JP5979382B2 - Manufacturing method and apparatus for granulating raw material for sintering - Google Patents

Manufacturing method and apparatus for granulating raw material for sintering Download PDF

Info

Publication number
JP5979382B2
JP5979382B2 JP2013107668A JP2013107668A JP5979382B2 JP 5979382 B2 JP5979382 B2 JP 5979382B2 JP 2013107668 A JP2013107668 A JP 2013107668A JP 2013107668 A JP2013107668 A JP 2013107668A JP 5979382 B2 JP5979382 B2 JP 5979382B2
Authority
JP
Japan
Prior art keywords
particles
raw material
sintering
granulation
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013107668A
Other languages
Japanese (ja)
Other versions
JP2014227567A (en
Inventor
直幸 竹内
直幸 竹内
隆英 樋口
隆英 樋口
主代 晃一
晃一 主代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2013107668A priority Critical patent/JP5979382B2/en
Publication of JP2014227567A publication Critical patent/JP2014227567A/en
Application granted granted Critical
Publication of JP5979382B2 publication Critical patent/JP5979382B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

本発明は、ドワイトロイド式焼結機で使用される焼結用造粒原料の製造方法およびその製造設備に関する。   The present invention relates to a method for producing a granulating raw material for sintering used in a Dwytroid type sintering machine and a production facility therefor.

焼結鉱は、一般に、粉状の鉄鉱石をその他原料の他、必要に応じて副原料、凝結材等を所定量配合しその配合原料を混合・造粒し、得られたその造粒原料をドワイトロイド式焼結機に装入して焼結することで製造される。ここで、前記配合原料は、造粒時に水分が介在していることで互いに凝集し造粒粒子である擬似粒子となる。そして、擬似粒子となることで焼結機に装入された場合に、焼結機上では装入原料堆積層の通気性確保に寄与することになり、このことによって焼結が円滑に進行するようになる。   Sintered ore is generally obtained by mixing powdered iron ore with other raw materials as well as a predetermined amount of auxiliary raw materials, coagulant, etc., if necessary, and mixing and granulating the mixed raw materials. Is manufactured by charging it into a Dwytroid type sintering machine and sintering it. Here, the blended raw materials are aggregated with each other due to the presence of moisture during granulation, and become pseudo particles that are granulated particles. And when it is charged into the sintering machine by becoming pseudo-particles, it contributes to ensuring the air permeability of the charged material deposition layer on the sintering machine, and thereby the sintering proceeds smoothly. It becomes like this.

近年、焼結原料とする鉄鉱石は、高品質鉄鉱石の枯渇による低品位化、例えばスラグ成分の増加や微粉化の傾向が顕著であり、アルミナ含有量の増大、微粉比率の増大によ
る造粒性の低下が問題となっている。一方、高炉での溶銑製造コストの低減やCO発生量の低減という観点から、高炉で使用する焼結鉱としては、低スラグ比、高被還元性、高強度のものが求められている。
In recent years, iron ore used as a sintering raw material has been prone to lower grades due to depletion of high-quality iron ore, such as an increase in slag components and pulverization. The decline in sex is a problem. On the other hand, from the viewpoint of reducing hot metal production cost in a blast furnace and reducing CO 2 generation, sintered ore used in a blast furnace is required to have a low slag ratio, high reducibility, and high strength.

焼結原料用鉄鉱石を取り巻くこのような環境の下で、従来、ペレットフィードと呼ばれるペレット用高品位鉄鉱石である難造粒性の微粉鉄鉱石を使って、高品質の焼結鉱を製造するための技術が提案されている。例えば、こうした従来技術の1つに、Hybrid Pelletized Sinter法(以下、「HPS」という)がある。この技術は、ペレットフィードのような微粉鉄鉱石を多量に含む配合原料をドラムミキサーとペレタイザーとを使って造粒することにより、低スラグ比・高被還元性の焼結鉱を製造しようというものである(特許文献1、特許文献2、特許文献3、特許文献4、特許文献5)。   Under such circumstances surrounding iron ore for sintering raw materials, high-quality sintered ore has been manufactured by using highly granulated iron ore, which is a high-grade iron ore for pellets called pellet feed. Techniques for doing so have been proposed. For example, as one of such conventional techniques, there is a Hybrid Pelletized Sinter method (hereinafter referred to as “HPS”). This technology is intended to produce sintered ore with low slag ratio and high reducibility by granulating a raw material containing a large amount of fine iron ore such as pellet feed using a drum mixer and pelletizer. (Patent Literature 1, Patent Literature 2, Patent Literature 3, Patent Literature 4, Patent Literature 5).

特公平2-4658公報Japanese Patent Publication No.2-4658 特公平6-21297公報Japanese Patent Publication No. 6-21297 特公平6-21298公報Japanese Patent Publication No. 6-21298 特公平6-21299公報Japanese Patent Publication No. 6-21299 特公平6-60358公報Japanese Patent Publication No. 6-60358

しかしながら、ペレットフィードである微粉鉄鉱石を多量に含む配合原料を造粒すると、微粉鉄鉱石が水分を優先的に吸収するために微粉同士が凝集し、微粉鉄鉱石を多く含む結合強度の弱い粗大な擬似粒子(凝集粒子)が生成するという問題があった。その原因は、ペレットフィードのような微粉鉄鉱石は、濡れ性が同じであれば、比表面積の大きい細粒ほど水分を吸収しやすく、かつ粉体間に多くの水分を保持しやすいためと考えられる。   However, when a blended raw material containing a large amount of fine iron ore, which is pellet feed, is granulated, the fine iron ore preferentially absorbs moisture, so that the fine particles are aggregated together, and the coarseness of the bond strength containing a large amount of fine iron ore is weak. There is a problem in that simple pseudo particles (aggregated particles) are generated. The reason for this is that fine iron ore such as pellet feed is more likely to absorb moisture and retain more moisture between powders as long as it has the same wettability, as long as the wettability is the same. It is done.

結合強度の弱い粗大な擬似粒子が生成すると、図1(a)に示すように、粒径が不揃いで粒度分布が広くなるため、焼結機上へ充填したときに緻密な充填構造となり、かさ密度が大きくなる。しかも、このような結合強度の弱い粗大な擬似粒子は、焼結機のパレット上に装入されたときに形成される原料充填層(堆積層)の中で圧縮されて変形しやすくなるため、該原料充填層の空隙率を下げ、ひいては通気性の悪化を招いて焼結機操業の阻害要因となる。また、該微粉鉄鉱石を配合したものは、造粒時に用いられるバインダーである生石灰使用量の増加を招き、ひいては、焼結鉱製造コストを増大させるという問題もあった。   When coarse pseudo-particles with low bond strength are generated, as shown in FIG. 1 (a), the particle size is uneven and the particle size distribution becomes wide, so that when packed on a sintering machine, a dense packed structure is formed. Density increases. Moreover, such coarse pseudo-particles with low bonding strength are easily compressed and deformed in the raw material packed layer (deposited layer) formed when charged on the pallet of the sintering machine, This lowers the porosity of the raw material packed layer, which leads to deterioration of air permeability, which becomes an impediment to the operation of the sintering machine. Moreover, what mix | blended this fine iron ore caused the increase in the usage-amount of quicklime which is a binder used at the time of granulation, and also had the problem of increasing a sintered ore manufacturing cost.

