JP6015491B2 - 受電装置およびそれを備える車両、送電装置、ならびに電力伝送システム - Google Patents

受電装置およびそれを備える車両、送電装置、ならびに電力伝送システム Download PDF

Info

Publication number
JP6015491B2
JP6015491B2 JP2013035867A JP2013035867A JP6015491B2 JP 6015491 B2 JP6015491 B2 JP 6015491B2 JP 2013035867 A JP2013035867 A JP 2013035867A JP 2013035867 A JP2013035867 A JP 2013035867A JP 6015491 B2 JP6015491 B2 JP 6015491B2
Authority
JP
Japan
Prior art keywords
power
node
power transmission
unit
wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013035867A
Other languages
English (en)
Other versions
JP2014166063A (ja
Inventor
真士 市川
真士 市川
直樹 牛来
直樹 牛来
近藤 直
直 近藤
浩二 中村
浩二 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2013035867A priority Critical patent/JP6015491B2/ja
Publication of JP2014166063A publication Critical patent/JP2014166063A/ja
Application granted granted Critical
Publication of JP6015491B2 publication Critical patent/JP6015491B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

この発明は、受電装置およびそれを備える車両、送電装置、ならびに電力伝送システムに関し、特に、送電装置から受電装置へ非接触で電力を伝送する電力伝送システム、ならびにそれに用いられる受電装置および送電装置に関する。
送電方法として、電源コードや送電ケーブルを用いない非接触電力伝送が注目されている。特開2011−155732号公報(特許文献1)は、そのような非接触送電システムを開示する。この非接触送電システムでは、伝送線路のインピーダンスを調整可能な整合回路が設けられる。整合回路は、コイルと、キャパシタとを含む。コイルのインダクタンスおよびキャパシタのキャパシタンスを調整することによって、インピーダンス整合が行なわれる(特許文献1参照)。
特開2011−155732号公報
受電装置においては、受電部(コイルやアンテナ等)によって受電される交流電力を整流する整流回路において伝送周波数の高調波のノイズが発生する。また、送電装置においても、送電電力を生成する電源部(スイッチング電源など)において伝送周波数の高調波のノイズが発生する。上記の特開2011−155732号公報では、このような高調波ノイズの対策については特に検討されていない。
この発明は、かかる課題を解決するためになされたものであり、その目的は、非接触電力伝送に用いられる受電装置およびそれを備える車両において、電力伝送に伴ない受電装置において発生する高調波ノイズを効果的に抑制することである。
また、この発明の別の目的は、非接触電力伝送に用いられる送電装置において、電力伝送に伴ない受電装置において発生する高調波ノイズを効果的に抑制することである。
また、この発明の別の目的は、非接触で電力を伝送する電力伝送システムにおいて、電力伝送に伴ない発生する高調波ノイズを効果的に抑制することである。
この発明によれば、受電装置は、受電部と、複数のインピーダンス整合回路とを備える。受電部は、送電装置から出力される電力を非接触で受電する。複数のインピーダンス整合回路は、直列接続され、受電部と受電部によって受電される電力を受ける負荷回路との間に設けられる。
好ましくは、複数のインピーダンス整合回路は、3段のインピーダンス整合回路によって構成される。
好ましくは、複数のインピーダンス整合回路の各々は、LC型のインピーダンス整合回路を含む。
好ましくは、複数のインピーダンス整合回路は、T型のインピーダンス整合回路と、LC型のインピーダンス整合回路とを含む。
好ましくは、複数のインピーダンス整合回路の各々は、平衡型の回路である。
好ましくは、負荷回路は、整流回路を含む。
好ましくは、受電部の固有周波数と送電装置の送電部の固有周波数との差は、受電部の固有周波数または送電部の固有周波数の±10%以下である。
好ましくは、受電部と送電装置の送電部との結合係数は0.3以下である。
好ましくは、受電部は、受電部と送電装置の送電部との間に形成される磁界と、受電部と送電部との間に形成される電界との少なくとも一方を通じて、送電部から受電する。磁界および電界は、受電部と送電部との間に形成され、かつ、特定の周波数で振動する。
また、この発明によれば、車両は、上述したいずれかの受電装置と、受電装置によって受電される電力を用いて駆動力を発生する走行モータとを備える。
また、この発明によれば、送電装置は、送電部と、複数のインピーダンス整合回路とを備える。送電部は、受電装置へ電力を非接触で送電する。複数のインピーダンス整合回路は、直列接続され、送電電力を生成する電源部と送電部との間に設けられる。
好ましくは、複数のインピーダンス整合回路は、3段のインピーダンス整合回路によって構成される。
好ましくは、複数のインピーダンス整合回路の各々は、LC型のインピーダンス整合回路を含む。
好ましくは、複数のインピーダンス整合回路は、T型のインピーダンス整合回路と、LC型のインピーダンス整合回路とを含む。
好ましくは、複数のインピーダンス整合回路の各々は、平衡型の回路である。
好ましくは、電源部は、送電電力を生成するためのスイッチング素子を含む。
好ましくは、送電部の固有周波数と受電装置の受電部の固有周波数との差は、送電部の固有周波数または受電部の固有周波数の±10%以下である。
好ましくは、送電部と受電装置の受電部との結合係数は0.3以下である。
好ましくは、送電部は、送電部と受電装置の受電部との間に形成される磁界と、送電部と受電部との間に形成される電界との少なくとも一方を通じて、受電部へ送電する。磁界および電界は、送電部と受電部との間に形成され、かつ、特定の周波数で振動する。
また、この発明によれば、電力伝送システムは、送電装置と、受電装置とを備える。送電装置は、送電部と、第1の複数のインピーダンス整合回路とを含む。送電部は、受電装置へ電力を非接触で送電する。第1の複数のインピーダンス整合回路は、直列接続され、送電電力を生成する電源部と送電部との間に設けられる。受電装置は、受電部と、第2の複数のインピーダンス整合回路とを含む。受電部は、送電部から出力される電力を非接触で受電する。第2の複数のインピーダンス整合回路は、直列接続され、受電部と受電部によって受電される電力を受ける負荷回路との間に設けられる。
好ましくは、第1の複数のインピーダンス整合回路は、第1の3段インピーダンス整合回路によって構成される。第2の複数のインピーダンス整合回路は、第2の3段インピーダンス整合回路によって構成される。
好ましくは、受電装置は、車両に搭載される。
インピーダンス整合回路は、伝送周波数での伝送効率を向上させるように設計または調整されるので、伝送周波数と異なる周波数(たとえば伝送周波数の高調波)の電力は通過させにくい特性を有する。この発明においては、受電装置および/または送電装置に設けられるインピーダンス整合回路を多段化し、高調波ノイズを低減させるフィルタとしての効果を向上させる。したがって、この発明によれば、非接触電力伝送に伴ない発生する高調波ノイズを効果的に抑制することができる。
この発明の実施の形態1による電力伝送システムの全体構成図である。 電力伝送システムの他の例の全体構成図である。 送電装置から車両への電力伝送時の等価回路図である。 電力伝送システムのシミュレーションモデルを示す図である。 送電部および受電部の固有周波数のズレと電力伝送効率との関係を示す図である。 固有周波数を固定した状態で、エアギャップを変化させたときの電力伝送効率と、送電部に供給される電流の周波数との関係を示すグラフである。 電流源または磁流源からの距離と電磁界の強度との関係を示す図である。 実施の形態1における整合部の構成を示す図である。 図8に示す各整合回路の構成例を示す回路図である。 各整合回路の構成例を示す回路図である。 実施の形態2における各整合回路の構成例を示す回路図である。 実施の形態3における整合部の構成を示す図である。 整合部の他の構成例を示す図である。 整合部の他の構成例を示す図である。 各整合回路の構成例を示す回路図である。 各整合回路の構成例を示す回路図である。
