JP6033613B2 - Vacuum insulation material and equipment using the same - Google Patents

Vacuum insulation material and equipment using the same Download PDF

Info

Publication number
JP6033613B2
JP6033613B2 JP2012192744A JP2012192744A JP6033613B2 JP 6033613 B2 JP6033613 B2 JP 6033613B2 JP 2012192744 A JP2012192744 A JP 2012192744A JP 2012192744 A JP2012192744 A JP 2012192744A JP 6033613 B2 JP6033613 B2 JP 6033613B2
Authority
JP
Japan
Prior art keywords
heat insulating
insulating material
vacuum heat
tubular member
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012192744A
Other languages
Japanese (ja)
Other versions
JP2014047874A (en
Inventor
大五郎 嘉本
大五郎 嘉本
越後屋 恒
恒 越後屋
荒木 邦成
邦成 荒木
祐志 新井
祐志 新井
康人 寺内
康人 寺内
中川路 孝行
孝行 中川路
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2012192744A priority Critical patent/JP6033613B2/en
Publication of JP2014047874A publication Critical patent/JP2014047874A/en
Application granted granted Critical
Publication of JP6033613B2 publication Critical patent/JP6033613B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Thermal Insulation (AREA)
  • Details Of Fluid Heaters (AREA)
  • Refrigerator Housings (AREA)

Description

本発明は、真空断熱材及びそれを用いた冷凍冷蔵庫、貯湯式給湯器等の機器に関するものである。   The present invention relates to a vacuum heat insulating material and a device such as a refrigerator-freezer and a hot water storage type water heater using the same.

近年、地球環境保護の観点また省エネルギー化の観点から家電製品や産業機器の断熱性向上が検討されている。機器を断熱する断熱材としては、樹脂フォームや有機、無機の繊維が用いられているが、断熱性を向上しようとした場合、断熱材の厚さを厚くする必要がある。断熱材の厚さが厚くなると機器全体の容積が増大し、機器全体の容積を変更しない場合には部品等を実装できるスペースの割合が低くなってしまう等の課題が生じる。このような課題を解決するために、樹脂フォームや無機繊維などより断熱性に優れる真空断熱材が提案されている。真空断熱材はガスバリア性を有する外包材を袋状にし、内部に芯材およびガス吸着用のゲッター剤を入れ、袋内部を減圧した後、袋の端部を封止して作製する。従来の樹脂フォームや無機繊維等の断熱材と比較して、20から40倍の断熱性を持つことから、断熱材の厚さを薄くしても十分な断熱を行うことが可能である。   In recent years, improvement in heat insulation of home appliances and industrial equipment has been studied from the viewpoint of global environmental protection and energy saving. Resin foam, organic, and inorganic fibers are used as the heat insulating material for heat insulating the device. However, in order to improve heat insulating properties, it is necessary to increase the thickness of the heat insulating material. When the thickness of the heat insulating material is increased, the volume of the entire device is increased, and there is a problem that, when the volume of the entire device is not changed, a ratio of a space in which components and the like can be mounted is reduced. In order to solve such a problem, a vacuum heat insulating material having better heat insulating properties than resin foam and inorganic fibers has been proposed. The vacuum heat insulating material is produced by forming a bag-like outer packaging material having a gas barrier property, putting a core material and a gas adsorption getter agent inside, depressurizing the inside of the bag, and sealing the end of the bag. Compared to conventional heat insulating materials such as resin foam and inorganic fibers, the heat insulating property is 20 to 40 times, so that sufficient heat insulation can be performed even if the thickness of the heat insulating material is reduced.

このような真空断熱材の断熱性向上には、減圧後の袋内部の残存ガスを少なくして内部の真空度を高めることが重要である。しかしながら、真空断熱材の芯材内部のガスの排気は、排気抵抗が高く十分な排気には長時間を要するとともに、ガス吸引口から離れた箇所の芯材内部のガスを確実に排気することは困難である。これに対して、例えば、特許文献1には連通気泡を有する発泡ウレタンを芯材とし、芯材を加工して排気流路を形成した真空断熱材が記載されている。   In order to improve the heat insulation of such a vacuum heat insulating material, it is important to increase the degree of vacuum inside by reducing the residual gas inside the bag after decompression. However, the exhaust of the gas inside the core of the vacuum heat insulating material has a high exhaust resistance, and it takes a long time for sufficient exhaust, and the gas inside the core away from the gas suction port can be surely exhausted. Have difficulty. On the other hand, for example, Patent Document 1 describes a vacuum heat insulating material in which foamed urethane having open cells is used as a core material, and the core material is processed to form an exhaust passage.