このような問題に対しては、予備造粒技術を採用するとよいことが知られている。例えば、粒径0.5mm以下の部分が30mass%以上の焼結原料を造粒するに際して、該原料を高速攪拌機で実質的に破砕することなく剪断力を与えながら混合造粒し、このときに造粒原料の含水量を6.5〜10.0%とする焼結原料の事前処理方法(特許第2790008号)が開示されている。   It is known that a pre-granulation technique should be adopted for such a problem. For example, when granulating a sintered raw material having a particle size of 0.5 mm or less of 30 mass% or more, the raw material is mixed and granulated while giving a shearing force without being substantially crushed by a high-speed stirrer. A sintering raw material pretreatment method (Patent No. 2790008) in which the water content of the granulated raw material is 6.5 to 10.0% is disclosed.

この攪拌羽根を有する高速攪拌機を用いる方法は、鉄鉱石粉を破砕するのではなく剪断力を加えること及び水分の均一化と吸収水分の粒子表面への染み出しを促進することにより、粒度の均一化を図る技術である。しかし、この高速攪拌機を用いる方法では、この攪拌機に装入された全ての配合原料にこの処理を施す必要が生じて設備規模が大きくなるという問題があった。また、処理速度を上げるために滞留時間を短くすると、水分均一化に必要な時間を十分に確保できなくなるという問題もあった。さらには、破砕することなく剪断力を与えながら混合して造粒するため、細粒あるいは微粉同士が再凝集して結合強度の弱い粗大な擬似粒子となることがあり、問題の解決には不十分であった。   The method using a high-speed stirrer having a stirring blade is not to crush the iron ore powder, but to apply a shearing force and to promote the homogenization of moisture and the exudation of absorbed moisture to the particle surface. It is a technology to plan. However, this method using a high-speed stirrer has a problem in that it is necessary to perform this treatment on all the blended raw materials charged in the stirrer, resulting in an increase in equipment scale. In addition, if the residence time is shortened in order to increase the processing speed, there is also a problem that it is not possible to sufficiently secure the time necessary for water uniformity. Furthermore, since the mixture is granulated while giving shearing force without crushing, fine particles or fine powders may reaggregate to form coarse pseudo particles with low bonding strength, which is not a solution to the problem. It was enough.

本発明は、ペレットフィードのような難造粒性の微粉鉄鉱石を多く使用する場合でも、造粒時に細粒や微粉が凝集して結合力の弱い粗大な擬似粒子や未造粒粒子になるのを阻止し、大きさが比較的揃った擬似粒子を造粒することのできる技術を提案する。   In the present invention, even when a large amount of difficult-to-granulate fine iron ore such as pellet feed is used, fine particles or fine particles aggregate during granulation to become coarse pseudo particles or ungranulated particles with weak binding force. We propose a technology that can prevent this and granulate pseudo-particles of relatively uniform size.

即ち、本発明は、図1(b)で示すように、焼結機のパレット上に装入されたときに良好な通気性を示す、所謂、粒径が比較的揃った粒度分布の狭い擬似粒子からなる焼結用造粒原料の製造方法とそのための製造設備を提案する。   In other words, the present invention, as shown in FIG. 1 (b), exhibits a good air permeability when placed on a pallet of a sintering machine, a so-called pseudo particle size distribution with a relatively uniform particle size distribution. A method for producing a granulated raw material for sintering composed of particles and a production facility therefor are proposed.

発明者らは、ペレットフィードやテーリング鉱のような難造粒性の微粉鉄鉱石粉を含む配合原料を造粒する工程において、細粒や微粉が凝集して結合力の弱い粗大な擬似粒子(単に微粉等が凝集しているにすぎない凝集粒子等)が発生する他、未造粒粉を生成して大きな粒度分布をもつことで、焼結機における操業時に、パレット上の原料充填層の通気性を悪化させるという問題点を克服することを目指した。そのための方法として、本発明では、粒径の大きな粗大擬似粒子のみを分級した上でこれを解砕してから、篩下粉粒などと共に再び造粒することにより、結合力の弱い擬似粒子が製品となるのを阻止し、粒径が比較的揃った粒度分布の小さく結合強度の大きい擬似粒子からなる焼結用造粒原料を製造する方法と、そのための製造設備を提案する。   In the process of granulating a blended raw material containing a difficult-to-granulate fine iron ore powder such as pellet feed and tailing ore, the inventors aggregate coarse particles and fine pseudo particles (simply having a weak binding force). Agglomerated particles, etc., which are only agglomerated fine powder, etc.), and by generating ungranulated powder and having a large particle size distribution, aeration of the raw material packed bed on the pallet during operation in the sintering machine We aimed to overcome the problem of worsening gender. As a method for this, in the present invention, after classifying only coarse pseudo-particles having a large particle size, this is crushed and then granulated again with undersieving powder etc., so that pseudo-particles having weak binding force are obtained. We propose a method for producing a granulation raw material for sintering made of pseudo-particles that are prevented from becoming a product and have a relatively uniform particle size distribution, a small particle size distribution and a high bond strength, and a production facility therefor.

即ち、本発明は、1次造粒中に発生する結合強度が小さい粗大な擬似粒子を篩分け機等で分級してこれを解砕し、その後、分級時の篩下の細粒(未造粒粉を含む)と合わせて2次の造粒を行なう方法を提案する。一般に、配合原料はドラムミキサーやパンペレタイザー内で転動する中で次第に粒成長するが、特に、その表層付近では微粉鉄鉱石を多く配合した場合に粒径の大きい粗大な擬似粒子が生成すると共に、未造粒粉をも発生して全体としてはかなり粒度分布の幅が大きい、即ち、粗大粒から微細粒までが混在したものが生成する。   That is, the present invention classifies coarse pseudo particles having a low bond strength generated during primary granulation with a sieving machine and the like, and then pulverizes them. A method of performing secondary granulation is proposed. In general, the blended raw material gradually grows as it rolls in a drum mixer or pan pelletizer, and in particular, when a large amount of fine iron ore is blended in the vicinity of the surface layer, coarse pseudo particles with a large particle size are generated. In addition, non-granulated powder is also generated, and as a whole, the width of the particle size distribution is considerably large, that is, a mixture of coarse to fine particles is produced.

そこで、本発明では、そのようにして生成した造粒粒子のうちの結合力の弱い粗大粒子のみを対象としてこれを解砕し、かつ混合原料中に水分を均一に分配できるようにする。そのための方法として、特に、粗大粒子のみを分級して専用の解砕機、例えば、アイリッヒミキサーなどに入れて解砕し、その解砕された粒子を分級時の篩下の細粒(未造粒粉を含む)と共に2次造粒機に入れて、再度、適正な粒度(粒径の揃った粒度分布が小さいもの)の粒子に再造粒する方法である。   Therefore, in the present invention, only the coarse particles having a weak binding force among the granulated particles thus produced are crushed and the water can be uniformly distributed in the mixed raw material. As a method for that purpose, in particular, only coarse particles are classified, put into a dedicated crusher, for example, an Eirich mixer, and then crushed, and the crushed particles are classified into fine granules under screening (unmade). This is a method in which the mixture is put into a secondary granulator together with a granule and re-granulated into particles having an appropriate particle size (those having a uniform particle size distribution and a small particle size distribution).

