JP6025614B2 - Heat dissipating structure of heat generating component and audio device using the same - Google Patents

Heat dissipating structure of heat generating component and audio device using the same Download PDF

Info

Publication number
JP6025614B2
JP6025614B2 JP2013041869A JP2013041869A JP6025614B2 JP 6025614 B2 JP6025614 B2 JP 6025614B2 JP 2013041869 A JP2013041869 A JP 2013041869A JP 2013041869 A JP2013041869 A JP 2013041869A JP 6025614 B2 JP6025614 B2 JP 6025614B2
Authority
JP
Japan
Prior art keywords
heat
generating component
region
substrate
heat generating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013041869A
Other languages
Japanese (ja)
Other versions
JP2014170835A (en
Inventor
仲田 剛
剛 仲田
正寛 金丸
正寛 金丸
寺本 浩平
浩平 寺本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2013041869A priority Critical patent/JP6025614B2/en
Publication of JP2014170835A publication Critical patent/JP2014170835A/en
Application granted granted Critical
Publication of JP6025614B2 publication Critical patent/JP6025614B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、基板に面実装する発熱部品の放熱構造およびこれを用いたオーディオ装置に関する。   The present invention relates to a heat dissipating structure for a heat-generating component that is surface-mounted on a substrate, and an audio apparatus using the heat dissipating structure.

ガラスエポキシ基板などでは、樹脂と銅箔とが交互に積層された構成であることから、基板の厚み方向の熱伝導率が面方向と比較して低い特性を有する。
LSIやパワーFET(電界効果トランジスタ)などの高発熱部品を、ガラスエポキシ基板に実装する場合、高発熱部品の表面部分に熱伝導ラバーを圧接し、この熱伝導ラバーを介して放熱板に放熱する構造や、高発熱部品を実装した基板部分にサーマルビアを形成し、この基板部分の裏面に設けた放熱板にサーマルビアを介して放熱する構造が一般的である(例えば、特許文献1参照)。
Since a glass epoxy substrate or the like has a structure in which a resin and a copper foil are alternately laminated, the thermal conductivity in the thickness direction of the substrate is lower than that in the plane direction.
When mounting high heat-generating parts such as LSIs or power FETs (field effect transistors) on a glass epoxy board, a heat conductive rubber is pressed against the surface of the high heat generating parts, and heat is radiated to the heat sink via the heat conductive rubber. In general, a thermal via is formed in a structure or a board part on which a high heat-generating component is mounted, and heat is radiated to the heat sink provided on the back surface of the board part via the thermal via (see, for example, Patent Document 1). .

特開平11−26660号公報JP-A-11-26660

特許文献1に開示される放熱構造では、上述した前者および後者の構造の双方を有しているが、前者の構造は、高発熱部品が樹脂材でモールドされている場合や表面積が小さい場合には大きな熱抵抗を有するため、十分に放熱させることができない。
また、後者の構造では、高発熱部品を実装した部分に対応する基板裏面に放熱板を設ける必要があり、構造上の制約が大きいという課題があった。
なお、後者の構造は、基板が多層基板である場合、サーマルビアを介して基板の厚み方向に伝導した熱が各銅箔層に伝わって基板の面方向にも放熱される。
しかしながら、基板が高発熱部品以外の複数の発熱源を有する場合は、基板自体の温度が高くなり、十分な放熱効果が得られなくなる。
The heat dissipation structure disclosed in Patent Document 1 has both the former structure and the latter structure described above, but the former structure is used when a high heat-generating component is molded with a resin material or when the surface area is small. Has a large thermal resistance and cannot sufficiently dissipate heat.
Moreover, in the latter structure, it is necessary to provide a heat sink on the back surface of the substrate corresponding to the portion where the high heat-generating component is mounted, and there is a problem that the structural restriction is large.
In the latter structure, when the substrate is a multilayer substrate, heat conducted in the thickness direction of the substrate through the thermal via is transmitted to each copper foil layer and is also dissipated in the surface direction of the substrate.
However, when the substrate has a plurality of heat sources other than the high heat-generating component, the temperature of the substrate itself becomes high, and a sufficient heat dissipation effect cannot be obtained.