特開平11−159693号公報Japanese Patent Laid-Open No. 11-159893

特許文献1に記載の手法によれば、流路の形成により排気に要する時間は短縮されるが、真空断熱材の作製後も排気用流路の空間がそのままの形状となる。このような状態となると、空間中で残存ガスによる熱の伝搬が発生し熱伝導率の低下が懸念される。   According to the technique described in Patent Document 1, the time required for exhaustion is shortened by the formation of the flow path, but the space of the exhaust flow path remains the same even after the vacuum heat insulating material is manufactured. If it becomes such a state, propagation of heat by residual gas will occur in the space, and there is a concern about a decrease in thermal conductivity.

本発明の目的は、高い真空度を効率的に達成し、断熱性能を向上した真空断熱材を提供することにある。   The objective of this invention is providing the vacuum heat insulating material which achieved the high vacuum degree efficiently and improved the heat insulation performance.

本発明の真空断熱材は、繊維集合体の芯材と、ガスバリア性を有し、芯材を収納する外包材とを有し、外包材の内部を減圧密閉した真空断熱材であって、外包材の内部でかつ芯材の内部に設置された管状部材を有し、前記管状部材の側壁に複数の孔が形成され、管状部材の先端が芯材の外部に露出していることを特徴とする。
The vacuum heat insulating material of the present invention is a vacuum heat insulating material having a core material of a fiber assembly, an outer packaging material having gas barrier properties and containing the core material, and the inside of the outer packaging material being hermetically sealed under reduced pressure. It has a tubular member installed inside the core material and inside the core material , a plurality of holes are formed in the side wall of the tubular member, and the tip of the tubular member is exposed to the outside of the core material, To do.

本発明により、高い真空度を効率的に達成し、断熱性能を向上した真空断熱材を提供することができる。   According to the present invention, it is possible to provide a vacuum heat insulating material that efficiently achieves a high degree of vacuum and has improved heat insulating performance.

本発明の真空断熱材の断面模式図である。It is a cross-sectional schematic diagram of the vacuum heat insulating material of this invention. 本発明の真空断熱材の減圧密閉前後の状態を説明する模式図である。It is a schematic diagram explaining the state before and behind pressure reduction sealing of the vacuum heat insulating material of this invention. 本発明の真空断熱材を備えた冷凍冷蔵庫の断面模式図である。It is a cross-sectional schematic diagram of the refrigerator-freezer provided with the vacuum heat insulating material of this invention. 本発明の真空断熱材を備えたヒートポンプ給湯器の断面模式図である。It is a cross-sectional schematic diagram of the heat pump water heater provided with the vacuum heat insulating material of this invention.

図1に本発明の真空断熱材の断面模式図の一例を示す。本発明の真空断熱材1は、繊維集合体で構成される芯材3、ゲッター剤5が、ガスバリア性を有する外包材4に収納され、外包材4の内部が減圧密閉された構成である。ここで、本発明の真空断熱材1は、芯材3の内部に管状部材2が設置されていることを特徴とする。管状部材2は芯材内部のガスを排気するための流路を形成するためのものである。減圧時に芯材内部のガスを吸引口から効率的に排出するために管状部材の先端は、芯材の外部に露出するように配置している。この際、吸引口に近い側の一方の先端が芯材の外部に露出していればよく、管状部材の両端が芯材の外部に露出している必要はない。   FIG. 1 shows an example of a schematic cross-sectional view of the vacuum heat insulating material of the present invention. The vacuum heat insulating material 1 of the present invention has a configuration in which a core material 3 and a getter agent 5 made of a fiber assembly are housed in an outer packaging material 4 having gas barrier properties, and the inside of the outer packaging material 4 is sealed under reduced pressure. Here, the vacuum heat insulating material 1 of the present invention is characterized in that the tubular member 2 is installed inside the core material 3. The tubular member 2 is for forming a flow path for exhausting the gas inside the core material. In order to efficiently discharge the gas inside the core material from the suction port during decompression, the tip of the tubular member is disposed so as to be exposed to the outside of the core material. At this time, it is only necessary that one end on the side close to the suction port is exposed to the outside of the core material, and it is not necessary that both ends of the tubular member are exposed to the outside of the core material.

管状部材2としては、塑性変形可能な材質を用いることが望ましく、例えばポリエチレン、ポリプロピレン、ポリスチレン、ポリアクリレート、ポリカーボネート、ポリエチレンテレフタレート等の有機樹脂、アルミ、スチール等の金属を用いることができる。部材の形状としては、管状であればよく、管の断面形状は円形、楕円形、四角、多角形を選択することができる。管の側壁にはガスの排気を助けるため、管の直径と同程度の大きさの孔を設けることができ、孔の形状、配置、数等は必要に応じて任意に設定することができる。また、管状部材の厚さは真空断熱材作製後に加わる大気の圧力で変形する程度の薄さにすることが望ましい。   As the tubular member 2, it is desirable to use a plastically deformable material. For example, an organic resin such as polyethylene, polypropylene, polystyrene, polyacrylate, polycarbonate, or polyethylene terephthalate, or a metal such as aluminum or steel can be used. The shape of the member may be a tube, and the cross-sectional shape of the tube can be selected from a circle, an ellipse, a square, and a polygon. In order to assist the exhaust of gas on the side wall of the pipe, a hole having the same size as the diameter of the pipe can be provided, and the shape, arrangement, number, etc. of the holes can be arbitrarily set as required. Further, it is desirable that the thickness of the tubular member be thin enough to be deformed by atmospheric pressure applied after the vacuum heat insulating material is produced.

