JP6036597B2 - Magnet powder manufacturing apparatus and manufacturing method - Google Patents

Magnet powder manufacturing apparatus and manufacturing method Download PDF

Info

Publication number
JP6036597B2
JP6036597B2 JP2013161139A JP2013161139A JP6036597B2 JP 6036597 B2 JP6036597 B2 JP 6036597B2 JP 2013161139 A JP2013161139 A JP 2013161139A JP 2013161139 A JP2013161139 A JP 2013161139A JP 6036597 B2 JP6036597 B2 JP 6036597B2
Authority
JP
Japan
Prior art keywords
cooling plate
magnet powder
cooling
magnet
ribbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013161139A
Other languages
Japanese (ja)
Other versions
JP2015030877A (en
Inventor
中村 雅之
雅之 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2013161139A priority Critical patent/JP6036597B2/en
Publication of JP2015030877A publication Critical patent/JP2015030877A/en
Application granted granted Critical
Publication of JP6036597B2 publication Critical patent/JP6036597B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、磁石用粉体の製造装置と製造方法に関するものである。   The present invention relates to a magnet powder manufacturing apparatus and manufacturing method.

ランタノイド等の希土類元素を用いた希土類磁石は永久磁石とも称され、その用途は、ハードディスクやMRIを構成するモータのほか、ハイブリッド車や電気自動車等の駆動用モータなどに用いられている。   Rare earth magnets using rare earth elements such as lanthanoids are also called permanent magnets, and their uses are used in motors for driving hard disks and MRI, as well as drive motors for hybrid vehicles and electric vehicles.

この希土類磁石の磁石性能の指標として残留磁化(残留磁束密度)と保磁力を挙げることができるが、モータの小型化や高電流密度化による発熱量の増大に対し、使用される希土類磁石にも耐熱性に対する要求は一層高まっており、高温使用下で磁石の保磁力を如何に保持できるかが当該技術分野での重要な研究課題の一つとなっている。車両駆動用モータに多用される希土類磁石の一つであるNd-Fe-B系磁石を取り挙げると、結晶粒の微細化を図ることやNd量の多い組成合金を用いること、保磁力性能の高いDy、Tbといった重希土類元素を添加することなどによってその保磁力を増大させる試みがおこなわれている。   Residual magnetization (residual magnetic flux density) and coercive force can be cited as indicators of the magnet performance of this rare earth magnet. However, in response to increased heat generation due to miniaturization of motors and higher current density, rare earth magnets used also The demand for heat resistance is further increasing, and how to maintain the coercive force of a magnet under high temperature use is one of the important research subjects in the technical field. Taking Nd-Fe-B magnets, one of the rare-earth magnets frequently used in vehicle drive motors, to refine crystal grains, use a composition alloy with a large amount of Nd, Attempts have been made to increase the coercivity by adding heavy rare earth elements such as high Dy and Tb.

希土類磁石としては、組織を構成する結晶粒(主相)のスケールが3〜5μm程度の一般的な焼結磁石のほか、結晶粒を50nm〜300nm程度のナノスケールに微細化したナノ結晶磁石があるが、中でも、上記する結晶粒の微細化を図りながら高価な重希土類元素の添加量を低減すること(フリー化)のできるナノ結晶磁石が現在注目されている。   As rare earth magnets, in addition to general sintered magnets with a crystal grain (main phase) scale of 3 to 5 μm constituting the structure, nanocrystal magnets with crystal grains refined to a nanoscale of about 50 nm to 300 nm are available. Among them, nanocrystal magnets that can reduce the amount of expensive heavy rare earth elements added (free) while miniaturizing the crystal grains described above are currently attracting attention.

重希土類元素の中でもその使用量の多いDyを取り上げると、Dyの埋蔵地域は一部の地域に偏在していることからその材料コストは高価である。そのため、Dy量を減らしながら保磁力性能を保証するDyレス磁石や、Dyを一切使用せずに保磁力性能を保証するDyフリー磁石の開発が重要な開発課題の一つとなっており、このことがナノ結晶磁石の注目度を高くしている大きな要因の一つである。   Among the heavy rare earth elements, when Dy is used in large amounts, the material cost is high because Dy reserves are unevenly distributed in some areas. Therefore, the development of Dy-less magnets that guarantee coercive force performance while reducing the amount of Dy, and Dy-free magnets that guarantee coercive force performance without using any Dy is an important development issue. This is one of the major factors that have increased the attention of nanocrystalline magnets.

ナノ結晶磁石をはじめとする希土類磁石の製造方法を概説すると、たとえばNd-Fe-B系の溶湯を冷却ロール上に吐出してこれを急冷凝固し、得られた急冷リボン(急冷薄帯)を粉砕して磁石用粉体(磁性粉体)を製造し、この磁石用粉体を加圧成形しながら焼結して焼結体を製造する。この焼結体に対し、磁気的異方性を付与するために、熱間塑性加工(熱間塑性加工による加工度(圧縮率)が大きい場合、たとえば圧縮率が10%程度以上の場合を、熱間強加工もしくは単に強加工と称することができ、焼結体を強加工前駆体と称することもできる)を施して成形体を製造する。このように、希土類磁石の製造に際しては、その前駆体としてまず焼結体が製造され、次いで成形体が製造されることになる。   An overview of the manufacturing method of rare earth magnets including nano-crystal magnets is as follows. For example, Nd-Fe-B-based molten metal is discharged onto a cooling roll and rapidly solidified, and the resulting quenched ribbon (quenched ribbon) is used. The powder for magnets (magnetic powder) is manufactured by pulverization, and the sintered powder is manufactured by sintering the powder for magnet while being pressed. In order to impart magnetic anisotropy to this sintered body, hot plastic working (when the degree of work (compression ratio) by hot plastic working is large, for example, when the compressibility is about 10% or more, The sintered body can be referred to as hot strong processing or simply strong processing, and the sintered body can also be referred to as a strong processing precursor) to produce a molded body. As described above, when a rare earth magnet is manufactured, a sintered body is first manufactured as a precursor, and then a molded body is manufactured.