この発明は、上記のような課題を解決するためになされたもので、発熱部品で発生した熱を効率的に放熱することができる発熱部品の放熱構造およびこれを用いたオーディオ装置を得ることを目的とする。   The present invention has been made to solve the above-described problems. It is desirable to obtain a heat-dissipating structure for a heat-generating component that can efficiently dissipate heat generated by the heat-generating component and an audio device using the same. Objective.

この発明に係る発熱部品の放熱構造は、多層基板に面実装した発熱部品で発生した熱を、サーマルビアを介して発熱部品から多層基板の厚み方向と面方向に伝えて多層基板に圧接された伝熱部材へ導き、伝熱部材を介して放熱部材へ放熱する発熱部品の放熱構造において、発熱部品が面実装された領域を多層基板の厚み方向に熱伝導させる領域とし、多層基板の厚み方向に熱伝導させる領域のサーマルビアを、多層基板のパターンに沿って面方向に熱伝導させる領域より高密度に配置するとともに、伝熱部材が圧接された領域のサーマルビアを、発熱部品に近い側から遠ざかるに連れて高密度に配置したことを特徴とする。 In the heat dissipation structure of the heat generating component according to the present invention, heat generated by the heat generating component surface-mounted on the multilayer substrate is transmitted from the heat generating component to the multilayer substrate in the thickness direction and the surface direction via the thermal via, and is pressed against the multilayer substrate. In the heat dissipation structure of the heat generating component that leads to the heat transfer member and dissipates heat to the heat dissipation member via the heat transfer member, the region where the heat generating component is surface-mounted is the region that conducts heat in the thickness direction of the multilayer substrate, and the thickness direction of the multilayer substrate The thermal via in the region that conducts heat to the surface is arranged at a higher density than the region that conducts heat in the plane direction along the pattern of the multilayer substrate, and the thermal via in the region where the heat transfer member is pressed into contact with the heat generating component It is characterized by being arranged with high density as it moves away from it.

この発明によれば、発熱部品で発生した熱を効率的に放熱することができるという効果がある。   According to the present invention, there is an effect that heat generated in the heat generating component can be efficiently radiated.

この発明の実施の形態1に係る発熱部品の放熱構造を示す図である。It is a figure which shows the thermal radiation structure of the heat-emitting component which concerns on Embodiment 1 of this invention. この発明の実施の形態2に係る発熱部品の放熱構造を示す図である。It is a figure which shows the thermal radiation structure of the heat-emitting component which concerns on Embodiment 2 of this invention.

実施の形態1.
図1は、この発明の実施の形態1に係る発熱部品の放熱構造を示す図であり、図1(a)は発熱部品1の放熱構造の側面図、図1(b)は発熱部品1の放熱構造の上面図である。なお、図1(a)においては、サーマルビア5の配置密度を濃淡で表しており、密度が高くなるにつれて色が濃くなるように記載している。
また、図1(b)においては、基板2の実装面上の構成を示すため、発熱部品1、放熱板3および熱伝導ラバー4の記載を省略している。
実施の形態1に係る放熱構造は、例えば、車載用のオーディオ装置の増幅器などに利用され、図1(a)のように、発熱部品1、基板2、放熱板3、熱伝導ラバー4およびサーマルビア5を備えて構成される。
Embodiment 1 FIG.
FIG. 1 is a view showing a heat dissipation structure for a heat generating component according to Embodiment 1 of the present invention. FIG. 1 (a) is a side view of the heat dissipation structure of the heat generating component 1, and FIG. It is a top view of a heat dissipation structure. In FIG. 1A, the arrangement density of the thermal vias 5 is represented by shading, and is described so that the color becomes darker as the density increases.
Moreover, in FIG.1 (b), in order to show the structure on the mounting surface of the board | substrate 2, description of the heat-emitting component 1, the heat sink 3, and the heat conductive rubber 4 is abbreviate | omitted.
The heat dissipation structure according to Embodiment 1 is used, for example, in an amplifier of an in-vehicle audio device, and as shown in FIG. 1A, the heat generating component 1, the substrate 2, the heat dissipation plate 3, the heat conduction rubber 4, and the thermal A via 5 is provided.

発熱部品1は、駆動時などに高発熱となる面実装部品であって、LSIやパワーFETなどである。基板2において、発熱部品1が面実装された領域2aが、基板2の厚み方向に熱伝導させる領域となる。例えば、パワーFETは、大電流制御によって高発熱になるため、ドレイン端子が本体部の背面に大きく形成されている。発熱部品1がパワーFETである場合に、このドレイン端子が面接合する領域が、基板2の厚み方向に熱伝導させる領域となる。   The heat generating component 1 is a surface mounting component that generates high heat during driving or the like, and is an LSI, a power FET, or the like. In the substrate 2, a region 2 a on which the heat generating component 1 is surface-mounted is a region that conducts heat in the thickness direction of the substrate 2. For example, since a power FET generates high heat by large current control, the drain terminal is formed large on the back surface of the main body. When the heat generating component 1 is a power FET, the region where the drain terminal is surface-bonded is a region that conducts heat in the thickness direction of the substrate 2.

基板2は、発熱部品1を面実装する基板であって、汎用的なガラスエポキシ基板などの銅箔が積層された多層基板が用いられる。
基板2の外表面の銅箔パターンは、発熱部品1が面実装された領域2aの周囲または近傍まで拡張される。また、基板2の内層の銅箔パターンは、少なくとも基板面における発熱部品1が面実装した領域2aから熱伝導ラバー4が圧接された領域2cまでに対応する領域の全面に形成されているものとする。
The substrate 2 is a substrate on which the heat generating component 1 is surface-mounted, and a multilayer substrate on which copper foil such as a general-purpose glass epoxy substrate is laminated is used.
The copper foil pattern on the outer surface of the substrate 2 is extended to or around the area 2a where the heat generating component 1 is surface-mounted. In addition, the copper foil pattern of the inner layer of the substrate 2 is formed on the entire surface of the region corresponding to at least the region 2a where the heat generating component 1 is surface-mounted on the substrate surface to the region 2c where the heat conductive rubber 4 is pressed. To do.

放熱板3は、熱伝導ラバー4を介して伝えられた熱を放熱する放熱部材であり、アルミニウムなどの熱伝導率が高い材料から構成される。例えば、放熱板3には、オーディオ装置筐体の一部などが用いられる。   The heat radiating plate 3 is a heat radiating member that radiates heat transmitted through the heat conducting rubber 4 and is made of a material having high thermal conductivity such as aluminum. For example, a part of the audio device housing is used for the heat sink 3.

熱伝導ラバー4は、発熱部品1で発生した熱を放熱板3へ伝える伝熱部材であり、熱伝導性が良好な弾力性を有する薄い材料から構成される。
また、弾力性を有する熱伝導ラバー4を、図1(a)に示すように、放熱板3によって基板2に圧接することで、熱伝導ラバー4と基板面との間および熱伝導ラバー4と放熱板3との間の接触面積を確保することができ、効率よく伝熱することができる。
The heat conduction rubber 4 is a heat transfer member that transfers heat generated in the heat generating component 1 to the heat radiating plate 3 and is made of a thin material having good heat conductivity and elasticity.
In addition, as shown in FIG. 1A, the heat conductive rubber 4 having elasticity is pressed against the substrate 2 by the heat radiating plate 3, so that the heat conductive rubber 4 and the heat conductive rubber 4 A contact area with the heat sink 3 can be ensured, and heat can be transferred efficiently.

図1(b)に示すように、基板2には、複数のサーマルビア5が形成されている。
サーマルビア5は、基板2を貫通する小孔に伝熱材を充填した構成であるか、または、基板2に形成した微小なスルーホールである。基板2の外表面の銅箔パターンと基板2の内層の銅箔パターンとは、サーマルビア5によって熱的に結合する。
As shown in FIG. 1B, a plurality of thermal vias 5 are formed on the substrate 2.
The thermal via 5 has a configuration in which a small hole penetrating the substrate 2 is filled with a heat transfer material, or is a minute through hole formed in the substrate 2. The copper foil pattern on the outer surface of the substrate 2 and the copper foil pattern on the inner layer of the substrate 2 are thermally coupled by the thermal via 5.

なお、サーマルビア5を設けると基板2の厚み方向の熱伝導率は増加するが、銅箔層に穴が開き、伝熱媒体である銅の量が減るため、銅箔パターンに沿った面方向の熱伝導率が低下する。このように、発熱部品1から放熱板3へ効率的に熱伝導させるためには、発熱部品1の周辺におけるサーマルビア5の密度(配置密度)を考慮する必要がある。   When the thermal via 5 is provided, the thermal conductivity in the thickness direction of the substrate 2 is increased, but a hole is opened in the copper foil layer, and the amount of copper as a heat transfer medium is reduced. Therefore, the surface direction along the copper foil pattern The thermal conductivity of is reduced. As described above, in order to efficiently conduct heat from the heat generating component 1 to the heat radiating plate 3, it is necessary to consider the density (arrangement density) of the thermal vias 5 around the heat generating component 1.

この発明では、発熱部品1で発生した熱を、発熱部品1の直下にあるサーマルビア5で基板2の各銅箔層に伝熱し、発熱部品1の周囲の領域では銅箔パターンに沿って面方向に伝熱させて熱伝導ラバー4に導き、熱伝導ラバー4を介して放熱板3へ放熱する。
例えば、熱源である発熱部品1を中心とした同心円を想定して、熱伝導ラバー4が配置された領域(熱伝導ラバー4が圧接された領域2c)が中心からどれだけ離間した同心円上にあるかによって、中心から熱伝導ラバー4を圧接した領域2cまでのサーマルビア5の密度を決定する。
In the present invention, heat generated in the heat generating component 1 is transferred to each copper foil layer of the substrate 2 by the thermal via 5 immediately below the heat generating component 1, and the surface around the heat generating component 1 along the copper foil pattern. Heat is transferred in the direction to the heat conducting rubber 4, and heat is radiated to the heat radiating plate 3 through the heat conducting rubber 4.
For example, assuming a concentric circle centered on the heat-generating component 1 that is a heat source, the region where the heat conducting rubber 4 is disposed (the region 2c where the heat conducting rubber 4 is pressed) is on a concentric circle that is far from the center. Thus, the density of the thermal via 5 from the center to the region 2c where the heat conducting rubber 4 is pressed is determined.

なお、発熱部品1で発生した熱を効率的に放熱するためには、発熱部品1から放熱板3が接触する位置(熱伝導ラバー4が圧接された領域2cに対応する位置)までの距離が短い方がよい。
しかしながら、発熱部品1と放熱板3との間は、組み立て性および実装ずれを考慮した場合に、ある程度の距離を確保しておく必要がある。
このように発熱部品1と放熱板3との間が離間した場合に、これらの間に介在する領域2bにおいては、基板2の各層の銅箔パターンの温度を均一化しつつ、面方向の熱伝導率を確保する必要がある。
In order to efficiently dissipate the heat generated in the heat generating component 1, the distance from the heat generating component 1 to the position where the heat radiating plate 3 contacts (the position corresponding to the region 2c where the heat conducting rubber 4 is pressed) is set. Shorter is better.
However, it is necessary to ensure a certain distance between the heat generating component 1 and the heat radiating plate 3 in consideration of assembling property and mounting deviation.
When the heat generating component 1 and the heat radiating plate 3 are separated from each other in this way, in the region 2b interposed between them, the temperature of the copper foil pattern of each layer of the substrate 2 is made uniform, and the heat conduction in the surface direction is performed. It is necessary to secure the rate.

そこで、領域2aにおいては、発熱部品1で発生した熱を、基板2の厚み方向、すなわち各層の銅箔パターンに伝えるため、サーマルビア5を均一なピッチaで高密度に形成する。例えば、サーマルビア5の穴径がφ0.5mmである場合に、ピッチaを1.0mmとする。
また、領域2bを含む領域2aの周囲領域においては、基板2の各層の銅箔パターンの温度を均一化しつつ、発熱部品1で発生した熱を面方向に伝えるために、領域2aよりも広いピッチbでサーマルビア5を低密度に形成する。例えば、領域2aと同様にサーマルビア5の穴径がφ0.5mmである場合は、ピッチbを1.5〜2.0mmに広げてサーマルビア5を形成する。このようにすることで、図1(b)に示すようなサーマルビア5の配置となる。
Therefore, in the region 2a, the thermal vias 5 are formed at a high density with a uniform pitch a in order to transmit the heat generated in the heat generating component 1 to the thickness direction of the substrate 2, that is, to the copper foil pattern of each layer. For example, when the hole diameter of the thermal via 5 is φ0.5 mm, the pitch a is 1.0 mm.
Further, in the peripheral region of the region 2a including the region 2b, a pitch wider than that of the region 2a is used in order to transmit the heat generated in the heat generating component 1 in the surface direction while making the temperature of the copper foil pattern of each layer of the substrate 2 uniform. In b, the thermal vias 5 are formed at a low density. For example, when the hole diameter of the thermal via 5 is φ0.5 mm as in the region 2 a, the thermal via 5 is formed by expanding the pitch b to 1.5 to 2.0 mm. By doing in this way, it becomes arrangement | positioning of the thermal via 5 as shown in FIG.1 (b).

一方、領域2cにおいては、基板2の各層で銅箔パターンに沿って面方向に伝わった熱を熱伝導ラバー4へ導くため、基板2の厚み方向の熱伝導率を確保する必要がある。
しかしながら、放熱板3が基板2に大面積で接触している場合には、領域2cが大面積になるため、領域2aと同様に、サーマルビア5を高密度に形成すると、領域2c内での面方向の熱伝導率が確保できなくなる場合がある。
On the other hand, in the region 2c, the heat conducted in the surface direction along the copper foil pattern in each layer of the substrate 2 is guided to the heat conductive rubber 4, so that it is necessary to ensure the thermal conductivity in the thickness direction of the substrate 2.
However, when the heat sink 3 is in contact with the substrate 2 with a large area, the region 2c has a large area. Therefore, as with the region 2a, when the thermal vias 5 are formed with a high density, the region 2c has a large area. In some cases, the thermal conductivity in the surface direction cannot be secured.

そこで、図1(b)に示すように、領域2cに形成するサーマルビア5の密度を、発熱部品1に近い側から遠ざかるに連れて高くする。
このように構成することで、発熱部品1で発生した熱を、効率的に放熱板3へ放熱することが可能となる。特に、サーマルビア5をピッチaで高密度に配置した構成と比べて、発熱部品1から熱伝導ラバー4までの熱伝導経路における熱抵抗を格段に低下させることができる。
Therefore, as shown in FIG. 1B, the density of the thermal via 5 formed in the region 2 c is increased as the distance from the side closer to the heat generating component 1 increases.
With this configuration, the heat generated in the heat generating component 1 can be efficiently radiated to the heat radiating plate 3. In particular, the thermal resistance in the heat conduction path from the heat generating component 1 to the heat conduction rubber 4 can be remarkably reduced as compared with the configuration in which the thermal vias 5 are arranged with high density at the pitch a.

なお、サーマルビア5の密度分布は、例えば、熱源である発熱部品1を中心とした同心円を想定し、様々なピッチでサーマルビア5を形成した場合の熱伝導経路における銅箔の量から熱抵抗をシミュレーションして決定する。   The density distribution of the thermal via 5 is assumed to be, for example, a concentric circle centering on the heat-generating component 1 that is a heat source, and the thermal resistance is determined from the amount of copper foil in the heat conduction path when the thermal via 5 is formed at various pitches. Is determined by simulation.

領域2cでサーマルビア5に密度分布を持たせる場合を示したが、放熱板3が基板2に接触する面積が小さい場合、すなわち、領域2cの面積が小さい場合は、領域2aと同様な密度でサーマルビア5を形成してもよい。   Although the density distribution is given to the thermal via 5 in the region 2c, when the area where the heat sink 3 is in contact with the substrate 2 is small, that is, when the area of the region 2c is small, the density is the same as that of the region 2a. The thermal via 5 may be formed.

また、図1では、放熱板3が基板2の表面側に配置されて、この面に圧接された熱伝導ラバー4を介して放熱板3へ放熱する構造を示したが、放熱板3は基板2の裏面側に配置してもよい。この場合、発熱部品1で発生した熱は、サーマルビア5を介して裏面に圧接された熱伝導ラバー4を介して放熱板3へ放熱される。   1 shows a structure in which the heat radiating plate 3 is disposed on the surface side of the substrate 2 and radiates heat to the heat radiating plate 3 through the heat conducting rubber 4 pressed against the surface. You may arrange | position on the back surface side of 2. In this case, the heat generated in the heat-generating component 1 is radiated to the heat radiating plate 3 through the heat conduction rubber 4 pressed against the back surface through the thermal via 5.

以上のように、この実施の形態1によれば、発熱部品1が面実装された領域2aを基板2の厚み方向に熱伝導させる領域とし、基板2の厚み方向に熱伝導させる領域のサーマルビア5を、基板2のパターンに沿って面方向に熱伝導させる領域より高密度に配置して、発熱部品1で発生した熱を、サーマルビア5を介して発熱部品1から多層基板2の厚み方向と面方向に伝えて熱伝導ラバー4へ導き、熱伝導ラバー4を介して放熱板3へ放熱する。このように構成することで、発熱部品1から熱伝導ラバー4までの熱伝導経路の熱抵抗が低下するため、発熱部品1で発生した熱を効率的に放熱板3へ放熱することができる。   As described above, according to the first embodiment, the region 2 a on which the heat generating component 1 is surface-mounted is set as a region that conducts heat in the thickness direction of the substrate 2, and the thermal via in the region that conducts heat in the thickness direction of the substrate 2. 5 is arranged at a higher density than the region that conducts heat in the plane direction along the pattern of the substrate 2, and the heat generated in the heat generating component 1 is transferred from the heat generating component 1 to the multilayer substrate 2 through the thermal via 5. To the heat conducting rubber 4 and radiates heat to the heat radiating plate 3 through the heat conducting rubber 4. With this configuration, the heat resistance of the heat conduction path from the heat generating component 1 to the heat conducting rubber 4 is reduced, so that the heat generated in the heat generating component 1 can be efficiently radiated to the heat radiating plate 3.

また、この実施の形態1によれば、熱伝導ラバー4を圧接した領域2cのサーマルビア5を、発熱部品1に近い側から遠ざかるに連れて高密度に配置したので、領域2c内における熱伝導率を確保できるため、発熱部品1で発生した熱を効率的に放熱板3へ放熱することができる。   Further, according to the first embodiment, the thermal vias 5 in the region 2c where the heat conductive rubber 4 is pressed are arranged with a high density as the distance from the side closer to the heat generating component 1 increases. Since the rate can be secured, the heat generated in the heat generating component 1 can be efficiently radiated to the heat radiating plate 3.

さらに、この実施の形態1によれば、多層基板2のパターンに沿って面方向に熱伝導させる領域が、発熱部品1を面実装した領域2aと熱伝導ラバー4を圧接した領域2cとの間に介在する領域2bであるので、領域2aから領域2cまでの間に介在する領域2cの面方向の熱伝導率を確保することができ、発熱部品1で発生した熱を効率的に放熱板3へ放熱することができる。   Furthermore, according to the first embodiment, the region that conducts heat in the surface direction along the pattern of the multilayer substrate 2 is between the region 2a where the heat generating component 1 is surface-mounted and the region 2c where the heat conducting rubber 4 is pressed. Therefore, the heat conductivity in the surface direction of the region 2c interposed between the region 2a and the region 2c can be ensured, and the heat generated in the heat generating component 1 can be efficiently absorbed. Can dissipate heat.

実施の形態2.
図2は、この発明の実施の形態2に係る発熱部品の放熱構造を示す図であり、図2(a)は発熱部品1の放熱構造の側面図、図2(b)は発熱部品1の放熱構造の上面図である。なお、図2(a)においては、サーマルビア5の配置密度を濃淡で表しており、密度が高くなるにつれて色が濃くなるように記載している。
また、図2(b)においては、基板2Aの実装面上の構成を示すため、発熱部品1、放熱板3および熱伝導ラバー4の記載を省略している。
実施の形態2に係る放熱構造は、例えば、車載用のオーディオ装置の増幅器などに利用され、図2(a)のように、発熱部品1、基板2A、放熱板3、熱伝導ラバー4、およびサーマルビア5を備えて構成される。
Embodiment 2. FIG.
FIG. 2 is a view showing a heat dissipation structure for a heat generating component according to Embodiment 2 of the present invention. FIG. 2 (a) is a side view of the heat dissipation structure of the heat generating component 1, and FIG. It is a top view of a heat dissipation structure. In FIG. 2A, the arrangement density of the thermal vias 5 is represented by shading, and is described so that the color becomes darker as the density increases.
Moreover, in FIG.2 (b), in order to show the structure on the mounting surface of the board | substrate 2A, description of the heat-emitting component 1, the heat sink 3, and the heat conductive rubber 4 is abbreviate | omitted.
The heat dissipation structure according to the second embodiment is used, for example, in an amplifier of an in-vehicle audio device, and as shown in FIG. 2A, the heat generating component 1, the substrate 2A, the heat dissipation plate 3, the heat conduction rubber 4, and A thermal via 5 is provided.

実施の形態1では、領域2bを含む領域2aの周囲領域にもサーマルビア5を形成する場合を示したが、実施の形態2では、図2(b)に示すように、図1に示した領域2bを含む領域2aの周囲領域にサーマルビア5を形成しない。これは、図2の構成は、図1の構成と比較して発熱部品1から放熱板3までの距離が短く、領域2aに形成したサーマルビア5によって基板2の各層の銅箔パターンの温度が均一化された状態で発熱部品1からの熱が領域2cまで面方向に伝わるためである。
なお、サーマルビア5を多数形成することは基板2Aの製造コストを増加させるため、放熱性能を考慮しつつ、サーマルビア5の数の増加を抑制させることが望ましい。
そこで、実施の形態2では、発熱部品1と放熱板3の位置関係に応じてサーマルビア5の形成を省略している。このようにすることでも、上記実施の形態1と同様の効果を得ることができる。
In the first embodiment, the case where the thermal via 5 is formed also in the peripheral region of the region 2a including the region 2b is shown. However, in the second embodiment, as shown in FIG. The thermal via 5 is not formed in the peripheral region of the region 2a including the region 2b. The configuration of FIG. 2 has a shorter distance from the heat generating component 1 to the heat radiating plate 3 than the configuration of FIG. 1, and the temperature of the copper foil pattern of each layer of the substrate 2 is reduced by the thermal via 5 formed in the region 2a. This is because the heat from the heat generating component 1 is transmitted in the surface direction to the region 2c in a uniform state.
Since the formation of a large number of thermal vias 5 increases the manufacturing cost of the substrate 2A, it is desirable to suppress the increase in the number of thermal vias 5 in consideration of heat dissipation performance.
Therefore, in the second embodiment, the formation of the thermal via 5 is omitted according to the positional relationship between the heat generating component 1 and the heat radiating plate 3. By doing in this way, the same effect as the first embodiment can be obtained.

また、オーディオ装置が実施の形態1または実施の形態2の放熱構造を用いることで、発熱部品1の発熱が低減されるため、安定した動作を期待できる。   Moreover, since the heat generation of the heat generating component 1 is reduced by using the heat dissipation structure of the first embodiment or the second embodiment in the audio device, stable operation can be expected.

なお、本発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。   In the present invention, within the scope of the invention, any combination of each embodiment, any component of each embodiment can be modified, or any component can be omitted in each embodiment. .

1 発熱部品、2,2A 基板、2a,2b,2c 領域、3 放熱板、4 熱伝導ラバー、5 サーマルビア。   1 Heating parts, 2, 2A substrate, 2a, 2b, 2c region, 3 heat sink, 4 heat conduction rubber, 5 thermal via.

Claims (3)

多層基板に面実装した発熱部品で発生した熱を、サーマルビアを介して前記発熱部品から前記多層基板の厚み方向と面方向に伝えて前記多層基板に圧接された伝熱部材へ導き、前記伝熱部材を介して放熱部材へ放熱する発熱部品の放熱構造において、
前記発熱部品が面実装された領域を前記多層基板の厚み方向に熱伝導させる領域とし、前記多層基板の厚み方向に熱伝導させる領域の前記サーマルビアを、前記多層基板のパターンに沿って面方向に熱伝導させる領域より高密度に配置するとともに、
前記伝熱部材が圧接された領域の前記サーマルビアを、前記発熱部品に近い側から遠ざかるに連れて高密度に配置したことを特徴とする発熱部品の放熱構造。
The heat generated by the heat generating component surface-mounted on the multilayer substrate is transmitted from the heat generating component through the thermal via to the thickness direction and the surface direction of the multilayer substrate, and is guided to the heat transfer member pressed against the multilayer substrate. In the heat dissipation structure of the heat generating component that radiates heat to the heat dissipation member via the heat member,
The region where the heat generating component is surface-mounted is set as a region that conducts heat in the thickness direction of the multilayer substrate, and the thermal via in the region that conducts heat in the thickness direction of the multilayer substrate is in the plane direction along the pattern of the multilayer substrate. It is arranged at a higher density than the region that conducts heat to
A heat-dissipating structure for a heat-generating component, characterized in that the thermal vias in the region where the heat-transfer member is in pressure contact are arranged with high density as the distance from the side closer to the heat-generating component is increased .
前記多層基板のパターンに沿って面方向に熱伝導させる領域は、前記発熱部品が面実装された領域の周囲の領域であることを特徴とする請求項1記載の発熱部品の放熱構造。 The region to be thermally conductive in the plane direction along the pattern of the multilayer substrate, the heat radiation structure of the heat-generating component according to claim 1 Symbol mounting, characterized in that said heat generating component is a region around the surface-mounted area. 請求項1または請求項2記載の発熱部品の放熱構造を備えたオーディオ装置。 An audio device comprising the heat dissipation structure for a heat generating component according to claim 1 .
JP2013041869A 2013-03-04 2013-03-04 Heat dissipating structure of heat generating component and audio device using the same Active JP6025614B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013041869A JP6025614B2 (en) 2013-03-04 2013-03-04 Heat dissipating structure of heat generating component and audio device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013041869A JP6025614B2 (en) 2013-03-04 2013-03-04 Heat dissipating structure of heat generating component and audio device using the same