芯材3は繊維集合体で構成されており、次の様なものが挙げられる。グラスウール、グラスファイバー、アルミナ、シリカアルミナ、シリカ、ロックウール、炭化ケイ素等の無機材料からなる繊維や有機樹脂を紡糸した樹脂繊維等、あるいは、これらを複合した繊維を用いることもできる。繊維集合体はその内部に管状部材が配置可能な構造になっていることが望ましく、この点から繊維同士をバインダー等で結着していないもの、または熱プレス等で繊維が溶着していない構造であることが望ましい。また、繊維径については細い方が好ましいが、人体への影響、工業的な生産性を考慮し10μm以下であることが望ましく、更には5μm以下であることがより好ましい。   The core material 3 is comprised with the fiber assembly, and the following are mentioned. It is also possible to use fibers made of inorganic materials such as glass wool, glass fiber, alumina, silica alumina, silica, rock wool, silicon carbide, resin fibers spun from an organic resin, or composite fibers of these. It is desirable that the fiber assembly has a structure in which a tubular member can be arranged. From this point, the fiber is not bonded with a binder or the like, or the structure in which the fiber is not welded by a hot press or the like It is desirable that The fiber diameter is preferably thinner, but it is preferably 10 μm or less, more preferably 5 μm or less in consideration of the influence on the human body and industrial productivity.

外包材4は、表面保護層、ガスバリア層、および、熱溶着層の多層構造で構成され、それぞれ1種類以上のフィルムを積層して用いることができる。表面保護層としては、ポリエチレンテレフタレートフィルム、ナイロンフィルム、ポリプロピレンフィルム等の延伸加工品、ガスバリア層としては、金属蒸着フィルム、無機質蒸着フィルム、金属箔等、熱溶着層としては、低密度ポリエチレンフィルム、高密度ポリエチレンフィルム、ポリプロピレンフィルム、ポリアクリロニトリルフィルム、無延伸ポリエチレンレテレフタレートフィルム等を用いることができる。   The outer packaging material 4 is composed of a multilayer structure of a surface protective layer, a gas barrier layer, and a heat welding layer, and can be used by laminating one or more kinds of films. As the surface protective layer, stretched products such as polyethylene terephthalate film, nylon film, polypropylene film, etc., as the gas barrier layer, metal vapor deposited film, inorganic vapor deposited film, metal foil, etc., as the heat welding layer, low density polyethylene film, high A density polyethylene film, a polypropylene film, a polyacrylonitrile film, an unstretched polyethylene terephthalate film, etc. can be used.

ゲッター剤5は減圧密閉後の残存ガスおよび水分を吸着する機能を備え、例えば、モレキュラーシーブス、シリカゲル、酸化カルシウム、合成ゼオライト、活性炭、水酸化カリウム、水酸化ナトリウム、水酸化リチウム等を用いることができる。   The getter agent 5 has a function of adsorbing residual gas and moisture after being sealed under reduced pressure. For example, molecular sieves, silica gel, calcium oxide, synthetic zeolite, activated carbon, potassium hydroxide, sodium hydroxide, lithium hydroxide, etc. may be used. it can.

真空断熱材は、袋状の外包材に芯材であるグラスウールなどの繊維集合体を入れて内部を減圧した後、端部を熱により溶着することで作製される。内部を減圧することでガスによる熱の伝搬が抑制され、高い断熱特性が発現する。このことから、内部の圧力が低くなると断熱特性が高くなると言える。一方、ガス分子の平均自由行程は圧力とともに増大することから、圧力の増大とともに排気抵抗が増加する。芯材に用いる繊維集合体であるグラスウール中でのガス分子の動きを考えた場合、繊維により形成される空間サイズより、ガス分子の平均自由行程が大きくなると排気抵抗が大きくなり排気が困難となる。すなわち、圧力を低くしようとした際には効率的な排気が行いづらい状態となってしまう。   The vacuum heat insulating material is manufactured by putting a fiber assembly such as glass wool as a core material in a bag-shaped outer packaging material, depressurizing the inside, and then welding the end portion with heat. By reducing the pressure inside, the propagation of heat by the gas is suppressed, and a high heat insulating property is exhibited. From this, it can be said that the heat insulation property is enhanced when the internal pressure is lowered. On the other hand, since the mean free path of gas molecules increases with pressure, the exhaust resistance increases with increasing pressure. Considering the movement of gas molecules in glass wool, which is a fiber aggregate used as a core material, exhaust resistance becomes larger and exhaust becomes difficult if the mean free path of gas molecules is larger than the space size formed by the fibers. . That is, when trying to lower the pressure, it becomes difficult to perform efficient exhaust.