以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰返さない。
[実施の形態1]
(電力伝送システムの構成)
図1は、この発明の実施の形態1による電力伝送システム10の全体構成図である。図1を参照して、電力伝送システム10は、車両100と、送電装置200とを備える。送電装置200は、電源装置210と、送電部220とを含む。
電源装置210は、所定の伝送周波数を有する交流電力を発生する。一例として、電源装置210は、商用電源等の外部電源400から電力を受け、所定の伝送周波数を有する交流電力を発生する。電源装置210は、発生された交流電力を送電部220へ供給する。送電部220は、送電部220の周囲に発生する電磁界を介して、車両100の受電部110へ非接触で電力を供給する。
電源装置210は、通信部230と、送電ECU(Electronic Control Unit)240と、電源部250と、整合部260とを含む。送電部220は、コイル221(以下「共振コイル」とも称し、「共鳴コイル」等と適宜称してもよい。)と、キャパシタ222と、コイル223(以下「電磁誘導コイル」とも称する。)とを含む。
電源部250は、送電ECU240からの制御信号MODによって制御され、外部電源400から受ける電力を、所定の伝送周波数を有する交流電力に変換する。電源部250は、たとえば、スイッチング素子を含むスイッチング電源によって構成される。そして、電源部250は、生成された交流電力を、整合部260を介して送電部220へ供給する。電源部250の作動に伴ない、電源部250からは伝送周波数の整数倍の周波数の高調波ノイズが発生する。また、電源部250は、図示されない電圧センサおよび電流センサによってそれぞれ検出される送電電圧Vtrおよび送電電流Itrの各検出値を送電ECU240へ出力する。
整合部260は、電源部250と送電部220との間に設けられ、送電装置200側のインピーダンスを車両100側のインピーダンスと整合させるためのものである。具体的には、整合部260は、電源部250と送電部220との間のインピーダンスを変換(調整)し、送電装置200側のインピーダンスを車両100側のインピーダンスと整合させる。
この整合部260は、直列接続された複数のインピーダンス整合回路によって構成される(後述)。インピーダンス整合回路は、伝送周波数での伝送効率を向上させるように設計されるので、伝送周波数と異なる周波数成分(たとえば伝送周波数の高調波)は通過させにくい特性を有する。そこで、この実施の形態1では、整合部260においてインピーダンス整合回路を多段化し、整合部260による、高調波ノイズを低減させるフィルタとしての効果を向上させる。
整合部260によるインピーダンス調整は、固定的に行なわれてもよいし、可変であってもよい。整合部260が可変である場合には、送電ECU240からの制御信号SE10に基づいてインピーダンスが調整される。なお、電源部250が整合部260の機能を含む構成であってもよい。整合部260の構成については、後ほど詳しく説明する。
電磁誘導コイル223は、電磁誘導により共振コイル221と磁気的に結合可能である。電磁誘導コイル223は、電源部250から供給される交流電力を、電磁誘導によって共振コイル221に伝達する。
共振コイル221は、電磁誘導コイル223から伝達された電力を、車両100の受電部110に含まれるコイル111へ非接触で送電する。なお、受電部110と送電部220との間の非接触電力伝送については、後ほど詳しく説明する。
通信部230は、送電装置200と車両100との間で無線通信を行なうための通信インターフェースであり、車両100の通信部160と各種情報の授受を行なう。通信部230は、車両100の通信部160から送信される車両情報や、送電の開始および停止を指示する信号等を受信し、その受信した情報や信号等を送電ECU240へ出力する。また、通信部230は、送電ECU240から受ける送電電圧Vtrおよび送電電流Itr等の情報を車両100へ送信する。
送電ECU240は、CPU(Central Processing Unit)、記憶装置、入出力バッファ等を含み(いずれも図示せず)、各センサ等からの信号の入力や各機器への制御信号の出力を行なうとともに、送電装置200における各機器の制御を行なう。なお、これらの制御については、ソフトウェアによる処理に限られず、専用のハードウェア(電子回路)で処理することも可能である。
一方、車両100は、受電部110と、整合部170と、整流回路180と、充電リレー(以下「CHR(CHarging Relay)」とも称する。)185と、蓄電装置190とを含む。また、車両100は、システムメインリレー(以下「SMR(System Main Relay)」とも称する。)115と、パワーコントロールユニット(以下「PCU(Power Control Unit)」とも称する。)120と、モータジェネレータ130と、動力伝達ギヤ140と、駆動輪150と、通信部160と、電圧センサ195と、電流センサ196と、車両ECU300とをさらに含む。
以下では、車両100は電気自動車(Electric Vehicle)として代表的に説明されるが、蓄電装置190に蓄えられた電力を用いて走行が可能な車両であれば、車両100の構成はこれに限られない。車両100の他の例としては、エンジンを搭載したハイブリッド車両や、燃料電池を搭載した燃料電池車等が含まれる。
受電部110は、コイル111(以下「共振コイル」とも称し、「共鳴コイル」等と適宜称してもよい。)と、キャパシタ112と、コイル113(以下「電磁誘導コイル」とも称する。)とを含む。
共振コイル111は、送電装置200の共振コイル221から非接触で電力を受電する。電磁誘導コイル113は、電磁誘導により共振コイル111と磁気的に結合可能である。電磁誘導コイル113は、共振コイル111により受電された電力を電磁誘導により取出し、整合部170を介して整流回路180へ出力する。
整合部170は、受電部110と整流回路180との間に設けられ、車両100側のインピーダンスを送電装置200側のインピーダンスと整合させるためのものである。具体的には、整合部170は、受電部110と整流回路180との間のインピーダンスを変換(調整)し、車両100側のインピーダンスを送電装置200側のインピーダンスと整合させる。
この整合部170も、直列接続された複数のインピーダンス整合回路によって構成される(後述)。車両100においては、送電装置200からの受電に伴ない、後述の整流回路180から伝送周波数の整数倍の高調波ノイズが発生する。ここで、上述のように、インピーダンス整合回路は、伝送周波数での伝送効率を向上させるように設計されるので、伝送周波数と異なる周波数成分(たとえば伝送周波数の高調波)は通過させにくい特性を有する。そこで、車両100においても、整合部170においてインピーダンス整合回路を多段化し、整合部170による、高調波ノイズを低減させるフィルタとしての効果を向上させる。
なお、整合部170によるインピーダンス調整についても、固定的に行なわれてもよいし、可変であってもよい。整合部170が可変である場合には、車両ECU300からの制御信号SE3に基づいてインピーダンスが調整される。整合部170の構成についても、送電装置200の整合部260とともに後ほど詳しく説明する。
整流回路180は、整合部170を介して受電部110から受ける交流電力を整流し、その整流された直流電力を蓄電装置190へ出力する。整流回路180としては、たとえば、ダイオードブリッジおよび平滑用のキャパシタ(いずれも図示せず)を含む静止型の回路構成とすることができる。整流回路180として、スイッチング制御を用いて整流を行なう、いわゆるスイッチングレギュレータを用いることも可能である。整流回路180からは、受電部110から受ける交流電力を整流する際に、伝送周波数の整数倍の周波数の高調波ノイズが発生する。
CHR185は、整流回路180と蓄電装置190との間に電気的に接続される。CHR185は、車両ECU300からの制御信号SE2により制御され、整流回路180から蓄電装置190への電力の供給と遮断とを切換える。
蓄電装置190は、再充電可能に構成された電力貯蔵要素である。蓄電装置190は、たとえば、リチウムイオン電池、ニッケル水素電池あるいは鉛蓄電池などの二次電池や、電気二重層キャパシタなどの蓄電素子によって構成される。
蓄電装置190は、受電部110により受電されて整流回路180により整流された電力を蓄電する。また、蓄電装置190は、SMR115を介してPCU120とも接続される。そして、蓄電装置190は、車両駆動力を発生させるための電力をPCU120へ供給する。さらに、蓄電装置190は、モータジェネレータ130で発電された電力をPCU120から受けて蓄電する。
また、蓄電装置190には、蓄電装置190の電圧VBおよび電流IBをそれぞれ検出するための電圧センサおよび電流センサが設けられる(いずれも図示せず)。これらの各センサの検出値は、車両ECU300へ出力される。車両ECU300は、この電圧VBおよび電流IBの各検出値に基づいて、蓄電装置190の充電状態(「SOC(State Of Charge)」とも称され、満充電状態を100%として0〜100%で表わされる。)を演算する。
SMR115は、蓄電装置190とPCU120との間に電気的に接続される。SMR115は、車両ECU300からの制御信号SE1によって制御され、蓄電装置190とPCU120との間での電力の供給と遮断とを切換える。
PCU120は、コンバータやインバータを含む(いずれも図示せず)。コンバータは、車両ECU300からの制御信号PWCにより制御され、蓄電装置190とインバータとの間で電圧変換を行なう。インバータは、車両ECU300からの制御信号PWIにより制御され、コンバータにより電圧変換された電力を用いてモータジェネレータ130を駆動する。
モータジェネレータ130は、交流回転電機であり、たとえば、永久磁石が埋設されたロータを備える永久磁石型同期電動機によって構成される。モータジェネレータ130の出力トルクは、動力伝達ギヤ140を介して駆動輪150に伝達される。車両100は、このトルクを用いて走行する。モータジェネレータ130は、車両100の回生制動時には、駆動輪150の回転力によって発電することができる。そして、モータジェネレータ130によって発電された電力は、PCU120によって電圧変換されて蓄電装置190に蓄えられる。
なお、モータジェネレータ130の他にエンジン(図示せず)が搭載されたハイブリッド車両では、エンジンおよびモータジェネレータ130を協調的に動作させることによって、必要な車両駆動力が発生される。この場合、エンジンの動力を用いて発電することにより蓄電装置190を充電することも可能である。
通信部160は、車両100と送電装置200との間で無線通信を行なうための通信インターフェースであり、送電装置200の通信部230と各種情報の授受を行なう。通信部160から送電装置200へ出力される情報には、車両ECU300からの車両情報や、送電の開始および停止を指示する信号などが含まれる。
車両ECU300は、CPU、記憶装置、入出力バッファ等を含み(いずれも図示せず)、各センサ等からの信号の入力や各機器への制御信号の出力を行なうとともに、車両100における各機器の制御を行なう。なお、これらの制御については、ソフトウェアによる処理に限られず、専用のハードウェア(電子回路)で処理することも可能である。
電圧センサ195は、受電部110の受電電圧Vreを検出する。電流センサ196は、受電部110の受電電流Ireを検出する。受電電圧Vreおよび受電電流Ireの各検出値は、車両ECU300に送信され、電力伝送効率の演算等に用いられる。
なお、図1においては、受電部110および送電部220がそれぞれ電磁誘導コイル113,223を有する構成を示したが、図2に示される電力伝送システム10Aのように、受電部110Aおよび送電部220Aが電磁誘導コイルを備えない構成とすることも可能である。この場合には、送電部220Aにおいては、共振コイル221が整合部260に接続され、受電部110Aにおいては、共振コイル111が整合部170に接続される。
なお、送電部220Aにおいて、キャパシタ224は、共振コイル221に直列に接続されて共振コイル221とLC共振回路を形成するが、キャパシタ224は、共振コイル221に並列に接続してもよい。また、受電部110Aにおいても、キャパシタ114は、共振コイル111に直列に接続されて共振コイル111とLC共振回路を形成するが、キャパシタ114は、共振コイル111に並列に接続してもよい。
(電力伝送の原理)
図3は、送電装置200から車両100への電力伝送時の等価回路図である。図3を参照して、送電装置200において、送電部220の電磁誘導コイル223は、共振コイル221と所定の間隔をおいて、たとえば共振コイル221と略同軸上に設けられる。電磁誘導コイル223は、電磁誘導により共振コイル221と磁気的に結合し、電源装置210から供給される高周波電力を電磁誘導により共振コイル221へ供給する。
共振コイル221は、キャパシタ222とともにLC共振回路を形成する。なお、後述するように、車両100の受電部110においてもLC共振回路が形成される。共振コイル221およびキャパシタ222によって形成されるLC共振回路の固有周波数と、受電部110のLC共振回路の固有周波数との差は、前者の固有周波数または後者の固有周波数の±10%以下である。そして、共振コイル221は、電磁誘導コイル223から電磁誘導により電力を受け、車両100の受電部110へ非接触で送電する。
なお、電磁誘導コイル223は、電源装置210から共振コイル221への給電を容易にするために設けられるものであり、図2に示したように、電磁誘導コイル223を設けずに共振コイル221に電源装置210を直接接続してもよい。また、キャパシタ222は、共振回路の固有周波数を調整するために設けられるものであり、共振コイル221の浮遊容量を利用して所望の固有周波数が得られる場合には、キャパシタ222を設けない構成としてもよい。
一方、車両100において、受電部110の共振コイル111は、キャパシタ112とともにLC共振回路を形成する。上述のように、共振コイル111およびキャパシタ112によって形成されるLC共振回路の固有周波数と、送電装置200の送電部220における、共振コイル221およびキャパシタ222によって形成されるLC共振回路の固有周波数との差は、前者の固有周波数または後者の固有周波数の±10%である。そして、共振コイル111は、送電装置200の送電部220から非接触で受電する。
電磁誘導コイル113は、共振コイル111と所定の間隔をおいて、たとえば共振コイル111と略同軸上に設けられる。電磁誘導コイル113は、電磁誘導により共振コイル111と磁気的に結合し、共振コイル111によって受電された電力を電磁誘導により取出して電気負荷118へ出力する。なお、電気負荷118は、受電部110(110A)によって受電された電力を受ける電気機器であり、具体的には、整合部170(図1)以降の電気機器を包括的に表わしたものである。
なお、電磁誘導コイル113は、共振コイル111からの電力の取出しを容易にするために設けられるものであり、図2に示したように、電磁誘導コイル113を設けずに共振コイル111を電気負荷118に直接接続してもよい。また、キャパシタ112は、共振回路の固有周波数を調整するために設けられるものであり、共振コイル111の浮遊容量を利用して所望の固有周波数が得られる場合には、キャパシタ112を設けない構成としてもよい。
送電装置200において、電源装置210から電磁誘導コイル223へ高周波の交流電力が供給され、電磁誘導コイル223を用いて共振コイル221へ電力が供給される。そうすると、共振コイル221と車両100の共振コイル111との間に形成される磁界を通じて共振コイル221から共振コイル111へエネルギ(電力)が移動する。共振コイル111へ移動したエネルギ(電力)は、電磁誘導コイル113を用いて取出され、車両100の電気負荷118へ伝送される。
上述のように、この電力伝送システムにおいては、送電装置200の送電部220の固有周波数と、車両100の受電部110の固有周波数との差は、送電部220の固有周波数または受電部110の固有周波数の±10%以下である。このような範囲に送電部220および受電部110の固有周波数を設定することで電力伝送効率を高めることができる。一方、上記の固有周波数の差が±10%よりも大きくなると、電力伝送効率が10%よりも小さくなり、電力伝送時間が長くなるなどの弊害が生じる可能性がある。
なお、送電部220(受電部110)の固有周波数とは、送電部220(受電部110)を構成する電気回路(共振回路)が自由振動する場合の振動周波数を意味する。なお、送電部220(受電部110)を構成する電気回路(共振回路)において、制動力または電気抵抗を実質的に零としたときの固有周波数は、送電部220(受電部110)の共振周波数とも呼ばれる。
図4および図5を用いて、固有周波数の差と電力伝送効率との関係とを解析したシミュレーション結果について説明する。図4は、電力伝送システムのシミュレーションモデルを示す図である。また、図5は、送電部および受電部の固有周波数のズレと電力伝送効率との関係を示す図である。
図4を参照して、電力伝送システム89は、送電部90と、受電部91とを備える。送電部90は、第1コイル92と、第2コイル93とを含む。第2コイル93は、共振コイル94と、共振コイル94に設けられたキャパシタ95とを含む。受電部91は、第3コイル96と、第4コイル97とを備える。第3コイル96は、共振コイル99とこの共振コイル99に接続されたキャパシタ98とを含む。
共振コイル94のインダクタンスをインダクタンスLtとし、キャパシタ95のキャパシタンスをキャパシタンスC1とする。また、共振コイル99のインダクタンスをインダクタンスLrとし、キャパシタ98のキャパシタンスをキャパシタンスC2とする。このように各パラメータを設定すると、第2コイル93の固有周波数f1は、下記の式(1)によって示され、第3コイル96の固有周波数f2は下記の式(2)によって示される。
f1=1/{2π(Lt×C1)1/2} … (1)
f2=1/{2π(Lr×C2)1/2} … (2)
ここで、インダクタンスLrおよびキャパシタンスC1,C2を固定して、インダクタンスLtのみを変化させた場合において、第2コイル93および第3コイル96の固有周波数のズレと電力伝送効率との関係を図5に示す。なお、このシミュレーションにおいては、共振コイル94および共振コイル99の相対的な位置関係は固定とし、さらに、第2コイル93に供給される電流の周波数は一定である。
図5に示すグラフのうち、横軸は固有周波数のズレ(%)を示し、縦軸は一定周波数の電流における電力伝送効率(%)を示す。固有周波数のズレ(%)は、下記の式(3)によって示される。
(固有周波数のズレ)={(f1−f2)/f2}×100(%) … (3)
図5から明らかなように、固有周波数のズレ(%)が0%の場合には、電力伝送効率は100%近くとなる。固有周波数のズレ(%)が±5%の場合には、電力伝送効率は40%程度となる。固有周波数のズレ(%)が±10%の場合には、電力伝送効率は10%程度となる。固有周波数のズレ(%)が±15%の場合には、電力伝送効率は5%程度となる。すなわち、固有周波数のズレ(%)の絶対値(固有周波数の差)が、第3コイル96の固有周波数の10%以下の範囲となるように第2コイル93および第3コイル96の固有周波数を設定することで、電力伝送効率を実用的なレベルに高めることができることがわかる。さらに、固有周波数のズレ(%)の絶対値が第3コイル96の固有周波数の5%以下となるように第2コイル93および第3コイル96の固有周波数を設定すると、電力伝送効率をさらに高めることができるのでより好ましい。なお、シミュレーションソフトしては、電磁界解析ソフトウェア(JMAG(登録商標):株式会社JSOL製)を採用している。
再び図3を参照して、送電部220および受電部110は、送電部220と受電部110との間に形成される磁界および電界の少なくとも一方を通じて、非接触で電力を授受する。送電部220と受電部110との間に形成される磁界および/または電界は、特定の周波数で振動する。そして、送電部220と受電部110とを電磁界によって共振(共鳴)させることで、送電部220から受電部110へ電力が伝送される。
ここで、送電部220の周囲に形成される特定の周波数の磁界について説明する。「特定の周波数の磁界」は、典型的には、電力伝送効率と送電部220に供給される電流の周波数と関連性を有する。そこで、まず、電力伝送効率と、送電部220に供給される電流の周波数との関係について説明する。送電部220から受電部110に電力を伝送するときの電力伝送効率は、送電部220および受電部110間の距離などの様々な要因よって変化する。たとえば、送電部220および受電部110の固有周波数(共振周波数)をf0とし、送電部220に供給される電流の周波数をf3とし、送電部220および受電部110の間のエアギャップをエアギャップAGとする。
図6は、固有周波数f0を固定した状態で、エアギャップAGを変化させたときの電力伝送効率と、送電部220に供給される電流の周波数f3との関係を示すグラフである。図6を参照して、横軸は、送電部220に供給される電流の周波数f3を示し、縦軸は、電力伝送効率(%)を示す。効率曲線L1は、エアギャップAGが小さいときの電力伝送効率と、送電部220に供給される電流の周波数f3との関係を模式的に示す。この効率曲線L1に示すように、エアギャップAGが小さい場合には、電力伝送効率のピークは周波数f4,f5(f4<f5)において生じる。エアギャップAGを大きくすると、電力伝送効率が高くなるときの2つのピークは、互いに近づくように変化する。そして、効率曲線L2に示すように、エアギャップAGを所定距離よりも大きくすると、電力伝送効率のピークは1つとなり、送電部220に供給される電流の周波数が周波数f6のときに電力伝送効率がピークとなる。エアギャップAGを効率曲線L2の状態よりもさらに大きくすると、効率曲線L3に示すように電力伝送効率のピークが小さくなる。
たとえば、電力伝送効率の向上を図るため手法として次のような手法が考えられる。第1の手法としては、エアギャップAGにあわせて、送電部220に供給される電流の周波数を一定として、キャパシタ222やキャパシタ112のキャパシタンスを変化させることで、送電部220と受電部110との間での電力伝送効率の特性を変化させる手法が考えられる。具体的には、送電部220に供給される電流の周波数を一定とした状態で、電力伝送効率がピークとなるように、キャパシタ222およびキャパシタ112のキャパシタンスを調整する。この手法では、エアギャップAGの大きさに関係なく、送電部220および受電部110に流れる電流の周波数は一定である。
また、第2の手法としては、エアギャップAGの大きさに基づいて、送電部220に供給される電流の周波数を調整する手法である。たとえば、電力伝送特性が効率曲線L1となる場合には、周波数f4またはf5の電流を送電部220に供給する。周波数特性が効率曲線L2,L3となる場合には、周波数f6の電流を送電部220に供給する。この場合においては、エアギャップAGの大きさに合わせて送電部220および受電部110に流れる電流の周波数を変化させることになる。
第1の手法では、送電部220を流れる電流の周波数は、固定された一定の周波数となり、第2の手法では、送電部220を流れる周波数は、エアギャップAGによって適宜変化する周波数となる。第1の手法や第2の手法などによって、電力伝送効率が高くなるように設定された特定の周波数の電流が送電部220に供給される。送電部220に特定の周波数の電流が流れることで、送電部220の周囲には、特定の周波数で振動する磁界(電磁界)が形成される。受電部110は、受電部110と送電部220との間に形成され、かつ特定の周波数で振動する磁界を通じて送電部220から電力を受電している。したがって、「特定の周波数で振動する磁界」とは、必ずしも固定された周波数の磁界とは限らない。なお、上記の例では、エアギャップAGに着目して、送電部220に供給される電流の周波数を設定するようにしているが、電力伝送効率は、送電部220および受電部110の水平方向のズレ等のように他の要因によっても変化するものであり、当該他の要因に基づいて、送電部220に供給される電流の周波数を調整する場合がある。
なお、上記では、送電部220および受電部110にコイル(たとえばヘリカルコイル)を採用したが、コイルに代えて、メアンダラインなどのアンテナなどを採用してもよい。メアンダラインなどのアンテナなどを採用した場合には、送電部220に特定の周波数の電流が流れることで、特定の周波数の電界が送電部220の周囲に形成される。そして、この電界を通して、送電部220と受電部110との間で電力伝送が行なわれる。
この電力伝送システムにおいては、電磁界の「静電磁界」が支配的な近接場(エバネッセント場)を利用することで、送電および受電効率の向上が図られている。
図7は、電流源または磁流源からの距離と電磁界の強度との関係を示した図である。図7を参照して、電磁界は3つの成分から成る。曲線k1は、波源からの距離に反比例した成分であり、「輻射電磁界」と称される。曲線k2は、波源からの距離の2乗に反比例した成分であり、「誘導電磁界」と称される。また、曲線k3は、波源からの距離の3乗に反比例した成分であり、「静電磁界」と称される。なお、電磁界の波長を「λ」とすると、「輻射電磁界」と「誘導電磁界」と「静電磁界」との強さが略等しくなる距離は、λ/2πと表わすことができる。
「静電磁界」は、波源からの距離とともに急激に電磁波の強度が減少する領域であり、この実施の形態に係る電力伝送システムでは、この「静電磁界」が支配的な近接場(エバネッセント場)を利用してエネルギ(電力)の伝送が行なわれる。すなわち、「静電磁界」が支配的な近接場において、近接する固有周波数を有する送電部220および受電部110(たとえば一対のLC共振コイル)を共鳴させることにより、送電部220から他方の受電部110へエネルギ(電力)を伝送する。この「静電磁界」は遠方にエネルギを伝播しないので、遠方までエネルギを伝播する「輻射電磁界」によってエネルギ(電力)を伝送する電磁波に比べて、共鳴法は、より少ないエネルギ損失で送電することができる。
このように、この電力伝送システムにおいては、送電部220と受電部110とを電磁界によって共振(共鳴)させることで、送電部220と受電部110との間で非接触によって電力が伝送される。送電部220と受電部110との間に形成されるこのような電磁場は、たとえば、近接場共振(共鳴)結合場という場合がある。送電部220と受電部110との間の結合係数(κ)は、たとえば、0.3以下程度であり、好ましくは、0.1以下である。当然のことながら、結合係数(κ)を0.1〜0.3程度の範囲も採用することができる。結合係数(κ)は、このような値に限定されるものでなく、電力伝送が良好となる種々の値をとり得る。
なお、結合係数(κ)は、送電部220と受電部110との間の距離によって変動する。電力伝送時における送電部220と受電部110との間のエアギャップが小さいときには、結合係数(κ)は、たとえば、0.8〜0.6程度である。なお、当然のことながら、送電部220と受電部110との間の距離によっては、結合係数(κ)は、0.6以下となる。そして、送電部220と受電部110とが離れた状態で電力伝送が実施されると、結合係数(κ)は、0.3以下となる。
なお、電力伝送における、上記のような送電部220と受電部110との結合を、たとえば、「磁気共鳴結合」、「磁界(磁場)共鳴結合」、「磁場共振(共鳴)結合」、「近接場共振(共鳴)結合」、「電磁界(電磁場)共振結合」、「電界(電場)共振結合」等という。「電磁界(電磁場)共振結合」は、「磁気共鳴結合」、「磁界(磁場)共鳴結合」、「電界(電場)共振結合」のいずれも含む結合を意味する。
送電部220と受電部110とが上記のようにコイルによって形成される場合には、送電部220と受電部110とは、主に磁界(磁場)によって結合し、「磁気共鳴結合」または「磁界(磁場)共鳴結合」が形成される。なお、送電部220と受電部110とに、たとえば、メアンダライン等のアンテナを採用することも可能であり、この場合には、送電部220と受電部110とは、主に電界(電場)によって結合し、「電界(電場)共鳴結合」が形成される。
(整合部の構成)
図8は、この実施の形態1における整合部170,260の構成を示す図である。図8を参照して、車両100の整合部170は、インピーダンス整合回路(以下、単に「整合回路」と称する。)302,304,306を含む。整合回路302は、受電部110(110A)に接続され、整合回路302に整合回路304がさらに接続される。そして、整合回路304と整流回路180(図示せず)との間に整合回路306が接続される。すなわち、整合部170は、3段の整合回路によって構成される。
整合回路302,304,306の各々は、インピーダンスを変換する。各整合回路302,304,306におけるインピーダンス変換は、固定的に行なわれてもよいし、可変であってもよい。そして、送電装置200から車両100へ伝送される電力の伝送周波数において、整流回路180以降の負荷回路の入力インピーダンスに対して受電部110(110A)の出力インピーダンスが所定値となるように、各整合回路302,304,306が設計(または調整)される。各整合回路302,304,306が変換するインピーダンスは、互いに異なっていてもよい。
送電装置200の整合部260は、整合回路402,404,406を含む。整合回路402は、電源部250に接続され、整合回路402に整合回路404がさらに接続される。そして、整合回路404と送電部220(220A)との間に整合回路406が接続される。すなわち、整合部260も、3段の整合回路によって構成される。
整合回路402,404,406の各々も、インピーダンスを変換する。各整合回路402,404,406におけるインピーダンス変換は、固定的に行なわれてもよいし、可変であってもよい。そして、伝送周波数において、電源部250の出力インピーダンスに対して送電部220(220A)の入力インピーダンスが上記所定値となるように、各整合回路402,404,406が設計(または調整)される。各整合回路402,404,406が変換するインピーダンスは、互いに異なっていてもよい。
車両100においては、送電装置200からの受電時に整流回路180から伝送周波数の高調波のノイズが発生する。ここで、各整合回路302,304,306は、伝送周波数に合わせて設計(調整)され、伝送周波数と異なる周波数成分(上記の高調波ノイズ等)は通過させにくい特性を有する。そこで、整合回路302,304,306を多段構成(3段)とすることによって、整合回路が1つの場合に比べて、伝送周波数と異なる周波数成分の抑制効果を高めることができ、その結果、整流回路180から発生する高調波ノイズが効果的に抑制される。
送電装置200においては、電源部250から伝送周波数の高調波のノイズが発生する。各整合回路402,404,406についても、伝送周波数に合わせて設計(調整)され、伝送周波数と異なる周波数成分(高調波ノイズ等)は通過させにくい特性を有する。そこで、整合回路402,404,406を多段構成(3段)とすることによって、整合回路が1つの場合に比べて、伝送周波数と異なる周波数成分の抑制効果を高めることができ、その結果、電源部250から発生する高調波ノイズが効果的に抑制される。
図9は、図8に示した各整合回路の構成例を示す回路図である。図9を参照して、整合回路302は、コイルL1,L4と、キャパシタC1とによって構成される。コイルL1は、受電部110(110A)とノードN1との間に接続され、コイルL4は、受電部110(110A)とノードN3との間に接続される。キャパシタC1は、ノードN1,N3間に接続される。すなわち、整合回路302は、LC型かつ平衡型の整合回路である。
整合回路304は、コイルL2,L5と、キャパシタC1とによって構成される。すなわち、キャパシタC1は、整合回路302,304において共通化される。コイルL2は、ノードN1,N2間に接続され、コイルL5は、ノードN3,N4間に接続される。整合回路306は、コイルL3,L6と、キャパシタC2とによって構成される。コイルL3は、ノードN2と整流回路180との間に接続され、コイルL6は、ノードN4と整流回路180との間に接続される。キャパシタC2は、ノードN2,N4間に接続される。整合回路304,306の各々も、LC型かつ平衡型の整合回路である。
また、整合回路402は、コイルL7,L10と、キャパシタC3とによって構成される。コイルL7は、電源部250とノードN5との間に接続され、コイルL10は、電源部250とノードN7との間に接続される。キャパシタC3は、ノードN5,N7間に接続される。すなわち、整合回路402は、LC型かつ平衡型の整合回路である。
整合回路404は、コイルL8,L11と、キャパシタC3とによって構成される。すなわち、キャパシタC3は、整合回路402,404において共通化される。コイルL8は、ノードN5,N6間に接続され、コイルL11は、ノードN7,N8間に接続される。整合回路406は、コイルL9,L12と、キャパシタC4とによって構成される。コイルL9は、ノードN6と送電部220(220A)との間に接続され、コイルL12は、ノードN8と送電部220(220A)との間に接続される。キャパシタC4は、ノードN6,N8間に接続される。整合回路404,406の各々も、LC型かつ平衡型の整合回路である。
整合部170におけるコイルL1〜L6のインダクタンスおよびキャパシタC1,C2のキャパシタンス、ならびに整合部260におけるコイルL7〜L12のインダクタンスおよびキャパシタC3,C4のキャパシタンスは、固定であってもよいし、可変であってもよい。固定の場合には、送電部220(220A)と受電部110(110A)との相対位置関係が基準位置(たとえば、位置ずれがなく、かつ、ギャップが基準値)であるものとして、コイルL1〜L12のインダクタンス値およびキャパシタC1〜C4のキャパシタンス値が予め設計される。可変の場合には、電力伝送時の伝送効率あるいは上記相対位置関係に基づいて、コイルL1〜L12のインダクタンス値およびキャパシタC1〜C4のキャパシタンス値が適宜調整される。
なお、図10に示すように、整合部170は、整合回路302,304−2,306によって構成され、整合回路304−2は、コイルL2,L5と、キャパシタC2とによって構成されるものと見ることもできる。同様に、整合部260は、整合回路402,404−2,406によって構成され、整合回路404−2は、コイルL8,L11と、キャパシタC4とによって構成されるものと見ることもできる。
この実施の形態1においては、車両100の整合部170において、整合回路が多段化(3段)される。これにより、整合部170による、高調波ノイズを低減させるフィルタとしての効果が向上する。したがって、この実施の形態1によれば、車両100において、送電装置200からの受電時に整流回路180から発生する高調波ノイズを効果的に抑制することができる。
また、この実施の形態1においては、送電装置200の整合部260においても、整合回路が多段化(3段)される。これにより、整合部260による、高調波ノイズを低減させるフィルタとしての効果が向上する。したがって、この実施の形態1によれば、送電装置200において、電源部250から発生する高調波ノイズを効果的に抑制することができる。
[実施の形態2]
実施の形態2による電力伝送システムの全体構成は、図1(図2)に示される電力伝送システム10(10A)と同じである。実施の形態2では、各整合回路の構成が実施の形態1と異なる。
再び図8を参照して、実施の形態2における整合部170Aは、整合回路302A,304A,306Aを含む。また、整合部260Aは、整合回路402A,404A,406Aを含む。このように、整合部170Aも、3段の整合回路302A,304A,306Aによって構成され、整合部260Aも、3段の整合回路402A,404A,406Aによって構成される。
図11は、実施の形態2における各整合回路の構成例を示す回路図である。図11を参照して、整合回路302Aは、図9に示した整合回路302の構成においてコイルL4を含まない構成から成る。整合回路304Aは、図9に示した整合回路304の構成においてコイルL5を含まない構成から成る。整合回路306Aは、図9に示した整合回路306の構成においてコイルL6を含まない構成から成る。
また、整合回路402Aは、図9に示した整合回路402の構成においてコイルL10を含まない構成から成る。整合回路404Aは、図9に示した整合回路404の構成においてコイルL11を含まない構成から成る。整合回路406Aは、図9に示した整合回路406の構成においてコイルL12を含まない構成から成る。
この実施の形態2では、整合部170Aは、直列接続される3段の整合回路302A,304A,306Aによって構成され、整合回路302A,304A,306Aの各々は、LC型かつ不平衡型の整合回路から成る。また、整合部260Aも、直列接続される3段の整合回路402A,404A,406Aによって構成され、整合回路402A,404A,406Aの各々は、LC型かつ不平衡型の整合回路である。
この実施の形態2においては、整合部170A,260Aに不平衡型の整合回路を用いることによって、実施の形態1と比べて、高調波ノイズの抑制効果はやや劣るけれども、整合部170A,260Aを小型化することができる。これにより、整合部170Aの車両100への搭載性が向上し、また、送電装置200も小型化することができる。また、この実施の形態2によれば、実施の形態1と比べて、部品点数削減による回路信頼性向上やコスト低減等の効果も得られる。
なお、特に図示しないが、整合部170Aにおいて、整合回路304AがコイルL2とキャパシタC2とによって構成されるものと見てもよい。また、整合部260Aにおいて、整合回路404AがコイルL8とキャパシタC4とによって構成されるものと見てもよい。
[実施の形態3]
実施の形態3による電力伝送システムの全体構成も、図1(図2)に示される電力伝送システム10(10A)と同じである。実施の形態3では、整合部の構成が実施の形態1と異なる。
図12は、実施の形態3における整合部170B,260Bの構成を示す図である。図12を参照して、車両100の整合部170Bは、整合回路302,304を含む。すなわち、整合部170Bは、2段の整合回路によって構成される。また、送電装置200の整合部260Bは、整合回路402,404を含む。すなわち、整合部260Bも、2段の整合回路によって構成される。上述のように、整合回路302,304,402,404の各々は、LC型かつ平衡型の整合回路である。
この実施の形態3においても、整合部170B,260Bの各々において整合回路が多段化(2段)されるので、高調波ノイズを効果的に抑制することができる。また、整合回路が3段構成の実施の形態1に比べて、高調波ノイズの抑制効果はやや劣るけれども、整合回路の段数削減により整合部170B,260Bを小型化することができる。これにより、整合部170Bの車両100への搭載性が向上し、また、送電装置200も小型化することができる。また、実施の形態1と比べて、部品点数削減による回路信頼性向上やコスト低減等の効果も得られる。
なお、整合部170Bに代えて、不平衡型の整合回路302A,304A(図11)を含む整合部170Cを採用してもよい。また、整合部260Bに代えて、不平衡型の整合回路402A,404A(図11)を含む整合部260Cを採用してもよい。これにより、整合部170C,260Cをさらに小型化することができ、また、部品点数削減による回路信頼性向上やコスト低減等の効果もさらに高まる。
なお、その他の実施の形態として、図13に示すように、車両100においては、整合回路を3段構成とし、送電装置200においては、整合回路を2段構成としてもよい。あるいは、図14に示すように、車両100においては、整合回路を2段構成とし、送電装置200においては、整合回路を3段構成としてもよい。
また、上記の実施の形態1において、整合部170は、3段の整合回路302,304,306(図9)あるいは3段の整合回路302,304−2,306(図10)によって構成されるものとしたが、図15に示すように、整合部170は、T型かつ平衡型の整合回路322と、LC型かつ平衡型の整合回路306とによって構成されるものと見ることもできる。同様に、整合部260は、T型かつ平衡型の整合回路422と、LC型かつ平衡型の整合回路406とによって構成されるものと見ることもできる。
また、上記の実施の形態2において、整合部170Aは、3段の整合回路302A,304A,306A(図11)によって構成されるものとしたが、図16に示すように、整合部170Aは、T型かつ不平衡型の整合回路332と、LC型かつ不平衡型の整合回路306Aとによって構成されるものと見ることもできる。同様に、整合部260Aは、T型かつ不平衡型の整合回路432と、LC型かつ不平衡型の整合回路406Aとによって構成されるものと見ることもできる。
なお、特に図示しないが、各整合回路は、π型の整合回路によって構成されてもよい。さらに、π型の整合回路は、平衡型であってもよいし、不平衡型であってもよい。
なお、上記の各実施の形態においては、整合部は、3段または2段の整合回路によって構成されるものとしたが、4段以上の整合回路によって整合部を構成してもよい。
また、上記の各実施の形態においては、車両100(100A)および送電装置200(200A)の双方において整合回路を多段化するものとしたが、車両100(100A)の整合回路を多段化するだけでも、車両100(100A)において高調波ノイズを効果的に抑制することができる。また、送電装置200(200A)の整合回路を多段化するだけでも、送電装置200(200A)において高調波ノイズを効果的に抑制することができる。
今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
10,10A 電力伝送システム、100,100A 車両、110,110A 受電部、111,113,221,223 コイル、112,114,222,224 キャパシタ、115 SMR、118 電気負荷、120 PCU、130 モータジェネレータ、140 動力伝達ギヤ、150 駆動輪、160,230 通信部、170,170A〜170C,260,260A〜260C 整合部、180 整流回路、185 CHR、190 蓄電装置、195 電圧センサ、196 電流センサ、200,200A 送電装置、210 電源装置、220,220A 送電部、240 送電ECU、250 電源部、300 車両ECU、302,304,304−2,306,302A,304A,306A,322,332,402,404,404−2,406,402A,404A,406A,422,432 整合回路、400 外部電源、L1〜L12 コイル、C1〜C4 キャパシタ、N1〜N8 ノード。

Claims (14)

  1. 送電装置から出力される電力を非接触で受電するための受電部と、
    前記受電部と前記受電部によって受電される電力を受ける負荷回路との間に接続されたインピーダンス整合回路とを備え
    前記インピーダンス整合回路は、
    前記受電部と前記負荷回路との間を接続する第1配線および第2配線と、
    前記第1配線に設けられた第1ノードと、前記第2配線に設けられた第2ノードとの間に接続された第1キャパシタと、
    前記受電部と前記第1ノードとの間に接続された第1コイルと、
    前記第1ノードよりも前記負荷回路側に設けられた第3ノードと、前記第2ノードよりも前記負荷回路側に設けられた第4ノードとの間に接続された第2キャパシタと、
    前記第1ノードと前記第3ノードとの間に接続された第2コイルと、
    前記第3ノードと前記負荷回路との間に接続された第3コイルとのみによって構成された受電装置。
  2. 送電装置から出力される電力を非接触で受電するための受電部と、
    前記受電部と前記受電部によって受電される電力を受ける負荷回路との間に接続されたインピーダンス整合回路とを備え
    前記インピーダンス整合回路は、
    前記受電部と前記負荷回路との間を接続する第1配線および第2配線と、
    前記第1配線に設けられた第1ノードと、前記第2配線に設けられた第2ノードとの間に接続された第1キャパシタと、
    前記受電部と前記第1ノードとの間に接続された第1コイルと、
    前記受電部と前記第2ノードとの間に接続された第2コイルと、
    前記第1ノードよりも前記負荷回路側に設けられた第3ノードと、前記第2ノードよりも前記負荷回路側に設けられた第4ノードとの間に接続された第2キャパシタと、
    前記第1ノードと前記第3ノードとの間に接続された第3コイルと、
    前記第2ノードと前記第4ノードとの間に接続された第4コイルと、
    前記第3ノードと前記負荷回路との間に接続された第5コイルと、
    前記第4ノードと前記負荷回路との間に接続された第6コイルとのみによって構成された受電装置。
  3. 前記負荷回路は、整流回路を含む、請求項1または請求項2に記載の受電装置。
  4. 前記受電部の固有周波数と前記送電装置の送電部の固有周波数との差は、前記受電部の固有周波数または前記送電部の固有周波数の±10%以下である、請求項1または請求項2に記載の受電装置。
  5. 前記受電部と前記送電装置の送電部との結合係数は0.3以下である、請求項1または請求項2に記載の受電装置。
  6. 前記受電部は、前記受電部と前記送電装置の送電部との間に形成される磁界と、前記受電部と前記送電部との間に形成される電界との少なくとも一方を通じて、前記送電部から受電し、
    前記磁界および前記電界は、前記受電部と前記送電部との間に形成され、かつ、特定の周波数で振動する、請求項1または請求項2に記載の受電装置。
  7. 請求項1または請求項2に記載の受電装置と、
    前記受電装置によって受電される電力を用いて駆動力を発生する走行モータとを備える車両。
  8. 受電装置へ電力を非接触で送電するための送電部と、
    送電電力を生成する電源部と前記送電部との間に接続されたインピーダンス整合回路とを備え
    前記インピーダンス整合回路は、前記電源部および前記送電部を接続する第1配線および第2配線と、
    前記第1配線に設けられた第1ノードと、前記第2配線に設けられた第2ノードとの間に接続された第1キャパシタと、
    前記電源部と前記第1ノードとの間に接続された第1コイルと、
    前記第1ノードよりも前記送電部側に設けられた第3ノードと、前記第2ノードよりも前記送電部側に設けられた第4ノードとの間に接続された第2キャパシタと、
    前記第1ノードと前記第3ノードとの間に接続された第2コイルと、
    前記第3ノードと前記送電部との間に接続された第3コイルとのみによって構成された、送電装置。
  9. 受電装置へ電力を非接触で送電するための送電部と、
    送電電力を生成する電源部と前記送電部との間に接続されたインピーダンス整合回路とを備え
    前記インピーダンス整合回路は、前記電源部および前記送電部を接続する第1配線および第2配線と、
    前記第1配線に設けられた第1ノードと、前記第2配線に設けられた第2ノードとの間に接続された第1キャパシタと、
    前記電源部と前記第1ノードとの間に接続された第1コイルと、
    前記電源部と前記第2ノードとの間に接続された第2コイルと、
    前記第1ノードよりも前記送電部側に設けられた第3ノードと、前記第2ノードよりも前記送電部側に設けられた第4ノードとの間に接続された第2キャパシタと、
    前記第1ノードと前記第3ノードとの間に接続された第3コイルと、
    前記第2ノードと前記第4ノードとの間に接続された第4コイルと、
    前記第3ノードと前記送電部との間に接続された第5コイルと、
    前記第4ノードと前記送電部との間に接続された第6コイルとのみによって構成された、送電装置。
  10. 前記電源部は、前記送電電力を生成するためのスイッチング素子を含む、請求項8または請求項9に記載の送電装置。
  11. 前記送電部の固有周波数と前記受電装置の受電部の固有周波数との差は、前記送電部の固有周波数または前記受電部の固有周波数の±10%以下である、請求項8または請求項9に記載の送電装置。
  12. 前記送電部と前記受電装置の受電部との結合係数は0.3以下である、請求項8または請求項9に記載の送電装置。
  13. 前記送電部は、前記送電部と前記受電装置の受電部との間に形成される磁界と、前記送電部と前記受電部との間に形成される電界との少なくとも一方を通じて、前記受電部へ送電し、
    前記磁界および前記電界は、前記送電部と前記受電部との間に形成され、かつ、特定の周波数で振動する、請求項8または請求項9に記載の送電装置。
  14. 送電装置と、
    受電装置とを備え、
    前記送電装置は、
    前記受電装置へ電力を非接触で送電するための送電部と、
    送電電力を生成する電源部と前記送電部との間に接続された第1のインピーダンス整合回路とを含み、
    前記受電装置は、
    前記送電部から出力される電力を非接触で受電するための受電部と、
    前記受電部と前記受電部によって受電される電力を受ける負荷回路との間に接続された第2のインピーダンス整合回路とを含み、
    前記第1のインピーダンス整合回路は、
    前記電源部および前記送電部を接続する第1配線および第2配線と、
    前記第1配線に設けられた第1ノードと、前記第2配線に設けられた第2ノードとの間に接続された第1キャパシタと、
    前記電源部と前記第1ノードとの間に接続された第1コイルと、
    前記第1ノードよりも前記送電部側に設けられた第3ノードと、前記第2ノードよりも前記送電部側に設けられた第4ノードとの間に接続された第2キャパシタと、
    前記第1ノードと前記第3ノードとの間に接続された第2コイルと、
    前記第3ノードと前記送電部との間に接続された第3コイルとのみによって構成され、
    前記第2のインピーダンス整合回路は、
    前記受電部と前記負荷回路との間を接続する第3配線および第4配線と、
    前記第3配線に設けられた第5ノードと、前記第4配線に設けられた第6ノードとの間に接続された第3キャパシタと、
    前記受電部と前記第5ノードとの間に接続された第4コイルと、
    前記第5ノードよりも前記負荷回路側に設けられた第7ノードと、前記第6ノードよりも前記負荷回路側に設けられた第8ノードとの間に接続された第4キャパシタと、
    前記第5ノードと前記第7ノードとの間に接続された第5コイルと、
    前記第7ノードと前記負荷回路との間に接続された第6コイルとのみによって構成された、電力伝送システム。
JP2013035867A 2013-02-26 2013-02-26 受電装置およびそれを備える車両、送電装置、ならびに電力伝送システム Active JP6015491B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013035867A JP6015491B2 (ja) 2013-02-26 2013-02-26 受電装置およびそれを備える車両、送電装置、ならびに電力伝送システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013035867A JP6015491B2 (ja) 2013-02-26 2013-02-26 受電装置およびそれを備える車両、送電装置、ならびに電力伝送システム

Publications (2)

Publication Number Publication Date
JP2014166063A JP2014166063A (ja) 2014-09-08
JP6015491B2 true JP6015491B2 (ja) 2016-10-26

Family

ID=51616200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013035867A Active JP6015491B2 (ja) 2013-02-26 2013-02-26 受電装置およびそれを備える車両、送電装置、ならびに電力伝送システム

Country Status (1)

Country Link
JP (1) JP6015491B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016103447A1 (de) * 2016-02-26 2017-08-31 Epcos Ag Filterbauelement und Verwendung eines Filterbauelements
WO2019189660A1 (ja) * 2018-03-28 2019-10-03 パナソニックIpマネジメント株式会社 送電モジュール、受電モジュール、送電装置、受電装置、および無線電力伝送システム
KR102659090B1 (ko) 2019-03-29 2024-04-23 삼성전자주식회사 적응형 임피던스 매칭을 수행하기 위한 방법, 전자 장치 및 저장 매체

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5408616B2 (ja) * 2009-08-31 2014-02-05 国立大学法人電気通信大学 増幅回路
JP2011155732A (ja) * 2010-01-26 2011-08-11 Equos Research Co Ltd 非接触送電システム、および非接触送電装置
JP5569182B2 (ja) * 2010-06-28 2014-08-13 株式会社エクォス・リサーチ 非接触送電システム、非接触送電装置、およびインピーダンスの調整方法
JP5319652B2 (ja) * 2010-11-18 2013-10-16 株式会社東芝 無線電力伝送装置
JP2013031289A (ja) * 2011-07-28 2013-02-07 Nippon Soken Inc 電源装置、非接触送電装置、車両、および非接触電力伝送システム
WO2013183700A1 (ja) * 2012-06-08 2013-12-12 株式会社 豊田自動織機 受電機器及び非接触電力伝送装置

Also Published As

Publication number Publication date
JP2014166063A (ja) 2014-09-08

Similar Documents

Publication Publication Date Title
JP5794203B2 (ja) 送電装置、受電装置、車両、および非接触給電システム
JP6119756B2 (ja) 非接触給電システムおよび送電装置
JP5643270B2 (ja) 車両および非接触給電システム
JP5703988B2 (ja) 受電装置、送電装置、車両、および非接触給電システム
JP5668676B2 (ja) 受電装置およびそれを備える車両、送電装置、ならびに電力伝送システム
JP5884830B2 (ja) 非接触受電装置、非接触送電装置および非接触送受電システム
JP2013126326A (ja) 非接触受電装置およびそれを搭載する車両、非接触送電装置、ならびに非接触給電システム
US20140125144A1 (en) Power transmitting device, power receiving device, vehicle, and contactless power supply system and control method for contactless power supply system
JP6009920B2 (ja) 非接触受電装置およびそれを備える車両、非接触送電装置、ならびに非接触電力伝送システム
WO2013054399A1 (ja) 送電装置、受電装置、および電力伝送システム
JP2010252446A (ja) 非接触給電設備、非接触受電装置および非接触給電システム
JP5867329B2 (ja) 受電装置および車両
JPWO2013076803A1 (ja) 車両用受電装置およびそれを備える車両、給電設備、ならびに電力伝送システム
US20150028687A1 (en) Power transmitting device, power receiving device and power transfer system
JP5949773B2 (ja) 受電装置およびそれを備える車両、ならびに電力伝送システム
JP2015231306A (ja) 非接触受電装置
JP5884698B2 (ja) 非接触受電装置
JP2013042564A (ja) 電力伝送システムおよび電力伝送装置
JP6015491B2 (ja) 受電装置およびそれを備える車両、送電装置、ならびに電力伝送システム
JP5696674B2 (ja) 電動車両
JP6040397B2 (ja) 電力伝送システム
JP6085813B2 (ja) 電力伝送システム
JP6085811B2 (ja) 電力伝送システム
JP6085812B2 (ja) 電力伝送システム
JP6003573B2 (ja) 送電装置、受電装置およびそれを備える車両、ならびに電力伝送システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150407

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160912

R151 Written notification of patent or utility model registration

Ref document number: 6015491

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151