolled copper foil 10 for producing multilayer graphene. At this time, by heating the rolled copper foil 10 for producing multilayer graphene, the decomposition gas (carbon gas) comes into contact with the surface of the rolled copper foil 10 for producing multilayer graphene, and the rolled copper foil 10 for producing multilayer graphene has a multilayer on the surface. The graphene 20 is formed (FIG. 1B).

そして、多層グラフェン製造用圧延銅箔10を常温に冷却し、多層グラフェン20の表面に転写シート30を積層し、多層グラフェン20を転写シート30上に転写する。次に、この積層体をシンクロール120を介してエッチング槽110に連続的に浸漬し、多層グラフェン製造用圧延銅箔10をエッチング除去する(図1(c))。このようにして、所定の転写シート30上に積層された多層グラフェン20を製造することができる。
さらに、多層グラフェン製造用圧延銅箔10が除去された積層体を引き上げ、多層グラフェン20の表面に基板40を積層し、多層グラフェン20を基板40上に転写しながら、転写シート30を剥がすと、基板40上に積層された多層グラフェン20を製造することができる。
And the rolled copper foil 10 for multilayer graphene manufacture is cooled to normal temperature, the transfer sheet 30 is laminated | stacked on the surface of the multilayer graphene 20, and the multilayer graphene 20 is transcribe | transferred on the transfer sheet 30. FIG. Next, this laminated body is continuously immersed in the etching tank 110 through the sink roll 120, and the rolled copper foil 10 for producing multilayer graphene is removed by etching (FIG. 1 (c)). In this way, the multilayer graphene 20 laminated on the predetermined transfer sheet 30 can be manufactured.
Furthermore, when the laminate from which the rolled copper foil 10 for producing multilayer graphene is removed is pulled up, the substrate 40 is laminated on the surface of the multilayer graphene 20, and the transfer sheet 30 is peeled off while transferring the multilayer graphene 20 onto the substrate 40, The multilayer graphene 20 laminated on the substrate 40 can be manufactured.

転写シート30としては、各種樹脂シート(ポリエチレン、ポリウレタン等のポリマーシート)を用いることができる。多層グラフェン製造用圧延銅箔10をエッチング除去するエッチング液としては、例えば硫酸溶液、過硫酸ナトリウム溶液、過酸化水素、及び過硫酸ナトリウム溶液又は過酸化水素に硫酸を加えた溶液を用いることができる。又、基板40としては、例えばSi、 SiC、Ni又はNi合金を用いることができる。   As the transfer sheet 30, various resin sheets (polymer sheets such as polyethylene and polyurethane) can be used. As an etching solution for etching and removing the rolled copper foil 10 for producing multilayer graphene, for example, a sulfuric acid solution, a sodium persulfate solution, hydrogen peroxide, a sodium persulfate solution, or a solution obtained by adding sulfuric acid to hydrogen peroxide can be used. . As the substrate 40, for example, Si, SiC, Ni, or Ni alloy can be used.

<試料の作製>
表1、表2に示す組成の銅インゴットを製造し、熱間圧延を行った後に冷間圧延を行い、300〜800℃の温度に設定した焼鈍炉での焼鈍と冷間圧延を繰り返して1〜2mm厚の圧延板を得た。この圧延板を300〜800℃の温度に設定した焼鈍炉で焼鈍して再結晶させ,表1、表2の厚みまで最終冷間圧延し、銅箔を得た。さらに、この銅箔の表面に、表1、表2に示すシランカップリング剤又はチタネートカップリング剤を塗布した後、80℃以上の熱風で乾燥させることにより、銅箔表面にSi又はTiを付着させた。水溶液中のシランカップリング剤又はチタネートカップリング剤の濃度(vol %)を種々変更して塗布に用いた。
なお、表1、表2の「OFC」はJIS−H3100(JIS−H3510に規格する無酸素銅を表し、「TPC」はJIS-H3100に規格するタフピッチ銅を表す。
<Preparation of sample>
A copper ingot having the composition shown in Tables 1 and 2 was manufactured, and after hot rolling, cold rolling was performed, and annealing and cold rolling in an annealing furnace set at a temperature of 300 to 800 ° C. were repeated 1 A rolled plate having a thickness of ˜2 mm was obtained. This rolled sheet was annealed and recrystallized in an annealing furnace set to a temperature of 300 to 800 ° C., and finally cold-rolled to the thicknesses shown in Tables 1 and 2 to obtain a copper foil. Furthermore, after applying the silane coupling agent or titanate coupling agent shown in Tables 1 and 2 to the surface of the copper foil, Si or Ti is attached to the copper foil surface by drying with hot air of 80 ° C. or higher. I let you. Various concentrations (vol%) of the silane coupling agent or titanate coupling agent in the aqueous solution were used for coating.
In Tables 1 and 2, “OFC” represents oxygen-free copper standardized to JIS-H3100 (JIS-H3510 ) , and “TPC” represents tough pitch copper standardized to JIS-H3100.