このような状態の所に、ガス分子の平均自由行程より大きな空間を備えた管状部材2を配置すると、ガス分子の移動を促進し結果として内部の真空度が向上することから、真空断熱材の断熱特性を向上することが可能となる。   If the tubular member 2 having a space larger than the mean free path of gas molecules is arranged in such a state, the movement of the gas molecules is promoted and as a result, the degree of internal vacuum is improved. It is possible to improve the heat insulating properties.

この際、管状部材2は芯材3とは異なる材質で形成されていることが望ましい。管状部材2を芯材3と異なる材質で形成することで、排気流路に繊維が入り込むことが抑制される。このため、芯材3そのもので排気流路を形成した場合よりも、確実に排気流路を確保することが可能となり排気効率を高めることが可能となる。排気効率を高めることで、真空断熱材内部の真空度が向上し真空断熱材の断熱特性を向上することが可能となる。   At this time, the tubular member 2 is preferably formed of a material different from that of the core material 3. By forming the tubular member 2 from a material different from that of the core member 3, it is possible to prevent fibers from entering the exhaust passage. For this reason, it is possible to ensure the exhaust passage more reliably than when the exhaust passage is formed by the core material 3 itself, and it is possible to increase the exhaust efficiency. By increasing the exhaust efficiency, the degree of vacuum inside the vacuum heat insulating material can be improved and the heat insulating properties of the vacuum heat insulating material can be improved.

さらに、管状部材2は芯材3の長さ方向に沿って配置されていることが望ましい。管状部材2を芯材3の長さ方向に沿って配置することで、ガスの移動距離が長くなる長辺方向の排気を効率的に行うことが可能となる。これにより、真空断熱材内部の真空度が向上し真空断熱材の断熱特性を向上することが可能となる。   Furthermore, it is desirable that the tubular member 2 is disposed along the length direction of the core member 3. By disposing the tubular member 2 along the length direction of the core member 3, it is possible to efficiently perform exhaust in the long side direction in which the gas moving distance becomes long. Thereby, the vacuum degree inside a vacuum heat insulating material can improve, and it becomes possible to improve the heat insulation characteristic of a vacuum heat insulating material.

さらに、管状部材2の一部に孔を設けることが望ましい。管状部材2の側壁の一部に孔を設けることで、芯材から排気流路である管状部材へのガスの移動が容易となり、排気効率を高めることが可能となる。これにより、真空断熱材内部の真空度が向上し真空断熱材の断熱特性を向上することが可能となる。   Furthermore, it is desirable to provide a hole in a part of the tubular member 2. By providing a hole in a part of the side wall of the tubular member 2, gas can be easily moved from the core material to the tubular member that is an exhaust passage, and exhaust efficiency can be increased. Thereby, the vacuum degree inside a vacuum heat insulating material can improve, and it becomes possible to improve the heat insulation characteristic of a vacuum heat insulating material.

さらに、図1の拡大図に示したように減圧密閉された後の管状部材2は板状に変形していることが望ましい。管状部材が板状に変形することで、減圧密閉された後に排気流路の空間を閉塞しガスの移動を抑制することが可能となる。これにより、ガスの移動による熱の伝達を抑制でき真空断熱材の断熱特性を向上することが可能となる。   Furthermore, as shown in the enlarged view of FIG. 1, the tubular member 2 after being sealed under reduced pressure is preferably deformed into a plate shape. By deforming the tubular member into a plate shape, it becomes possible to block the space of the exhaust flow path after being sealed under reduced pressure and to suppress the movement of gas. Thereby, the heat transfer due to the movement of gas can be suppressed, and the heat insulating property of the vacuum heat insulating material can be improved.

以下、本発明の実施例について図を用いて詳細に説明する。なお、この実施例によって発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The invention is not limited to the embodiments.

図2に本実施例の真空断熱材の減圧密閉前後の状態を説明する模式図を示す。図2(a)、(b)が減圧密閉前の状態であり、図2(a)が側面からみた断面模式図、図2(b)が図2(a)のA−A断面を上面からみた断面模式図である。また、図2(c)は減圧密閉後の側面からみた断面模式図である。以下、図2を用いて本実施例の真空断熱材1の作製方法を説明する。   The schematic diagram explaining the state before and behind the pressure-reduction sealing of the vacuum heat insulating material of a present Example in FIG. 2 is shown. 2 (a) and 2 (b) show the state before sealing under reduced pressure, FIG. 2 (a) is a schematic cross-sectional view seen from the side, and FIG. 2 (b) shows the AA cross section of FIG. FIG. Moreover, FIG.2 (c) is a cross-sectional schematic diagram seen from the side surface after pressure-reduction sealing. Hereinafter, the manufacturing method of the vacuum heat insulating material 1 of a present Example is demonstrated using FIG.