即ち、本発明は、第1に、少なくとも微粉鉄鉱石を含む配合原料に水分を添加してミキサーにて混合する混合工程と、混合の配合原料を1次造粒機にて造粒する1次造粒工程と、1次造粒時に生成した擬似粒子を分級する分級工程と、分級によって生成した粗大粒子を解砕する解砕工程と、解砕によって得られる粒径:1mm〜8mm程度の粒子と分級時の篩下細粒及び未造粒粉とともに合わせて再造粒して2次造粒粒子を得る2次造粒工程と、を有する焼結用造粒原料を製造する方法を提案する。 That is, the present invention is, firstly, granulated and mixing step of mixing in a mixer by adding water to the mixed material containing at least finely divided iron ore, it blended raw material after mixing with 1 Tsugizo granulator 1 Next granulation step, classification step for classifying pseudo particles generated during primary granulation, pulverization step for pulverizing coarse particles generated by classification, particle size obtained by pulverization: about 1 mm to 8 mm Proposing a method for producing a granulated raw material for sintering having a secondary granulation step of re-granulating together with fine particles and ungranulated powder during classification and re-granulation To do.

本発明は、第2に、少なくとも微粉鉄鉱石を含む配合原料を混合する混合機、該混合機の下流側に設置された1次造粒機、該1次造粒機の出側に配設された分級機、この分級機の、分級によって生成した解砕対象となる粗大粒子が排出される出側に配設された解砕機、該分級機と該解砕機のそれぞれの出側に配設されたものであって、分級後の解砕によって得られる粒径:1mm〜8mm程度の粒子と分級時篩下細粒と未造粒粉とを合わせて再造粒する2次造粒機からなる焼結用造粒原料の製造設備を提案する。 The present invention secondly, a mixer for mixing a blended raw material containing at least fine iron ore, a primary granulator installed on the downstream side of the mixer, and disposed on the outlet side of the primary granulator The classifier, the crusher disposed on the outlet side of the classifier, on which the coarse particles to be crushed generated by classification are discharged, and the classifier and the crusher are respectively disposed on the outlet side. From a secondary granulator that re-granulates particles having a particle diameter of about 1 mm to 8 mm obtained by crushing after classification, fine particles under sieving during classification, and ungranulated powder. We propose a production facility for granulating raw materials for sintering.

前記のように構成される本発明では、
(1)分級によって生成した解砕対象となる前記粗大粒子は、粒径の大きさが10mm以上の粒子であること、
(2)前記2次造粒工程での処理は、120秒以上行うこと、
(3)前記解砕は、アイリッヒミキサーを用いて行うこと、
(4)前記微粉鉄鉱石は、粒径の大きさが125μm以下のペレットフィードおよび/またはテーリング鉱であること
5)前記2次造粒工程の後に、この工程を経て製造された疑似粒子表面にコークス粉を付着させて焼結用造粒原料とする工程を設けこと、
がより好ましい解決手段になると考えられる。
In the present invention configured as described above,
(1) The coarse particles to be crushed generated by classification are particles having a particle size of 10 mm or more,
(2) The treatment in the secondary granulation step is performed for 120 seconds or more.
(3) The crushing is performed using an Eirich mixer.
(4) The fine iron ore is a pellet feed and / or tailing ore having a particle size of 125 μm or less ,
( 5) After the secondary granulation step, provided a step of attaching coke powder to the surface of the pseudo particles produced through this step to obtain a granulation raw material for sintering,
Is considered to be a more preferable solution.

(1)本発明によれば、ペレットフィードやテーリング鉱のような高品位であるが難造粒性の微粉鉄鉱石を焼結用配合原料として多量に使用することができるようになり、低スラグ比で高被還元性、高強度の焼結鉱を有利に製造することができる。そのため、高炉操業においては、炉内に装入する塊コークスの使用量を低減させることができるようになる。その結果、高炉からのCO発生量の大幅な削減ができると共に生産性の向上が期待できる。しかも、高炉でのスラグ発生量が低減することにより、環境への負荷を軽減させることができる。
(2)また、本発明によれば、製造される成品焼結鉱の強度を上げることができると共に歩留を向上させることができるから、粉コークス使用量の低減が可能となる。また、焼結用配合原料中の粉コークスの使用量が少なくなることから、焼結鉱製造時のCO発生量の低減が可能になる。
(3)さらに、本発明によれば、微粉鉄鉱石の造粒時に使用される生石灰(バインダー)の使用量が削減できることから、焼結鉱の製造コストの低減を図ることができる。
(1) According to the present invention, it becomes possible to use a large amount of high-grade but difficult-to-granulate finely divided iron ore such as pellet feed and tailing ore as a raw material for sintering, and low slag Sintered ore with high reducibility and high strength can be advantageously produced. Therefore, in blast furnace operation, the amount of lump coke charged into the furnace can be reduced. As a result, it is possible to greatly reduce the amount of CO 2 generated from the blast furnace and improve productivity. In addition, the load on the environment can be reduced by reducing the amount of slag generated in the blast furnace.
(2) Moreover, according to this invention, since the intensity | strength of the product sintered ore manufactured can be raised and a yield can be improved, reduction of the amount of powder coke used is attained. Further, consists of the amount of coke in the mixed material for sintering is reduced, enabling a reduction in CO 2 emissions during sinter production.
(3) Furthermore, according to the present invention, since the amount of quicklime (binder) used when granulating fine iron ore can be reduced, the production cost of sintered ore can be reduced.

従来の粒子充填層(a)と本発明の粒子充填層(b)の模式図である。It is a schematic diagram of the conventional particle packed bed (a) and the particle packed bed (b) of the present invention. 擬似粒子の構造(a、b)を示す模式図である。It is a schematic diagram which shows the structure (a, b) of a pseudo particle. 本発明に係る焼結用造粒原料製造プロセス・設備の一例を示す略線図である。It is an approximate line figure showing an example of a granulation raw material manufacturing process and equipment for sintering concerning the present invention. 微粉(PF)配合の有無による擬似粒子の粒度分布図の違いを示すグラフである。It is a graph which shows the difference in the particle size distribution figure of the pseudo particle by the presence or absence of fine powder (PF) mixing | blending. ペレタイザー内での造粒(a)および解砕の様子を示す従来法(b)と発明法(c)との比較写真である。It is a comparison photograph of the conventional method (b) and the invention method (c) showing the state of granulation (a) and pulverization in the pelletizer. 粗粒・細粒を配合したときの強度測定結果の比較を示すグラフである。It is a graph which shows the comparison of the strength measurement result when a coarse grain and a fine grain are mix | blended. 従来法と本発明法で造粒したときの粒度分布図である。It is a particle size distribution figure when it granulates by the conventional method and this invention method. 本発明に適合する焼結試験での操業結果を示すグラフである。It is a graph which shows the operation result in the sintering test suitable for this invention. 従来法と本発明法(ペレットフィード40mass%配合時)との焼結試験での操業結果を示す比較グラフである。It is a comparison graph which shows the operation result in the sintering test with the conventional method and this invention method (at the time of pellet feed 40mass% mixing | blending). 従来法と本発明法(テーリング鉱20mass%配合時)との焼結試験での操業結果を示す比較グラフである。It is a comparative graph which shows the operation result in the sintering test with the conventional method and this invention method (at the time of 20 mass% of tailing ores mixing). 従来法と本発明法(ペレットフィード40mass%+テーリング鉱20mass%配合時)との焼結試験での操業結果を示す比較グラフである。It is a comparative graph which shows the operation result in the sintering test with the conventional method and this invention method (at the time of pellet feed 40mass% + tailing ore 20mass% compounding). 各種鉄鉱石の粒度分布例を示すグラフである。It is a graph which shows the example of a particle size distribution of various iron ores.