ところで、溶湯を冷却ロール上に吐出してこれを急冷凝固し、得られた急冷薄帯を粉砕して磁石用粉体を製造する方法が特許文献1に開示されている。ここで開示される方法は、溶解炉にて溶解した溶湯を急冷薄帯化する前に出湯温度に保温された貯湯容器に溶湯を貯湯し、貯湯容器内の溶湯を急冷薄帯とする際に溶解炉にて配合原料を連続的に溶解し、貯湯装置内で減少した溶湯に追加補充し、追加補充した溶湯を連続して水冷ロールにて急冷薄帯化し、溶湯レベルを検出器にて検出した信号により貯湯容器内の出湯ノズルのオリフィス部に働く溶湯のヘッド圧の変化に対応して急冷槽の圧力を調整するものである。この方法により、溶解槽と急冷槽の槽間圧力差と貯湯容器内の溶湯のヘッド圧からなる出湯圧力に依存する出湯量を一定に保持でき、急冷薄帯の品質を均一に保持でき、急冷薄帯を破断機及び圧縮機で切断圧縮することができる。   By the way, Patent Document 1 discloses a method in which molten metal is discharged onto a cooling roll, rapidly solidified, and the obtained quenched ribbon is pulverized to produce magnet powder. The method disclosed here is to store molten metal in a hot water storage container kept at a tapping temperature before quenching and thinning the molten metal melted in the melting furnace, and to make the molten metal in the hot water storage container into a rapid cooling thin strip. The compounding raw material is continuously melted in the melting furnace and supplemented to the molten metal reduced in the hot water storage device, and the newly supplemented molten metal is continuously quenched and thinned with a water-cooled roll, and the molten metal level is detected by a detector. The pressure of the quenching tank is adjusted according to the change in the head pressure of the molten metal acting on the orifice portion of the hot water discharge nozzle in the hot water storage container according to the signal. By this method, the amount of tapping depending on the tapping pressure consisting of the pressure difference between the melting tank and the quenching tank and the head pressure of the molten metal in the hot water storage container can be kept constant, the quality of the quenching ribbon can be kept uniform, The ribbon can be cut and compressed with a breaker and a compressor.

ここで、急冷薄帯が切断されて形成された磁石用粉体は容器内で堆積して貯められる。このように堆積した磁石用粉体は、十分に冷え切っていない状態で堆積することから特に堆積物の内部には熱が籠り易く、該内部に存在する磁石用粉体の冷却が不十分となって結晶粒が粗大化し易くなる。そして、このように結晶粒が粗大化することは、最終製造物である希土類磁石の磁気特性に影響を与える可能性が高く、この問題は、希土類磁石がナノ結晶磁石の場合に特に顕著となる。   Here, the magnet powder formed by cutting the quenched ribbon is deposited and stored in a container. Since the magnet powder deposited in this manner is deposited in a state that is not sufficiently cooled down, heat is likely to be generated particularly inside the deposit, and the magnet powder existing inside the magnet powder is insufficiently cooled. Thus, the crystal grains are easily coarsened. Such coarsening of the crystal grains is likely to affect the magnetic properties of the rare-earth magnet that is the final product, and this problem is particularly noticeable when the rare-earth magnet is a nanocrystalline magnet. .

特開平8−277403号公報JP-A-8-277403

本発明は上記する問題に鑑みてなされたものであり、急冷薄帯から磁石用粉体を製造する装置と方法に関し、磁石用粉体の冷却性に優れ、磁石用粉体の粗大化を抑止することのできる磁石用粉体の製造装置と製造方法を提供することを目的とする。   The present invention has been made in view of the above-mentioned problems, and relates to an apparatus and method for producing magnet powder from a rapidly cooled ribbon. The present invention is excellent in magnet powder cooling and suppresses coarsening of magnet powder. An object of the present invention is to provide a magnet powder production apparatus and method that can be used.

前記目的を達成すべく、本発明による磁石用粉体の製造装置は、溶解した磁石組成の溶湯を収容する溶解炉と、溶解炉から排出された溶湯を一次冷却して急冷薄帯を形成する冷却ロールと、冷却ロールから飛散した急冷薄帯が衝突する冷却板であって、衝突によって急冷薄帯を二次冷却するとともに急冷薄帯を粉砕して磁石用粉体を形成する冷却板と、からなり、前記冷却板はその角度を可変とする角度調整部を備えているものである。   In order to achieve the above object, an apparatus for producing magnet powder according to the present invention forms a quenching ribbon by first cooling a melting furnace containing molten metal having a melted magnet composition and the molten metal discharged from the melting furnace. A cooling plate, a cooling plate that collides with a quenching ribbon scattered from the cooling roll, and a secondary cooling plate that cools the quenching ribbon by collision and pulverizes the quenching ribbon to form a magnet powder; and The cooling plate is provided with an angle adjusting section that makes the angle variable.

本発明の磁石用粉体の製造装置は、溶湯が一次冷却されて形成された急冷薄帯を二次冷却するとともにこの急冷薄帯を粉砕して磁石用粉体を形成する冷却板を備えている点に特徴を有しており、より詳細には、角度を可変とする角度調整部を備えている冷却板を備えている点に特徴を有するものである。   The magnet powder manufacturing apparatus of the present invention includes a cooling plate that secondary cools a quenched ribbon formed by primary cooling of a molten metal and pulverizes the quenched ribbon to form a magnet powder. More specifically, the present invention is characterized in that a cooling plate including an angle adjusting unit that makes the angle variable is provided.

ここで、冷却板の「角度」とは、冷却板の面の傾きのことであり、冷却板の角度は、ここで衝突して二次冷却され、かつ粉砕されてできた磁石用粉体を反射させて容器に収容する際に、この容器の所定の位置に磁石用粉体が飛散して堆積するように設定されている。   Here, the “angle” of the cooling plate refers to the inclination of the surface of the cooling plate, and the angle of the cooling plate refers to the magnet powder that has been collided, cooled secondary, and pulverized. When reflecting and accommodating in a container, it sets so that the powder for magnets may disperse and accumulate in the predetermined position of this container.

冷却板は銅やアルミ等から形成でき、板の内部に水路を内蔵しておき、水路を還流する冷媒にて冷却板が常時クーリングされる実施の形態であってもよい。   The cooling plate may be formed of copper, aluminum, or the like, and may have an embodiment in which a water channel is built in the plate, and the cooling plate is always cooled by a refrigerant circulating in the water channel.