芯材としてグラスウールからなる繊維集合体(大きさ:500mm×1000mm×100mm)を用いた。このグラスウールを200℃で30分間乾燥した後、グラスウールを厚さ方向に3分割し、図2(a)のように、分割したグラスウールの間に管状部材2を配置した。ここで、図2(b)のように、管状部材2の先端はグラスウールの端部から3〜5mm程度突き出した状態とし、管状部材2の先端から吸引口にガスを流しやすいようにした。管状部材2はポリエチレンテレフタレートを用いて成形し、形状は壁の厚さを0.5mm、内径10mmの円筒、長さ1010mmとし、側壁には直径9mmの孔23を複数個開けた。グラスウールの内部に配置した管状部材2の数は全部で6本である。その後、3方を綴じ袋状にした外包材4の中にゲッター剤(ユニオン昭和製:モレキュラーシーブス13X)とともに入れ、袋の内部をロータリーポンプで10分、拡散ポンプで10分真空引きした後、端部をヒートシールで封止した。図2(c)に示したように減圧密閉後の真空断熱材1内の管状部材2は、管の内部空間が潰れて板状に変形していた。   A fiber assembly (size: 500 mm × 1000 mm × 100 mm) made of glass wool was used as the core material. After this glass wool was dried at 200 ° C. for 30 minutes, the glass wool was divided into three in the thickness direction, and the tubular member 2 was placed between the divided glass wools as shown in FIG. Here, as shown in FIG. 2 (b), the tip of the tubular member 2 protruded from the end of the glass wool by about 3 to 5 mm so that the gas can easily flow from the tip of the tubular member 2 to the suction port. The tubular member 2 was molded using polyethylene terephthalate, and the shape thereof was a wall thickness of 0.5 mm, a cylinder with an inner diameter of 10 mm, a length of 1010 mm, and a plurality of holes 23 with a diameter of 9 mm were formed in the side wall. The total number of tubular members 2 disposed inside the glass wool is six. Then, after putting together with a getter agent (made by Union Showa: Molecular Sieves 13X) into the outer packaging material 4 in which the three sides are bound into a binding bag shape, the inside of the bag is evacuated by a rotary pump for 10 minutes and a diffusion pump for 10 minutes, The end was sealed with heat seal. As shown in FIG. 2C, the tubular member 2 in the vacuum heat insulating material 1 after being sealed under reduced pressure was deformed into a plate shape due to the collapse of the internal space of the tube.

作製した真空断熱材1(厚み:約10mm)について、英弘精機(株)製のAUTO−Λを用いて10℃で断熱特性を測定した。その結果、断熱特性は120(指数)であった。断熱特性は指数で示しており、高くなるほど断熱特性は良好となる。この結果より、非常に断熱性に優れる真空断熱材を作製できることが明らかとなった。   About the produced vacuum heat insulating material 1 (thickness: about 10 mm), the heat insulation characteristic was measured at 10 degreeC using AUTO-Λ made from Hidehiro Seiki Co., Ltd. As a result, the heat insulating property was 120 (index). The heat insulation property is indicated by an index. The higher the heat insulation property, the better the heat insulation property. From this result, it became clear that a vacuum heat insulating material having excellent heat insulating properties can be produced.

更に同様の方法で種々の大きさの真空断熱材を作製し、これを用いて冷凍冷蔵庫6を作製した。断面模式図を図3に示す。冷蔵庫外箱10または、冷蔵庫内箱8に真空断熱材を張り付けた後、冷蔵庫外箱と冷蔵庫内箱を組合せ、形成された隙間に発泡ウレタン7を注入し冷蔵庫箱体を作製した。扉についても同様に作製した。作製した冷蔵庫箱体および扉とコンプレッサー、熱交換機等の部品とを用いて冷凍冷蔵庫を作製し消費電力を測定した所、従来の真空断熱材を用いて作製した場合と比較して、約3%低い結果となった。このことより、本発明の真空断熱材を用いることで、機器の消費電力を低く抑えることができることが明らかとなった。   Furthermore, various sizes of vacuum heat insulating materials were produced by the same method, and the refrigerator-freezer 6 was produced using this. A schematic cross-sectional view is shown in FIG. After attaching a vacuum heat insulating material to the refrigerator outer box 10 or the refrigerator inner box 8, the refrigerator outer box and the refrigerator inner box were combined, and the urethane foam 7 was injected into the formed gap to produce a refrigerator box. The door was prepared in the same manner. Refrigerated refrigerator was made using the produced refrigerator box and door and parts such as a compressor and heat exchanger, and the power consumption was measured. Compared to the case where it was made using a conventional vacuum heat insulating material, about 3% The result was low. From this, it became clear that the power consumption of the equipment can be kept low by using the vacuum heat insulating material of the present invention.