図2(a)、(b)は、擬似粒子の構造を示すものである。また、図3は、本発明に係る焼結用造粒原料製造設備例を示すものであって、配合槽1から切り出された配合原料(ペレットフィードやテーリング鉱のような微粉を含む鉄鉱石粉および副原料粉)は、まず、1次造粒機となるドラムミキサー2にて混合−造粒される。その後、その1次擬似粒子はパンペレタイザー3に送給されて造粒処理される。混合工程および造粒工程ではそれぞれ水分を添加して、所定の造粒水分になるように調整され、所定の擬似粒子が得られる。   FIGS. 2A and 2B show the structure of pseudo particles. FIG. 3 shows an example of a granulating raw material manufacturing facility for sintering according to the present invention, which is a mixed raw material cut out from the mixing tank 1 (iron ore powder containing fine powder such as pellet feed and tailing ore and The auxiliary material powder) is first mixed and granulated by the drum mixer 2 serving as a primary granulator. Thereafter, the primary pseudo particles are fed to the pan pelletizer 3 and granulated. In the mixing step and the granulation step, water is added to adjust each to a predetermined granulated moisture, and predetermined pseudo particles are obtained.

図2(a)は、ペレットフィードのような前記の微粉鉄鉱石を多く使用した時に形成される擬似粒子のうち、鉄鉱石の細粒あるいは微粉同士だけが水分を介して凝集した状態の微粉鉄鉱石を多く含む結合力の弱い粗大な擬似粒子(凝集粒子)の例を示している。一般に、配合原料中に微粉鉄鉱石を多く含む場合、ドラムミキサーのような造粒機内で転動しながら粒状化させる際に、回転中心側の原料層表層付近に粗大な擬似粒子が偏在するようになる。これは、転動粒子同士の篩い分け効果(パーコレーション)により、細粒が下層に、粗粒が上層に偏析する現象によるものであり、このような粒子は、微粉が単に凝集したにすぎない粗大で結合力の弱い凝集擬似粒子になりやすく、粒度分布の大きい擬似粒子になりやすい。   FIG. 2 (a) shows fine iron ore in a state where only fine iron ore particles or fine particles are aggregated via moisture among pseudo particles formed when a large amount of fine iron ore such as pellet feed is used. An example of coarse pseudo-particles (aggregated particles) containing a lot of stones and having a weak binding force is shown. In general, when the raw material contains a large amount of fine iron ore, coarse pseudo particles are unevenly distributed in the vicinity of the surface layer of the raw material layer on the center of rotation when rolling in a granulator such as a drum mixer. become. This is due to the phenomenon that fine particles segregate in the lower layer and coarse particles segregate in the upper layer due to the sieving effect (percolation) between the rolling particles, and such particles are coarse because the fine particles are merely agglomerated. Therefore, it tends to be an agglomerated quasiparticle having a weak binding force and a quasiparticle having a large particle size distribution.

これに対し、図2(b)は、中心部の核粒子のまわりに、粉を塗布したように付着した構造を有しかつ粒径が比較的揃った擬似粒子の例であって、本発明が目指すものである。後者の擬似粒子の方が前者の擬似粒子よりも一般的に、粒径が小さく粒径が揃った(粒度分布の小さい)強度の大きいものになることが、発明者らが行なった実験によって明らかになっている。
なお、微粉鉄鉱石を多く含む配合原料を造粒すると、前記の粗大擬似粒子(+10mm)の他、未造粒(−0.25〜+0.25mm)のものも多く生成する。その結果、粒度分布の幅が大きくなる。
On the other hand, FIG. 2 (b) is an example of a pseudo particle having a structure in which powder is applied around the core particle in the center and having a relatively uniform particle size. Is the goal. It is clear from experiments conducted by the inventors that the latter pseudo-particles are generally larger in strength than those of the former pseudo-particles, with smaller particle sizes and uniform particle sizes (small particle size distribution). It has become.
In addition, when the compounding raw material containing many fine iron ores is granulated, many of ungranulated (-0.25- + 0.25mm) other than the said coarse pseudo-particle (+ 10mm) will produce | generate. As a result, the width of the particle size distribution is increased.

図4は、平均粒径:約0.05mmのペレットフィードの配合量を0mass%と40mass%としたときの擬似粒子の粒度分布(Wet状態)を示すものである。粒度は、小さいものから−0.25mm、+0.25m、+0.5mm、+1.0mm、+1.5mm、+2.83mm、+4.75mm、+8mm、+10mm、+15mmである。この図からわかるように、ペレットフィード(PF)のような微粉鉄鉱石の配合量を40mass%とした場合は、未造粒の細粒(−0.25〜+0.25)と、粗粒(+9mm、+10mm、+15mm)の比率が増加する。   FIG. 4 shows the particle size distribution (Wet state) of the pseudo particles when the blending amount of the pellet feed having an average particle size of about 0.05 mm is set to 0 mass% and 40 mass%. The particle sizes are as small as -0.25 mm, +0.25 m, +0.5 mm, +1.0 mm, +1.5 mm, +2.83 mm, +4.75 mm, +8 mm, +10 mm and +15 mm. As can be seen from this figure, when the amount of fine iron ore such as pellet feed (PF) is 40 mass%, ungranulated fine particles (-0.25 to +0.25) and coarse particles ( +9 mm, +10 mm, +15 mm) increases.

図5は、1次造粒機2内部における転動中の擬似粒子の外観写真(a)であり、配合原料転動層の表層部付近の造粒中の粒子の状態を高速度カメラで撮影したものである。図中の(b)と(c)は、従来法によるもの(b)、本発明法によるもの(c)との比較写真である。図5に示すように、ドラムミキサー2の回転運動にともない、装入された配合原料は、該ミキサー内の上方位置に持ち上げられ、やがて自重により下方に向かって落下する運動を繰り返しながら次第に大きな粒子に成長していく。   FIG. 5 is an appearance photograph (a) of pseudo particles during rolling inside the primary granulator 2, and the state of particles during granulation near the surface layer portion of the blended raw material rolling layer is photographed with a high-speed camera. It is a thing. (B) and (c) in the figure are comparative photographs of the conventional method (b) and the present method (c). As shown in FIG. 5, as the drum mixer 2 rotates, the charged blended raw material is lifted to an upper position in the mixer, and gradually becomes larger particles while repeatedly moving downward due to its own weight. To grow.