ここで、最終冷間圧延の最終パス及び最終パスの1つ前のパスの油膜当量を表1、表2に示す値に調整した。
油膜当量は下記式で表される。
(油膜当量)={(圧延油粘度、40℃の動粘度;cSt)×(圧延速度;m/分)}/{(材料の降伏応力;kg/mm2)×(ロール噛込角;rad)}
Here, the oil film equivalents of the final pass of the final cold rolling and the pass immediately before the final pass were adjusted to the values shown in Tables 1 and 2.
The oil film equivalent is represented by the following formula.
(Oil film equivalent) = {(rolling oil viscosity, kinematic viscosity at 40 ° C .; cSt) × (rolling speed; m / min)} / {(yield stress of material; kg / mm 2 ) × (roll biting angle; rad )}

<銅箔表面のSi又はTiの付着量>
表面処理後の銅箔表面を、X線光電子分光により分析し、Si又はTiの付着量(原子%)を求めた。X線光電子分光(XPS)装置としては、アルバック ファイ株式会社製の型番5600MCを用い、到達真空度:2.0×10-9 Torr、励起源:単色化 AlKα、出力:210W、検出面積:800μmφ、入射角:45度、取り出し角:45度、中和銃なし、の条件で測定した。
<光沢度の測定>
各実施例及び比較例の銅箔の最終冷間圧延後の表面の60度光沢度を測定した。
60度光沢度は、JIS−Z8741に準拠した光沢度計(日本電色工業製、商品名「PG-1M」)を使用して測定した。なお、表中のG60RD,G60TDはそれぞれ圧延平行方向、圧延直角方向の60度光沢度である。
<Amount of Si or Ti deposited on the copper foil surface>
The surface of the copper foil after the surface treatment was analyzed by X-ray photoelectron spectroscopy, and the adhesion amount (atomic%) of Si or Ti was determined. As an X-ray photoelectron spectroscopy (XPS) apparatus, model number 5600MC manufactured by ULVAC-PHI Co., Ltd. is used, ultimate vacuum: 2.0 × 10-9 Torr, excitation source: monochromatic AlKα, output: 210 W, detection area: 800 μmφ, incidence Measurement was performed under the conditions of an angle: 45 degrees, a take-off angle: 45 degrees, and no neutralizing gun.
<Measurement of glossiness>
The 60-degree glossiness of the surface after the final cold rolling of the copper foils of the examples and comparative examples was measured.
The 60 degree glossiness was measured using a gloss meter (trade name “PG-1M” manufactured by Nippon Denshoku Industries Co., Ltd.) in accordance with JIS-Z8741. In the table, G60 RD and G60 TD are 60 degree glossinesses in the rolling parallel direction and the rolling perpendicular direction, respectively.

<表面粗さRaの測定>
各実施例及び比較例の銅箔の最終冷間圧延後の表面粗さRaを測定した。
表面粗さRaは、接触粗さ計(小坂研究所製、商品名「SE−3400」)を使用してJIS B0601に準拠した算術平均粗さ(Ra;μm)として測定した。測定基準長さ0.8mm、評価長さ4mm、カットオフ値0.8mm、送り速さ0.1mm/秒の条件で圧延方向と平行に測定位置を変えて10回行ない、10回の測定での平均値を求めた。
<Measurement of surface roughness Ra>
The surface roughness Ra after the final cold rolling of the copper foils of the examples and comparative examples was measured.
The surface roughness Ra was measured as an arithmetic average roughness (Ra; μm) based on JIS B0601 using a contact roughness meter (trade name “SE-3400” manufactured by Kosaka Laboratory Ltd.). The measurement position is changed 10 times in parallel with the rolling direction under the conditions of a measurement standard length of 0.8 mm, an evaluation length of 4 mm, a cut-off value of 0.8 mm, and a feed rate of 0.1 mm / second. The average value of was obtained.

<グラフェンの製造>
各実施例及び比較例のグラフェン製造用圧延銅箔(縦横100X100mm)を真空チャンバーに設置し、1000℃に加熱した。真空(圧力:0.2Torr)下でこの真空チャンバーに水素ガスとメタンガスを供給し(供給ガス流量:10〜100cc/min)、銅箔を1000℃まで10分で昇温した後、1時間保持し、銅箔表面にグラフェンを成長させた。
各実施例について、上記条件でグラフェンの製造を10回行い、グラフェンのシート抵抗を測定すると共に、グラフェンの層構造を評価した。
グラフェンのシート抵抗は、10個の上記サンプルについて銅箔表面のグラフェンをPETフィルムに転写した後、4端子法によりグラフェンの抵抗値(シート抵抗:Ω/sq)を測定し、平均値を求めた。グラフェンの抵抗値が600Ω/sq以下であれば実用上問題はない。
グラフェンの層構造は、ラマン分光法によりグラフェンの表面を分析し、Gバンドと2Dバンドの検出ピークを測定して同定した。Gバンド(Graphite Band)はグラフェンを示し、Dバンド(Defect Band)は欠陥を示している。Dバンドの倍数である2Dバンドとのピークの比率(G/2D)によって層構造を判定する。具体的には、G/2D<0.3であれば、グラフェンが単層(表1、表2の「S」)であるとみなし、G/2D≧0.3であればグラフェンが多層(表1、表2の「D」)であるとみなす。
<Manufacture of graphene>
The rolled copper foil for manufacturing graphene of each example and comparative example (length and width: 100 × 100 mm) was placed in a vacuum chamber and heated to 1000 ° C. Hydrogen gas and methane gas are supplied to this vacuum chamber under vacuum (pressure: 0.2 Torr) (supply gas flow rate: 10 to 100 cc / min), and the copper foil is heated to 1000 ° C. in 10 minutes and then held for 1 hour. Then, graphene was grown on the copper foil surface.
For each example, graphene was produced 10 times under the above conditions, the sheet resistance of the graphene was measured, and the layer structure of the graphene was evaluated.
Regarding the sheet resistance of graphene, the graphene resistance value (sheet resistance: Ω / sq) was measured by a four-terminal method after graphene on the surface of the copper foil was transferred to a PET film for the above 10 samples, and the average value was obtained. . If the graphene resistance is 600 Ω / sq or less, there is no practical problem.
The layer structure of graphene was identified by analyzing the surface of graphene by Raman spectroscopy and measuring the detection peaks of the G band and 2D band. The G band (Graphite Band) indicates graphene, and the D band (Defect Band) indicates a defect. The layer structure is determined by the ratio (G / 2D) of the peak with the 2D band, which is a multiple of the D band. Specifically, if G / 2D <0.3, the graphene is regarded as a single layer (“S” in Table 1 and Table 2), and if G / 2D ≧ 0.3, the graphene is multilayer (Table 1, Table 2). 2 “D”).

得られた結果を表1、表2に示す。   The obtained results are shown in Tables 1 and 2.

表1、表2から明らかなように、表面にSi又はTiが0.1原子%以上存在する各実施例の場合、グラフェンのシート抵抗が低く、グラフェンの層構造も多層になった。   As is clear from Tables 1 and 2, in each Example in which Si or Ti was present at 0.1 atomic% or more on the surface, the sheet resistance of graphene was low, and the layer structure of graphene was also multilayered.

一方、水溶液中のシランカップリング剤の濃度を低くして銅箔表面に塗布した比較例1、4、5場合、銅箔表面のSiの付着量が0.1原子%未満となり、グラフェンのシート抵抗が高くなったと共に、多層グラフェンが得られなかった。
銅箔表面にシランカップリング剤又はチタネートカップリング剤を塗布しなかった比較例3、及び銅箔表面にベンゾトリアゾールを塗布した比較例2、6、9、11の場合、銅箔表面にSiが存在せず、グラフェンのシート抵抗が高くなったと共に、多層グラフェンが得られなかった。
なお、図2、図3は、それぞれ実施例2、比較例3のグラフェンの断面(各図の矢印の間)のTEM像を示す。実施例2のグラフェンの厚みが比較例3より厚く、多層になっていることがわかる。


On the other hand, in the case of Comparative Examples 1 , 4 , and 5 in which the concentration of the silane coupling agent in the aqueous solution was lowered and applied to the copper foil surface, the amount of Si deposited on the copper foil surface was less than 0.1 atomic%, and graphene As the sheet resistance increased, multilayer graphene could not be obtained.
In Comparative Example 3 in which no silane coupling agent or titanate coupling agent was applied to the copper foil surface, and in Comparative Examples 2, 6, 9, and 11 in which benzotriazole was applied to the copper foil surface, Si was present on the copper foil surface. It was not present, and the sheet resistance of graphene increased, and multilayer graphene was not obtained.
2 and 3 show TEM images of the cross sections (between the arrows in each figure) of the graphene of Example 2 and Comparative Example 3, respectively. It can be seen that the graphene of Example 2 is thicker than Comparative Example 3 and has a multilayer structure.


10 多層グラフェン製造用圧延銅箔
20 多層グラフェン
30 転写シート
10 Rolled Copper Foil for Multilayer Graphene Production 20 Multilayer Graphene 30 Transfer Sheet

Claims (4)

X線光電子分光により、表面に有機ケイ素化合物の構造を持つSi又はTi-O-Cの構造を持つ有機チタネートからなるTiが0.1原子%以上存在する多層グラフェン製造用圧延銅箔。 A rolled copper foil for producing multilayer graphene having 0.1 atomic% or more of Ti made of an organic titanate having a structure of Si or Ti—OC having an organosilicon compound structure on the surface by X-ray photoelectron spectroscopy. 前記表面がシランカップリング剤又はチタネートカップリング剤で処理されている請求項1に記載の多層グラフェン製造用圧延銅箔。   The rolled copper foil for multilayer graphene manufacture according to claim 1, wherein the surface is treated with a silane coupling agent or a titanate coupling agent. JIS-H3100に規格するタフピッチ銅、JIS−H3100に規格する無酸素銅、JIS−H3510に規格する無酸素銅、又は前記タフピッチ銅若しくは前記無酸素銅に対してSn及びAgの群から選ばれる1種以上の元素を合計で0.0001質量%以上0.05質量%以下含有する組成からなる請求項1又は2に記載の多層グラフェン製造用圧延銅箔。   1 selected from the group of Sn and Ag for tough pitch copper standardized to JIS-H3100, oxygen-free copper standardized to JIS-H3100, oxygen-free copper standardized to JIS-H3510, or the tough pitch copper or oxygen-free copper. The rolled copper foil for producing multilayer graphene according to claim 1 or 2, comprising a composition containing at least 0.0001 mass% and not more than 0.05 mass% of elements of seeds or more. 請求項1〜3のいずれかに記載の多層グラフェン製造用圧延銅箔を用いた多層グラフェンの製造方法であって、
所定の室内に、加熱した前記多層グラフェン製造用圧延銅箔を配置すると共に水素ガスと炭素含有ガスを供給し、前記グラフェン製造用圧延銅箔の表面に多層グラフェンを形成する多層グラフェン形成工程と、
前記多層グラフェンの表面に転写シートを積層し、前記多層グラフェンを前記転写シート上に転写しながら、前記多層グラフェン製造用圧延銅箔をエッチング除去する多層グラフェン転写工程と、を有する多層グラフェンの製造方法。
A method for producing multilayer graphene using the rolled copper foil for producing multilayer graphene according to any one of claims 1 to 3,
A multilayer graphene forming step of arranging the heated rolled copper foil for producing multilayer graphene in a predetermined chamber and supplying hydrogen gas and a carbon-containing gas and forming multilayer graphene on the surface of the rolled copper foil for producing graphene,
A multilayer graphene transfer step of laminating a transfer sheet on the surface of the multilayer graphene, and etching and removing the rolled copper foil for multilayer graphene production while transferring the multilayer graphene onto the transfer sheet .
JP2012273094A 2012-12-14 2012-12-14 Rolled copper foil for producing multilayer graphene and method for producing multilayer graphene Active JP6037813B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012273094A JP6037813B2 (en) 2012-12-14 2012-12-14 Rolled copper foil for producing multilayer graphene and method for producing multilayer graphene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012273094A JP6037813B2 (en) 2012-12-14 2012-12-14 Rolled copper foil for producing multilayer graphene and method for producing multilayer graphene

Publications (2)

Publication Number Publication Date
JP2014118314A JP2014118314A (en) 2014-06-30
JP6037813B2 true JP6037813B2 (en) 2016-12-07

Family

ID=51173482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012273094A Active JP6037813B2 (en) 2012-12-14 2012-12-14 Rolled copper foil for producing multilayer graphene and method for producing multilayer graphene

Country Status (1)

Country Link
JP (1) JP6037813B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10005099B2 (en) * 2015-07-20 2018-06-26 Nanotek Instruments, Inc. Production of highly oriented graphene oxide films and graphitic films derived therefrom
CN111733344A (en) * 2020-07-03 2020-10-02 南京嘉业安环保科技有限公司 Processing method of copper-based multi-element alloy

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005219954A (en) * 2004-02-04 2005-08-18 Seiko Epson Corp Film forming method, carbon film, electronic component and electronic equipment
KR100923304B1 (en) * 2007-10-29 2009-10-23 삼성전자주식회사 Graphene sheet and process for preparing the same
WO2012008789A2 (en) * 2010-07-15 2012-01-19 성균관대학교산학협력단 Method for producing graphene at a low temperature, method for direct transfer of graphene using same, and graphene sheet
JP5603791B2 (en) * 2011-02-07 2014-10-08 パナソニック株式会社 Electrical device control device and program for electrical device control device
JP5758205B2 (en) * 2011-02-18 2015-08-05 Jx日鉱日石金属株式会社 Copper foil for producing graphene and method for producing graphene using the same
JP5850720B2 (en) * 2011-06-02 2016-02-03 Jx日鉱日石金属株式会社 Copper foil for producing graphene and method for producing graphene

Also Published As

Publication number Publication date
JP2014118314A (en) 2014-06-30

Similar Documents

Publication Publication Date Title
JP5822669B2 (en) Copper foil for producing graphene and method for producing graphene using the same
JP5721609B2 (en) Copper foil for producing graphene and method for producing graphene
KR101589392B1 (en) Copper foil for graphene production and production method therefor, and graphene production method
TWI527635B (en) A copper foil for graphene production, and a method for producing graphene
JP5850720B2 (en) Copper foil for producing graphene and method for producing graphene
JP5758205B2 (en) Copper foil for producing graphene and method for producing graphene using the same
JP6078024B2 (en) Rolled copper foil for producing a two-dimensional hexagonal lattice compound and a method for producing a two-dimensional hexagonal lattice compound
WO2014027528A1 (en) Rolled copper foil for graphene production and graphene production method
JP5865211B2 (en) Copper foil for producing graphene and method for producing graphene using the same
JP6037813B2 (en) Rolled copper foil for producing multilayer graphene and method for producing multilayer graphene
JP2012251209A (en) Copper foil for producing graphene, and method for producing graphene
JP2014036986A (en) Graphene manufacturing rolled copper foil, and graphene manufacturing method
JP5918010B2 (en) Copper foil for producing graphene, method for producing copper foil for producing graphene, and method for producing graphene
JP2014227594A (en) Copper foil for manufacturing graphene and method for manufacturing graphene
JP5918075B2 (en) Rolled copper foil for producing graphene and method for producing graphene
JP2013006709A (en) Copper foil for graphene production, method for producing copper for graphene production, and method for producing graphene
TWI516316B (en) A copper foil for graphene production, and a method for producing graphene using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150918

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161101

R150 Certificate of patent or registration of utility model

Ref document number: 6037813

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250