本実施例では、管状部材2としてアルミニウムを用いて成形した部材を使用した。ここで、管状部材2の形状は壁の厚さを0.25mm、長径10mm、短径7mmの楕円形、長さ1010mmとし、側壁に直径9.5mmの孔を複数個開けたものである。   In this example, a member formed using aluminum was used as the tubular member 2. Here, the shape of the tubular member 2 is such that the wall thickness is 0.25 mm, the long diameter is 10 mm, the short diameter is 7 mm, the length is 1010 mm, and a plurality of holes having a diameter of 9.5 mm are formed in the side wall.

管状部材2を変更した以外は実施例1と同様の条件で真空断熱材1を作製した。作製した真空断熱材(厚み:約10mm)について、実施例1と同様の条件で断熱特性を測定した。その結果、断熱特性は118(指数)であった。この結果より、非常に断熱性に優れる真空断熱材を作製できることが明らかとなった。   A vacuum heat insulating material 1 was produced under the same conditions as in Example 1 except that the tubular member 2 was changed. About the produced vacuum heat insulating material (thickness: about 10 mm), the heat insulation characteristic was measured on the conditions similar to Example 1. FIG. As a result, the heat insulating property was 118 (index). From this result, it became clear that a vacuum heat insulating material having excellent heat insulating properties can be produced.

更に同様の方法で大きさ800mm×1200mm、厚さ15mmの真空断熱材を作製し、ヒートポンプ給湯器の貯湯タンクの断熱材として適用した。断面模式図を図4に示す。ヒートポンプ給湯器の貯湯タンクにはヒートポンプユニットで暖められたお湯が貯められており、お湯を使用しない場合にタンク内の湯温が低下すると沸かし直しを行う必要があるため、給湯器の成績係数(COP:Coefficient of Performance)が低下してしまう。本実施例の真空断熱材を適用した場合と、従来の管状部材2を用いない真空断熱材を用いた場合のCOPを比較した所、約10%の改善が確認された。このことから、機器の消費電力を低く抑えられることが明らかとなった。   Furthermore, a vacuum heat insulating material having a size of 800 mm × 1200 mm and a thickness of 15 mm was produced in the same manner, and applied as a heat insulating material for a hot water storage tank of a heat pump water heater. A schematic cross-sectional view is shown in FIG. The hot water storage tank of the heat pump water heater stores hot water warmed by the heat pump unit, and when it is not used, it must be re-boiled when the water temperature in the tank drops. COP: Coefficient of Performance will decrease. When the COP was compared between the case where the vacuum heat insulating material of this example was applied and the case where the conventional vacuum heat insulating material not using the tubular member 2 was used, an improvement of about 10% was confirmed. From this, it became clear that the power consumption of the device can be kept low.

管状部材2の形状として側壁に孔を設けないものを使用したこと以外は実施例1と同様の条件で真空断熱材1を作製した。作製した真空断熱材1(厚み:約10mm)について、実施例1と同様の条件で断熱特性を測定した。その結果、断熱特性は110(指数)であった。この結果より、非常に断熱性に優れる真空断熱材を作製できることが明らかとなった。   The vacuum heat insulating material 1 was produced on the same conditions as Example 1 except having used the thing which does not provide a hole in a side wall as a shape of the tubular member 2. FIG. About the produced vacuum heat insulating material 1 (thickness: about 10 mm), the heat insulation characteristic was measured on the conditions similar to Example 1. FIG. As a result, the heat insulating property was 110 (index). From this result, it became clear that a vacuum heat insulating material having excellent heat insulating properties can be produced.

比較例1Comparative Example 1

繊維集合体であるグラスウール(大きさ:500mm×1000mm×10mm)を200℃で30分間乾燥した後、袋状に成形した外包材中にゲッター剤(ユニオン昭和製:モレキュラーシーブス13X)とともに入れ、袋の内部をロータリーポンプで10分、拡散ポンプで10分真空引きした後、端部をヒートシールで封止し、本比較例の真空断熱材を作製した。作製した真空断熱材(厚み:約10mm)について、実施例1と同様の条件で断熱特性を測定した。その結果、断熱特性は100(指数)であった。この結果より、実施例1〜3と比較して断熱特性は劣る結果となり、管状部材をグラスウール内に配置して真空断熱材を作製することで、断熱特性が向上することが明らかとなった。   Glass wool (size: 500 mm x 1000 mm x 10 mm), which is a fiber aggregate, is dried at 200 ° C for 30 minutes, and then put into a bag-shaped outer packaging material together with a getter agent (Union Showa: Molecular Sieves 13X). The interior of was vacuumed for 10 minutes with a rotary pump and 10 minutes with a diffusion pump, and then the end was sealed with heat seal to produce a vacuum heat insulating material of this comparative example. About the produced vacuum heat insulating material (thickness: about 10 mm), the heat insulation characteristic was measured on the conditions similar to Example 1. FIG. As a result, the heat insulating property was 100 (index). From this result, it became clear that heat insulation characteristics were inferior compared with Examples 1 to 3, and that the heat insulation characteristics were improved by arranging the tubular member in glass wool to produce a vacuum heat insulating material.