ところで、ドラムミキサー2内に装入された配合原料の転動層7は、基本的には回転胴の中心に向って動くため、その中心部に粗粒が多く集まるようになる。これは、パーコレーション現象によるものであり、その結果、転動層表層部に粗大粒が不可避に生成する。本発明では、そうした粗大な擬似粒子のみを分級して除き、これを別途解砕するために、前記1次造粒機2の後に分級用振動篩機3と解砕機4とを配設する。   By the way, the rolling layer 7 of the blended raw material charged in the drum mixer 2 basically moves toward the center of the rotating drum, so that a lot of coarse particles gather at the center. This is due to a percolation phenomenon, and as a result, coarse particles are inevitably generated in the surface layer portion of the rolling layer. In the present invention, only the coarse pseudo particles are classified and removed, and in order to pulverize them separately, the classification vibrating sieve 3 and the pulverizer 4 are disposed after the primary granulator 2.

なお、本発明に係る焼結用造粒原料製造設備における前記解砕機4については、解砕羽根4aの回転方向を制御することも重要になる。本発明では、前記解砕羽根4aは解砕機4本体の回転方向と逆向きとする。それは解砕後の粒子が転動時によく飛び散るようにするためである。この理由は、擬似粒子の解砕により、該擬似粒子中の水分の飛沫を転動中の原料に効率よく再配分し、かつ、解砕後の細粒や破片を再分散させることで、水分の均一化と粒径の均一化を図る上で効果的になるからである。また、この解砕機の解砕羽根4aの回転数に関しては、高速ほど解砕効率が高くなるが、過度になると解砕効果が大きくなりすぎて擬似粒子平均径が大幅に低下する場合がある。   In addition, about the said crusher 4 in the granulation raw material manufacturing apparatus for sintering which concerns on this invention, it also becomes important to control the rotation direction of the crushing blade | wing 4a. In the present invention, the crushing blade 4a is in the direction opposite to the rotation direction of the crusher 4 body. This is because the crushed particles are scattered well during rolling. The reason for this is that by pulverizing the quasi-particles, the water droplets in the quasi-particles are efficiently redistributed to the rolling raw material, and the fine particles and fragments after the pulverization are re-dispersed. This is because it becomes effective in achieving uniformity of the particle size and particle size. Further, regarding the number of revolutions of the crushing blade 4a of this crusher, the crushing efficiency increases as the speed increases, but if it is excessive, the crushing effect becomes too large, and the average size of the pseudo particles may be significantly reduced.

以上説明したように、本発明では、1次造粒粒子のうち、粒度分布を大きくしている粗大擬似粒子について、これを分級−解砕して適当な大きさに再造粒することが有効であるとの知見から、そうした粗大擬似粒子、例えば10mm以上30mm未満のものをローラースクリーンや振動篩機などにて一旦分級した上で、篩上となる10mm以上の粗粒のみを専用の解砕機4、例えば、アイリッヒミキサー(高速攪拌機)などを用いて解砕し、少なくとも9mm程度以下の細粒にすることにした。   As described above, in the present invention, among the primary granulated particles, it is effective to classify and crush coarse pseudo particles having a large particle size distribution and re-granulate them to an appropriate size. From the knowledge that it is, after classifying such coarse pseudo-particles, for example, those of 10 mm or more and less than 30 mm with a roller screen or a vibration sieve, only a coarse particle of 10 mm or more on the sieve is a dedicated crusher 4. For example, it was decided to crush using an Eirich mixer (high-speed stirrer) or the like to make fine particles of at least about 9 mm or less.

ところで、ドラムミキサーやパンペレタイザーのような1次造粒機2で造粒した1次擬似粒子のうち粗大な粒子だけを対象として、これを分級した上で別ラインの専用機(解砕機4)にて解砕するようにした理由は、分級することなく解砕造粒機のような複合機で連続的に解砕−造粒すると、細粒までもが解砕されてしまい全体として擬似粒子の平均粒径の低下を招く他、粒度分布の幅も拡大して原料層における通気性の悪化を招いて望ましくないからである。さらに、粒子径の均等性も損なわれる傾向がある。   By the way, only the coarse particles among the primary pseudo particles granulated by the primary granulator 2 such as a drum mixer or a pan pelletizer are classified, and then this is classified, and a dedicated machine (separator 4) on a separate line. The reason why the pulverization is performed in the above is that, if the pulverization and granulation are continuously performed by a complex machine such as a pulverization granulator without classification, even fine particles are crushed and the pseudo particles as a whole. This is because it is not desirable because the average particle size of the material layer is decreased and the width of the particle size distribution is widened to deteriorate the air permeability in the raw material layer. Furthermore, the uniformity of the particle diameter tends to be impaired.

しかも、1次造粒機(ドラムミキサー)2内で生成した配合原料転動層の表層部に現われる粒径が10mm以上の粗大な擬似粒子というのは、細粒や微粉同士が単に凝集して粗粒化した凝集粒子であって、核粒子を持たないものが多いことから結合力が弱く、そのために解砕機により比較的容易に解砕(圧壊)できるという利点もある。   Moreover, the coarse pseudo-particles having a particle size of 10 mm or more appearing in the surface layer portion of the blended raw material rolling layer generated in the primary granulator (drum mixer) 2 are simply agglomerates of fine particles and fine particles. Since there are many coarse-grained agglomerated particles that do not have core particles, the bonding force is weak, and therefore there is an advantage that they can be crushed (crushed) relatively easily by a crusher.

このように、微粉鉄鉱石を多く含む配合原料を造粒したときに生成しやすい結合力の弱い擬似粒子は、解砕機4によって細粒(10mm未満)の大きさに解砕され、その後、分級時に篩下となる細粒・微粉と共に2次造粒機5によって再造粒に供され、図2(b)に示すような、結合強度の大きい、粒度分布が小さく粒径の揃った(均等性の大きな)造粒粒子になる。なお、この擬似粒子の表面には、最終的にはさらに図示していない別のドラムミキサーなどを利用して、凝結材(コークス粉等の固体燃料)をコーティングして焼結鉱製造用の原料である焼結用造粒原料とする。   In this way, the pseudo particles having a weak binding force that are easily generated when a raw material containing a large amount of fine iron ore is granulated are pulverized into fine particles (less than 10 mm) by the pulverizer 4, and then classified. It is used for re-granulation by the secondary granulator 5 together with the fine particles and fine powder that are sometimes sieved, and as shown in FIG. 2B, the bond strength is large, the particle size distribution is small, and the particle size is uniform (equal) It becomes granulated particles with high properties. The surface of the pseudo particles is finally coated with a coagulant (solid fuel such as coke powder) by using another drum mixer (not shown) and the like. This is a granulation raw material for sintering.

上述したように、微粉鉄鉱石を多く含む配合原料を造粒することによって生成しやすい粗大な擬似粒子は、高水分の微粉同士が凝集して粒状化した結果として粒径が大きくなったものが多く、それ故に、こうした粒子は強度も小さく容易に解砕できるのが普通である。もし、このような結合力の弱い粗大な擬似粒子を焼結機のパレット上に一定の層厚で堆積させると、該擬似粒子に荷重(圧縮力)が加わったときに容易に圧壊され、空隙率の小さい充填構造の焼結造粒原料層となる。その結果、パレット上の造粒原料充填層は通気性の悪いものになって焼結機の操業阻害要因となる。   As described above, coarse pseudo-particles that are easily generated by granulating a blended raw material that contains a large amount of fine iron ore are those that have a large particle size as a result of agglomeration and granulation of high-moisture fine powders. Many, therefore, these particles are usually low in strength and can be easily crushed. If such coarse quasi-particles with weak bonding force are deposited on the pallet of the sintering machine with a certain layer thickness, they are easily crushed when a load (compressive force) is applied to the quasi-particles, It becomes a sintered granulation raw material layer having a small filling structure. As a result, the granulated raw material packed layer on the pallet has poor air permeability and becomes an impediment to the operation of the sintering machine.

この点、本発明によって、1次造粒後に分級−解砕−再造粒(2次造粒)という処理工程を経て、望ましくは未造粒の粉とともに主に核粒子をもつような擬似粒子とすることができれば、本来の焼結用造粒原料として望ましい形態の擬似粒子の形成を促すことができる。   In this regard, according to the present invention, after the primary granulation, the pseudo-particles having mainly the core particles together with the ungranulated powder through a processing step of classification-pulverization-re-granulation (secondary granulation). If so, it is possible to promote formation of pseudo-particles having a desirable form as the original granulation raw material for sintering.

なお、前記2次造粒処理は、この処理の時間が短いと、粒成長が不十分となると共に水分の分散も不十分となるので、少なくとも120秒以上、好ましくは180秒程度以上300秒程度行なう。そうすると、造粒粒子(擬似粒子)の平均径も1.7mm〜1.8mm程度となり、焼結機の操業に当たって通気性指数(JPO)(−)は18〜19程度となって、焼成時間や生産率が大幅に改善される。   In the secondary granulation treatment, if the treatment time is short, the grain growth becomes insufficient and the water dispersion becomes insufficient. Therefore, at least 120 seconds or more, preferably about 180 seconds or more and about 300 seconds. Do. Then, the average diameter of the granulated particles (pseudo particles) is also about 1.7 mm to 1.8 mm, the air permeability index (JPO) (−) is about 18 to 19 in the operation of the sintering machine, the firing time and The production rate is greatly improved.

以下、実施例について説明する。この実施例に用いた主原料は、豪州産鉄鉱石50mass%および南米産鉄鉱石50mass%である。配合原料は、塩基度2.0をベースとし、例えば、ペレットフィードである微粉鉄鉱石を40mass%配合するときには、豪州産鉄鉱石と南米産鉄鉱石の上記配合割合(1:1)は変えずに振り代えることで対応した。その微粉鉄鉱石としては、テーリング鉱も一部に使用した。ここで、テーリング鉱とは、ペレットフィードを製造する過程で発生する残渣のことである。   Examples will be described below. The main raw materials used in this example are Australian iron ore 50 mass% and South American iron ore 50 mass%. The blending raw material is based on a basicity of 2.0. For example, when 40 mass% of fine iron ore as pellet feed is blended, the above blending ratio (1: 1) of Australian iron ore and South American iron ore remains unchanged. We corresponded by changing to. As the fine iron ore, tailing ore was also used in part. Here, the tailing ore is a residue generated in the process of producing a pellet feed.

この実施例では、図3に示すように、配合槽1から切り出した原料(水分:約5%)をミキサーにて混合し、混合後の配合原料粉を1次造粒機2にて水分(約3%)を添加して造粒して擬似粒子を得た。その擬似粒子のうちの核粒子をもたず細粒や微粉同士だけが凝集して生成した粗大な擬似粒子のみを振動篩機にて分級した。即ち、振動篩機の篩上の粒径:10mm以上の粗大粒子を、アイリッヒミキサーを好適例とする解砕機4にて1〜2mm程度の大きさのものに解砕して、該振動篩機を通過した篩下の細粒や未造粒粉と合わせて、2次造粒機5にて再造粒することで、ペレットフィードやテーリング鉱の如き微粉鉄鉱石と、この微粉鉄鉱石に優先的に吸収された水分を焼結用造粒原料中に均一に分散させて、擬似粒子の粒度分布を小さく(整粒化)すると同時に平均粒径を適正な大きさのものにすることで、焼結時の通気性の改善を図り、焼成時間の短縮と、生産性の向上を実現することを目指した。   In this example, as shown in FIG. 3, the raw material cut out from the blending tank 1 (water content: about 5%) is mixed with a mixer, and the mixed raw material powder after mixing is mixed with the primary granulator 2 with moisture ( About 3%) was added and granulated to obtain pseudo particles. Of the pseudo-particles, only coarse pseudo-particles formed by agglomerating only fine particles or fine particles without having core particles were classified by a vibration sieve. That is, coarse particles having a particle size of 10 mm or more on the sieve of the vibration sieve machine are crushed to a size of about 1 to 2 mm by a crusher 4 using an Eirich mixer as a suitable example, Combined with the fine particles and ungranulated powder under the sieve that passed through the machine, re-granulation with the secondary granulator 5 gives fine iron ore such as pellet feed and tailing ore to this fine iron ore. By uniformly dispersing the moisture absorbed preferentially in the granulation raw material for sintering, making the particle size distribution of the pseudo particles small (regulating the particle size) and at the same time making the average particle size an appropriate size The aim was to improve the air permeability during sintering, to shorten the firing time and to improve the productivity.

本発明に適合する前記の方法に従ってアイリッヒミキサー4にて解砕する方法は、回転数:250rpm、羽根径:300mmの解砕羽根4aを有する高速攪拌機を用いて行なった。その解砕羽根4aの回転方向は、パンペレタイザーの回転方向とは逆方向とし、解砕羽根4aの回転面とミキサー内底面とのクリアランスを10mm〜8mmとした。その結果、粒径が10mm以上の前記粗大な擬似粒子は解砕されて、1〜8mm程度の粒子とすることができた。   The method of crushing with the Eirich mixer 4 according to the above-described method suitable for the present invention was performed using a high-speed stirrer having crushing blades 4a having a rotational speed of 250 rpm and a blade diameter of 300 mm. The rotation direction of the crushing blade 4a was opposite to the rotation direction of the pan pelletizer, and the clearance between the rotation surface of the crushing blade 4a and the bottom surface in the mixer was 10 mm to 8 mm. As a result, the coarse pseudo-particles having a particle size of 10 mm or more were crushed to obtain particles of about 1 to 8 mm.

図6は、本発明方法を適用して造粒した擬似粒子のうちの粗粒(27mm)と細粒(9mm)の圧縮挙動の測定結果を示す。粗粒は低荷重でも著しく変形しやすいことがわかる。また、荷重−変位曲線の最大値、即ち、最大荷重を比較しても、粗粒の方が小さいことがわかる。   FIG. 6 shows the measurement results of the compression behavior of coarse particles (27 mm) and fine particles (9 mm) among the pseudo particles granulated by applying the method of the present invention. It can be seen that the coarse grains are significantly deformed even under a low load. Moreover, even if it compares the maximum value of a load-displacement curve, ie, a maximum load, it turns out that the coarse grain is smaller.

図7は、従来法、発明法実施後の、擬似粒子の粒度分布の比較を示すものである。従来法に多く見られた粗大な粒子は、本発明にかかる分級−解砕−2次造粒法では減少している。即ち、後者の方法では、1.0mm〜4.75mmの細粒の比率が増加し、粒径が均一化している。また、平均粒径については、0.6〜0.7mm減少しており、本発明方法の採用が有効であることが確かめられた。   FIG. 7 shows a comparison of the particle size distributions of the pseudo particles after the conventional method and the inventive method. Coarse particles frequently observed in the conventional method are reduced in the classification-disintegration-secondary granulation method according to the present invention. That is, in the latter method, the ratio of fine particles of 1.0 mm to 4.75 mm increases and the particle size becomes uniform. Further, the average particle diameter was reduced by 0.6 to 0.7 mm, and it was confirmed that the use of the method of the present invention was effective.

図8は、種々の焼結用造粒原料を用いた焼結試験結果を示すものである。この図に示すように、本発明に適合する方法に従い粗粒を解砕によって除いて10mm未満の細粒を多くした場合、粒度分布が小さく、焼結試験装置への装入嵩密度が低下した。その結果、焼結機の操業に当たっては平均風量が増加して焼結速度が向上し、生産率が向上していた。このことから、焼結鉱製造時にペレットフィードを使用した配合原料を用いたときの通気性は、粒度分布の影響が大きいことがわかった。   FIG. 8 shows sintering test results using various granulation raw materials for sintering. As shown in this figure, when coarse particles were removed by crushing according to a method suitable for the present invention and the fine particles of less than 10 mm were increased, the particle size distribution was small and the bulk density charged into the sintering test apparatus was reduced. . As a result, in the operation of the sintering machine, the average air volume was increased, the sintering speed was improved, and the production rate was improved. From this, it was found that the air permeability when using a blended raw material using a pellet feed during the production of sintered ore is greatly influenced by the particle size distribution.

図9は、鉄鉱石中の40mass%についてはペレットフィードを配合するという条件において、従来法をベースとして、本発明方法を適用した焼結鉱製造試験結果を示すものである。この図に示すように、本発明法に基づいて製造した焼結用造粒原料を用いて製造した焼結鉱は、焼結機のパレット上に堆積させた焼結用造粒原料充填層(焼結ベッド)の装入嵩密度は小さく、生産性向上の効果が得られることがわかった。   FIG. 9 shows the result of a sinter production test to which the method of the present invention is applied based on the conventional method under the condition that a pellet feed is blended for 40 mass% in iron ore. As shown in this figure, the sintered ore produced using the granulated raw material for sintering produced according to the method of the present invention is composed of a granulated raw material packed layer for sintering deposited on a pallet of a sintering machine ( It was found that the charging bulk density of the sintered bed was small, and the effect of improving productivity was obtained.

図10は、鉄鉱石中の20mass%についてはテーリング鉱を配合するという条件において、従来法をベースとして、本発明方法を適用した焼結鉱製造試験結果を示すものである。この図に示すように、テーリング鉱を配合して本発明法に基づいて製造した焼結用造粒原料を用いて製造した焼結鉱は、図9のペレットフィードを配合した条件と同様に、焼結用造粒原料充填層(焼結ベッド)の通気性改善、生産性向上効果が得られることがわかった。   FIG. 10 shows the result of a sinter ore production test to which the method of the present invention is applied based on the conventional method under the condition that 20 mass% in iron ore is blended with tailing ore. As shown in this figure, the sintered ore produced using the granulating raw material for sintering produced based on the method of the present invention by blending tailing ore is similar to the condition of blending the pellet feed of FIG. It turned out that the air permeability improvement and productivity improvement effect of the granulation raw material filling layer (sintering bed) for sintering are acquired.

図11は、鉄鉱石中の40mass%をペレットフィード、20mass%をテーリング鉱にするという配合条件において、従来法をベースとして、本発明方法を適用した焼結鉱製造試験結果を示すものである。この図に示すように、本発明法に基づいて製造した焼結用造粒原料を用いて製造した焼結鉱は、図9、10のペレットフィードやテーリング鉱を単味で配合した条件と同様に、焼結用造粒原料充填層(焼結ベッド)の通気性改善、生産性向上効果が得られることがわかった。なお、図12は上記焼結試験で用いたペレットフィード、テーリング鉱および粉鉄鉱石の累積粒度分布を示すグラフである。   FIG. 11 shows the result of a sinter production test in which the method of the present invention is applied based on the conventional method under the blending conditions of 40 mass% in iron ore as pellet feed and 20 mass% as tailing ore. As shown in this figure, the sintered ore manufactured using the granulation raw material for sintering manufactured based on the method of the present invention is the same as the conditions in which the pellet feed and tailing ore of FIGS. Furthermore, it was found that the air permeability improvement and productivity improvement effects of the granulated raw material packed layer (sinter bed) for sintering can be obtained. FIG. 12 is a graph showing the cumulative particle size distribution of pellet feed, tailing ore and fine iron ore used in the sintering test.

以上、説明したようにペレットフィードやテーリング鉱のような微粉鉄鉱石を使用すると、焼結生産性は低下するが、以上の焼結鉱製造試験結果から、本発明は、微粉鉄鉱石を使用しても生産性の向上に寄与できることが明らかとなった。   As described above, if fine iron ore such as pellet feed or tailing ore is used, the sintering productivity is reduced. However, from the above sinter production test results, the present invention uses fine iron ore. However, it became clear that it can contribute to the improvement of productivity.

そして、本発明法に基づいて製造した焼結用造粒原料を用いて焼結鉱を製造すると、焼結鉱製造歩留や焼結鉱の強度の向上効果も期待できる。このことは、従来法については粒度の不均一な擬似粒子に粉コークスが被覆されるために、燃焼や着熱が不均一となって歩留が低下するが、本発明の適用により製造された焼結用造粒原料の場合、比較的均一な粒度となるため、粉コークスの賦存状態も適正化される。なお、粉コークスの外装造粒を実施しない場合は、粉コークスや石灰石の均一混合を図るためには造粒前の均−混合が必要となるが、本発明の場合、このような負担は軽減される。   And if a sintered ore is manufactured using the granulation raw material for sintering manufactured based on this invention method, the improvement effect of the strength of a sintered ore manufacture yield or a sintered ore can also be anticipated. This is because in the conventional method, powder coke is coated on pseudo particles with non-uniform particle size, so that combustion and heat reception become non-uniform and yield decreases, but it was manufactured by applying the present invention. In the case of a granulated raw material for sintering, since the particle size becomes relatively uniform, the existence state of the powder coke is also optimized. In addition, when not implementing external granulation of powder coke, uniform mixing before granulation is required to achieve uniform mixing of powder coke and limestone. In the case of the present invention, such burden is reduced. Is done.

本発明の技術は、焼結用造粒原料の製造のみならず、高炉用原料の製造技術としても適用が可能である。   The technology of the present invention can be applied not only to the production of granulated raw materials for sintering but also to the production technology of raw materials for blast furnaces.

1 配合槽
2 ドラムミキサー
3 振動篩機
4 解砕機
4a 解砕羽根
5 ドラムミキサー
6 焼結機
DESCRIPTION OF SYMBOLS 1 Compounding tank 2 Drum mixer 3 Vibrating sieve machine 4 Crusher 4a Crushing blade 5 Drum mixer 6 Sintering machine

Claims (8)

少なくとも微粉鉄鉱石を含む配合原料に水分を添加してミキサーにて混合する混合工程と、混合の配合原料を1次造粒機にて造粒する1次造粒工程と、1次造粒時に生成した擬似粒子を分級する分級工程と、分級によって生成した粗大粒子を解砕する解砕工程と、解砕によって得られる粒径:1mm〜8mm程度の粒子と分級時の篩下細粒及び未造粒粉とともに合わせて再造粒して2次造粒粒子を得る2次造粒工程と、を有することを特徴とする焼結用造粒原料の製造方法。 A mixing step of mixing in a mixer by adding water to the mixed material containing at least finely divided iron ore, and 1 Tsugizotsubu step of granulating blended raw material after mixing with 1 Tsugizo granulator, 1 Tsugizotsubu A classification step for classifying pseudo particles sometimes produced, a crushing step for crushing coarse particles produced by classification, a particle size obtained by crushing: particles of about 1 mm to 8 mm, fine particles under sieving during classification, and And a secondary granulation step of obtaining secondary granulated particles by re-granulating together with the ungranulated powder, and a method for producing a granulated raw material for sintering. 分級によって生成した解砕対象となる前記粗大粒子は、粒径の大きさが10mm以上の粒子であることを特徴とする請求項1に記載の焼結用造粒原料の製造方法。   The method for producing a granulated raw material for sintering according to claim 1, wherein the coarse particles to be crushed generated by classification are particles having a particle size of 10 mm or more. 前記2次造粒工程での処理は、120秒以上行うことを特徴とする請求項1または2に記載の焼結用造粒原料の製造方法。   The method for producing a granulation raw material for sintering according to claim 1 or 2, wherein the treatment in the secondary granulation step is performed for 120 seconds or more. 前記解砕は、アイリッヒミキサーを用いて行うことを特徴とする請求項1〜3のいずれか1項に記載の焼結用造粒原料の製造方法。 The said crushing is performed using an Eirich mixer, The manufacturing method of the granulation raw material for sintering of any one of Claims 1-3 characterized by the above-mentioned. 前記2次造粒工程の後に、この工程を経て製造された疑似粒子表面にコークス粉を付着させて焼結用造粒原料とする工程を設けることを特徴とする請求項1〜4のいずれか1項に記載の焼結用造粒原料の製造方法。   5. The method according to claim 1, wherein after the secondary granulation step, a step is provided in which coke powder is adhered to the surface of the pseudo particles produced through this step to obtain a granulation raw material for sintering. The manufacturing method of the granulation raw material for sintering of 1 item | term. 少なくとも微粉鉄鉱石を含む配合原料を混合する混合機、該混合機の下流側に設置された1次造粒機、該1次造粒機の出側に配設された分級機、この分級機の、分級によって生成した解砕対象となる粗大粒子が排出される出側に配設された解砕機、該分級機と該解砕機のそれぞれの出側に配設されたものであって、分級後の解砕によって得られる粒径:1mm〜8mm程度の粒子と分級時篩下細粒と未造粒粉とを合わせて再造粒する2次造粒機からなることを特徴とする焼結用造粒原料の製造設備。 A mixer for mixing a blended raw material containing at least fine iron ore, a primary granulator installed on the downstream side of the mixer, a classifier disposed on the outlet side of the primary granulator, and the classifier A disintegrator disposed on the exit side from which coarse particles to be crushed generated by classification are discharged, disposed on the exit side of each of the classifier and the disintegrator, Particle size obtained by subsequent crushing: Sintering characterized by comprising a secondary granulator that re-granulates particles having a size of about 1 mm to 8 mm, fine particles under sieving, and ungranulated powder. Production equipment for granulated raw materials. 分級によって生成した解砕対象となる前記粗大粒子は、粒径の大きさが10mm以上の粒子であることを特徴とする請求項6に記載の焼結用造粒原料の製造設備。   7. The facility for producing a granulating raw material for sintering according to claim 6, wherein the coarse particles to be crushed generated by classification are particles having a particle size of 10 mm or more. 前記2次造粒機の後に、この2次造粒機を経て製造された疑似粒子表面にコークス粉を付着させて焼結用造粒原料とする設備を設けたことを特徴とする請求項6または7に記載の焼結用造粒原料の製造設備。   7. A facility for making a granulation raw material for sintering by attaching coke powder to the surface of the pseudo particles produced through the secondary granulator after the secondary granulator. Or the manufacturing equipment of the granulation raw material for sintering of 7.
JP2013107668A 2013-05-22 2013-05-22 Manufacturing method and apparatus for granulating raw material for sintering Active JP5979382B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013107668A JP5979382B2 (en) 2013-05-22 2013-05-22 Manufacturing method and apparatus for granulating raw material for sintering

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013107668A JP5979382B2 (en) 2013-05-22 2013-05-22 Manufacturing method and apparatus for granulating raw material for sintering

Publications (2)

Publication Number Publication Date
JP2014227567A JP2014227567A (en) 2014-12-08
JP5979382B2 true JP5979382B2 (en) 2016-08-24

Family

ID=52127726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013107668A Active JP5979382B2 (en) 2013-05-22 2013-05-22 Manufacturing method and apparatus for granulating raw material for sintering

Country Status (1)

Country Link
JP (1) JP5979382B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6686974B2 (en) * 2016-06-22 2020-04-22 Jfeスチール株式会社 Sintered ore manufacturing method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4786508B2 (en) * 2004-05-13 2011-10-05 新日本製鐵株式会社 Pretreatment method of sintering raw material
JP5459655B2 (en) * 2008-07-18 2014-04-02 Jfeスチール株式会社 How to treat tailings

Also Published As

Publication number Publication date
JP2014227567A (en) 2014-12-08

Similar Documents

Publication Publication Date Title
JP3902629B2 (en) Pretreatment method of sintering raw materials
JP5644955B2 (en) Granulation method of sintering raw material
JP5569658B2 (en) Method for producing granulated raw material for sintering, apparatus for producing the same, and method for producing sintered ore for blast furnace
WO2006120773A1 (en) Method for pretreatment of raw materials for sintering
JP5630399B2 (en) Method for producing sintered ore using fine powder raw material
JP6519005B2 (en) Method of producing sintered ore
JP6132114B2 (en) Method for producing granulated raw material for sintering
JP4786508B2 (en) Pretreatment method of sintering raw material
JP5954546B2 (en) Method for producing granulated raw material for sintering
JP2007077512A5 (en)
TWI596213B (en) Sinter manufacturing method
JP4786760B2 (en) Pretreatment method of sintering raw material
JP5979382B2 (en) Manufacturing method and apparatus for granulating raw material for sintering
JP5910831B2 (en) Method for producing granulated raw material for sintering
JP6020823B2 (en) Method for producing granulated raw material for sintering
JP2014201763A (en) Method for producing granulation raw material for sintering
JPWO2017094255A1 (en) Method for producing sintered ore
JP5928731B2 (en) Manufacturing method and apparatus for granulating raw material for sintering
JP2006312786A (en) Method for pretreating raw material for sintering
TWI468522B (en) Method for producing granulation material for sintering, producing apparatus thereof, and method for producing sinter ore for blast furnace
JP5983949B2 (en) Method for producing granulated raw material for sintering
JP7124601B2 (en) Method for smelting oxide ore
JP6954236B2 (en) Manufacturing method and manufacturing equipment for coal interior sintered ore
JP6880951B2 (en) Manufacturing method of coal-containing agglomerate and coal-containing agglomerate
JP2014167164A (en) Method for manufacturing reduced iron

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160629

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160712

R150 Certificate of patent or registration of utility model

Ref document number: 5979382

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250