たとえば、急冷薄帯が高速で冷却板に衝突した際に冷却板が塑性変形し、この塑性変形の際のメタルタッチにて急冷薄帯の二次冷却が図られるとともに、衝突の際の衝撃で急冷薄帯が破砕されて磁石用粉体が形成される。   For example, when the rapidly cooled ribbon hits the cooling plate at high speed, the cooling plate is plastically deformed, and secondary quenching of the quenched ribbon is achieved by metal touch during this plastic deformation, and the impact at the time of collision The quenched ribbon is crushed to form magnet powder.

冷却板はその冷却面と反対側の背面に角度調整部を備えているが、この角度調整部はサーボモータなどから構成される。   The cooling plate is provided with an angle adjusting unit on the back surface opposite to the cooling surface, and the angle adjusting unit is constituted by a servo motor or the like.

既述するように、容器内で堆積した磁石用粉体は十分に冷え切っていない状態で堆積するため、堆積物の内部に存在する磁石用粉体の冷却が不十分となって結晶粒の粗大化が問題となる。この問題を解消するべく、本発明の製造装置の好ましい実施の形態では、製造された磁石用粉体が冷却板から飛散して容器内で一定高さまで堆積した段階で冷却板の角度が変更され、別の位置で磁石用粉体の堆積が実行されるように冷却板の角度調整がおこなわれるようになっているものである。   As described above, since the magnet powder deposited in the container is deposited in a state where it is not sufficiently cooled down, the cooling of the magnet powder existing inside the deposit becomes insufficient, and Coarseness becomes a problem. In order to solve this problem, in the preferred embodiment of the production apparatus of the present invention, the angle of the cooling plate is changed when the produced magnet powder is scattered from the cooling plate and deposited to a certain height in the container. The angle of the cooling plate is adjusted so that the magnet powder is deposited at another position.

たとえば、容器内で堆積する磁石用粉体の高さに関し、結晶粒の粗大化が生じない程度の高さを設定しておく。この高さの設定に際しては、磁石用粉体を様々な高さまで堆積させ、各ケースでの堆積状態の磁石用粉体の内部温度を測定し、結晶粒の粗大化が生じ難い温度となる高さを予め決定しておくのがよい。   For example, regarding the height of the magnet powder deposited in the container, a height that does not cause coarsening of crystal grains is set. When setting the height, the magnet powder is deposited to various heights, and the internal temperature of the magnet powder in the deposited state in each case is measured. It is better to determine the length in advance.

製造装置は、容器の側方に高さセンサ等を備えており、この高さセンサにて容器内に堆積した磁石用粉体の高さを常時計測しておき、磁石用粉体の高さが一定高さとなっていることを示す制御信号が高さセンサからサーボモータ等の角度調整部に送信され、信号を受信した角度調整部が作動して冷却板の角度を変更することができる。   The manufacturing apparatus is provided with a height sensor or the like on the side of the container, and the height sensor constantly measures the height of the magnet powder deposited in the container with the height sensor. Is transmitted from the height sensor to an angle adjusting unit such as a servo motor, and the angle adjusting unit that has received the signal operates to change the angle of the cooling plate.

角度変更がなされた冷却板で急冷薄帯が二次冷却され、破砕されてできた磁石用粉体は容器の別の位置で堆積され、磁石用粉体の高さが一定高さとなった段階で、磁石用粉体の製造(容器内への収容までの一連の工程)を終了するか、冷却板の角度変更が再度実行され、容器のさらに別の位置で磁石用粉体の堆積がなされる。   Stages in which the rapidly cooled ribbon is secondarily cooled by the angle-changed cooling plate and the magnet powder produced by crushing is deposited at another position in the container, and the height of the magnet powder reaches a certain height. Then, the production of the magnet powder (a series of steps until the container is accommodated in the container) is finished, or the angle of the cooling plate is changed again, and the magnet powder is deposited at another position of the container. The

本発明の磁石用粉体の製造装置によれば、製造された磁石用粉体が容器内に堆積している過程で熱によって結晶粒が粗大化するといった課題を効果的に解消することができる。   According to the magnet powder manufacturing apparatus of the present invention, it is possible to effectively solve the problem that the crystal grains are coarsened by heat in the process in which the manufactured magnet powder is deposited in the container. .

また、本発明による磁石用粉体の製造装置の好ましい実施の形態において、冷却板は角度調整部のほかに自身を回動させる回動部を備えており、回動軸周りで冷却板が回動自在となっているものである。   Further, in a preferred embodiment of the magnet powder manufacturing apparatus according to the present invention, the cooling plate includes a rotation unit that rotates itself in addition to the angle adjustment unit, and the cooling plate rotates around the rotation axis. It is something that can move.

本実施の形態の製造装置は、冷却板を回動自在(揺動自在)とするものであり、冷却板が回動軸を中心に回動自在となっていることで、冷却ロールから飛散した急冷薄帯が冷却板に衝突する部位を分散させることができる。このことにより、冷却板の一部のみに急冷薄帯の衝突が繰り返される場合に冷却板の損耗が早くなり、メンテナンスが頻繁になるといった課題を解消することができる。   The manufacturing apparatus of the present embodiment makes the cooling plate rotatable (swingable), and the cooling plate is scattered about the rotation axis so that it is scattered from the cooling roll. It is possible to disperse the portion where the quenched ribbon hits the cooling plate. As a result, it is possible to solve the problem that the cooling plate is quickly worn out and the maintenance is frequently performed when the collision of the quenched ribbon is repeated only on a part of the cooling plate.

また、冷却板における急冷薄帯の衝突部位が分散することで急冷薄帯の冷却性も高まり、製造される磁石用粉体の品質向上にも繋がる。   In addition, the collision of the quenched ribbon on the cooling plate is dispersed, so that the cooling property of the quenched ribbon is increased, and the quality of the produced magnet powder is improved.

また、本発明は磁石用粉体の製造方法にも及ぶものであり、この製造方法は、溶解炉内に収容されている溶解した磁石組成の溶湯を溶解炉から冷却ロールに排出し、溶湯を一次冷却して急冷薄帯を形成する第1のステップ、冷却ロールから飛散した急冷薄帯を冷却板に衝突させ、衝突によって急冷薄帯を二次冷却するとともに急冷薄帯を粉砕して磁石用粉体を形成する第2のステップ、製造された磁石用粉体が冷却板から飛散して収容容器内で一定高さまで堆積した段階で冷却板の角度を変更し、別の位置で磁石用粉体を堆積させる第3のステップからなるものである。   In addition, the present invention extends to a method for producing magnet powder. In this production method, the molten magnet composition contained in the melting furnace is discharged from the melting furnace to a cooling roll, and the molten metal is discharged. First step to form a quenched ribbon by primary cooling, the quenched ribbon scattered from the cooling roll is collided with the cooling plate, and the quenched ribbon is secondarily cooled by the collision, and the quenched ribbon is pulverized The second step of forming powder, the angle of the cooling plate is changed at the stage where the manufactured magnet powder is scattered from the cooling plate and deposited to a certain height in the container, and the magnet powder is changed at another position. It consists of a third step of depositing the body.

本発明の製造方法によれば、製造された磁石用粉体が容器内に堆積している過程で熱によって結晶粒が粗大化するといった課題を効果的に解消することができる。   According to the production method of the present invention, it is possible to effectively solve the problem that the crystal grains are coarsened by heat in the process in which the produced magnet powder is deposited in the container.

また、本発明の製造方法において、第2のステップでは、冷却板を回動軸周りで回動させ、回動状態の冷却板に急冷薄帯を衝突させるのが好ましい。   In the manufacturing method of the present invention, in the second step, it is preferable that the cooling plate is rotated around the rotation axis, and the rapidly cooled ribbon is caused to collide with the rotating cooling plate.

冷却板を回動させることで回動状態の冷却板における急冷薄帯の衝突部位が分散し、このことによって急冷薄帯の冷却性が高まり、製造される磁石用粉体の品質向上にも繋がる。さらに、結晶粒が粗大化するのが抑止されることで製造歩留りも向上する。   By rotating the cooling plate, the collision parts of the quenched ribbon in the rotating cooling plate are dispersed, and this improves the cooling property of the quenched ribbon and leads to the quality improvement of the produced magnet powder. . Further, the production yield is improved by suppressing the coarsening of the crystal grains.

上記する製造装置を適用して、もしくは製造方法にて製造された磁石用粉体を使用して焼結体が製造され、この焼結体に熱間塑性加工(もしくは強加工)を施すことによって異方性を有する成形体が製造される。この製造された成形体に対し、必要に応じて保磁力性能を高める重希土類元素やその合金等を種々の方法で粒界拡散させることにより、磁化と保磁力の双方に優れた希土類磁石が得られる。   By applying the above-described manufacturing apparatus or using the magnet powder manufactured by the manufacturing method, a sintered body is manufactured, and hot plastic working (or strong processing) is applied to the sintered body. A molded body having anisotropy is produced. A rare earth magnet excellent in both magnetization and coercive force can be obtained by diffusing heavy rare earth elements and their alloys, etc., which enhance coercive force performance as needed, to the grain boundaries by various methods. It is done.

以上の説明から理解できるように、本発明の磁石用粉体の製造装置と製造方法によれば、磁石用粉体の製造装置が急冷薄帯を二次冷却するとともにこの急冷薄帯を粉砕して磁石用粉体を形成する角度調整部を備えた冷却板を有し、冷却板から飛散して容器内で一定高さまで堆積した段階で冷却板の角度が変更され、別の位置で磁石用粉体の堆積が実行されることにより、製造された磁石用粉体が容器内に堆積している過程で熱によって結晶粒が粗大化するといった課題を効果的に解消することができる。   As can be understood from the above description, according to the magnet powder manufacturing apparatus and manufacturing method of the present invention, the magnet powder manufacturing apparatus performs secondary cooling of the quenched ribbon and pulverizes the quenched ribbon. The cooling plate is equipped with an angle adjustment part that forms magnet powder, and the angle of the cooling plate is changed when it is scattered from the cooling plate and deposited to a certain height in the container. By executing the deposition of the powder, it is possible to effectively solve the problem that the crystal grains become coarse due to heat while the manufactured magnet powder is deposited in the container.

本発明の磁石用粉体の製造装置を説明するとともに、磁石用粉体の製造方法をともに説明した模式図である。It is the schematic diagram which demonstrated the manufacturing method of the powder for magnets while describing the manufacturing apparatus of the powder for magnets of this invention. 冷却板に急冷薄帯が衝突している状態を説明した模式図である。It is the schematic diagram explaining the state where the quenching thin ribbon has collided with the cooling plate. 冷却板の角度調整が図られている状態を説明するとともに、磁石用粉体の製造方法をともに説明した模式図である。It is the schematic diagram which demonstrated the state in which the angle adjustment of the cooling plate was achieved, and demonstrated the manufacturing method of the powder for magnets.

以下、図面を参照して本発明の磁石用粉体の製造装置と製造方法の実施の形態を説明する。なお、図示例は溶解炉の下方から溶湯が下方の冷却ロールに提供されるものであるが、たとえば溶解炉(タンディッシュ)内の溶湯がオーバーフローして下方の冷却ロールに提供される形態などであってもよい。   Embodiments of a magnet powder manufacturing apparatus and manufacturing method according to the present invention will be described below with reference to the drawings. In the illustrated example, the molten metal is provided to the lower cooling roll from below the melting furnace. For example, the molten metal in the melting furnace (tundish) overflows and is provided to the lower cooling roll. There may be.

(磁石用粉体の製造装置と製造方法の実施の形態)
図1は本発明の磁石用粉体の製造装置を説明するとともに、磁石用粉体の製造方法をともに説明した模式図である。図示する製造装置10は、溶解した磁石組成の溶湯を収容する溶解炉1と、溶解炉1から排出された(X1方向)溶湯を一次冷却して急冷薄帯Rを形成する冷却ロール2と、冷却ロール2から飛散した(X3方向)急冷薄帯Rが衝突し、この衝突によって急冷薄帯Rを二次冷却するとともに急冷薄帯Rを粉砕して磁石用粉体Fを形成する冷却板3と、製造された磁石用粉体Fが冷却板3から飛散して堆積しながら収容される容器5と、から大略構成される。
(Embodiment of manufacturing apparatus and manufacturing method of magnet powder)
FIG. 1 is a schematic diagram for explaining a magnet powder production apparatus and a magnet powder production method according to the present invention. The manufacturing apparatus 10 shown in the figure includes a melting furnace 1 that contains a molten metal having a melted magnet composition, a cooling roll 2 that forms a quenching ribbon R by primarily cooling the molten metal discharged from the melting furnace 1 (in the X1 direction), A cooling plate 3 that collides with the rapidly cooled ribbon R scattered from the cooling roll 2 (in the X3 direction), and secondaryly cools the quenched ribbon R by this collision and pulverizes the quenched ribbon R to form a magnet powder F. And a container 5 in which the produced magnet powder F is stored while being scattered and deposited from the cooling plate 3.

溶解炉1は窒化ケイ素から形成された坩堝であり、高周波コイルを備えていて、たとえば50kPa以下に減圧したArガス雰囲気の中に載置され、合金インゴットを高周波溶解するものである。   The melting furnace 1 is a crucible formed of silicon nitride and is equipped with a high-frequency coil, and is placed in an Ar gas atmosphere whose pressure is reduced to 50 kPa or less, for example, and melts an alloy ingot at high frequency.

溶解炉1から排出された希土類磁石を与える組成の溶湯は回転姿勢(X2方向)で銅製の冷却ロール2の表面に提供され、一次冷却されてできた急冷薄帯Rは冷却ロール2の回転にともなってその接線方向に飛散される(X3方向)。   The molten metal having a composition that gives the rare earth magnet discharged from the melting furnace 1 is provided on the surface of the copper cooling roll 2 in a rotating posture (X2 direction), and the rapidly cooled ribbon R formed by the primary cooling is used to rotate the cooling roll 2. At the same time, it is scattered in the tangential direction (X3 direction).

ここで、合金溶湯の組成(NdFeB磁石組成)は(Rl)x(Rh)yTzBsMtの組成式で表すことができ、RlはYを含む1種類以上の軽希土類元素、RhはDy、Tbよりなる1種類以上の重希土類元素、TはFe、Ni、Coを少なくとも1種類以上を含む遷移金属、MはGa、Zn、Si、Al、Nb、Zr、Ni、Cu、Cr、Hf、Mo、P、C、Mg、Hg、Ag、Auよりなる1種類以上の金属、13≦x≦20、0≦y≦4、z=100-a-b-d-e-f、4≦s≦20、0≦t≦3であり、主相(RlRh)2T14B相と粒界相(RlRh)T4B4相、 RlRh相の組織構成、もしくは、主相(RlRh)2T14B相と粒界相(RlRh)2T17相、RlRh相の組織構成のものを適用できる。   Here, the composition of the molten alloy (NdFeB magnet composition) can be expressed by a composition formula of (Rl) x (Rh) yTzBsMt, where Rl is one or more light rare earth elements including Y, and Rh is composed of Dy and Tb. One or more kinds of heavy rare earth elements, T is a transition metal containing at least one kind of Fe, Ni, Co, M is Ga, Zn, Si, Al, Nb, Zr, Ni, Cu, Cr, Hf, Mo, P One or more kinds of metals consisting of C, Mg, Hg, Ag, Au, 13 ≦ x ≦ 20, 0 ≦ y ≦ 4, z = 100-abdef, 4 ≦ s ≦ 20, 0 ≦ t ≦ 3, Structure of main phase (RlRh) 2T14B phase and grain boundary phase (RlRh) T4B4 phase, RlRh phase, or main phase (RlRh) 2T14B phase and grain boundary phase (RlRh) 2T17 phase, RlRh phase Applicable.

急冷薄帯Rが飛散される方向には、急冷薄帯Rを衝突させて二次冷却し、さらに衝突によって破砕して磁石用粉体Fを形成する冷却板3が載置されている。   In the direction in which the quenching ribbon R is scattered, a cooling plate 3 is placed on which the quenching ribbon R is collided to perform secondary cooling, and further crushed by collision to form the magnet powder F.

冷却板3は、その全体もしくは急冷薄帯Rの衝突面が銅素材であり、その背面側(衝突面と反対側)にはサーボモータからなる角度調整部4aが装備されており、角度調整部4aの稼働によって冷却板3の角度θが変更自在(Y1方向)となっている。なお、冷却板3は、その内部に水路が内蔵されていて、ここを還流する冷媒にて冷却板3が常時クーリングされる実施の形態であってもよい。   The entire cooling plate 3 or the collision surface of the quenching ribbon R is made of a copper material, and an angle adjustment unit 4a made of a servo motor is provided on the back side (opposite the collision surface). The angle θ of the cooling plate 3 is freely changeable (Y1 direction) by the operation of 4a. The cooling plate 3 may be an embodiment in which a water channel is built in the cooling plate 3 and the cooling plate 3 is always cooled by a refrigerant that circulates therethrough.

さらに、冷却板3の背面には回動軸4cが装備され、回動軸4cの先端にはサーボモータからなる回動部4bが装備されており、回動部4bの回動(揺動)によって冷却板3を回動軸4cを揺動中心として時計周りおよび反時計周りに揺動できるようになっている(Y2方向)。   Further, a rotating shaft 4c is provided on the back surface of the cooling plate 3, and a rotating portion 4b including a servo motor is provided at the tip of the rotating shaft 4c. Thus, the cooling plate 3 can be swung clockwise and counterclockwise around the rotation shaft 4c (Y2 direction).

冷却板3で急冷薄帯Rが二次冷却されるとともに破砕されてできた磁石用粉体Fは、冷却板3で反射し、下方の容器5に飛散して収容される。   The magnet powder F formed by the secondary cooling of the rapidly cooled ribbon R by the cooling plate 3 and being crushed is reflected by the cooling plate 3 and scattered and accommodated in the container 5 below.

容器5の側方には高さセンサ6が備えてあり、容器5内で堆積してできた磁石用粉体の堆積物Dの高さtをレーザLにて計測し、計測された高さデータは角度調整部4aに送信されるようになっている(信号S)。   A height sensor 6 is provided on the side of the container 5, and the height t of the magnet powder deposit D deposited in the container 5 is measured by the laser L, and the measured height is measured. The data is transmitted to the angle adjustment unit 4a (signal S).

角度調整部4aには磁石用粉体の堆積物Dの高さの閾値データが格納されており、受信した高さデータが閾値データ以上となった段階で冷却板3の角度を所望量だけ変化させる角度調整を実行する。すなわち、この所望量の角度調整は、磁石用粉体の堆積物Dの横の位置に、同様に別途の磁石用粉体の堆積物Dを形成できるような角度の調整である。   The angle adjustment unit 4a stores threshold data for the height of the magnet powder deposit D, and changes the angle of the cooling plate 3 by a desired amount when the received height data becomes equal to or greater than the threshold data. Execute angle adjustment. That is, the desired amount of angle adjustment is an angle adjustment so that a separate magnet powder deposit D can be similarly formed at a position beside the magnet powder deposit D.

容器5内で収容される磁石用粉体の堆積物Dの高さに関し、堆積物D内での熱篭りによって結晶粒の粗大化が生じない程度の高さを予め設定しておく。具体的には、この高さの設定に際し、磁石用粉体を様々な高さまで堆積させ、各ケースでの磁石用粉体の堆積物の内部温度を測定し、結晶粒の粗大化が生じ難い温度となる高さを予め決定しておく。   Regarding the height of the magnet powder deposit D accommodated in the container 5, a height is set in advance so as not to cause coarsening of crystal grains due to the heat in the deposit D. Specifically, when setting this height, the magnet powder is deposited to various heights, the internal temperature of the magnet powder deposit in each case is measured, and coarsening of crystal grains is unlikely to occur. The height for the temperature is determined in advance.

ここで、磁石用粉体の製造方法を概説する。まず、溶解炉1内に収容されている溶解した磁石組成の溶湯を溶解炉1から冷却ロール2に排出し、溶湯を一次冷却して急冷薄帯Rを形成する(第1のステップ)。   Here, the manufacturing method of the powder for magnets is outlined. First, the melt of the melted magnet composition accommodated in the melting furnace 1 is discharged from the melting furnace 1 to the cooling roll 2, and the molten metal is primarily cooled to form the quenching ribbon R (first step).

次に、冷却ロール2から飛散した急冷薄帯Rを冷却板3に衝突させ、衝突によって急冷薄帯Rを二次冷却するとともに急冷薄帯Rを粉砕して磁石用粉体Fを形成する(第2のステップ)。   Next, the quenched ribbon R scattered from the cooling roll 2 is collided with the cooling plate 3, and the quenched ribbon R is subjected to secondary cooling by the collision and the quenched ribbon R is pulverized to form a magnet powder F ( Second step).

この第2のステップでは、回動部4bを稼働して冷却板3を回動軸4c周りで回動(揺動)させ、回動状態の冷却板3に急冷薄帯Rを衝突させる。このように冷却板3を揺動状態としておくことにより、冷却ロール2から飛散した急冷薄帯Rが冷却板3に衝突する部位を分散させることができる。このことにより、冷却板3の一部のみに急冷薄帯Rの衝突が繰り返される場合に冷却板3の損耗が早くなり、メンテナンスが頻繁になるといった課題を解消することができる。   In this second step, the rotating portion 4b is operated to rotate (swing) the cooling plate 3 around the rotating shaft 4c, and the rapidly cooled ribbon R collides with the rotating cooling plate 3. By setting the cooling plate 3 in the swinging state in this way, it is possible to disperse the portion where the rapidly cooled ribbon R scattered from the cooling roll 2 collides with the cooling plate 3. As a result, it is possible to solve the problem that the cooling plate 3 is quickly worn out and the maintenance becomes frequent when the collision of the quenching ribbon R is repeated only on a part of the cooling plate 3.

ここで、第2のステップにおいて冷却板に急冷薄帯が衝突している状態を図2を参照して説明する。   Here, the state in which the quenching ribbon has collided with the cooling plate in the second step will be described with reference to FIG.

同図で示すように、銅素材の冷却板3に急冷薄帯Rが高速で衝突すると、冷却板3の表面は塑性変形し、この塑性変形の際のメタルタッチにて急冷薄帯Rの二次冷却が図られるとともに、衝突の際の衝撃で急冷薄帯Rが破砕されて磁石用粉体Fが形成される。   As shown in the figure, when the quenching ribbon R collides with the copper cooling plate 3 at a high speed, the surface of the cooling plate 3 is plastically deformed. Subsequent cooling is achieved, and the rapidly cooled ribbon R is crushed by the impact at the time of collision to form the magnet powder F.

図3で示すように、製造された磁石用粉体Fが冷却板3から飛散して容器5内で一定高さt1まで堆積して磁石用粉体の堆積物D1が形成された段階で、高さt1に関するデータ信号が角度調整部4aに送信されて冷却板3の角度がθからθ’に変更され(Y1方向)、磁石用粉体の堆積物D1の側方位置に磁石用粉体Fが飛散され、ここで磁石用粉体の堆積物D2が形成される(第3のステップ)。   As shown in FIG. 3, when the manufactured magnet powder F is scattered from the cooling plate 3 and deposited in the container 5 to a certain height t 1, the magnet powder deposit D 1 is formed. A data signal related to the height t1 is transmitted to the angle adjusting unit 4a, and the angle of the cooling plate 3 is changed from θ to θ ′ (Y1 direction), and the magnet powder is placed at the side position of the magnet powder deposit D1. F is scattered, and a magnet powder deposit D2 is formed (third step).

このように、図示する磁石用粉体の製造装置10を適用した製造方法によれば、製造装置10が急冷薄帯Rを二次冷却するとともにこの急冷薄帯Rを粉砕して磁石用粉体Fを形成する角度調整部4aを備えた冷却板3を有し、冷却板3から飛散して容器5内で一定高さt1まで堆積した段階で冷却板3の角度が変更され、別の位置で磁石用粉体Fの堆積が実行されることにより、製造された磁石用粉体の堆積物の内部の磁石用粉体が熱によってその結晶粒が粗大化するといった課題を効果的に解消することができる。   Thus, according to the manufacturing method to which the illustrated magnet powder manufacturing apparatus 10 is applied, the manufacturing apparatus 10 secondary cools the quenched ribbon R and pulverizes the quenched ribbon R to produce magnet powder. The cooling plate 3 having the angle adjusting portion 4a for forming F is provided, and the angle of the cooling plate 3 is changed at a stage where the cooling plate 3 scatters from the cooling plate 3 and accumulates to a certain height t1 in the container 5, When the magnet powder F is deposited, the problem that the crystal grains of the magnet powder inside the produced magnet powder deposit are coarsened by heat is effectively solved. be able to.

以上の製造方法によって磁石用粉体Fが製造される。以下、製造された磁石用粉体Fを使用した希土類磁石の製造方法を概説する。   The magnet powder F is manufactured by the above manufacturing method. Hereinafter, a method for producing a rare earth magnet using the produced magnet powder F will be outlined.

製造された磁性粉末Fは、不図示の超硬ダイスとこの中空内を摺動する超硬パンチで画成されたキャビティ内に充填され、超硬パンチで加圧しながら加圧方向に電流を流して通電加熱することにより、たとえばナノ結晶組織のNd-Fe-B系の主相(20nm〜200nm程度の粒径範囲の結晶粒)と、主相の周りにあるNd-X合金(X:金属元素)等の粒界相からなる焼結体が製造される。ここで、通電加熱による加熱温度は結晶粒の粗大化が生じない程度の低温域である550〜700℃の範囲で、かつ、粗大化を抑制できる圧力範囲である40〜500MPaの圧力で加圧し、保持時間を60分以内とし、不活性ガス雰囲気下で焼結体の製造をおこなうのがよい。次に、製造された焼結体をその長手方向の端面に超硬パンチを当接させ、超硬パンチで加圧しながら熱間塑性加工(強加工)を施すことにより、磁気的異方性を有するナノ結晶粒からなる結晶組織の成形体が製造される。この熱間塑性加工においては、塑性変形が可能でかつ結晶粒の粗大化が生じ難い低温域である600〜800℃程度で、さらに、粗大化を抑制できる短時間の歪速度0.01〜30/s程度で塑性加工をおこなうのがよく、成形体の酸化防止のために不活性ガス雰囲気下でおこなわれるのが望ましい。製造された希土類磁石は、その前駆体である焼結体の組織が粗大粒を含まず、もしくはその含有量が極めて少なく、さらに20nm〜200nm程度の粒径範囲でその平面形状が扁平状の結晶粒から構成されていることにより、熱間塑性加工(強加工)時に結晶粒が容易に回動し易く、もって結晶粒が高い配向度で並んだ、異方性を有する成形体となる。製造された成形体はそれ自身が最終製造物である希土類磁石となり得るが、保磁力性能を高める合金が成形体の内部に粒界拡散されて希土類磁石が製造されてもよい。   The manufactured magnetic powder F is filled in a cavity defined by a cemented carbide die (not shown) and a cemented carbide punch that slides in the hollow, and a current is applied in the pressurizing direction while pressing with the cemented carbide punch. For example, the Nd-Fe-B main phase (crystal grains with a particle size range of about 20 nm to 200 nm) with a nanocrystalline structure and the Nd-X alloy (X: metal) around the main phase A sintered body made of a grain boundary phase such as (element) is produced. Here, the heating temperature by energization heating is pressurized at a pressure range of 550 to 700 ° C., which is a low temperature range that does not cause coarsening of crystal grains, and a pressure range of 40 to 500 MPa that can suppress coarsening. It is preferable to manufacture the sintered body in an inert gas atmosphere with a holding time of 60 minutes or less. Next, the manufactured sintered body is brought into contact with the end face in the longitudinal direction with a cemented carbide punch and subjected to hot plastic processing (strong processing) while being pressed with the cemented carbide punch, thereby providing magnetic anisotropy. A shaped body having a crystal structure composed of the nanocrystal grains is produced. In this hot plastic working, a strain rate of 0.01 to 30 / s in a short time that can suppress the coarsening at a low temperature range of about 600 to 800 ° C. in which plastic deformation is possible and the coarsening of crystal grains hardly occurs. It is preferable to carry out plastic working at a degree, and it is desirable to carry out in an inert gas atmosphere in order to prevent the molded body from being oxidized. The manufactured rare earth magnet has a crystal structure in which the structure of the sintered body, which is a precursor thereof, does not include coarse particles, or the content thereof is extremely small, and the planar shape is flat in a particle size range of about 20 nm to 200 nm. By being composed of grains, the crystal grains easily rotate during hot plastic working (strong working), and thus a molded body having anisotropy in which the crystal grains are arranged with a high degree of orientation. The manufactured compact itself can be a rare earth magnet as a final product. However, a rare earth magnet may be manufactured by grain boundary diffusion of an alloy that enhances coercive force performance inside the compact.

以上、本発明の実施の形態を図面を用いて詳述してきたが、具体的な構成はこの実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲における設計変更等があっても、それらは本発明に含まれるものである。   The embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration is not limited to this embodiment, and there are design changes and the like without departing from the gist of the present invention. They are also included in the present invention.

1…溶解炉、2…冷却ロール、3…冷却板、4a…角度調整部(サーボモータ)、4b…回動部(サーボモータ)、4c…回動軸、5…容器、6…高さセンサ、10…製造装置、R…急冷リボン(急冷薄帯)、F…磁石用粉体、D,D1,D2…磁石用粉体の堆積物   DESCRIPTION OF SYMBOLS 1 ... Melting furnace, 2 ... Cooling roll, 3 ... Cooling plate, 4a ... Angle adjustment part (servo motor), 4b ... Turning part (servo motor), 4c ... Turning axis, 5 ... Container, 6 ... Height sensor DESCRIPTION OF SYMBOLS 10 ... Manufacturing apparatus, R ... Quench ribbon (quenched ribbon), F ... Magnet powder, D, D1, D2 ... Magnet powder deposits

Claims (4)

溶解した磁石組成の溶湯を収容する溶解炉と、
溶解炉から排出された溶湯を一次冷却して急冷薄帯を形成する冷却ロールと、
冷却ロールから飛散した急冷薄帯が衝突する冷却板であって、衝突によって急冷薄帯を二次冷却するとともに急冷薄帯を粉砕して磁石用粉体を形成する冷却板と、からなり、
前記冷却板はその角度を可変とする角度調整部を備えており、
製造された磁石用粉体が冷却板から飛散して容器内で一定高さまで堆積した段階で冷却板の角度が変更され、別の位置で磁石用粉体の堆積が実行されるように冷却板の角度調整がおこなわれる磁石用粉体の製造装置。
A melting furnace containing a melt of a melted magnet composition;
A cooling roll that primarily cools the molten metal discharged from the melting furnace to form a quenched ribbon;
A cooling plate that collides with a quenched ribbon scattered from a cooling roll, and includes a cooling plate that secondary cools the quenched ribbon by collision and pulverizes the quenched ribbon to form magnet powder.
The cooling plate is provided with an angle adjusting unit that makes the angle variable ,
Cooling plate so that the angle of the cooling plate is changed when the manufactured magnet powder is scattered from the cooling plate and deposited to a certain height in the container, and the magnet powder is deposited at another position. Manufacturing machine for magnet powder that adjusts the angle.
冷却板は角度調整部のほかに自身を回動させる回動部を備えており、回動軸周りで冷却板が回動自在となっている請求項に記載の磁石用粉体の製造装置。 Cold plate angle in addition to the adjustment unit itself has a rotating portion for rotating the magnet for powder production apparatus as claimed in claim 1, the cooling plate is made rotatable around the pivot shaft . 溶解炉内に収容されている溶解した磁石組成の溶湯を溶解炉から冷却ロールに排出し、溶湯を一次冷却して急冷薄帯を形成する第1のステップ、
冷却ロールから飛散した急冷薄帯を冷却板に衝突させ、衝突によって急冷薄帯を二次冷却するとともに急冷薄帯を粉砕して磁石用粉体を形成する第2のステップ、
製造された磁石用粉体が冷却板から飛散して容器内で一定高さまで堆積した段階で冷却板の角度を変更し、別の位置で磁石用粉体を堆積させる第3のステップからなる磁石用粉体の製造方法。
A first step of discharging the melt of the melted magnet composition accommodated in the melting furnace from the melting furnace to a cooling roll, and primarily cooling the molten metal to form a quenching ribbon;
A second step of colliding the quenched ribbon stripped from the cooling roll with the cooling plate, secondary cooling the quenched ribbon by collision and pulverizing the quenched ribbon to form a magnet powder;
A magnet comprising a third step of changing the angle of the cooling plate when the produced magnet powder is scattered from the cooling plate and deposited to a certain height in the container and deposits the magnet powder at another position. For producing powders for use.
第2のステップでは、冷却板を回動軸周りで回動させ、回動状態の冷却板に急冷薄帯を衝突させる請求項に記載の磁石用粉体の製造方法。 The method for producing a magnet powder according to claim 3 , wherein in the second step, the cooling plate is rotated about a rotation axis, and the rapidly cooled ribbon is caused to collide with the rotating cooling plate.
JP2013161139A 2013-08-02 2013-08-02 Magnet powder manufacturing apparatus and manufacturing method Active JP6036597B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013161139A JP6036597B2 (en) 2013-08-02 2013-08-02 Magnet powder manufacturing apparatus and manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013161139A JP6036597B2 (en) 2013-08-02 2013-08-02 Magnet powder manufacturing apparatus and manufacturing method

Publications (2)

Publication Number Publication Date
JP2015030877A JP2015030877A (en) 2015-02-16
JP6036597B2 true JP6036597B2 (en) 2016-11-30

Family

ID=52516468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013161139A Active JP6036597B2 (en) 2013-08-02 2013-08-02 Magnet powder manufacturing apparatus and manufacturing method

Country Status (1)

Country Link
JP (1) JP6036597B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4203682B2 (en) * 1998-08-04 2009-01-07 株式会社Ihi Rapid cooling ribbon manufacturing method and equipment
JP2002167611A (en) * 2000-11-27 2002-06-11 Ishikawajima Harima Heavy Ind Co Ltd Method and device for manufacturing metal flake
DE102009024120A1 (en) * 2009-06-06 2010-12-09 Arno Friedrichs Process for processing metal powder
US9862030B2 (en) * 2010-07-02 2018-01-09 Santoku Corporation Method for producing alloy cast slab for rare earth sintered magnet
JP5767042B2 (en) * 2011-06-16 2015-08-19 株式会社三徳 Metal or alloy production equipment

Also Published As

Publication number Publication date
JP2015030877A (en) 2015-02-16

Similar Documents

Publication Publication Date Title
JP4591633B2 (en) Nanocomposite bulk magnet and method for producing the same
US7431070B2 (en) Rare earth magnet alloy ingot, manufacturing method for the same, R-T-B type magnet alloy ingot, R-T-B type magnet, R-T-B type bonded magnet, R-T-B type exchange spring magnet alloy ingot, R-T-B type exchange spring magnet, and R-T-B type exchange spring bonded magnet
KR100745198B1 (en) Iron-base alloy permanent magnet powder and method for producing the same
JP5640946B2 (en) Method for producing sintered body as rare earth magnet precursor
JP5692231B2 (en) Rare earth magnet manufacturing method and rare earth magnet
JP2017157832A (en) R-t-b based permanent magnet
JP5751237B2 (en) Rare earth magnet and manufacturing method thereof
EP1479787B2 (en) Sinter magnet made from rare earth-iron-boron alloy powder for magnet
JP2013197414A (en) Sintered compact and production method therefor
JPH08277403A (en) Production of permanent magnet alloy powder for bond magnet and apparatus therefor
JP2004111481A (en) Rare earth sintered magnet and its manufacturing method
JP4134616B2 (en) Press apparatus and magnet manufacturing method
US20160027565A1 (en) Method of manufacturing rare earth magnet
JP2000348919A (en) Nanocomposite crystalline sintered magnet and manufacture of the same
JP6036597B2 (en) Magnet powder manufacturing apparatus and manufacturing method
WO2003020993A1 (en) Rare earth magnet alloy ingot, manufacturing method for the same, r-t-b type magnet alloy ingot, r-t-b type magnet, r-t-b type bonded magnet, r-t-b type exchange spring magnet alloy ingot, r-t-b type exchange spring magnet, and r-t-b type exchange spring bonded magnet
JP5914977B2 (en) Bulk magnet and manufacturing method thereof
JP3452561B2 (en) Rare earth magnet and manufacturing method thereof
EP3007192A1 (en) Method for manufacturing rare-earth magnets
US20190311851A1 (en) Method of producing nd-fe-b magnet
JP4644986B2 (en) Anisotropic iron-based permanent magnet and method for producing the same
JPH11315357A (en) Alloy for rare earth magnet and its production
CN105023684A (en) Permanent magnet and variable magnetic flux motor
JP2003334643A (en) Method for manufacturing rare earth alloy, alloy lump for r-t-b magnet, r-t-b magnet, r-t-b bonded magnet, alloy lump for r-t-b exchangeable spring magnet, r-t-b exchangeable spring magnet and r-t-b exchangeable spring bonded magnet
JPH08260112A (en) Alloy thin strip for permanent magnet, alloy powder obtained from the same, magnet and production of alloy thin strip for permanent magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161017

R151 Written notification of patent or utility model registration

Ref document number: 6036597

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151