比較例2Comparative Example 2

繊維集合体であるグラスウール(大きさ:500mm×1000mm×10mm)を200℃で30分間乾燥した。乾燥したグラスウールを厚さ方向に3分割し、グラスウールの対向する面を治具で成形し、グラスウールに溝を形成した後、袋状に成形した外包材中にゲッター剤(ユニオン昭和製:モレキュラーシーブス13X)とともに入れ、袋の内部をロータリーポンプで10分、拡散ポンプで10分真空引きした後、端部をヒートシールで封止し、本比較例の真空断熱材を作製した。作製した真空断熱材(厚み:約10mm)について、実施例1と同様の条件で断熱特性を測定した。その結果、断熱特性は100(指数)であった。この結果より、実施例1〜3と比較して断熱特性は劣る結果となったことから、グラスウール溝を形成しても断熱特性の向上は確認されなかった。   Glass wool (size: 500 mm × 1000 mm × 10 mm) as a fiber assembly was dried at 200 ° C. for 30 minutes. The dried glass wool is divided into three in the thickness direction, the opposing surfaces of the glass wool are molded with a jig, grooves are formed in the glass wool, and then the getter agent (made by Union Showa: Molecular Sieves) is formed in the bag-shaped outer packaging material. 13X), and the inside of the bag was evacuated for 10 minutes with a rotary pump and 10 minutes with a diffusion pump, and then the end was sealed with heat seal to produce a vacuum heat insulating material of this comparative example. About the produced vacuum heat insulating material (thickness: about 10 mm), the heat insulation characteristic was measured on the conditions similar to Example 1. FIG. As a result, the heat insulating property was 100 (index). From this result, since the heat insulation characteristic was inferior compared with Examples 1-3, even if the glass wool groove | channel was formed, the improvement of the heat insulation characteristic was not confirmed.

本発明による真空断熱材は断熱が必要な種々の機器また、建築部材等への特に壁材等への適用も可能である。   The vacuum heat insulating material according to the present invention can be applied to various devices that require heat insulation, especially to building members, and the like.

1 本発明の真空断熱材
2 管状部材
3 芯材
4 外包材
5 ゲッター剤
6 冷凍冷蔵庫
7 発泡ウレタン
8 冷蔵庫内箱
9 コンプレッサー
10 冷蔵庫外箱
11 貯湯タンク
12 逃し弁
13 漏電遮断器
14 逃し弁操作バルブ
15 排水操作バルブ
16 排水管
17 元栓
18 給水管
19 止水バルブ
20 給湯配管
21 ヒートポンプユニット
22 貯湯タンクユニット
23 孔
DESCRIPTION OF SYMBOLS 1 Vacuum heat insulating material 2 Tubular member 3 Core material 4 Outer packaging material 5 Getter agent 6 Refrigeration refrigerator 7 Foam urethane 8 Refrigerator inner box 9 Compressor 10 Refrigerator outer box 11 Hot water storage tank 12 Relief valve 13 Earth leakage breaker 14 Relief valve operation valve 15 Drainage operation valve 16 Drainage pipe 17 Main plug 18 Water supply pipe 19 Water stop valve 20 Hot water supply pipe 21 Heat pump unit 22 Hot water storage tank unit 23 Hole

Claims (5)

繊維集合体の芯材と、ガスバリア性を有し、前記芯材を収納する外包材とを有し、前記外包材の内部を減圧密閉した真空断熱材において、
前記外包材の内部であって前記芯材の内部に設置された管状部材を有し、前記管状部材の側壁に複数の孔が形成され、前記管状部材の先端が前記芯材の外部に露出していることを特徴とする真空断熱材。
In a vacuum heat insulating material having a core material of a fiber assembly, an outer packaging material having a gas barrier property and containing the core material, and having the inside of the outer packaging material sealed under reduced pressure,
A tubular member disposed inside the outer core and inside the core ; a plurality of holes are formed in a side wall of the tubular member; and the tip of the tubular member is exposed to the outside of the core A vacuum insulation material characterized by
請求項1において、前記管状部材は、前記芯材の長さ方向に沿って配置されていることを特徴とする真空断熱材 In Claim 1, The said tubular member is arrange | positioned along the length direction of the said core material, The vacuum heat insulating material characterized by the above-mentioned . 請求項1において、前記管状部材は、管の内部空間が潰れた板状の形状であることを特徴とする真空断熱材 2. The vacuum heat insulating material according to claim 1, wherein the tubular member has a plate shape in which an internal space of the tube is crushed . 請求項1に記載の真空断熱材を用いた冷凍冷蔵庫 A refrigerator-freezer using the vacuum heat insulating material according to claim 1 . 請求項1に記載の真空断熱材を用いた貯湯式給湯器 A hot water storage type water heater using the vacuum heat insulating material according to claim 1 .
JP2012192744A 2012-09-03 2012-09-03 Vacuum insulation material and equipment using the same Expired - Fee Related JP6033613B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012192744A JP6033613B2 (en) 2012-09-03 2012-09-03 Vacuum insulation material and equipment using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012192744A JP6033613B2 (en) 2012-09-03 2012-09-03 Vacuum insulation material and equipment using the same