Publications (2)

Publication Number Publication Date
JP2014170835A JP2014170835A (en) 2014-09-18
JP6025614B2 true JP6025614B2 (en) 2016-11-16

Family

ID=51693014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013041869A Active JP6025614B2 (en) 2013-03-04 2013-03-04 Heat dissipating structure of heat generating component and audio device using the same

Country Status (1)

Country Link
JP (1) JP6025614B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3386277B1 (en) * 2015-11-30 2022-07-06 NSK Ltd. Heat-dissipating substrate and electrically driven power steering device
WO2022163476A1 (en) * 2021-01-27 2022-08-04 三洋電機株式会社 Power supply device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3858311B2 (en) * 1996-09-13 2006-12-13 イビデン株式会社 Heat dissipation structure of printed wiring board
JP4053478B2 (en) * 2003-08-11 2008-02-27 電気化学工業株式会社 Method for manufacturing metal-based circuit board
JP2005108387A (en) * 2003-10-02 2005-04-21 Sankyo Seiki Mfg Co Ltd Optical head device, fpc for mounting, heat radiation method, and method of manufacturing fpc
JP5713578B2 (en) * 2010-04-06 2015-05-07 株式会社アテクト Substrate manufacturing method
JP5837754B2 (en) * 2011-03-23 2015-12-24 Dowaメタルテック株式会社 Metal-ceramic bonding substrate and manufacturing method thereof
JP2012222179A (en) * 2011-04-11 2012-11-12 Shimadzu Corp Print wiring board

Also Published As

Publication number Publication date
JP2014170835A (en) 2014-09-18

Similar Documents

Publication Publication Date Title
JP4466644B2 (en) heatsink
WO2011096218A1 (en) Heat radiation device and electronic equipment using the same
TWI483672B (en) Electronic device enclosures and heatsink structures with thermal management features
TWI690246B (en) Built-in longitudinal heat dissipation ceramic block printed circuit board and circuit assembly with the circuit board
TW201505532A (en) High heat dissipation circuit board set
JP2013138068A (en) Multilayer printed board
TW201204227A (en) Heat dissipation apparatus
JP5885630B2 (en) Printed board
JP6249931B2 (en) Circuit board, circuit board heat dissipation structure, and circuit board manufacturing method
JP6025614B2 (en) Heat dissipating structure of heat generating component and audio device using the same
JP2006196593A (en) Semiconductor device and heat sink
TW201201000A (en) Heat dissipation apparatus
JP2006005081A (en) Power component cooling device
TWM438651U (en) Stacked type heat dissipation module of electronic device
JP2012146828A (en) Heat radiation structure and heat radiation member
JP2014170834A (en) Heat radiation structure of power semiconductor and audio device using the same
JP2014135374A (en) Heat transfer substrate
JP6200693B2 (en) Electronic control unit
JP6551566B1 (en) Heat dissipation structure of electronic parts
JP2003152368A (en) Electronic equipment
JP2015216143A (en) Heat radiation structure of heating element
JP2017135209A (en) Multilayer substrate and electronic circuit board
TWI598726B (en) Portable electronic product and heat-dissipating casing structure applied thereto
TW201532507A (en) Electronic device
KR102071921B1 (en) Heat spreading frame with high heat dissipating function

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151209

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161011

R150 Certificate of patent or registration of utility model

Ref document number: 6025614

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250