JP6020823B2 - Method for producing granulated raw material for sintering - Google Patents

Method for producing granulated raw material for sintering Download PDF

Info

Publication number
JP6020823B2
JP6020823B2 JP2013107669A JP2013107669A JP6020823B2 JP 6020823 B2 JP6020823 B2 JP 6020823B2 JP 2013107669 A JP2013107669 A JP 2013107669A JP 2013107669 A JP2013107669 A JP 2013107669A JP 6020823 B2 JP6020823 B2 JP 6020823B2
Authority
JP
Japan
Prior art keywords
particles
raw material
sintering
crushing
granulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013107669A
Other languages
Japanese (ja)
Other versions
JP2014227568A (en
Inventor
心也 伊藤
心也 伊藤
直幸 竹内
直幸 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2013107669A priority Critical patent/JP6020823B2/en
Publication of JP2014227568A publication Critical patent/JP2014227568A/en
Application granted granted Critical
Publication of JP6020823B2 publication Critical patent/JP6020823B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Glanulating (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

本発明は、焼結用造粒原料の製造方法に関する。   The present invention relates to a method for producing a granulated raw material for sintering.

一般的な焼結鉱は、粉状の鉄鉱石その他の原料の他、必要に応じて副原料、凝結材等を所定量配合して混合−造粒し、得られたその造粒原料をドワイトロイド式焼結機に装入して焼結することで製造される。ここで、前記配合原料は、造粒時に水分が介在することで凝集して擬似粒子を形造る。その擬似粒子は、焼結機に装入された場合に、装入原料層の通気性を確保するのに役立ち、このことによって焼結が円滑に進行するようになる。   General sintered ore is powdered iron ore and other raw materials, as well as auxiliary raw materials, coagulants, etc., if necessary, mixed and granulated, and the resulting granulated raw material is Dwight. Manufactured by charging into a Lloyd-type sintering machine and sintering. Here, the blended raw materials are aggregated by the presence of moisture during granulation to form pseudo particles. The pseudo-particles, when charged in a sintering machine, help to ensure the air permeability of the charged raw material layer, which allows the sintering to proceed smoothly.

近年、焼結用原料となる鉄鉱石は、高品質鉄鉱石の枯渇による低品位化、例えばスラグ成分の増加や微粉化の傾向が顕著であり、アルミナ含有量の増大、微粉比率の増大による造粒性の低下が問題となっている。一方、高炉での溶銑製造コストの低減やCO発生量の低減という観点から、高炉で使用する焼結鉱としては、低スラグ比、高被還元性、高強度のものが求められている。 In recent years, iron ore, which is a raw material for sintering, has been prone to lower grades due to depletion of high-quality iron ore, such as an increase in slag components and pulverization, and an increase in alumina content and increase in the proportion of fine powder. A drop in graininess is a problem. On the other hand, from the viewpoint of reducing hot metal production cost in a blast furnace and reducing CO 2 generation, sintered ore used in a blast furnace is required to have a low slag ratio, high reducibility, and high strength.

焼結原料用鉄鉱石を取り巻くこのような環境の中で、従来、ペレットフィードと呼ばれるペレット用高品位鉄鉱石である難造粒性の微粉鉄鉱石を使って、高品質の焼結鉱を製造するための技術が提案されている。例えば、こうした従来技術の1つに、Hybrid pelletized Sinter法(以下、「HPS」という)がある。この技術は、ペレットフィードのような微粉鉄鉱石を多量に含む配合原料をドラムミキサーとペレタイザーとを使って造粒することにより、低スラグ比・高被還元性の焼結鉱を製造しようというものである(特許文献1、特許文献2、特許文献3、特許文献4、特許文献5)。   In such an environment surrounding iron ore for raw materials for sintering, high-quality sintered ore has been manufactured using high-grade iron ore for pellets, which is a high-grade iron ore for pellets. Techniques for doing so have been proposed. For example, as one of such conventional techniques, there is a hybrid pelletized Sinter method (hereinafter referred to as “HPS”). This technology is intended to produce sintered ore with low slag ratio and high reducibility by granulating a raw material containing a large amount of fine iron ore such as pellet feed using a drum mixer and pelletizer. (Patent Literature 1, Patent Literature 2, Patent Literature 3, Patent Literature 4, Patent Literature 5).

特公平2-4658公報Japanese Patent Publication No.2-4658 特公平6-21297公報Japanese Patent Publication No. 6-21297 特公平6-21298公報Japanese Patent Publication No. 6-21298 特公平6-21299公報Japanese Patent Publication No. 6-21299 特公平6-60358公報Japanese Patent Publication No. 6-60358

しかしながら、ペレットフィードである微粉鉄鉱石を多量に含む配合原料を造粒すると、微粉鉄鉱石が水分を優先的に吸収凝集し、微粉鉄鉱石どうしからなる結合強度の弱い粒径の大きい粗大な擬似粒子(凝集粒子)が生成するという問題があった。その原因は、ペレットフィードのような微粉鉄鉱石は、濡れ性が同じであれば、比表面積の大きい細粒ほど水分を吸収しやすく、かつ粉体間に多くの水分を保持しやすいためと考えられている。   However, when a blended raw material containing a large amount of fine iron ore, which is pellet feed, is granulated, the fine iron ore preferentially absorbs and agglomerates moisture, and the coarse simulated large particle size with weak bond strength composed of fine iron ore. There was a problem that particles (aggregated particles) were generated. The reason for this is that fine iron ore such as pellet feed is more likely to absorb moisture and retain more moisture between powders as long as it has the same wettability, as long as the wettability is the same. It has been.

前記の粗大な擬似粒子が生成する環境というのは、図1(a)に示すように、未造粒粉とも相俟って粒径が不揃いで粒度分布の大きい粒子部となるため、焼結機上へ充填したときに密な充填構造となり、かさ密度が大きくなる。しかも、粗大な擬似粒子というのは、焼結機のパレット上に装入されたときに形成される原料充填層(堆積層)の中では、圧縮によって変形しやすいため該原料充填層の空隙率を下げ、ひいては通気性の悪化を招いて焼結機操業の阻害要因となる。また、該微粉鉄鉱石を配合したものは、造粒時に用いられるバインダー(生石灰)の使用量の増加を招き、焼結鉱製造コストを増大させるという問題もあった。   As shown in FIG. 1 (a), the environment in which the coarse pseudo-particles are generated is a particle part having an uneven particle size and a large particle size distribution in combination with the ungranulated powder. When packed on the machine, it becomes a dense packing structure, and the bulk density increases. Moreover, the coarse pseudo particles are easily deformed by compression in the raw material packed layer (deposited layer) formed when charged on the pallet of the sintering machine. Lowers the air permeability and, consequently, deteriorates the air permeability, which becomes an impediment to the operation of the sintering machine. Moreover, what mix | blended this fine iron ore invited the increase in the usage-amount of the binder (quick lime) used at the time of granulation, and also had the problem of increasing a sinter production cost.

このような問題に対しては、予備造粒技術を採用するとよい。例えば、粒径0.5mm以下の鉄鉱石粉が30mass%以上の焼結原料を造粒するに際して、予め、高速解砕羽根を内蔵した混合機(高速攪拌機)を用いて該原料を実質的に破砕することなく剪断力を与えながら混合し、この混合時に焼結原料の含水量を6.5〜10.0%とする焼結原料の事前処理方法がある。   For such a problem, it is advisable to adopt a preliminary granulation technique. For example, when granulating a sintered raw material with an iron ore powder having a particle size of 0.5 mm or less of 30 mass% or more, the raw material is substantially crushed in advance using a mixer (high-speed stirrer) incorporating a high-speed crushing blade. There is a pretreatment method of a sintering raw material in which mixing is performed while applying a shearing force, and the moisture content of the sintering raw material is 6.5 to 10.0% at the time of mixing.

この方法は、鉄鉱石粉を破砕するのではなく剪断力を加えること、及び水分の均一化と吸収水分の粒子表面への染み出しを促進することにより、粒度分布の均一化を図る技術である。しかし、高速解砕羽根を内蔵した混合機を用いる方法では、混合機に装入された全ての配合原料にこの処理を施す必要が生じて設備規模が大きくなるという問題があった。また、処理速度を上げるために滞留時間を短くすると、水分均一化に必要な時間を十分に確保できなくなる問題もあった。さらには、破砕することなく剪断力を与えながら混合して造粒する場合、細粒あるいは微粉同士が再凝集して結合力の弱い粗大な擬似粒子となることもあり、この方法では問題の解決には不十分であった。   This method is a technique for homogenizing the particle size distribution by applying a shearing force rather than crushing the iron ore powder, and promoting the homogenization of moisture and the exudation of absorbed moisture to the particle surface. However, in the method using a mixer incorporating a high-speed crushing blade, there is a problem that all the blended raw materials charged in the mixer need to be subjected to this treatment, resulting in a large equipment scale. In addition, if the residence time is shortened in order to increase the processing speed, there is also a problem that it is not possible to sufficiently secure the time necessary for water uniformity. Furthermore, when granulating by mixing while giving shearing force without crushing, fine particles or fine particles may reaggregate to form coarse pseudo particles with weak binding force. This method solves the problem. It was not enough.

本発明の目的は、難造粒性の微粉鉄鉱石を使用する場合でも、造粒時に細粒や微粉が互いに凝集して微粉鉄鉱石を多く含む結合力の弱い粗大な擬似粒子になるのを阻止し、結合強度が大きく比較的粒径の揃った擬似粒子を多く造粒する技術を提案する。   The object of the present invention is that even when using difficult-to-granulate fine iron ore, fine particles or fine particles aggregate during the granulation and become coarse pseudo-particles with a weak binding force containing a large amount of fine iron ore. We propose a technology to prevent and granulate many pseudo particles with high bond strength and relatively uniform particle size.

即ち、本発明は、図1(b)で示すように、例えば、核粒子のまわりに粉が付着したような構造になって結合強度が大きくしかも粒径が比較的揃った均等性の高い(粒度分布の狭い)擬似粒子を製造し、このような焼結用造粒原料を焼結機のパレット上に装入できるようにして、焼結操業時に良好な通気性を確保して、品質や生産性の良い焼結用造粒原料の製造方法を提案する。   That is, as shown in FIG. 1 (b), the present invention has a structure in which, for example, powder is attached around the core particles, the bond strength is high, and the particle size is relatively uniform (high uniformity) Pseudoparticles with a narrow particle size distribution are manufactured, and such granulated raw materials for sintering can be loaded on the pallet of the sintering machine, ensuring good air permeability during the sintering operation, We propose a method for producing a granulating raw material for sintering with good productivity.

発明者らは、難造粒性の微粉鉄鉱石粉を含む配合原料を使って焼結用造粒原料を製造する際に、細粒や微粉どうしが優先的に凝集し合って結合力の弱い粗大な擬似粒子が発生すると共に大きな粒度分布をもつことにより、これが焼結機に装入された時にパレット上の原料充填層の通気性の悪化を招くという問題を克服する技術の開発を目指した。そのための方法として、本発明では、粒径の大きさに応じた解砕力を加えながら造粒を続けること、特に造粒中に発生する結合力の弱い粗大な擬似粒子とそうでない擬似粒子とについて、その粒径の大きさに応じてそれぞれに適合する解砕力を加えることにより、粒径が比較的揃って粒度分布が小さくなった結合強度の大きい擬似粒子を有利に製造する方法を開発することに成功した。   When producing granulated raw materials for sintering using a blended raw material containing difficult-to-granulate fine iron ore powders, the inventors preferentially agglomerate fine particles and fine powders together to make coarse particles with weak bonding strength. The aim was to develop a technology that overcomes the problem of the generation of quasi-pseudoparticles and a large particle size distribution that would lead to deterioration of the air permeability of the raw material packed layer on the pallet when charged into a sintering machine. As a method for that, in the present invention, to continue granulation while applying a crushing force according to the size of the particle size, especially for coarse pseudo particles with weak binding force generated during granulation and pseudo particles that are not, Succeeded in developing a method that advantageously produces pseudo-particles with high bond strength with relatively uniform particle size and reduced particle size distribution by applying a crushing force suitable for each particle size. did.

本発明では、パンペレタイザーなどの造粒機による造粒処理時に発生する造粒粒子(擬似粒子)について、解砕することが必要となる擬似粒子について、特に、粒径が大きく結合力の弱い粗大な擬似粒子と、粗大粒と比べると粒径が相対的に小さく結合強度の大きい中間粒や細粒からなる擬似粒子とによって、それぞれの粒子径に合わせて解砕力を変えることにしたのである。即ち、本発明は、パンペレタイザーなどの造粒機内では配合原料は渦流状に転動して次第に粒成長していくが、その際に渦流中心の表層付近に結合力の弱い粗大な擬似粒子が多く偏在し、その他の部位及び下層部分には中間粒や細粒が多く分布することから、それぞれの位置に、解砕機の解砕羽根を対面させるに当たっては、上記のように粒径の大きさに応じて、該解砕羽根の種類や回転数、押力などを調整して粒子径に応じた解砕を行なうと共に、該パンペレタイザー内において引き続き再造粒処理して、焼結用造粒原料として望ましい形態の、粒径が比較的揃った擬似粒子を製造する方法である。   In the present invention, for the granulated particles (pseudo particles) generated during the granulation process by a granulator such as a pan pelletizer, especially for the pseudo particles that need to be crushed, the coarse particles having a large particle size and a weak binding force. The pulverizing force was changed in accordance with the particle size of each of the pseudo particles and intermediate particles or fine particles made of intermediate particles and fine particles having a relatively small particle size and a high bonding strength compared to coarse particles. That is, according to the present invention, in a granulator such as a pan pelletizer, the blended raw material rolls in a vortex and gradually grows, and at that time, coarse pseudo particles with weak binding force are formed near the surface layer of the vortex center. Since many intermediate grains and fine grains are distributed in other parts and the lower layer part, the size of the particle size is as described above when the crushing blades of the crusher are faced to each position. In accordance with the pulverization blade type, the number of revolutions, the pressing force, etc., to adjust the particle size and to perform the pulverization according to the particle diameter, followed by re-granulation treatment in the pan pelletizer, granulation for sintering This is a method for producing pseudo particles having a relatively uniform particle size in a desirable form as a raw material.

このような着想の下に開発した本発明は、少なくとも微粉鉄鉱石を含む配合原料に水分を添加して混合する混合工程と、混合原料を造粒機にて造粒することにより擬似粒子とする造粒工程を経て造粒原料を製造する方法において、その造粒工程では、造粒時に生成する該造粒機内における配合原料転動層の表層部に偏在する粗大な擬似粒子とその他の部位に滞留する非粗大粒からなる擬似粒子とを対象として、該造粒機内に配設される解砕羽根の種類、回転数、回転時の高さ方向位置及び押力のいずれか少なくとも1以上を変化させて、前記粗大な擬似粒子に対しては粒子に生じる応力が0.1〜0.48MPaとなるようにし、一方、前記非粗大粒からなる擬似粒子に対しては粒子に生じる応力が0.64MPa以下となる解砕力を加えて解砕しつつ造粒することを特徴とする焼結用造粒原料の製造方法を提案する。 The present invention developed under such an idea is a pseudo-particle by mixing a mixing raw material containing at least fine iron ore with water and mixing the raw material with a granulator. In the method for producing a granulated raw material through a granulation step, in the granulation step, coarse pseudo particles unevenly distributed in the surface layer portion of the blended raw material rolling layer in the granulator generated during granulation , and other parts At least one of the types of crushing blades arranged in the granulator, the number of rotations, the position in the height direction during rotation, and the pressing force The stress generated in the particles is set to 0.1 to 0.48 MPa for the coarse pseudo particles, while the stress generated in the particles is 0 for the pseudo particles made of the non-coarse particles. Add the following to become the solution striking force .64MPa While crushing it to propose a method for producing a sintering granulated material, characterized in that granulated.

本発明は、
(1)前記の粗大な擬似粒子は粒子径が8mm以上の大きさの粒子であり、前記非粗大粒からなる擬似粒子とは粒子径が8mm未満の小さな粒子であること、
(2)前記解砕羽根は、パンペレタイザーである造粒機内に滞留する配合原料転動層の表層部に面して配設されるものであること、
(3)前記解砕羽根は、パンペレタイザーである造粒機の底面に垂直な方向および回転方向に対して移動可能であり、かつ該パンペレタイザーの回転方向とは逆向きに回転するものであること、
(4)前記解砕は、解砕羽根の配合原料転動層表層部への押力により前記擬似粒子を圧壊すること、
(5)前記造粒工程の後に、この工程を経て製造された擬似粒子にコークス粉を付着させて焼結用造粒原料とする工程を設けること、
がより好ましい解決手段になると考えられる。
The present invention
(1) The coarse pseudo particles are particles having a particle size of 8 mm or more, and the pseudo particles composed of the non-coarse particles are small particles having a particle size of less than 8 mm.
(2) said crushing blade is intended to be disposed facing the surface layer portion of the mixed material rolling layer staying in the granulator is pan pelletizer,
(3) Before Machinery砕羽roots is movable relative to the vertical direction and the rotation direction on the bottom of the granulator is a pan pelletizer, and the rotational direction of the pan pelletizer as to rotate in the opposite direction There is,
(4) The crushing is to crush the quasi-particles by a pressing force to the surface portion of the mixing raw material rolling layer of the crushing blades,
(5) after the previous Kizo grain process, that by adhering coke powder providing a process for the granulation raw material for sintering the pseudo particles produced through this process,
Is considered to be a more preferable solution.

(1)本発明によれば、ペレットフィードなどの難造粒性の微粉鉄鉱石を焼結原料用鉄鉱石として多量に使用することができるようになり、低スラグ比で高被還元性、高強度の焼結鉱を有利に製造することができる。そのため、高炉操業においては、炉内に装入する塊コークスの使用量を低減させることができるようになる。その結果、高炉からのCO発生量の大幅な削減ができると共に生産性の向上が期待できる。しかも、高炉でのスラグ発生量が低減することにより、環境への負荷を軽減させることができる。
(2)本発明によれば、製造される成品焼結鉱の強度を上げることができると共に歩留を向上させることができるから、粉コークス使用量の低減が可能となる。また、配合原料中の粉コークスの使用量が少なくなることから、焼結鉱製造時のCO発生量の低減が可能になる。
(3)本発明によれば、微粉原料の造粒時に使用される生石灰(バインダー)の使用量を削減することができるから、焼結鉱の製造コストの低減と生産性の向上に寄与する技術を提供できる。
(1) According to the present invention, it becomes possible to use a large amount of finely granulated iron ore, such as pellet feed, as iron ore for a sintering raw material, and a high slag ratio and high reducibility. A strong sinter can be produced advantageously. Therefore, in blast furnace operation, the amount of lump coke charged into the furnace can be reduced. As a result, it is possible to greatly reduce the amount of CO 2 generated from the blast furnace and improve productivity. In addition, the load on the environment can be reduced by reducing the amount of slag generated in the blast furnace.
(2) According to the present invention, the strength of the manufactured sintered ore can be increased and the yield can be improved, so that the amount of powder coke used can be reduced. Further, since the amount of coke in the formulation in the raw material is reduced, it is possible to reduce the amount of CO 2 produced during the sinter production.
(3) According to the present invention, it is possible to reduce the amount of quicklime (binder) used at the time of granulation of the fine powder raw material, and thus a technology that contributes to a reduction in the production cost and an improvement in productivity of the sintered ore. Can provide.

従来の粒子充填層(a)と本発明の粒子充填層(b)の模式図である。It is a schematic diagram of the conventional particle packed bed (a) and the particle packed bed (b) of the present invention. 擬似粒子の構造(a、b)と焼結用造粒原料の製造プロセス(c)の模式図である。It is a schematic diagram of the structure (a, b) of a pseudo particle and the manufacturing process (c) of the granulation raw material for sintering. 本発明の焼結用造粒原料製造プロセスの一例を示す模式図である。It is a schematic diagram which shows an example of the granulation raw material manufacturing process for sintering of this invention. 焼結用造粒原料の製造装置(解砕造粒装置)の略線図である。It is a basic diagram of the manufacturing apparatus (crushing granulation apparatus) of the granulation raw material for sintering. 解砕機の解砕羽根の構造例を示す斜視図である。It is a perspective view which shows the structural example of the crushing blade of a crusher. 各種造粒プロセス例での造粒した粒子の粒度分布図である。It is a particle size distribution figure of the granulated particle in the example of various granulation processes. 従来法と本発明法(ペレットフィードPF:40mass%配合時)との焼結試験での操業結果を示す比較グラフである。It is a comparative graph which shows the operation result in the sintering test with the conventional method and this invention method (at the time of pellet feed PF: 40 mass% mixing | blending). 従来法と本発明法(テーリング鉱20mass%配合時)との焼結試験での操業結果を示す比較グラフである。It is a comparative graph which shows the operation result in the sintering test with the conventional method and this invention method (at the time of 20 mass% of tailing ores mixing). 従来法と本発明法(ペレットフィード40mass%+テーリング鉱20mass%配合時)との焼結試験での操業結果を示す比較グラフである。It is a comparative graph which shows the operation result in the sintering test with the conventional method and this invention method (at the time of pellet feed 40mass% + tailing ore 20mass% compounding). 各種鉄鉱石の粒度分布例を示すグラフである。It is a graph which shows the example of a particle size distribution of various iron ores.

図2は、擬似粒子の構造(a、b)と一般的な焼結用造粒原料製造プロセスのフローを示すものである。この図に示すように、配合槽1から切り出された配合原料である鉄鉱石粉および副原料粉は、まず、ドラムミキサー2にて混合される。その後、混合された配合原料はパンペレタイザーのような1〜複数基の造粒機3にて造粒処理される。混合工程および造粒工程ではそれぞれ水分(3〜8mass%程度)を添加して、所定の造粒水分になるように調整される。   FIG. 2 shows the structure of pseudo particles (a, b) and the flow of a general process for producing a granulated raw material for sintering. As shown in this figure, the iron ore powder and the auxiliary material powder, which are blended raw materials cut out from the blending tank 1, are first mixed by the drum mixer 2. Thereafter, the blended raw material is granulated in one to a plurality of granulators 3 such as a pan pelletizer. In the mixing step and the granulation step, water (about 3 to 8 mass%) is added to adjust the predetermined granulation moisture.

図2(a)は、ペレットフィードなどの微粉鉄鉱石の使用時に形成される擬似粒子のうち、鉄鉱石の細粒あるいは微粉同士が水分を介して互いに凝集した擬似粒子のうち、特に、微粉鉄鉱石どうしが優先的に凝集して肥大化した結合力の弱い粗大な擬似粒子(凝集粒子)の例を示す。例えば造粒機(以下、「パンペレタイザー」の例で説明する)3内では、配合原料は渦流状に転動しており、その渦流中心の表層付近には粗大な擬似粒子が多く偏在している。これは、転動粒子同士の篩い分け効果(パーコレーション)により、細粒が下層に、粗大粒子が上層に偏析する現象によるものである。この場合(上層)の擬似粒子の粒径(最大)は8mm〜20mm以上と大きく、それ故に結合力が弱いのが特徴である。   FIG. 2 (a) shows, among the pseudo particles formed during use of fine iron ore such as pellet feed, among the pseudo particles in which fine particles of iron ore or fine particles aggregate with each other through moisture, in particular, fine iron ore. An example of coarse pseudo-particles (aggregated particles) with weak binding force in which stones preferentially aggregate and enlarge. For example, in the granulator (hereinafter described in the example of the “pan pelletizer”) 3, the blended raw material rolls in a vortex, and many coarse pseudo particles are unevenly distributed near the surface layer of the vortex center. Yes. This is due to the phenomenon that fine particles segregate in the lower layer and coarse particles segregate in the upper layer due to the sieving effect (percolation) between the rolling particles. In this case, the particle size (maximum) of the quasi-particles (upper layer) is as large as 8 mm to 20 mm or more, and therefore, the bonding force is weak.

これに対し、図2(b)は、核粒子のまわりに微粉が平均的に付着した構造を代表例とするものであって、この例は粒径が相対的に小さく(1mm以上8mm未満)結合強度が大きい擬似粒子の例である。このタイプの擬似粒子は、8mm以上の大きさの前記粗大擬似粒子よりも粒径が一般的に揃った均等性の高い粒子となる。   On the other hand, FIG. 2B is a typical example of a structure in which fine particles are averagely attached around the core particles, and this example has a relatively small particle size (1 mm or more and less than 8 mm). This is an example of a pseudo particle having a high bond strength. This type of pseudo particle is a highly uniform particle having a generally uniform particle size than the coarse pseudo particle having a size of 8 mm or more.

ところで、パンペレタイザー3による造粒工程において、該パンペレタイザー内では配合原料転動層の表層部に偏在する粗大化した擬似粒子が不可避に生成するが、その他の部位、即ちより下層部位や渦流中心部を外れた部位には、中間粒や細粒が多く分散した造粒分布を示すものになる。それぞれの部位にある擬似粒子は粒径が一様ではなく、結合強度に着目すると、水分を介して互いに単に凝集したにすぎない粗大な擬似粒子(≧8mm)の場合は結合力が弱く、一方、図2(b)に示すような粒径の小さい(<8mm)擬似粒子の場合は結合強度が大きいものになる。本発明では、これらの2種類の粒径の異なる擬似粒子を、それぞれの粒径に応じた適切な(中間粒や細粒にする)解砕力を加えて、粒度分布の小さい平均的な粒子になるように解砕しながら、しかも継続的に再造粒することを特徴としている。   By the way, in the granulation process by the pan pelletizer 3, coarse pseudo particles that are unevenly distributed in the surface layer portion of the blended raw material rolling layer are inevitably generated in the pan pelletizer. The part out of the part shows a granulation distribution in which many intermediate grains and fine grains are dispersed. The quasi-particles in each part are not uniform in particle size, and focusing on the bond strength, the binding force is weak in the case of coarse quasi-particles (≧ 8 mm) that are merely aggregated with each other through moisture, In the case of pseudo particles having a small particle size (<8 mm) as shown in FIG. 2B, the bond strength is high. In the present invention, these two kinds of pseudo-particles having different particle diameters are subjected to an appropriate crushing force according to the respective particle diameters (to make intermediate grains or fine grains) to become average particles having a small particle size distribution. It is characterized by continuous re-granulation while crushing.

即ち、前記パンペレタイザー3内に滞留している配合原料転動層の渦流中心の表層部に現れる粒径が8mm以上とりわけ10mm以上の粗大擬似粒子については、もともと結合力が弱いことから、解砕機とくに解砕羽根をその表層部の位置にセットして該擬似粒子に加える解砕力を抑制して過粉砕にならないようにする。例えば、解砕羽根の回転数を抑制するとか、解砕羽根の高さ方向のレベルおよび押力などを調整するなどして粒子に生じる応力が0.48MPa以下となるようにして、中間粒(4mm〜9mm)ないしは細粒(1mm〜4mm)になるまでの解砕を行なう。なお、粒子に生じる好ましい前記応力は0.1MPa〜0.48MPaとする。   That is, the coarse quasi-particles having a particle diameter of 8 mm or more, particularly 10 mm or more appearing in the surface layer portion of the vortex center of the blended raw material rolling layer staying in the pan pelletizer 3 are originally weak in binding force, In particular, the crushing blade is set at the position of the surface layer portion to suppress the crushing force applied to the pseudo particles so as not to overgrind. For example, by controlling the number of revolutions of the crushing blades or adjusting the level in the height direction of the crushing blades and the pressing force, the stress generated in the particles becomes 0.48 MPa or less, so that the intermediate grains ( Crushing to 4 mm to 9 mm) or fine particles (1 mm to 4 mm). The preferable stress generated in the particles is 0.1 MPa to 0.48 MPa.

一方、パンペレタイザー3内の配合原料転動層の前記渦流中心部の下層部や渦流中心部から外れた部位に分散している擬似粒子、即ち粒径が8mm未満のものについては、これらは結合強度が基本的に大きいものが多いから、前記解砕羽根による該擬似粒子に加える解砕力としては相対的に大きく、例えば、解砕羽根の回転数をより多くしたり、原料転動層表面への押力(加圧力)を増大させて該擬似粒子に生じる応力が0.64MPa程度以下となるように調整して、この場合もやはり中間粒や細粒が生じるようにする。   On the other hand, the pseudo-particles dispersed in the lower layer part of the vortex center part of the blended raw material rolling layer in the palletizer 3 or the part deviating from the vortex center part, that is, those having a particle diameter of less than 8 mm, are combined. Since many of the strengths are basically large, the crushing force applied to the pseudo particles by the crushing blades is relatively large. For example, the number of rotations of the crushing blades can be increased or the surface of the raw material rolling layer can be increased. The pressing force (pressing force) is increased so that the stress generated in the pseudo particles is adjusted to about 0.64 MPa or less, and in this case, intermediate particles and fine particles are also generated.

このようにして、パンペレタイザー3内では、常にある程度粒径の揃った中間粒・細粒になるように、配合原料転動層の部位、即ち粒径の大きさに合った解砕を行ないつつ引き続きそのまま造粒し続けるのである。その結果、細粒や微粉同士が、凝集して粗粒化した擬似粒子であっても、解砕・再造粒工程を通じて比較的粒径の揃った粒度分布の小さい結合強度が大きい擬似粒子を製造することができる。   In this way, in the pan pelletizer 3, while being crushed in accordance with the portion of the blended raw material rolling layer, that is, the size of the particle size so as to always become intermediate particles and fine particles having a certain particle size. Continue to granulate as it is. As a result, even if the fine particles and fine particles are aggregated and coarsened pseudo particles, pseudo particles having a relatively small particle size distribution with a relatively uniform particle size through the pulverization / re-granulation process and high bond strength. Can be manufactured.

このように、本発明によれば、難造粒性の微粉鉄鉱石を多く配合(≧40mass%以上)した場合でも、上述したように製造される擬似粒子径の大きさに応じた解砕力を加えて引き続き造粒するので、図2(b)に示すような、粒子の結合強度が大きく粒度分布の小さい擬似粒子が得られる。しかも、このことは微粉や細粒どうしが互いに凝集しているにすぎない粗大な擬似粒子に偏析した水分を造粒原料全体に均等に配分することにもなる。   Thus, according to the present invention, even when a large amount of hardly granulated fine iron ore is blended (≧ 40 mass% or more), the crushing force according to the size of the pseudo particle diameter produced as described above is added. Since the granulation is continued, pseudo particles having a large particle bonding strength and a small particle size distribution are obtained as shown in FIG. In addition, this means that the water segregated into coarse pseudo-particles, in which fine powders and fine particles are only aggregated with each other, is evenly distributed over the entire granulated raw material.

上記の解砕・造粒のために採用する本発明に係る解砕機能つき造粒機である前記パンペレタイザー本体3内には、パン内配合原料転動層の渦流中心の表層部やその周辺の部位あるいは下層部位に、粗大粒や未造粒粒子が不可避的に発生するのに合わせて、それぞれの粒子に適合する解砕力の付加・調整を可能にするために解砕羽根を備える解砕機を配設して対応する。そして、その解砕羽根の回転数を制御したり、該解砕羽根4aの位置を変えたり、解砕部位の変更、解砕羽根4aの押力を制御し、それぞれの擬似粒子の大きさに応じた解砕力を加えて適宜に解砕しつつさらに造粒を続け、粒径の揃った好適な擬似粒子にするのである。なお、このようにして生成させた擬似粒子は、前記パンペレタイザー3から溢流してベルトコンベア上に排出し、次工程(焼結機等)に送られる。   In the bread pelletizer body 3 which is a granulator with a crushing function according to the present invention employed for the above-mentioned crushing and granulating, the surface layer part of the vortex center of the mixed raw material rolling layer in the bread and its surroundings In order to make it possible to add and adjust the crushing force suitable for each particle as coarse particles and ungranulated particles are inevitably generated in the lower part or the lower part, a crusher equipped with crushing blades is provided. Arrange and respond. And the rotation speed of the crushing blade is controlled, the position of the crushing blade 4a is changed, the change of the crushing part, the pressing force of the crushing blade 4a is controlled, and the size of each pseudo particle is controlled. The granulation is further continued while appropriately pulverizing by applying a corresponding pulverizing force to obtain suitable pseudo particles having a uniform particle diameter. The pseudo particles generated in this way overflow from the pan pelletizer 3 and are discharged onto the belt conveyor and sent to the next step (sintering machine or the like).

前述したように、本発明に従えば、微粉鉄鉱石を多く含む配合原料から製造された擬似粒子は、結合強度も略一定の大きさならびに水分が均等な擬似粒子再造粒される。この点、もし、従来技術のように結合力の弱い粗大な粒径の擬似粒子が生成したまま、これを焼結用造粒原料として焼結機のパレット上に一定の層厚で堆積させると、こうした擬似粒子に荷重(圧縮力)が加わると圧壊されやすく、空隙率の小さい充填構造の焼結原料(堆積)層となる。その結果、パレット上の造粒原料(充填)層は通気性の悪いものになって焼結機の操業阻害要因となる。   As described above, according to the present invention, pseudo particles produced from a blended raw material containing a large amount of fine iron ore are re-granulated with pseudo particles having a substantially constant bond strength and uniform moisture. In this regard, if the pseudo-particles having a coarse particle size with a weak binding force are generated as in the prior art, and this is deposited on the pallet of the sintering machine as a granulation raw material for sintering with a certain layer thickness, When a load (compressive force) is applied to such pseudo particles, the pseudo particles are easily crushed and become a sintered raw material (deposited) layer having a filling structure with a low porosity. As a result, the granulated raw material (filled) layer on the pallet has poor air permeability and becomes an impediment to the operation of the sintering machine.

本発明において前記解砕対象となる擬似粒子については、基本的に粗大なものとそうでないものとに区別して解砕制御することは、前述のとおりである。例えば、主にパンペレタイザー3内に滞留する配合原料転動層の渦流中心の表層部に偏在する粒径8mm以上の粗大擬似粒子と、粒径8mm未満の擬似粒子とを、解砕羽根を使って異なる解砕力を加えつつなおかつ再造粒することで、本来の望ましい擬似粒子の形成を促すことができる。この場合において、異なる解砕力の付加に当たって、解砕力を変動させる方法としては、前述したように、解砕羽根の回転数制御や解砕羽根の位置(パン底面の高さ方向・水平(回転)方向の位置)、転動層表面に対する解砕羽根の押力を変更する方法などが好ましい。   In the present invention, as described above, the quasi-particles to be crushed are basically crushed and controlled to be separated into coarse particles and those not. For example, a coarse quasiparticle having a particle size of 8 mm or more and a quasiparticle having a particle size of less than 8 mm, which are unevenly distributed in the surface layer portion of the vortex center of the mixing raw material rolling layer staying in the pan pelletizer 3, are used by using a crushing blade. By re-granulating while applying different crushing forces, it is possible to promote the formation of the originally desired pseudo particles. In this case, as described above, as a method of changing the crushing force when adding different crushing forces, as described above, the rotation speed control of the crushing blades and the position of the crushing blades (the height direction of the bread bottom, the horizontal (rotation) direction) Position), a method of changing the pressing force of the crushing blades on the surface of the rolling layer is preferable.

なお、パンペレタイザー3内での解砕機4による解砕の位置は、解砕対象となる粗大に成長した擬似粒子偏在部や非粗大粒擬似粒子偏在部に合わせて行なわれるが、これらは、配合原料の粒度や成分、配合量、造粒用水分の量によっても変動するので、適宜に変えることが好ましい。   The position of crushing by the crusher 4 in the pan pelletizer 3 is performed in accordance with the coarsely grown pseudo-particle unevenly distributed portion and the non-coarse-grained pseudoparticle unevenly distributed portion. Since it varies depending on the particle size and components of the raw material, the blending amount, and the amount of moisture for granulation, it is preferable to change appropriately.

そして、こうして得られた擬似粒子の表面には、さらに別のドラムミキサー5などにより、コークス粉等の固体燃料や必要に応じて用いられる副原料をコーティングして焼結鉱製造用の原料である焼結用造粒原料を製造する。   The surface of the pseudo particles thus obtained is further coated with a solid fuel such as coke powder or a secondary material used as required by another drum mixer 5 or the like, which is a raw material for producing sintered ore. A granulating raw material for sintering is produced.

図4は、解砕機能つき造粒機、即ち、パンペレタイザー3に解砕羽根4aつき解砕機4を設置した焼結用造粒原料製造装置の一例である。この装置は、ペレタイザー3内での解砕−造粒するための設備であり、30〜70°の傾斜角度で回転可能に保持されたパンペレタイザー3と、このパンペレタイザー3内の配合原料転動層の表層各部に面して配設される解砕機4とで構成されている。かかる解砕機4としては、図5に示すような各種の形状の解砕羽根4aを用いることが好適である。その解砕羽根4aは、パン底面と略平行な面内で前記パンペレタイザー3の本体とは逆向きに回転させると共に、本発明方法を実施するために、該パン底面に対して垂直な方向に昇降可能にすると共に該パン底面と平行な面内で回転方向に沿って平行移動するように構成される。   FIG. 4 shows an example of a granulating material with a crushing function, that is, an apparatus for producing a granulating raw material for sintering, in which a crusher 4 with crushing blades 4 a is installed in a pan pelletizer 3. This apparatus is a facility for crushing and granulating in the pelletizer 3, and the bread pelletizer 3 held rotatably at an inclination angle of 30 to 70 °, and the blended raw material rolling in the bread pelletizer 3 It is comprised with the crusher 4 arrange | positioned facing each surface layer part of a layer. As such a crusher 4, it is preferable to use crushing blades 4a having various shapes as shown in FIG. The crushing blade 4a is rotated in a direction opposite to the main body of the pan pelletizer 3 in a plane substantially parallel to the bottom surface of the bread, and in a direction perpendicular to the bottom surface of the bread in order to carry out the method of the present invention. It is configured to be able to move up and down and to translate in a rotational direction within a plane parallel to the bottom surface of the pan.

なお、図示の8は、パンペレタイザーの傾きや位置監視用レーザ変位計を示している。また、図示の9は、造粒面監視用CCDカメラであり、10は監視モニター、11は制御盤、12は解砕羽根用駆動機である。これらはいずれも既知の汎用の装置の利用が可能である。   Reference numeral 8 denotes a laser displacement meter for monitoring the inclination and position of the pan pelletizer. In the figure, 9 is a CCD camera for monitoring the granulated surface, 10 is a monitoring monitor, 11 is a control panel, and 12 is a crushing blade drive. All of these can use known general-purpose devices.

ここで、上記解砕羽根4aの好適例のいくつかを図5に示す。
図5(a)は、遠心放射型の解砕羽根の例であって、鋸歯が放射状に上向きもしくは下向きに交互に迫り出している。
図5(b)は、パドル型の解砕羽根の例であって、撹拌対象の飛散を防止するために設けられた円盤上に、垂直方向の羽根が6枚設置してある。
図5(c)は、パドル型の解砕羽根の例であって、中心軸より放射状に6枚の羽根が垂直に設置してある。
図5(d)は、プロペラ型の解砕羽根の例であって、3枚の羽根が設置してある。
図5(e)は、パドル型の解砕羽根の例であって、中心軸より放射状に4枚の羽根が45°の角度に設置してある。
図5(f)は、4枚羽根の解砕羽根であり、各羽根が45°づつ角度を変えて設置されている。
Here, some preferred examples of the crushing blade 4a are shown in FIG.
FIG. 5 (a) is an example of a centrifugal radiation type crushing blade, in which saw blades squeeze alternately upward or downward radially.
FIG.5 (b) is an example of a paddle type crushing blade | wing, Comprising: Six vertical blade | wings are installed on the disk provided in order to prevent scattering of the stirring object.
FIG.5 (c) is an example of a paddle type crushing blade | wing, Comprising: Six blade | wings are installed perpendicularly | vertically from the central axis.
FIG.5 (d) is an example of a propeller-type crushing blade | wing, Comprising: Three blade | wings are installed.
FIG. 5 (e) shows an example of a paddle-type crushing blade, in which four blades are installed radially at an angle of 45 ° from the central axis.
FIG. 5 (f) is a four-blade crushing blade, and each blade is installed at a 45 ° angle change.

ところで、前記焼結用造粒原料製造装置において、前記解砕機4の解砕羽根4aはパンペレタイザー3本体の回転方向と逆向きにする理由は、解砕後の粒子が、転動時によく飛び散るようにするためである。即ち、擬似粒子の解砕により、該擬似粒子中の水分の飛沫を転動中の原料に効率よく再分配することができ、解砕後の細粒破片を再分散させることで水分の均一化と粒径の均一化を図ることができる。また、回転数に関しては、高速ほど解砕効率が高いが、過度の場合には解砕効果が大きくなりすぎ、擬似粒子平均粒径が大幅に低下する場合がある。   By the way, in the granulated raw material manufacturing apparatus for sintering, the reason why the crushing blade 4a of the crusher 4 is opposite to the rotation direction of the main body of the pan pelletizer 3 is that the crushed particles are often scattered during rolling. It is for doing so. That is, by pulverizing the pseudo particles, the water droplets in the pseudo particles can be efficiently redistributed to the raw material being rolled, and the fine particles after the pulverization are re-dispersed to make the moisture uniform. And uniform particle size. As for the number of rotations, the higher the speed, the higher the crushing efficiency. However, if it is excessive, the crushing effect becomes too great, and the average particle size of the pseudo particles may be significantly reduced.

パンペレタイザー3内の前記粗大な擬似粒子の分布位置は、原料条件・操業度によって変化すると考えられるため、外部監視による解砕位置の制御が有効となる。また、解砕羽根とパン底のクリアランスを調整することにより、解砕する粗大擬似粒子の粒径の制御が可能となるが、生成する擬似粒子の成長にともない、解砕羽根高さの調整が必要となる。そのため、前記レーザー変位計のような厚み計測機器を設けるが、この調整によって解砕すべき擬似粒子の大きさを調整することができると共に、造粒された最終的な擬似粒子の大きさが決定される。   Since the distribution position of the coarse pseudo-particles in the pan pelletizer 3 is considered to change depending on the raw material conditions and the operation level, control of the crushing position by external monitoring is effective. In addition, by adjusting the clearance between the crushing blade and the bottom of the pan, it is possible to control the particle size of the coarse pseudoparticles to be crushed. Necessary. Therefore, a thickness measuring instrument such as the laser displacement meter is provided, and the size of the pseudo particles to be crushed can be adjusted by this adjustment, and the size of the final pseudo particles granulated is determined. Is done.

以下に、本発明の実施例について説明する。この実施例に用いた原料は、豪州産鉄鉱石50mass%および南米産鉄鉱石50mass%である。配合原料は、塩基度2.0をベースとし、例えば、ペレットフィードである微粉鉄鉱石を20mass%配合するときには、豪州産鉄鉱石と南米産鉄鉱石の上記配合割合(1:1)は変えずに振り代えることで対応した。なお、その微粉鉄鉱石の例としては、テーリング鉱も使用した。ここでテーリング鉱とは、ペレットフィードを製造する過程で発生する残渣のことを表す。図3は、この実施例で用いた焼結用造粒原料製造プロセスの例である。   Examples of the present invention will be described below. The raw materials used in this example are Australian iron ore 50 mass% and South American iron ore 50 mass%. The blending raw material is based on a basicity of 2.0. For example, when 20 mass% of fine iron ore as pellet feed is blended, the above blending ratio (1: 1) of Australian iron ore and South American iron ore remains unchanged. We corresponded by changing to. As an example of the fine iron ore, tailing ore was also used. Here, the tailing ore represents a residue generated in the process of producing a pellet feed. FIG. 3 is an example of the granulating raw material manufacturing process for sintering used in this example.

この実施例では、上述した既存のHPSプロセスをベースとし、核粒子をもたない細粒や微粉同士が互いに凝集した状態の前記粗大擬似粒子を、パンペレタイザー3内の渦流中心部に滞留する配合原料転動層の表層部の位置に、該擬似粒子に加える応力にして、0.48MPa程度以下の解砕力を加える他、解砕羽根を下層部位もしくは渦流中心から外れた位置に移動させて0.64MPa程度以下の応力を加えられる解砕力にて解砕する方法で実施した。   In this embodiment, based on the above-described existing HPS process, the coarse pseudoparticles in a state where fine particles and fine particles having no core particles are aggregated with each other are accumulated in the central part of the vortex flow in the pan pelletizer 3 In addition to applying a crushing force of about 0.48 MPa or less to the position of the surface layer portion of the raw material rolling layer as a stress applied to the pseudo particles, the crushing blade is moved to a position deviated from the lower layer part or the vortex center to be 0. It implemented by the method of crushing by the crushing force which can apply the stress of about 64 Mpa or less.

即ち、前記パンペレタイザー3内の渦流中心部に生成した擬似粒子の大きさが8mm以上と大きいものに対して、例えば、羽根径:80mmの解砕羽根を有する解砕機を、回転数:250rpmで、一方、渦流中心から回転方向の下流かつ高さ方向の下層部位に擬似粒子の大きさにして8mm未満のものが多く滞留する部位に対しては、回転数:
500rpmで運転して、より大きい解砕応力(押力:0.62MPa)を付加した。なお、その解砕羽根4aの回転方向は、パンペレタイザーの回転方向とは逆方向とした。また、解砕羽根4aの回転面とパンペレタイザー内底面とのクリアランスは、生成させる擬似粒子径に応じ、8mm以上の粒径の粗粒を効率よく解砕するためには約8mmとし、8mm未満の細粒のためには8mm未満として、それぞれなるべく均一な粒子となるように解砕し、再造粒に供した。
That is, for example, a crusher having crushing blades having a blade diameter of 80 mm is used at a rotational speed of 250 rpm for a pseudo particle generated in the central portion of the vortex flow in the pan pelletizer 3 as large as 8 mm or more. On the other hand, for the part where many particles having a pseudo particle size of less than 8 mm stay in the lower layer part in the rotation direction and in the lower direction from the vortex center, the number of rotations:
A larger crushing stress (pushing force: 0.62 MPa) was applied by operating at 500 rpm. The rotation direction of the crushing blade 4a was opposite to the rotation direction of the pan pelletizer. Further, the clearance between the rotating surface of the crushing blade 4a and the bottom surface of the pan pelletizer is about 8 mm in order to efficiently crush coarse particles having a particle size of 8 mm or more according to the pseudo particle size to be generated, and less than 8 mm. In order to obtain fine particles of less than 8 mm, each was crushed so as to be as uniform as possible, and subjected to re-granulation.

上記焼結用造粒原料の製造プロセスにおいて、ドラムミキサー2に添加する造粒水分については、ベース条件を7.6mass%とし、ペレットフィード配合条件下では8.2mass%とした。そして、ドラムミキサー2、パンペレタイザー3での滞留時間は実機と同一の条件とし、回転数については、フルード数(慣性力/重力)が一定となるように設定した。   In the manufacturing process of the granulation raw material for sintering, the granulation moisture added to the drum mixer 2 was 7.6 mass% in the base condition, and 8.2 mass% in the pellet feed blending condition. The residence time in the drum mixer 2 and the pan pelletizer 3 was set to the same conditions as in the actual machine, and the rotation speed was set so that the fluid number (inertial force / gravity) was constant.

また、前記解砕羽根4aの位置については、パンペレタイザー3の底面との間に一定の間隔が生じるように調整した。これは、解砕する粗大な擬似粒子の粒度(+8mm、−8mm)以上の間隔を設定することで、解砕の不要な擬似粒子に関しては、該解砕羽根aの下方を通過させて転動運動を続けられるようにするためである。従って、パンペレタイザー3内での解砕羽根4aの配設は、解砕作用点の位置を決める上で重要であり、解砕対象となる粗大な擬似粒子の存在する確率が最も高くなる位置に調整した。   Further, the position of the crushing blade 4a was adjusted so that a constant interval was generated between the crushing blade 4a and the bottom surface of the pan pelletizer 3. This is by setting the interval larger than the particle size (+8 mm, −8 mm) of coarse pseudo particles to be crushed, and for the pseudo particles that do not need to be crushed, they pass under the crushing blades a and roll. This is so that you can continue exercising. Accordingly, the disposition of the crushing blades 4a in the pan pelletizer 3 is important in determining the position of the crushing action point, and is at a position where the probability that coarse pseudo particles to be crushed exist is the highest. It was adjusted.

図6は、従来法、発明法(擬似粒子径に応じた選択的解砕−造粒)実施後の、擬似粒子の粒度分布の比較を示すものである。従来法に多く見られた粗粒粒子は、本発明に係る選択的解砕−造粒法では減少している。即ち、本発明方法では、1.0mm〜4.75mmの中間粒子の比率が増加し、粒径が均一化している。また、平均粒径については、0.6〜0.7mm減少しており、擬似粒子径に応じた選択的解砕−再造粒を行なう本発明方法の採用が有効であることが確かめられた。   FIG. 6 shows a comparison of the particle size distribution of the pseudo particles after the conventional method and the invention method (selective crushing-granulation according to the pseudo particle size). Coarse particles frequently seen in the conventional method are reduced in the selective pulverization-granulation method according to the present invention. That is, in the method of the present invention, the ratio of intermediate particles of 1.0 mm to 4.75 mm is increased, and the particle size is made uniform. Further, the average particle size was reduced by 0.6 to 0.7 mm, and it was confirmed that the use of the method of the present invention in which selective crushing-re-granulation according to the pseudo particle size was performed was effective. .

図7は、鉄鉱石中の40mass%についてはペレットフィードを配合するという条件において、従来法をベースとして、本発明例の選択的解砕−造粒のプロセスを適用した焼結鉱製造試験結果を示すものである。この図に示すように、本発明法に基づく焼結用造粒原料を用いて製造した焼結鉱は、焼結機のパレット上に堆積させた焼結用造粒原料充填層(焼結ベッド)の装入嵩密度は小さく、生産性向上の効果が得られることがわかった。   FIG. 7 shows the result of a sinter production test result of applying the selective crushing-granulation process of the example of the present invention based on the conventional method on the condition that a pellet feed is blended for 40 mass% in iron ore. It is shown. As shown in this figure, a sintered ore produced using a granulation raw material for sintering based on the method of the present invention is a granulated raw material packed layer for sintering (sintered bed) deposited on a pallet of a sintering machine. ) Has a small bulk density, and it has been found that the effect of improving productivity can be obtained.

図8は、鉄鉱石中の20mass%についてはテーリング鉱を配合するという条件において、従来法をベースとして、本発明例の選択的解砕−造粒のプロセスを適用した焼結鉱製造試験結果を示すものである。この図に示すように、テーリング鉱を配合して本発明法に基づいて製造した焼結用造粒原料を用いて製造した焼結鉱は、図10のペレットフィードを配合した条件と同様に、焼結用造粒原料充填層(焼結ベッド)の通気性改善、生産性向上効果が得られることがわかった。   FIG. 8 shows the result of a sinter ore production test using the selective pulverization-granulation process of the example of the present invention based on the conventional method on the condition that 20 mass% in iron ore is blended with tailing ore. It is shown. As shown in this figure, the sintered ore manufactured using the granulating raw material for sintering manufactured based on the method of the present invention by blending tailing ore is similar to the condition of blending the pellet feed of FIG. It turned out that the air permeability improvement and productivity improvement effect of the granulation raw material filling layer (sintering bed) for sintering are acquired.

図9は、鉄鉱石中の40mass%をペレットフィード、20mass%をテーリング鉱にするという配合条件において、従来法をベースとして、本発明例の選択的解砕−造粒のプロセスを適用した焼結鉱製造試験の結果を示すものである。この図に示すように、本発明法に基づいて製造した焼結用造粒原料を用いて製造した焼結鉱は、図7、8のペレットフィードやテーリング鉱を単味で配合した条件と同様に、焼結用造粒原料充填層(焼結ベッド)の通気性改善、生産性向上効果が得られることがわかった。なお、図10は上記焼結試験で用いたペレットフィード、テーリング鉱および粉鉄鉱石の累積粒度分布を示すグラフである。   FIG. 9 shows sintering in which the selective pulverization-granulation process of the example of the present invention is applied based on the conventional method under the blending conditions of 40 mass% in the iron ore as pellet feed and 20 mass% as tailing ore. The result of the ore production test is shown. As shown in this figure, the sintered ore manufactured using the granulation raw material for sintering manufactured based on the method of the present invention is the same as the conditions in which the pellet feed and tailing ore of FIGS. Furthermore, it was found that the air permeability improvement and productivity improvement effects of the granulated raw material packed layer (sinter bed) for sintering can be obtained. FIG. 10 is a graph showing the cumulative particle size distribution of pellet feed, tailing ore and fine iron ore used in the sintering test.

以上、説明したようにペレットフィードやテーリング鉱のような難造粒性の微粉鉄鉱石を使用すると、焼結生産性は低下するが、以上の焼結鉱製造試験結果から、本発明は、生産性向上に有効であることが明らかとなった。   As described above, when finely granulated iron ore such as pellet feed or tailing ore is used, the sintering productivity is reduced. However, from the above sinter production test results, the present invention produces It was revealed that it is effective for improving the performance.

そして、本発明法に基づいて製造した焼結用造粒原料を用いて焼結鉱を製造すると、焼結鉱製造歩留や焼結鉱の強度の向上効果も期待できる。このことは、従来法については粒度の不均一な擬似粒子に粉コークスが被覆されるために、燃焼や着熱が不均一となって歩留が低下するが、本発明の適用により製造された焼結用造粒原料の場合、比較的均一な粒度となるため、粉コークスの賦存状態も適正化される。なお、粉コークスの外装造粒を実施しない場合は、粉コークスや石灰石の均一混合を図るためには造粒前の均一混合が必要となるが、本発明の場合、このような負担は軽減される。   And if a sintered ore is manufactured using the granulation raw material for sintering manufactured based on this invention method, the improvement effect of the strength of a sintered ore manufacture yield or a sintered ore can also be anticipated. This is because in the conventional method, powder coke is coated on pseudo particles with non-uniform particle size, so that combustion and heat reception become non-uniform and yield decreases, but it was manufactured by applying the present invention. In the case of a granulated raw material for sintering, since the particle size becomes relatively uniform, the existence state of the powder coke is also optimized. In addition, when not implementing external granulation of powder coke, uniform mixing before granulation is necessary to achieve uniform mixing of powder coke and limestone, but in the case of the present invention, such a burden is reduced. The

上記の解砕機つきパンペレタイザーは、焼結用造粒原料の製造のみならず、高炉用焼結鉱の製造技術としても適用が可能である。   The above-described pan pelletizer with a crusher can be applied not only to the production of a granulation raw material for sintering but also to the production technique of a sintered ore for a blast furnace.

1 配合槽
2 ドラムミキサー
3 パンペレタイザー
4 解砕機
4a 解砕羽根
5 ドラミミキサー
6 焼結機
7 配合原料転動層
8 レーザ変位形
9 CCDカメラ
10 監視モータ
11 制御盤
12 解砕羽根駆動機
DESCRIPTION OF SYMBOLS 1 Mixing tank 2 Drum mixer 3 Pam pelletizer 4 Crusher 4a Crushing blade 5 Doramix mixer 6 Sintering machine 7 Compounding material rolling layer 8 Laser displacement type 9 CCD camera 10 Monitoring motor 11 Control panel 12 Crushing blade drive machine

Claims (6)

少なくとも微粉鉄鉱石を含む配合原料に水分を添加して混合する混合工程と、混合原料を造粒機にて造粒することにより擬似粒子とする造粒工程を経て造粒原料を製造する方法において、その造粒工程では、造粒時に生成する該造粒機内における配合原料転動層の表層部に偏在する粗大な擬似粒子とその他の部位に滞留する非粗大粒からなる擬似粒子とを対象として、該造粒機内に配設される解砕羽根の種類、回転数、回転時の高さ方向位置及び押力のいずれか少なくとも1以上を変化させて、前記粗大な擬似粒子に対しては粒子に生じる応力が0.1〜0.48MPaとなるようにし、一方、前記非粗大粒からなる擬似粒子に対しては粒子に生じる応力が0.64MPa以下となる解砕力を加えて解砕しつつ造粒することを特徴とする焼結用造粒原料の製造方法。 In a method of manufacturing a granulated raw material through a mixing step of adding water to a blended raw material containing at least fine iron ore and mixing, and a granulating step of granulating the mixed raw material with a granulator to make pseudo particles in its granulation step, the target and coarse quasi-particles unevenly distributed in the surface portion of the mixed material tumbling layer of granulated machine to produce the granulation, and a pseudo-particles consisting of non-coarse grains staying in the other portions As for the coarse quasi-particles by changing at least one of the kind of crushing blades arranged in the granulator, the number of rotations, the position in the height direction during rotation and the pressing force While causing the stress generated in the particles to be 0.1 to 0.48 MPa, on the other hand, for the quasi-particles composed of the non-coarse particles, the stress generated in the particles is applied with a crushing force that is 0.64 MPa or less, Sintering characterized by granulation Manufacturing method of use granulated raw materials. 前記の粗大な擬似粒子は粒子径が8mm以上の大きさの粒子であり、前記非粗大粒からなる擬似粒子とは粒子径が8mm未満の小さな粒子であることを特徴とする請求項1に記載の焼結用造粒原料の製造方法。   The coarse pseudo particles are particles having a particle size of 8 mm or more, and the pseudo particles made of the non-coarse particles are small particles having a particle size of less than 8 mm. Method for granulating raw material for sintering. 前記解砕羽根は、パンペレタイザーである造粒機内に滞留する配合原料転動層の表層部に面して配設されるものであることを特徴とする請求項1または2に記載の焼結用造粒原料の製造方法。   3. The sintering according to claim 1, wherein the crushing blades are arranged facing a surface layer portion of a blended raw material rolling layer staying in a granulator which is a pan pelletizer. Method for granulating raw materials. 前記解砕羽根は、パンペレタイザーである造粒機の底面に垂直な方向および回転方向に対して移動可能であり、かつ該パンペレタイザーの回転方向とは逆向きに回転するものであることを特徴とする請求項1〜3のいずれか1に記載の焼結用造粒原料の製造方法。   The crushing blade is movable with respect to a direction perpendicular to a bottom surface of a granulator which is a pan pelletizer and a rotation direction, and rotates in a direction opposite to the rotation direction of the pan pelletizer. The manufacturing method of the granulation raw material for sintering of any one of Claims 1-3. 前記解砕は、解砕羽根の配合原料転動層表層部への押力により前記擬似粒子を圧壊することにより行なうことを特徴とする請求項1〜4のいずれか1に記載の焼結用造粒原料の製造方法。   5. The sintering according to claim 1, wherein the crushing is performed by crushing the quasi-particles by a pressing force applied to a surface portion of the mixing raw material rolling layer of the crushing blades. A method for producing a granulated raw material. 前記造粒工程の後に、この工程を経て製造された擬似粒子にコークス粉を付着させて焼結用造粒原料とする工程を設けることを特徴とする請求項1〜5のいずれか1に記載の焼結用造粒原料の製造方法。   6. The method according to claim 1, wherein after the granulation step, a step is provided in which coke powder is attached to the pseudo particles produced through this step to obtain a granulation raw material for sintering. Method for granulating raw material for sintering.
JP2013107669A 2013-05-22 2013-05-22 Method for producing granulated raw material for sintering Active JP6020823B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013107669A JP6020823B2 (en) 2013-05-22 2013-05-22 Method for producing granulated raw material for sintering

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013107669A JP6020823B2 (en) 2013-05-22 2013-05-22 Method for producing granulated raw material for sintering

Publications (2)

Publication Number Publication Date
JP2014227568A JP2014227568A (en) 2014-12-08
JP6020823B2 true JP6020823B2 (en) 2016-11-02

Family

ID=52127727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013107669A Active JP6020823B2 (en) 2013-05-22 2013-05-22 Method for producing granulated raw material for sintering

Country Status (1)

Country Link
JP (1) JP6020823B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2023189251A1 (en) * 2022-03-28 2023-10-05
JPWO2023189248A1 (en) * 2022-03-28 2023-10-05

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4567908B2 (en) * 2001-04-18 2010-10-27 新日本製鐵株式会社 Treatment method of hard-granulated iron ore powder
JP3902629B2 (en) * 2004-05-13 2007-04-11 新日本製鐵株式会社 Pretreatment method of sintering raw materials
BRPI0520278B1 (en) * 2005-05-10 2014-09-23 Nippon Steel & Sumitomo Metal Corp METHOD FOR PRETREATMENT OF SYNTERIZATION MATERIAL
JP5165940B2 (en) * 2007-06-28 2013-03-21 大同特殊鋼株式会社 Granulated product production method and granulation equipment of metal-containing by-product
JP5821362B2 (en) * 2010-07-30 2015-11-24 Jfeスチール株式会社 Method for manufacturing raw materials for sintering
JP5451568B2 (en) * 2010-09-22 2014-03-26 新日鐵住金株式会社 Pretreatment method for sintering raw materials

Also Published As

Publication number Publication date
JP2014227568A (en) 2014-12-08

Similar Documents

Publication Publication Date Title
JP5569658B2 (en) Method for producing granulated raw material for sintering, apparatus for producing the same, and method for producing sintered ore for blast furnace
JP5644955B2 (en) Granulation method of sintering raw material
TWI509081B (en) Method for producing granulation material for sintering
RU2675883C2 (en) Method and device for producing granulates
JP6020823B2 (en) Method for producing granulated raw material for sintering
JP5954546B2 (en) Method for producing granulated raw material for sintering
JP6519005B2 (en) Method of producing sintered ore
TWI596213B (en) Sinter manufacturing method
JP5910831B2 (en) Method for producing granulated raw material for sintering
JP6468367B2 (en) Method for producing sintered ore
JP2020111817A (en) Granulation method of agglomerate
TWI468522B (en) Method for producing granulation material for sintering, producing apparatus thereof, and method for producing sinter ore for blast furnace
JP2014201763A (en) Method for producing granulation raw material for sintering
JP5846402B1 (en) Production equipment for granulating raw materials for sintering
JP6337737B2 (en) Method for producing sintered ore
JP5979382B2 (en) Manufacturing method and apparatus for granulating raw material for sintering
WO2015152112A1 (en) Device for manufacturing pelletized sinter feed
JP5928731B2 (en) Manufacturing method and apparatus for granulating raw material for sintering
JP7047645B2 (en) Sintered ore manufacturing method
JP6888387B2 (en) Granulation method for sintered raw materials
JP5983949B2 (en) Method for producing granulated raw material for sintering
JP2023043367A (en) Sintering raw material processing method and sintered ore production method
JP6102826B2 (en) Sinter ore granulation equipment
JP2020015962A (en) Method for granulating sintering raw material
JP2017210672A (en) Manufacturing method of sintered ore

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160920

R150 Certificate of patent or registration of utility model

Ref document number: 6020823

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250