Publications (2)

Publication Number Publication Date
JP2014047874A JP2014047874A (en) 2014-03-17
JP6033613B2 true JP6033613B2 (en) 2016-11-30

Family

ID=50607757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012192744A Expired - Fee Related JP6033613B2 (en) 2012-09-03 2012-09-03 Vacuum insulation material and equipment using the same

Country Status (1)

Country Link
JP (1) JP6033613B2 (en)

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5614472Y2 (en) * 1975-12-02 1981-04-04
JPS56127888A (en) * 1980-03-08 1981-10-06 Nippon Oxygen Co Ltd Vacuumed heat insulation wall structure
JPS5899592U (en) * 1981-12-28 1983-07-06 大同酸素株式会社 Vacuum insulation double shell device
US4448041A (en) * 1982-09-29 1984-05-15 Trans Refrigeration International, Inc. Vacuum insulated walls for refrigerated containers and trailers
JPS59157199U (en) * 1983-04-07 1984-10-22 三菱重工業株式会社 insulation block
JPS60256699A (en) * 1984-06-01 1985-12-18 松下冷機株式会社 Heat-insulating pack
JPS61124791U (en) * 1985-01-24 1986-08-06
JPH02120598A (en) * 1988-10-31 1990-05-08 Matsushita Refrig Co Ltd Insulating body
JPH0821593A (en) * 1994-07-11 1996-01-23 Sanyo Electric Co Ltd Heat insulating structural body
JPH11159693A (en) * 1997-11-28 1999-06-15 Mitsubishi Electric Corp Vacuum heat insulating panel and manufacture therefor and heat insulating box body using it
JP2008070020A (en) * 2006-09-13 2008-03-27 Matsushita Electric Ind Co Ltd Hot water storage type water heater
DE102006057663A1 (en) * 2006-12-07 2008-06-12 Bayerische Motoren Werke Ag Thermal insulation layer arrangement and gas lance, insulation device and method for evacuating and / or gassing of the heat insulation layer arrangement

Also Published As

Publication number Publication date
JP2014047874A (en) 2014-03-17

Similar Documents

Publication Publication Date Title
JP5198167B2 (en) Vacuum insulation box
JP4779684B2 (en) Vacuum insulation box
KR101495127B1 (en) Vacuum heat insulation member and refrigerator using same
JP5624305B2 (en) Insulated container
JP5822798B2 (en) Insulated box and refrigerator provided with the insulated box
WO2003076855A1 (en) Refrigerator
JP3482408B2 (en) Vacuum insulation and refrigerators using vacuum insulation
JP2013002484A (en) Vacuum thermal insulation material and refrigerator using the same
JP5372877B2 (en) Vacuum heat insulating material and refrigerator using the same
WO2006009063A1 (en) Vacuum thermal insulation material, thermal insulation apparatus using the material, and refrigerator-freezer
JP2007238141A (en) Vacuum container
CN202108127U (en) Vacuum insulation plate used for outer wall of building
JP2010060045A (en) Vacuum heat insulating material, refrigerator using the same, and manufacturing method of vacuum heat insulating material
JP4969436B2 (en) Vacuum insulation material and equipment using the same
JP2010065711A (en) Vacuum heat insulating material and refrigerator using the same
JP3563729B2 (en) Vacuum insulation material, and refrigeration equipment and cooling / heating equipment using vacuum insulation material
JP6033613B2 (en) Vacuum insulation material and equipment using the same
JP2009287791A (en) Vacuum heat insulating housing
JP2011089740A (en) Bag body and vacuum heat insulating material
JPWO2015186345A1 (en) Vacuum insulator, and heat insulating container and heat insulating wall using the same
CN105443923A (en) Vacuum insulated panel
JP2009018826A (en) Vacuum heat insulating box body
KR102186839B1 (en) Vacuum insulation material and the refrigerator which is applied it
JP2012026583A (en) Refrigerator
JP2015055368A (en) Vacuum heat insulation material and refrigerator using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160927

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161026

R150 Certificate of patent or registration of utility model

Ref document number: 6033613

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees