JP6011507B2 - 冷凍サイクル装置 - Google Patents

冷凍サイクル装置 Download PDF

Info

Publication number
JP6011507B2
JP6011507B2 JP2013211076A JP2013211076A JP6011507B2 JP 6011507 B2 JP6011507 B2 JP 6011507B2 JP 2013211076 A JP2013211076 A JP 2013211076A JP 2013211076 A JP2013211076 A JP 2013211076A JP 6011507 B2 JP6011507 B2 JP 6011507B2
Authority
JP
Japan
Prior art keywords
refrigerant
flow rate
air
compressor
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013211076A
Other languages
English (en)
Other versions
JP2015075268A (ja
JP2015075268A5 (ja
Inventor
達博 鈴木
達博 鈴木
尾形 豪太
豪太 尾形
雄一 城田
雄一 城田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2013211076A priority Critical patent/JP6011507B2/ja
Priority to DE112014004647.7T priority patent/DE112014004647T5/de
Priority to US15/027,120 priority patent/US10131203B2/en
Priority to PCT/JP2014/004845 priority patent/WO2015052881A1/ja
Priority to CN201480051006.XA priority patent/CN105556218B/zh
Publication of JP2015075268A publication Critical patent/JP2015075268A/ja
Publication of JP2015075268A5 publication Critical patent/JP2015075268A5/ja
Application granted granted Critical
Publication of JP6011507B2 publication Critical patent/JP6011507B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00899Controlling the flow of liquid in a heat pump system
    • B60H1/00921Controlling the flow of liquid in a heat pump system where the flow direction of the refrigerant does not change and there is an extra subcondenser, e.g. in an air duct
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00357Air-conditioning arrangements specially adapted for particular vehicles
    • B60H1/00385Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell
    • B60H1/00392Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell for electric vehicles having only electric drive means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00735Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models
    • B60H1/0075Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models the input being solar radiation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/06Compression machines, plants or systems with non-reversible cycle with compressor of jet type, e.g. using liquid under pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • F25B41/35Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators by rotary motors, e.g. by stepping motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/006Accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/04Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in series
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3286Constructional features
    • B60H2001/3298Ejector-type refrigerant circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0012Ejectors with the cooled primary flow at high pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0409Refrigeration circuit bypassing means for the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0411Refrigeration circuit bypassing means for the expansion valve or capillary tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/31Low ambient temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/11Fan speed control
    • F25B2600/112Fan speed control of evaporator fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2501Bypass valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2515Flow valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2519On-off valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2103Temperatures near a heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2104Temperatures of an indoor room or compartment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2106Temperatures of fresh outdoor air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Sustainable Energy (AREA)
  • Air-Conditioning For Vehicles (AREA)

Description

本発明は、エジェクタを備える冷凍サイクル装置に関する。
従来、特許文献1に、空調装置に適用されて、空調対象空間の暖房を行う暖房運転モード時に、空調対象空間へ送風される送風空気(加熱対象流体)を加熱する冷凍サイクル装置が開示されている。
より詳細には、この特許文献1の冷凍サイクル装置では、圧縮機から吐出された高圧冷媒と送風空気とを熱交換させて送風空気を加熱する室内凝縮器(放熱器)と、低圧冷媒と外気(吸熱対象流体)とを熱交換させて低圧冷媒を蒸発させる室外熱交換器(蒸発器)とを備え、暖房運転時に、冷媒が室外熱交換器にて外気から吸熱した熱を、室内凝縮器にて送風空気へ放熱させることによって送風空気を加熱している。
特開2013−2710号公報
ところで、特許文献1の冷凍サイクル装置のように、暖房運転時に外気から吸熱した熱を熱源として送風空気を加熱する構成では、暖房運転時に室外熱交換器における冷媒蒸発温度を外気温よりも低下させなければならない。このため、例えば、低外気温時等には、室外熱交換器における冷媒蒸発温度を極低温(例えば、−10℃以下)となるまで低下させなければならないことがある。
しかしながら、室外熱交換器における冷媒蒸発温度を極低温となるまで低下させてしまうと、室外熱交換器から流出して圧縮機へ吸入される吸入冷媒の圧力が低下してしまうため、吸入冷媒の密度が低下してしまう。その結果、圧縮機から吐出されて室内凝縮器へ流入する高圧冷媒の流量(質量流量)が減少して、室内凝縮器における送風空気の加熱能力が低下してしまう。
本発明は、上記点に鑑み、吸熱対象流体の温度が低下した際に、放熱器における加熱対象流体の加熱能力が低下してしまうことを抑制可能な冷凍サイクル装置を提供することを目的とする。
本発明は、上記目的を達成するために案出されたもので、請求項1に記載の発明では、冷媒を圧縮して吐出する圧縮機(11)と、圧縮機(11)から吐出された高圧冷媒と加熱対象流体とを熱交換させて、高圧冷媒を放熱させる放熱器(12)と、放熱器(12)から流出した冷媒を減圧させる減圧手段(14)と、減圧手段(14)にて減圧された低圧冷媒と吸熱対象流体とを熱交換させて、低圧冷媒を蒸発させる蒸発器(15)と圧縮機(11)から吐出された高圧冷媒を減圧させるノズル部(21a)から噴射される高速度の噴射冷媒の吸引作用によって、冷媒吸引口(21d)から蒸発器(15)下流側冷媒を吸引し、噴射冷媒と冷媒吸引口(21d)から吸引された吸引冷媒との混合冷媒を昇圧させて、圧縮機(11)の吸入口側へ流出させる昇圧部(21f)を有するエジェクタ(21)と、圧縮機(11)から吐出される冷媒の流量を吐出冷媒流量(Gr)と定義し、ノズル部(21a)へ流入させる冷媒の流量をエジェクタ側冷媒流量(Gn)と定義したときに、吐出冷媒流量(Gr)に対するエジェクタ側冷媒流量(Gn)の流量比(Gn/Gr)を調整する流量比調整手段(25)と、流量比調整手段(25)の作動を制御する流量比制御手段(40c)、を備え、
さらに、放熱器へ流入させる冷媒の流量を放熱器側冷媒流量(Gc)と定義したときに、流量比制御手段(40c)は、実際の放熱器側冷媒流量(Gc)が、流量比(Gn/Gr)が0となっている際の放熱器側冷媒流量(Gc)以上となるように、流量比調整手段(25)の作動を制御するものである冷凍サイクル装置を特徴とする。
これによれば、蒸発器(15)下流側冷媒を吸引して昇圧させるエジェクタ(21)を備えているので、圧縮機(11)へ吸入される吸入冷媒の圧力を蒸発器(15)における冷媒蒸発圧力よりも上昇させて、吸入冷媒の密度を上昇させることができる。さらに、流量比(Gn/Gr)が0となっている際の放熱器側冷媒流量(Gc)以上となるように、流量比調整手段(25)の作動が制御されるので、放熱器側冷媒流量(Gc)を増加させることができる。
従って、吸熱対象流体の温度が低下して蒸発器(15)における冷媒蒸発温度を低下させなければならない運転条件であっても、圧縮機(11)から吐出されて放熱器(12)へ流入する高圧冷媒の流量(質量流量)が減少してしまうことを抑制できる。その結果、吸熱対象流体の温度が低下しても、放熱器(12)における加熱対象流体の加熱能力が低下してしまうことを抑制できる。
なお、放熱器(12)における加熱対象流体の加熱能力とは、放熱器(12)にて所望の流量の加熱対象流体を所望の温度となるまで加熱する能力であり、具体的には、放熱器(12)入口側冷媒のエンタルピから出口側冷媒のエンタルピを減算したエンタルピ差と、放熱器(12)を流通する冷媒の流量(質量流量)とを積算した値を用いて定義することができる。
また、この欄および特許請求の範囲で記載した各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。
第1実施形態の冷凍サイクル装置の全体構成図である。 第1実施形態のエジェクタの軸方向断面図である。 第1実施形態の冷凍サイクル装置の強暖房運転モード時における冷媒の状態の変化を示すモリエル線図である。 流量比(Gr/Gn)の変化に対する放熱器側冷媒流量Gcの増加率の変化を示すグラフである。 第2実施形態の冷凍サイクル装置の全体構成図である。 第3実施形態の冷凍サイクル装置の全体構成図である。 他の実施形態のエジェクタの軸方向断面図である。 他の実施形態の変形例のエジェクタの軸方向断面図である。
本発明の実施形態について説明する。なお、以下に説明する実施形態のうち、第1、第2実施形態は本発明の前提となる形態であり、第3実施形態が特許請求の範囲に記載した発明の実施形態である。
(第1実施形態)
以下、図1〜図4を用いて、本発明の第1実施形態について説明する。本実施形態では、本発明に係る蒸気圧縮式の冷凍サイクル装置10を、走行用電動モータから車両走行用の駆動力を得る電気自動車の車両用空調装置1に適用している。冷凍サイクル装置10は、車両用空調装置1において、空調対象空間である車室内へ送風される送風空気を冷却あるいは加熱する機能を果たす。従って、本実施形態の加熱対象流体は送風空気である。
さらに、この冷凍サイクル装置10は、車室内の冷房を行う冷房運転モードの冷媒回路、車室内を除湿しながら暖房を行う除湿暖房運転モードの冷媒回路、車室内の暖房を行う暖房運転モードの冷媒回路、および低外気温時等に暖房運転モードよりも高い加熱能力で送風空気を加熱するための強暖房運転モードでの冷媒回路を切替可能に構成されている。
なお、図1では、冷房運転モードの冷媒回路における冷媒の流れを白抜き矢印で示し、除湿暖房運転モードの冷媒回路における冷媒の流れを斜線ハッチング付き矢印で示し、暖房運転モードの冷媒回路における冷媒の流れを網掛けハッチング付き矢印で示し、強暖房運転モードの冷媒回路における冷媒の流れを黒塗り矢印で示している。
また、本実施形態の冷凍サイクル装置10では、冷媒としてHFC系冷媒(具体的には、R134a)を採用しており、高圧側冷媒圧力が冷媒の臨界圧力を超えない蒸気圧縮式の亜臨界冷凍サイクルを構成している。もちろん、HFO系冷媒(例えば、R1234yf)等を採用してもよい。さらに、冷媒には圧縮機11を潤滑するための冷凍機油が混入されており、冷凍機油の一部は冷媒とともにサイクルを循環している。
圧縮機11は、車両ボンネット内に配置されて、冷凍サイクル装置10において冷媒を吸入して高圧冷媒となるまで昇圧して吐出するものである。具体的には、本実施形態の圧縮機11は、1つのハウジング内に固定容量型の圧縮機構、および圧縮機構を駆動する電動モータを収容して構成された電動圧縮機である。
この圧縮機構としては、スクロール型圧縮機構、ベーン型圧縮機構等の各種圧縮機構を採用することができる。また、電動モータは、後述する空調制御装置40から出力される制御信号によって、その作動(回転数)が制御されるもので、交流モータ、直流モータのいずれの形式を採用してもよい。
圧縮機11の吐出口側には、圧縮機11から吐出された冷媒の流れを分岐する第1分岐部13aの冷媒流入口が接続されている。第1分岐部13aは、三方継手で構成されており、3つの流入出口のうち1つを冷媒流入口とし、残りの2つを冷媒流出口としたものである。このような三方継手は、管径の異なる配管を接合して形成してもよいし、金属ブロックや樹脂ブロックに複数の冷媒通路を設けることによって形成してもよい。
第1分岐部13aの一方の冷媒流出口には、室内凝縮器12の冷媒入口側が接続されており、さらに、第1分岐部13aの他方の冷媒流出口には、ノズル部用開閉弁22を介してエジェクタ21のノズル部21aの入口側が接続されている。なお、ノズル部用開閉弁22およびエジェクタ21の詳細構成については後述する。
室内凝縮器12は、後述する室内空調ユニット30のケーシング31内に配置されて、圧縮機11から吐出された高圧冷媒と後述する室内蒸発器20を通過した送風空気とを熱交換させて、高圧冷媒を放熱させる放熱器である。
室内凝縮器12の冷媒出口側には、暖房用膨張弁14の入口側が接続されている。暖房用膨張弁14は、少なくとも暖房運転モード時に、圧縮機11から吐出された高圧冷媒を減圧させる減圧手段であり、絞り開度を変更可能に構成された弁体と、この弁体を変位させて絞り開度を変化させるステッピングモータからなる電動アクチュエータとを有して構成される電気式の可変絞り機構である。
さらに、本実施形態の暖房用膨張弁14は、絞り開度を全開にすることで冷媒減圧作用を殆ど発揮することなく単なる冷媒通路として機能する全開機能付きの可変絞り機構で構成されている。なお、暖房用膨張弁14は、空調制御装置40から出力される制御信号によって、その作動が制御される。
暖房用膨張弁14の出口側には、室外熱交換器15の冷媒入口側が接続されている。室外熱交換器15は、車両ボンネット内の前方側に配置されて、内部を流通する室内凝縮器12下流側の冷媒と送風ファン15aから送風された外気とを熱交換させる熱交換器である。
より具体的には、室外熱交換器15は、少なくとも冷房運転モード時には、高圧冷媒を放熱させる放熱器として機能し、暖房運転モード時および強暖房運転モード時には、減圧手段である暖房用膨張弁14にて減圧された低圧冷媒を蒸発させて吸熱作用を発揮させる蒸発器として機能する。送風ファン15aは、空調制御装置40から出力される制御電圧によって稼働率、すなわち回転数(送風空気量)が制御される電動送風機である。
室外熱交換器15の冷媒出口側には、室外熱交換器15から流出した冷媒の流れを分岐する第2分岐部13bの冷媒流入口が接続されている。第2分岐部13bの基本的構成は、第1分岐部13aと同様である。第2分岐部13bの一方の冷媒流出口には、冷房用膨張弁16の冷媒入口側が接続され、他方の冷媒流出口には、第2分岐部13bから流出した冷媒を後述するアキュムレータ19の上流側へ導くアキュムレータ側通路17が接続されている。
冷房用膨張弁16の基本的構成は、暖房用膨張弁14と同様である。さらに、本実施形態の冷房用膨張弁16は、絞り開度を全開した際に室外熱交換器15の冷媒出口側から室内蒸発器20の冷媒入口側へ至る冷媒通路を全開する全開機能のみならず、絞り開度を全閉した際に当該冷媒通路を閉塞する全閉機能付きの可変絞り機構で構成されている。
冷房用膨張弁16の出口側には、室内蒸発器20の冷媒入口側が接続されている。室内蒸発器20は、室内空調ユニット30のケーシング31内のうち、室内凝縮器12よりも送風空気流れ上流側に配置されている。さらに、室内蒸発器20は、冷房運転モードおよび除湿暖房運転モード時にその内部を流通する冷媒を、室内凝縮器12通過前の送風空気と熱交換させて蒸発させることにより、送風空気を冷却する冷却用熱交換器である。
室内蒸発器20の冷媒出口側には、合流部13cを介して、アキュムレータ19の入口側が接続されている。アキュムレータ19は、その内部に流入した冷媒の気液を分離して、サイクル内の余剰冷媒を蓄える気液分離器である。合流部13cは、第1、第2分岐部13a、13bと同様の三方継手で構成されており、3つの流入出口のうち2つを冷媒流入口とし、残りの1つを冷媒流出口としたものである。
さらに、本実施形態の合流部13cの他方の冷媒流入口には、前述のアキュムレータ側通路17の出口側が接続されている。また、このアキュムレータ側通路17には、アキュムレータ側通路17を開閉する暖房用開閉弁18が配置されている。暖房用開閉弁18は、空調制御装置40から出力される制御電圧によって、その開閉作動が制御される電磁弁である。
アキュムレータ19の気相冷媒出口には、エジェクタ21の冷媒吸引口21d側が接続されている。エジェクタ21は、第1分岐部13aの他方の冷媒流出口から流出した高圧冷媒を減圧させて高速度で噴射することによって、アキュムレータ19から流出した気相冷媒を冷媒吸引口21dから吸引し、噴射冷媒と吸引冷媒との混合冷媒の運動エネルギを圧力エネルギへ変換する機能を果たすものである。
エジェクタ21の詳細構成については、図2を用いて説明する。エジェクタ21は、図2に示すように、ノズル部21aおよびボデー部21bを有して構成されている。まず、ノズル部21aは、冷媒の流れ方向に向かって徐々に先細る略円筒状の金属(例えば、ステンレス合金)で形成されており、内部に流入した冷媒を等エントロピ的に減圧させて、冷媒流れ最下流側に設けられた冷媒噴射口から噴射するものである。
ノズル部21aの内部に形成された冷媒通路には、冷媒通路面積が最も縮小した喉部(最小通路面積部)21c、冷媒流入口側から喉部21cへ向かって冷媒通路面積が徐々に縮小する先細部、および喉部21cから冷媒噴射口へ向かって冷媒通路面積が徐々に拡大する末広部が設けられている。つまり、本実施形態のノズル部21aは、ラバールノズルとして構成されている。もちろん、ノズル部21aを先細ノズルで構成してもよい。
また、本実施形態では、ノズル部21aとして、後述する強暖房運転モード時に、冷媒噴射口から噴射される噴射冷媒の流速が音速以上となるように設定されたものを採用している。
さらに、圧縮機11から吐出される冷媒の流量を吐出冷媒流量Grとし、エジェクタ21のノズル部21aへ流入させる冷媒の流量をエジェクタ側冷媒流量Gnとし、室内凝縮器12へ流入させる冷媒の流量を放熱器側冷媒流量Gcとしたときに、本実施形態では、以下数式F1を満たすように、ノズル部21aの減圧特性(流量特性)が設定されている。
0.3≦Gn/Gr≦0.5…(F1)
なお、吐出冷媒流量Gr、エジェクタ側冷媒流量Gnおよび放熱器側冷媒流量Gcは、いずれも質量流量であり、吐出冷媒流量Grは、エジェクタ側冷媒流量Gnと放熱器側冷媒流量Gcとの合算値となる。
ボデー部21bは、略円筒状の金属(例えば、アルミニウム)で形成されており、内部にノズル部21aを支持固定する固定部材として機能するとともに、エジェクタ21の外殻を形成するものである。より具体的には、ノズル部21aは、ボデー部21bの長手方向一端側の内部に収容されるように圧入にて固定されている。従って、ノズル部21aとボデー部21bとの固定部(圧入部)から冷媒が漏れることはない。
また、ボデー部21bの外周面のうち、ノズル部21aの外周側に対応する部位には、その内外を貫通してノズル部21aの冷媒噴射口と連通するように設けられた冷媒吸引口21dが形成されている。この冷媒吸引口21dは、ノズル部21aから噴射される噴射冷媒の吸引作用によって、アキュムレータ19の気相冷媒出口から流出した冷媒をエジェクタ21の内部へ吸引する貫通穴である。
さらに、ボデー部21bの内部には、冷媒吸引口21dから吸引された吸引冷媒をノズル部21aの冷媒噴射口側へ導く吸引通路21e、および冷媒吸引口21dから吸引通路21eを介してエジェクタ21の内部へ流入した吸引冷媒と噴射冷媒とを混合させて昇圧させる昇圧部としてのディフューザ部21fが形成されている。
吸引通路21eは、ノズル部21aの先細り形状の先端部周辺の外周側とボデー部21bの内周側との間の空間によって形成されており、吸引通路21eの冷媒通路面積は、冷媒流れ方向に向かって徐々に縮小している。これにより、吸引通路21eを流通する吸引冷媒の流速を徐々に増加させて、ディフューザ部21fにて吸引冷媒と噴射冷媒が混合する際のエネルギ損失(混合損失)を減少させている。
ディフューザ部21fは、吸引通路の出口に連続するように配置されて、冷媒通路面積を徐々に拡大させる空間によって形成されている。これにより、噴射冷媒と吸引冷媒とを混合させながら、その流速を減速させて噴射冷媒と吸引冷媒との混合冷媒の圧力を上昇させる機能、すなわち、混合冷媒の速度エネルギを圧力エネルギに変換する機能を果たす。
より具体的には、本実施形態のディフューザ部21fを形成するボデー部21bの内周壁面の軸方向断面における断面形状は、複数の曲線を組み合わせて形成されている。そして、ディフューザ部21fの冷媒通路断面積の広がり度合が冷媒流れ方向に向かって徐々に大きくなった後に再び小さくなっていることで、冷媒を等エントロピ的に昇圧させることができる。
エジェクタ21のディフューザ部21fの冷媒出口には、圧縮機11の吸入口側が接続されている。また、第1分岐部13aの他方の冷媒流出口とエジェクタ21のノズル部21aの冷媒流入口とを接続する冷媒通路には、この冷媒通路を開閉する開閉手段としてのノズル部用開閉弁22が配置されている。
ノズル部用開閉弁22は、非通電時閉塞型(いわゆるノーマルクローズ型)の電磁弁で構成されており、空調制御装置40から出力される制御電圧によって、その作動が制御される。
そして、空調制御装置40が、ノズル部用開閉弁22を開くことによって、圧縮機11から吐出された冷媒がノズル部21aへ流入し、ディフューザ部21fにて噴射冷媒と吸引冷媒との混合冷媒を昇圧させる昇圧用冷媒回路に切り替えることができる。一方、空調制御装置40が、ノズル部用開閉弁22を閉じることによって、ディフューザ部21fにて混合冷媒を昇圧させることのない非昇圧用冷媒回路に切り替えることができる。
つまり、本実施形態のノズル部用開閉弁22は、特許請求の範囲に記載された冷媒回路切替手段を構成している。
次に、室内空調ユニット30について説明する。室内空調ユニット30は、冷凍サイクル装置10によって温度調整された送風空気を車室内へ吹き出すためのもので、車室内最前部の計器盤(インストルメントパネル)の内側に配置されている。さらに、室内空調ユニット30は、その外殻を形成するケーシング31内に送風機32、室内蒸発器20、室内凝縮器12等を収容して構成されている。
ケーシング31は、車室内に送風される送風空気の空気通路を形成するもので、ある程度の弾性を有し、強度的にも優れた樹脂(例えば、ポリプロピレン)にて成形されている。このケーシング31内の送風空気流れ最上流側には、ケーシング31内へ内気(車室内空気)と外気(車室外空気)とを切替導入する内外気切替手段としての内外気切替装置33が配置されている。
内外気切替装置33は、ケーシング31内へ内気を導入させる内気導入口および外気を導入させる外気導入口の開口面積を、内外気切替ドアによって連続的に調整して、内気の風量と外気の風量との風量割合を連続的に変化させるものである。内外気切替ドアは、内外気切替ドア用の電動アクチュエータによって駆動され、この電動アクチュエータは、空調制御装置40から出力される制御信号によって、その作動が制御される。
内外気切替装置33の送風空気流れ下流側には、内外気切替装置33を介して吸入した空気を車室内へ向けて送風する送風手段としての送風機(ブロワ)32が配置されている。この送風機32は、遠心多翼ファン(シロッコファン)を電動モータにて駆動する電動送風機であって、空調制御装置40から出力される制御電圧によって回転数(送風量)が制御される。
送風機32の送風空気流れ下流側には、室内蒸発器20、および室内凝縮器12が、送風空気の流れに対して、この順に配置されている。また、ケーシング31内には、室内蒸発器20を通過した送風空気を、室内凝縮器12を迂回させて下流側へ流す冷風バイパス通路35が形成されている。
室内蒸発器20の送風空気流れ下流側であって、かつ、室内凝縮器12の送風空気流れ上流側には、室内蒸発器20通過後の送風空気のうち、室内凝縮器12を通過させる風量割合を調整するエアミックスドア34が配置されている。
また、室内凝縮器12の送風空気流れ下流側には、室内凝縮器12にて加熱された送風空気と冷風バイパス通路35を通過して室内凝縮器12にて加熱されていない送風空気とを混合させる混合空間が設けられている。さらに、ケーシング31の送風空気流れ最下流部には、混合空間にて混合された送風空気(空調風)を、空調対象空間である車室内へ吹き出す開口穴が配置されている。
具体的には、この開口穴としては、車室内の乗員の上半身に向けて空調風を吹き出すフェイス開口穴、乗員の足元に向けて空調風を吹き出すフット開口穴、および車両前面窓ガラス内側面に向けて空調風を吹き出すデフロスタ開口穴(いずれも図示せず)が設けられている。これらのフェイス開口穴、フット開口穴およびデフロスタ開口穴の送風空気流れ下流側は、それぞれ空気通路を形成するダクトを介して、車室内に設けられたフェイス吹出口、フット吹出口およびデフロスタ吹出口(いずれも図示せず)に接続されている。
従って、エアミックスドア34が、室内凝縮器12を通過させる風量と冷風バイパス通路35を通過させる風量との風量割合を調整することによって、混合空間にて混合される空調風の温度が調整されて、各吹出口から車室内へ吹き出される送風空気(空調風)の温度が調整されることになる。
つまり、エアミックスドア34は、車室内へ送風される空調風の温度を調整する温度調整手段を構成している。なお、エアミックスドア34は、エアミックスドア駆動用の電動アクチュエータによって駆動され、この電動アクチュエータは、空調制御装置40から出力される制御信号によって、その作動が制御される。
また、フェイス開口穴、フット開口穴、およびデフロスタ開口穴の送風空気流れ上流側には、それぞれ、フェイス開口穴の開口面積を調整するフェイスドア、フット開口穴の開口面積を調整するフットドア、デフロスタ開口穴の開口面積を調整するデフロスタドア(いずれも図示せず)が配置されている。
これらのフェイスドア、フットドア、デフロスタドアは、開口穴モードを切り替える開口穴モード切替手段を構成するものであって、リンク機構等を介して、吹出口モードドア駆動用の電動アクチュエータに連結されて連動して回転操作される。なお、この電動アクチュエータも、空調制御装置40から出力される制御信号によって、その作動が制御される。
吹出口モード切替手段によって切り替えられる吹出口モードとしては、具体的に、フェイス吹出口を全開してフェイス吹出口から車室内乗員の上半身に向けて空気を吹き出すフェイスモード、フェイス吹出口とフット吹出口の両方を開口して車室内乗員の上半身と足元に向けて空気を吹き出すバイレベルモード、フット吹出口を全開するとともにデフロスタ吹出口を小開度だけ開口して、フット吹出口から主に空気を吹き出すフットモード、およびフット吹出口およびデフロスタ吹出口を同程度開口して、フット吹出口およびデフロスタ吹出口の双方から空気を吹き出すフットデフロスタモードがある。
さらに、乗員が操作パネルに設けられた吹出モード切替スイッチをマニュアル操作することによって、デフロスタ吹出口を全開してデフロスタ吹出口から車両フロント窓ガラス内面に空気を吹き出すデフロスタモードとすることもできる。
次に、本実施形態の電気制御部について説明する。空調制御装置40は、CPU、ROMおよびRAM等を含む周知のマイクロコンピュータとその周辺回路から構成されている。そして、そのROM内に記憶された空調制御プログラムに基づいて各種演算、処理を行い、その出力側に接続された各種制御対象機器11、14、15a、16、18、22、32、34等の作動を制御する。
また、空調制御装置40の入力側には、車室内温度(内気温)Trを検出する内気温検出手段としての内気センサ、車室外温度(外気温)Tamを検出する外気温検出手段としての外気センサ、車室内へ照射される日射量Asを検出する日射量検出手段としての日射センサ、圧縮機11吐出冷媒の吐出冷媒温度Tdを検出する吐出温度センサ、圧縮機11吐出冷媒の吐出冷媒圧力(高圧側冷媒圧力)Pdを検出する吐出圧力センサ、室内蒸発器20における冷媒蒸発温度(蒸発器温度)Tefinを検出する蒸発器温度センサ、混合空間から車室内へ送風される送風空気温度TAVを検出する送風空気温度センサ、室外熱交換器15の室外器温度Tsを検出する室外熱交換器温度センサ等の空調制御用のセンサ群が接続され、これらのセンサ群の検出信号が入力される。
なお、本実施形態の蒸発器温度センサは、室内蒸発器20の熱交換フィン温度を検出しているが、蒸発器温度センサとして、室内蒸発器20のその他の部位の温度を検出する温度検出手段を採用してもよい。
また、本実施形態の室外熱交換器温度センサは、室外熱交換器15の冷媒流出口における冷媒の温度を検出しているが、室外熱交換器温度センサとして、室外熱交換器15のその他の部位の温度を検出する温度検出手段を採用してもよい。
また、本実施形態では、送風空気温度TAVを検出する送風空気温度センサを設けているが、この送風空気温度TAVとして、蒸発器温度Tefin、吐出冷媒温度Td等に基づいて算出された値を採用してもよい。
さらに、空調制御装置40の入力側には、車室内前部の計器盤付近に配置された図示しない操作パネルが接続され、この操作パネルに設けられた各種操作スイッチからの操作信号が入力される。
操作パネルに設けられた各種操作スイッチとしては、具体的に、車両用空調装置1の自動制御運転を設定あるいは解除するオートスイッチ、車室内の冷房を行う冷房スイッチ(A/Cスイッチ)、送風機32の風量をマニュアル設定する風量設定スイッチ、車室内の目標温度Tsetを設定する目標温度設定手段としての温度設定スイッチ、吹出モードをマニュアル設定する吹出モード切替スイッチ等がある。
なお、本実施形態の空調制御装置40は、その出力側に接続された各種制御対象機器を制御する制御手段が一体に構成されたものであるが、それぞれの制御対象機器の作動を制御する構成(ハードウェアおよびソフトウェア)が、それぞれの制御対象機器の作動を制御する制御手段を構成している。
例えば、空調制御装置40のうち、圧縮機11の冷媒吐出能力(圧縮機11の回転数)を制御する構成(ハードウェアおよびソフトウェア)が吐出能力制御手段40aを構成し、冷媒回路切替手段(本実施形態では、ノズル部用開閉弁22)の作動を制御する構成が冷媒回路制御手段40bを構成している。もちろん、吐出能力制御手段40a、冷媒回路制御手段40b等を空調制御装置40に対して別体の制御装置として構成してもよい。
次に、上記構成における本実施形態の作動について説明する。前述の如く、本実施形態の車両用空調装置1では、冷房運転モード、除湿暖房運転モード、暖房運転モード、および強暖房運転モードでの運転を切り替えることができる。これらの各運転モードの切り替えは、空調制御プログラムが実行されることによって行われる。この空調制御プログラムは、操作パネルのオートスイッチが投入(ON)された際に実行される。
より具体的には、空調制御プログラムのメインルーチンでは、上述の空調制御用のセンサ群の検出信号および各種空調操作スイッチからの操作信号を読み込む。そして、読み込んだ検出信号および操作信号の値に基づいて、車室内へ吹き出す吹出空気の目標温度である目標吹出温度TAOを、以下数式F2に基づいて算出する。
TAO=Kset×Tset−Kr×Tr−Kam×Tam−Ks×As+C…(F2)
なお、Tsetは温度設定スイッチによって設定された車室内設定温度、Trは内気センサによって検出された車室内温度(内気温)、Tamは外気センサによって検出された外気温、Asは日射センサによって検出された日射量である。Kset、Kr、Kam、Ksは制御ゲインであり、Cは補正用の定数である。
さらに、操作パネルの冷房スイッチが投入されており、かつ、目標吹出温度TAOが予め定めた冷房基準温度αよりも低くなっている場合には、冷房運転モードでの運転を実行する。また、冷房スイッチが投入された状態で、目標吹出温度TAOが冷房基準温度α以上になっている場合には、除湿暖房運転モードでの運転を実行する。
一方、冷房スイッチが投入されておらず、かつ、圧縮機11の冷媒吐出能力(具体的には、圧縮機11の回転数Nc)が予め定めた基準冷媒吐出能力(具体的には、基準回転数KNc)未満の場合には、暖房運転モードでの運転を実行する。また、冷房スイッチが投入されておらず、かつ、圧縮機11の冷媒吐出能力が基準冷媒吐出能力以上となっている場合には、強暖房運転モードでの運転を実行する。
なお、圧縮機11の冷媒吐出能力とは、圧縮機11の吐出冷媒圧力Pdと圧縮機11の吐出冷媒流量Grとを積算した値を用いて定義することができる。従って、圧縮機11の冷媒吐出能力は圧縮機11の回転数Ncと強い相関を有している。そこで、本実施形態では、圧縮機11の冷媒吐出能力として、圧縮機11の回転数Ncを用いている。
これにより、本実施形態では、主に夏場のように比較的外気温が高い場合に、冷房運転モードでの運転を実行し、主に早春季あるいは初冬季等に、除湿暖房運転モードでの運転を実行するようにしている。さらに、主に冬場のように比較的外気温が低い場合に、暖房運転モードでの運転を実行し、冬季の低外気温時(例えば、外気温が−10℃以下となる場合)のように暖房運転モードよりも高い加熱能力で送風空気を加熱する必要がある場合に、強暖房運転モードでの運転を実行するようにしている。
以下に各運転モードにおける作動を説明する。
(a)冷房運転モード
冷房運転モードでは、空調制御装置40が、暖房用膨張弁14を全開とし、冷房用膨張弁16を減圧作用を発揮する絞り状態とし、暖房用開閉弁18を閉じ、ノズル部用開閉弁22を閉じる。従って、冷房運転モード時に構成されるサイクル構成は、特許請求の範囲に記載された非昇圧用冷媒回路に含まれる。
これにより、冷房運転モードでは、図1の白抜き矢印に示すように、圧縮機11→室内凝縮器12(→暖房用膨張弁14)→室外熱交換器15→冷房用膨張弁16→室内蒸発器20→アキュムレータ19→エジェクタ21の冷媒吸引口21d→エジェクタの21のディフューザ部21f→圧縮機11の順に冷媒が循環する冷凍サイクルが構成される。
さらに、この冷媒回路の構成で、空調制御装置40が、目標吹出温度TAO、およびセンサ群の検出信号等に基づいて、各種制御対象機器の作動状態(各種制御対象機器へ出力する制御信号)を決定する。
例えば、圧縮機11の冷媒吐出能力、すなわち圧縮機11の電動モータに出力される制御信号については、次のように決定される。まず、目標吹出温度TAOに基づいて、予め空調制御装置40に記憶された制御マップを参照して、室内蒸発器20の目標蒸発器吹出温度TEOを決定する。
具体的には、この制御マップでは、目標吹出温度TAOの低下に伴って、目標蒸発器吹出温度TEOが低下するように決定する。さらに、目標蒸発器吹出温度TEOは、室内蒸発器20の着霜を抑制可能に決定された基準着霜防止温度(例えば、1℃)以上となるように決定される。
そして、この目標蒸発器吹出温度TEOと蒸発器温度センサによって検出された蒸発器温度Tefinとの偏差に基づいて、フィードバック制御手法を用いて蒸発器温度Tefinが目標蒸発器吹出温度TEOに近づくように、圧縮機11の電動モータに出力される制御信号が決定される。
また、エアミックスドア34を駆動する電動アクチュエータへ出力される制御信号については、エアミックスドア34が室内凝縮器12側の空気通路を閉塞し、室内蒸発器20通過後の送風空気の全風量が室内凝縮器12を迂回して流れるように決定される。なお、冷房運転モードでは、送風空気温度TAVが目標吹出温度TAOに近づくようにエアミックスドア34の開度を制御してもよい。
また、冷房用膨張弁16へ出力される制御信号については、冷房用膨張弁16へ流入する冷媒の過冷却度が、COPが略最大値となるように定められた目標過冷却度に近づくように決定される。
そして、上記の如く決定された制御信号等を各種制御対象機器へ出力する。その後、車両用空調装置1の作動停止が要求されるまで、所定の制御周期毎に、上述の検出信号および操作信号の読み込み→目標吹出温度TAOの算出→各種制御対象機器の作動状態決定→制御電圧および制御信号の出力といった制御ルーチンが繰り返される。なお、このような制御ルーチンの繰り返しは、他の運転モード時にも同様に行われる。
従って、冷房運転モード時の冷凍サイクル装置10では、圧縮機11から吐出された高圧冷媒が、室内凝縮器12へ流入する。この際、エアミックスドア34が室内凝縮器12側の空気通路を閉塞しているので、室内凝縮器12へ流入した冷媒は、殆ど送風空気と熱交換することなく室内凝縮器12から流出する。
室内凝縮器12から流出した冷媒は、全開となっている暖房用膨張弁14を介して、室外熱交換器15の一方の冷媒流入出口へ流入する。室外熱交換器15へ流入した冷媒は、室外熱交換器15にて送風ファン15aから送風された外気へ放熱する。
室外熱交換器15から流出した冷媒は、暖房用開閉弁18が閉じているので、第2分岐部13bを介して、冷房用膨張弁16へ流入して低圧冷媒となるまで減圧される。この際、冷房用膨張弁16の弁開度は、冷房用膨張弁16へ流入する冷媒の過冷却度が目標過冷却度に近づくように調整される。
冷房用膨張弁16にて減圧された冷媒は、室内蒸発器20へ流入し、送風機32から送風された送風空気と熱交換して蒸発する。これにより、送風空気が冷却されて車室内の冷房が実現される。室内蒸発器20から流出した冷媒は、合流部13cを介してアキュムレータ19へ流入して気液分離される。
アキュムレータ19にて分離された気相冷媒は、エジェクタ21の冷媒吸引口21dからエジェクタ21の内部へ流入する。エジェクタ21の内部へ流入した冷媒は、エジェクタ21のディフューザ部21fから流出し、圧縮機11へ吸入されて再び圧縮される。
以上の如く、冷房運転モードでは、室内蒸発器20にて冷却された送風空気を車室内へ吹き出すことによって、車室内の冷房を行うことができる。
ここで、冷房運転モードのように、ノズル部用開閉弁22が閉じて、冷凍サイクル装置10が非昇圧用冷媒回路に切り替えられている運転モードでは、エジェクタ21のノズル部21aから冷媒が噴射されることがない。このため、冷媒吸引口21dからエジェクタ21の内部へ流入した吸引冷媒が噴射冷媒と合流して増速することもない。
従って、非昇圧用冷媒回路に切り替えられている運転モードでは、ディフューザ部21fにて、吸引冷媒よりも増速した混合冷媒の運動エネルギを圧力エネルギへ変換することができない。その結果、非昇圧用冷媒回路に切り替えられている際のエジェクタ21は、充分な昇圧作用を発揮することなく、冷媒を冷媒吸引口21dからディフューザ部21fの出口へ導く冷媒通路として機能している。
(b)除湿暖房運転モード
除湿暖房運転モードでは、空調制御装置40が、暖房用膨張弁14および冷房用膨張弁16を全開状態あるいは絞り状態とし、暖房用開閉弁18を閉じ、ノズル部用開閉弁22を閉じる。従って、除湿暖房運転モード時に構成されるサイクル構成は、特許請求の範囲に記載された非昇圧用冷媒回路に含まれる。
これにより、除湿暖房運転モードでは、図1の斜線ハッチング付き矢印に示すように、圧縮機11→室内凝縮器12→暖房用膨張弁14→室外熱交換器15→冷房用膨張弁16→室内蒸発器20→アキュムレータ19→エジェクタ21の冷媒吸引口21d→エジェクタの21のディフューザ部21f→圧縮機11の順に冷媒が循環する冷凍サイクルが構成される。
つまり、除湿暖房運転モードでは、実質的に冷房運転モードと同様の順で冷媒が循環する冷凍サイクルが構成される。さらに、この冷媒回路の構成で、空調制御装置40が、目標吹出温度TAO、およびセンサ群の検出信号等に基づいて、各種制御対象機器の作動状態(各種制御対象機器へ出力する制御信号)を決定する。
例えば、圧縮機11の電動モータに出力される制御信号については、冷房運転モードと同様に決定される。また、エアミックスドア34のサーボモータへ出力される制御信号については、エアミックスドア34が冷風バイパス通路35を閉塞し、室内蒸発器20通過後の送風空気の全風量が室内凝縮器12側の空気通路を通過するように決定される。
また、暖房用膨張弁14および冷房用膨張弁16については、目標吹出温度TAOに応じて変更している。具体的には、空調制御装置40は、目標吹出温度TAOの上昇に伴って、暖房用膨張弁14の絞り開度を減少させるとともに、冷房用膨張弁16の絞り開度を増加させる。これにより、除湿暖房運転モードでは、以下に説明する第1モードから第4モードの4段階のモードを実行することができる。
(b−1)第1モード
第1モードは、除湿暖房運転モード時に、目標吹出温度TAOが冷房基準温度α以上、かつ、予め定めた第1基準温度以下となっている場合に実行される。
第1モードでは、空調制御装置40が、暖房用膨張弁14の絞り開度を全開とし、冷房用膨張弁16を絞り状態とする。従って、第1モードでは、サイクル構成は冷房運転モードと全く同様となるものの、エアミックスドア34が室内凝縮器12側の空気通路を全開としているので、冷房運転モードと同様に室内蒸発器20にて冷却された送風空気を室内凝縮器12にて再加熱することができる。
従って、第1モード時には、室内蒸発器20にて冷却されて除湿された送風空気を、室内凝縮器12にて加熱して車室内へ吹き出すことができる。これにより、車室内の除湿暖房を行うことができる。
(b−2)第2モード
第2モードは、除湿暖房運転モード時に、目標吹出温度TAOが第1基準温度より高く、かつ、予め定めた第2基準温度以下となった場合に実行される。第2モードでは、空調制御装置40が、暖房用膨張弁14を絞り状態とし、冷房用膨張弁16の絞り開度を第1モード時よりも増加させる。
従って、第2モード時には、第1モードと同様に、室内蒸発器20にて冷却されて除湿された送風空気を、室内凝縮器12にて加熱して車室内へ吹き出すことができる。これにより、車室内の除湿暖房を行うことができる。
この際、第2モードでは、暖房用膨張弁14を絞り状態としているので、第1モードに対して、室外熱交換器15へ流入する冷媒の温度を低下させることができる。従って、室外熱交換器15における冷媒の温度と外気温との温度差を縮小して、室外熱交換器15における冷媒の放熱量を低減できる。
その結果、第1モードに対して、サイクルを循環する冷媒循環流量を増加させることなく、室内凝縮器12における冷媒圧力を上昇させることができ、第1モードよりも室内凝縮器12から吹き出される温度を上昇させることができる。
(b−3)第3モード
第3モードは、除湿暖房運転モード時に、目標吹出温度TAOが第2基準温度より高く、かつ、予め定めた第3基準温度以下となった場合に実行される。第3モードでは、空調制御装置40が、暖房用膨張弁14の絞り開度を第2モード時よりも減少させ、冷房用膨張弁16の絞り開度を第2モード時よりも増加させる。
従って、第3モード時には、第1、第2モードと同様に、室内蒸発器20にて冷却されて除湿された送風空気を、室内凝縮器12にて加熱して車室内へ吹き出すことができる。これにより、車室内の除湿暖房を行うことができる。
この際、第3モードでは、暖房用膨張弁14の絞り開度を減少させることによって、室外熱交換器15を蒸発器として機能させているので、冷媒が室外熱交換器15にて吸熱した熱を室内凝縮器12にて送風空気へ放熱させることができる。従って、第2モードよりも室内凝縮器12から吹き出される温度を上昇させることができる。
その結果、第2モードに対して、サイクルを循環する冷媒循環流量を増加させることなく、室内凝縮器12における冷媒圧力を上昇させることができ、第2モードよりも室内凝縮器12から吹き出される温度を上昇させることができる。
(b−4)第4モード
第4モードは、除湿暖房運転モード時に、目標吹出温度TAOが第3基準温度より高くなった場合に実行される。第4モードでは、空調制御装置40が、暖房用膨張弁14の絞り開度を第3モード時よりも減少させ、冷房用膨張弁16を全開とする。
従って、第4モード時には、第1〜第3モードと同様に、室内蒸発器20にて冷却されて除湿された送風空気を、室内凝縮器12にて加熱して車室内へ吹き出すことができる。これにより、車室内の除湿暖房を行うことができる。
この際、第4モードでは、第3モードと同様に、室外熱交換器15を蒸発器として機能させるとともに、第3モードよりも暖房用膨張弁14の絞り開度を縮小させているので、室外熱交換器15における冷媒蒸発温度を低下させることができる。従って、第3モードよりも室外熱交換器15における冷媒の温度と外気温との温度差を拡大させて、室外熱交換器15における冷媒の吸熱量を増加させることができる。
その結果、第3モードに対して、サイクルを循環する冷媒循環流量を増加させることなく、室内凝縮器12における冷媒圧力を上昇させることができ、第3モードよりも室内凝縮器12から吹き出される温度を上昇させることができる。
以上の如く、除湿暖房運転モードでは、目標吹出温度TAOに応じて暖房用膨張弁14および冷房用膨張弁16の絞り開度を変更して、室外熱交換器15を放熱器あるいは蒸発器として機能させることで、車室内へ吹き出される送風空気の温度を調整することができる。
(c)暖房運転モード
暖房運転モードでは、空調制御装置40が、暖房用膨張弁14を絞り状態とし、冷房用膨張弁16を全閉とし、暖房用開閉弁18を開き、ノズル部用開閉弁22を閉じる。従って、暖房運転モード時に構成されるサイクル構成は、特許請求の範囲に記載された非昇圧用冷媒回路に含まれる。
これにより、暖房運転モードでは、図1の網掛けハッチング付き矢印に示すように、圧縮機11→室内凝縮器12→暖房用膨張弁14→室外熱交換器15(→アキュムレータ側通路17)→アキュムレータ19→エジェクタ21の冷媒吸引口21d→エジェクタの21のディフューザ部21f→圧縮機11の順に冷媒が循環する冷凍サイクルが構成される。
さらに、この冷媒回路の構成で、空調制御装置40が、目標吹出温度TAO、およびセンサ群の検出信号等に基づいて、各種制御対象機器の作動状態(各種制御対象機器へ出力する制御信号)を決定する。
例えば、圧縮機11の冷媒吐出能力、すなわち圧縮機11の電動モータに出力される制御信号については、次のように決定される。まず、目標吹出温度TAOに基づいて、予め空調制御装置40に記憶された制御マップを参照して、室内凝縮器12の目標凝縮器温度TCOを決定する。具体的には、この制御マップでは、目標吹出温度TAOの上昇に伴って、目標凝縮器温度TCOが上昇するように決定する。
そして、この目標凝縮器温度TCOと吐出温度センサによって検出された吐出冷媒温度Tdとの偏差に基づいて、フィードバック制御手法を用いて吐出冷媒温度Tdが目標凝縮器温度TCOに近づくように、さらに、高圧側冷媒圧力Pdの異常上昇が抑制されるように、圧縮機11の電動モータに出力される制御信号が決定される。
また、エアミックスドア34のサーボモータへ出力される制御信号については、エアミックスドア34が冷風バイパス通路35を閉塞し、室内蒸発器20通過後の送風空気の全風量が室内凝縮器12側の空気通路を通過するように決定される。
また、暖房用膨張弁14へ出力される制御信号については、暖房用膨張弁14へ流入する冷媒の過冷却度が、COPが略最大値となるように定められた目標過冷却度に近づくように決定される。
従って、暖房運転モード時の冷凍サイクル装置10では、圧縮機11から吐出された高圧冷媒が室内凝縮器12に流入する。室内凝縮器12に流入した冷媒は、送風機32から送風されて室内蒸発器20を通過した送風空気と熱交換して放熱する。これにより、送風空気が加熱される。
室内凝縮器12から流出した冷媒は、暖房用膨張弁14に流入して低圧冷媒となるまで減圧される。この際、暖房用膨張弁14の弁開度は、暖房用膨張弁14へ流入する冷媒の過冷却度が目標過冷却度に近づくように調整される。そして、暖房用膨張弁14にて減圧された低圧冷媒は、室外熱交換器15へ流入して、送風ファン15aから送風された外気から吸熱する。
室外熱交換器15から流出した冷媒は、暖房用開閉弁18が開き、冷房用膨張弁16が全閉となっているので、アキュムレータ側通路17を介して、アキュムレータ19へ流入して気液分離される。アキュムレータ19にて分離された気相冷媒は、冷房運転モードおよび除湿暖房運転モードと同様に、エジェクタ21を介して、圧縮機11へ吸入されて再び圧縮される。
以上の如く、暖房運転モードでは、室内凝縮器12にて加熱された送風空気を車室内へ吹き出すことによって、車室内の暖房を行うことができる。
ここで、本実施形態の冷凍サイクル装置10では、暖房運転モード時に、冷媒が室外熱交換器15にて吸熱対象流体である外気から吸熱した熱を、室内凝縮器12にて送風空気へ放熱させることで、送風空気を加熱している。
このようなサイクル構成では、室外熱交換器15における冷媒蒸発温度を外気温よりも低下させなければならないので、例えば、低外気温時等には、室外熱交換器15における冷媒蒸発温度を極低温(例えば、−10℃以下)となるまで低下させなければならないことがある。
ところが、室外熱交換器15における冷媒蒸発温度を極低温となるまで低下させてしまうと、室外熱交換器15から流出して圧縮機11へ吸入される吸入冷媒の圧力が低下してしまうため、吸入冷媒の密度が低下してしまう。その結果、圧縮機11から吐出されて室内凝縮器12へ流入する放熱器側冷媒流量Gcが減少して、室内凝縮器12における送風空気の加熱能力が低下してしまう。
なお、室内凝縮器12における送風空気(加熱対象流体)の加熱能力は、室内凝縮器12入口側冷媒のエンタルピから室内凝縮器12出口側冷媒のエンタルピを減算したエンタルピ差と、室内凝縮器12を流通する流量(放熱器側冷媒流量Gc)とを積算した値を用いて定義することができる。
そこで、本実施形態の冷凍サイクル装置10では、圧縮機11の冷媒吐出能力が基準冷媒吐出能力以上となっている場合に、室外熱交換器15における冷媒蒸発温度を極低温となるまで低下させなければならない運転条件になっているものとして、以下に説明する強暖房運転モードでの運転を実行する。
(d)強暖房運転モード
強暖房運転モードでは、空調制御装置40が、暖房用膨張弁14を絞り状態とし、冷房用膨張弁16を全閉とし、暖房用開閉弁18を開き、ノズル部用開閉弁22を開く。従って、本実施形態の強暖房運転モード時に構成されるサイクル構成は、特許請求の範囲に記載された昇圧用冷媒回路に含まれる。
これにより、暖房運転モードでは、図1の黒塗り矢印に示すように、圧縮機11→室内凝縮器12→暖房用膨張弁14→室外熱交換器15(→アキュムレータ側通路17)→アキュムレータ19→エジェクタ21の冷媒吸引口21dの順に冷媒が流れるとともに、圧縮機11→エジェクタ21のノズル部21a→エジェクタの21のディフューザ部21f→圧縮機11の順に冷媒が流れる冷凍サイクルが構成される。
さらに、この冷媒回路の構成で、空調制御装置40が、目標吹出温度TAO、およびセンサ群の検出信号等に基づいて、暖房運転モードと同様に、各種制御対象機器の作動状態(各種制御対象機器へ出力する制御信号)を決定する。
従って、強暖房運転モード時の冷凍サイクル装置10では、図3のモリエル線図に示すようにサイクルを循環する冷媒の状態が変化する。具体的には、圧縮機11から吐出された高圧冷媒(図3のa点)の流れが、第1分岐部13aにて分岐される。そして、分岐された一方の冷媒が室内凝縮器12へ流入する。
室内凝縮器12へ流入した冷媒は、送風機32から送風されて室内蒸発器20を通過した送風空気と熱交換して放熱する(図3のa点→b点)。これにより、送風空気が加熱される。室内凝縮器12から流出した冷媒は、暖房運転モードと同様に、暖房用膨張弁14に流入して低圧冷媒となるまで減圧される(図3のb点→c点)。
暖房用膨張弁14にて減圧された低圧冷媒は、暖房運転モードと同様に、室外熱交換器15へ流入して送風ファン15aから送風された外気から吸熱して蒸発する。さらに、室外熱交換器15から流出した冷媒は、アキュムレータ19へ流入して気液分離される(図3のc点→d点)。
一方、第1分岐部13aにて分岐された他方の冷媒(圧縮機11から吐出された冷媒のうちの一部の冷媒)は、エジェクタ21のノズル部21aへ流入し、等エントロピ的に減圧されて噴射される(図3のa点→e点)。そして、この噴射冷媒の吸引作用によって、アキュムレータ19にて分離された気相冷媒(図3のd点)がエジェクタ21の冷媒吸引口21dから吸引される。
さらに、ノズル部21aから噴射された噴射冷媒および冷媒吸引口21dから吸引された吸引冷媒が、ディフューザ部21fへ流入する(図3のe点→f点、d点→f点)。ディフューザ部21fでは、冷媒通路面積の拡大により、混合冷媒の速度エネルギが圧力エネルギに変換される。
これにより、噴射冷媒と吸引冷媒との混合冷媒の圧力が上昇する(図3のf点→g点)。エジェクタ21のディフューザ部21fから流出した冷媒(図3のg点)は、圧縮機11に吸入されて再び圧縮される。
以上の如く、強暖房運転モードでは、室内凝縮器12にて加熱された送風空気を車室内へ吹き出すことによって、車室内の暖房を行うことができる。
さらに、強暖房運転モードでは、ノズル部用開閉弁22が開き、冷凍サイクル装置10が昇圧用冷媒回路に切り替えられているので、エジェクタ21の昇圧作用によって、圧縮機11へ吸入される吸入冷媒の圧力(図3のg点)を、アキュムレータ19内の冷媒圧力(図3のd点)よりも上昇させ(すなわち、蒸発器として機能する室外熱交換器15における冷媒蒸発圧力よりも上昇させ)、吸入冷媒の密度を上昇させることができる。
従って、強暖房運転モードでは、外気の温度が低下して室外熱交換器15における冷媒蒸発温度を極低温となるまで低下させなければならない運転条件であっても、室内凝縮器12へ流入する放熱器側冷媒流量Gcが減少してしまうことを抑制できる。つまり、本実施形態の冷凍サイクル装置10によれば、吸熱対象流体である外気の温度が低下しても、室内凝縮器12における送風空気の加熱能力が低下してしまうことを抑制できる。
さらに、本発明者らの検討によれば、強暖房運転モード時に、吐出冷媒流量Grに対するエジェクタ側冷媒流量Gnの流量比(Gr/Gn)を変化させると、図4に示すように、放熱器側冷媒流量Gcの増加率が変化することが判っている。
より詳細には、図4において、流量比(Gr/Gn)=0は、圧縮機11から吐出された冷媒の全流量を室内凝縮器12側へ流出させることを意味している。そこで、図4の縦軸では、流量比(Gr/Gn)=0における冷媒流量を1として、放熱器側冷媒流量Gcの増加率を示している。
図4から明らかなように、強暖房運転モードでは、流量比(Gr/Gn)が0より大きく0.7より小さい範囲で、放熱器側冷媒流量Gcの増加率が1以上となり、圧縮機11から吐出された冷媒の全流量を室内凝縮器12側へ流出させる場合よりも、第1分岐部13aから室内凝縮器12側へ流出する放熱器側冷媒流量Gcが増加する。
これに対して、本実施形態では、前述の如く、強暖房運転モード時に、流量比(Gr/Gn)が上述の数式F1を満足するように、エジェクタ21のノズル部21aの減圧特性(流量特性)を決定している。従って、強暖房運転モード時には、確実に放熱器側冷媒流量Gcを増加させることができ、室内凝縮器12における加熱能力が低下してしまうことを確実に抑制できる。
また、本実施形態の暖房運転モード時あるいは強暖房運転モード時のように、室内凝縮器12にて送風空気を加熱する冷凍サイクル装置10では、圧縮機11の冷媒吐出能力(具体的には、圧縮機11の回転数)を増加させるに伴って、蒸発器として機能する室外熱交換器15における冷媒蒸発温度も低下する。
従って、本実施形態の如く、圧縮機11の回転数Ncが予め定めた基準回転数KNc以上となっている際に、暖房運転モードの冷媒回路から強暖房運転モードの冷媒回路へ切り替える(すなわち、非昇圧用冷媒回路から昇圧用冷媒回路へ切り替える)ことによって、室外熱交換器15における冷媒蒸発温度が極低温となるまで低下する運転条件時に、強暖房運転モードの冷媒回路へ切り替える制御を容易に実現することができる。
さらに、圧縮機11の冷媒吐出能力が基準冷媒吐出能力以上となっている際に、暖房運転モードの冷媒回路から強暖房運転モードの冷媒回路へ切り替えることで、例えば、車両用空調装置1の起動時に急速暖房を行う場合のように、冷凍サイクル装置10の熱負荷が増加したときにも、放熱器側冷媒流量Gcを増加させて、室内凝縮器12における送風空気の加熱能力を向上させることができる。
また、本実施形態の冷凍サイクル装置10では、ノズル部21aを流通する冷媒の冷媒流路を開閉する開閉手段として、ノズル部21aの冷媒流れ上流側に配置されたノズル部用開閉弁22を採用しているので、極めて容易に冷媒回路切替手段を構成することができる。
また、本実施形態の冷凍サイクル装置10では、気液分離手段としてのアキュムレータ19を備え、アキュムレータ19の気相冷媒流出口にエジェクタ21の冷媒吸引口21dが接続されているので、エジェクタ21の冷媒流れ下流側に接続される圧縮機11の液圧縮を確実に防止することができる。
(第2実施形態)
本実施形態では、図5の全体構成図に示すように、第1実施形態の冷凍サイクル装置10に対して、バイパス通路23およびバイパス通路用開閉弁24を追加した例を説明する。なお、図5では、第1実施形態と同一もしくは均等部分には同一の符号を付している。このことは、以下の図面においても同様である。
より具体的には、バイパス通路23は、アキュムレータ19の気相冷媒流出口から流出した気相冷媒を、エジェクタ21を迂回させて圧縮機11の吸入口側へ導く冷媒配管であり、バイパス通路用開閉弁24は、バイパス通路23を開閉する開閉手段である。
このバイパス通路23としては、比較的管径の大きい冷媒配管が採用されており、冷媒がバイパス通路23を流通する際に生じる圧力損失は、冷媒がアキュムレータ19の気相冷媒流出口からエジェクタ21を介して圧縮機11の吸入口へ至る冷媒流路を流通する際に生じる圧力損失よりも小さい。
また、バイパス通路用開閉弁24は、非通電時開口型(いわゆるノーマルオープン型)の電磁弁で構成されており、空調制御装置40から出力される制御電圧によって、その作動が制御される。そして、本実施形態では、ノズル部用開閉弁22およびバイパス通路用開閉弁24によって、冷媒回路切替手段を構成している。
より詳細には、空調制御装置40が、ノズル部用開閉弁22を開き、かつ、バイパス通路用開閉弁24を閉じることによって、昇圧用冷媒回路に切り替えることができる。また、ノズル部用開閉弁22を閉じ、かつ、バイパス通路用開閉弁24を開くことによって、非昇圧用冷媒回路に切り替えることができる。その他の構成は、第1実施形態と同様である。
次に、上記構成における本実施形態の作動について説明する。本実施形態では、強暖房運転モード時に、空調制御装置40が、ノズル部用開閉弁22を開くとともに、バイパス通路用開閉弁24を閉じる。さらに、他の運転モード時には、冷媒回路制御手段40bが、ノズル部用開閉弁22を閉じるとともに、バイパス通路用開閉弁24を開く。その他の作動は、第1実施形態と同様である。
従って、本実施形態の冷凍サイクル装置10のように、ノズル部用開閉弁22およびバイパス通路用開閉弁24によって、冷媒回路切替手段を構成しても、実質的に第1実施形態の各運転モードと同様の冷媒回路に切り替えることができ、第1実施形態と同様に作動させることができる。その結果、第1実施形態の冷凍サイクル装置10と同様の効果を得ることができる。
さらに、本実施形態の冷凍サイクル装置10では、強暖房運転モード以外の運転モードの冷媒回路に切り替えられた際に、アキュムレータ19の気相冷媒流出口から流出した気相冷媒を、バイパス通路23を介して圧縮機11の吸入口側へ導いている。従って、エジェクタ21を介して圧縮機11の吸入口側へ導く冷媒回路よりも、サイクルを循環する冷媒に生じる圧力損失を低減させることができる。その結果、圧縮機11の消費動力を低減させて、サイクルの成績係数(COP)を向上させることができる。
(第3実施形態)
本実施形態では、図6の全体構成図に示すように、第1実施形態の冷凍サイクル装置10に対して、冷媒回路切替手段であるノズル部用開閉弁22を廃止して、エジェクタ21のノズル部21aへ流入させる冷媒のエジェクタ側冷媒流量Gnを調整する流量調整弁25を設けた例を説明する。
流量調整弁25の基本的構成は、冷房用膨張弁16と同様であり、全閉機能付きの可変絞り機構で構成されている。さらに、流量調整弁25は、エジェクタ側冷媒流量Gnを調整することによって、吐出冷媒流量Grに対するエジェクタ側冷媒流量Gnの流量比(Gn/Gr)を変化させることができる。従って、本実施形態の流量調整弁25は、流量比調整手段を構成している。
また、この流量調整弁25は、空調制御装置40から出力される制御電圧によって、その作動が制御される。従って、本実施形態では、空調制御装置40のうち、流量調整弁25の作動を制御する構成(ハードウェアおよびソフトウェア)が流量比制御手段40cを構成している。その他の構成は第1実施形態と同様である。
次に、上記構成における本実施形態の作動について説明する。本実施形態の冷凍サイクル装置10の冷房運転モードでは、空調制御装置40が、暖房用膨張弁14を全開とし、冷房用膨張弁16を減圧作用を発揮する絞り状態とし、暖房用開閉弁18を閉じ、流量調整弁25を全閉とする。従って、冷房運転モード時には、第1実施形態と全く同様のサイクルを構成して、第1実施形態と全く同様に作動させることができる。
また、除湿暖房運転モードでは、空調制御装置40が、暖房用膨張弁14および冷房用膨張弁16を全開状態あるいは絞り状態とし、暖房用開閉弁18を閉じ、流量調整弁25を全閉とする。従って、除湿暖房運転モード時には、第1実施形態と全く同様のサイクルを構成して、第1実施形態と全く同様に作動させることができる。
また、本実施形態の冷凍サイクル装置10では、強暖房運転モードは設定されておらず、オートスイッチが投入(ON)された状態で、冷房スイッチが投入されていなければ、圧縮機11の冷媒吐出能力によらず、暖房運転モードでの運転が実行される。
本実施形態の暖房運転モードでは、空調制御装置40が、暖房用膨張弁14を絞り状態とし、冷房用膨張弁16を全閉とし、暖房用開閉弁18を開く。さらに、空調制御装置40は、実際に室内凝縮器12へ流入させる冷媒の放熱器側冷媒流量Gcが、流量比(Gn/Gr)が0となっている際の放熱器側冷媒流量Gc以上となるように(すなわち、放熱器側冷媒流量Gcの増加率が1以上となるように)、流量調整弁25の作動を制御する。
ここで、前述の図4で説明したように、外気の温度が低下して室外熱交換器15における冷媒蒸発温度を極低温となるまで低下させなければならない運転条件では、流量比(Gn/Gr)を適切に調整することで、放熱器側冷媒流量Gcを増加させることができる。ところが、流量比(Gn/Gr)を増加させ過ぎると、放熱器側冷媒流量Gcが低下してしまう。
つまり、放熱器側冷媒流量Gcの増加率には、図4に示すように、流量比(Gn/Gr)の変化に応じて、極大値(ピーク値)が存在している。そこで、本実施形態の空調制御装置40は、放熱器側冷媒流量Gcの増加率が極大値に近づくように、流量調整弁25の作動を制御している。
なお、本実施形態における放熱器側冷媒流量Gcの増加率の極大値とは、流量比(Gn/Gr)が取り得る値の範囲内で変化した際の放熱器側冷媒流量Gcの増加率の最大値を意味している。このため、例えば、圧縮機11の冷媒吐出能力が比較的低くなる場合等には、流量比(Gn/Gr)=0の時に、放熱器側冷媒流量Gcの増加率が極大値をとることもある。
従って、本実施形態の空調制御装置40では、圧縮機11の冷媒吐出能力(具体的には、圧縮機11の回転数Nc)に基づいて、予め空調制御装置40に記憶された制御マップを参照して、放熱器側冷媒流量Gcの増加率が極大値に近づくように設定された目標流量比を決定する。さらに、流量比(Gn/Gr)が目標流量比に近づくように、流量調整弁25の作動を制御している。
このような制御を行うことで、例えば、圧縮機11の回転数Ncが基準回転数Ncより低くなっている際には、流量調整弁25を全閉として流量比(Gn/Gr)=0とし、第1実施形態の暖房運転モードと全く同様のサイクルを構成して、第1実施形態の暖房運転モードと同様に作動させることができる。
また、圧縮機11の回転数Ncが基準回転数Nc以上となっている際には、例えば、流量比(Gn/Gr)が0.4程度となるように流量調整弁25の開度を調整し、第1実施形態の強暖房運転モードと全く同様のサイクルを構成して、第1実施形態の強暖房運転モードと同様に作動させることができる。
従って、本実施形態の冷凍サイクル装置10によれば、吸熱対象流体である外気の温度が低下しても、エジェクタ21の昇圧作用によって圧縮機11吸入冷媒の密度を上昇させることができる。その結果、室内凝縮器12における加熱能力が低下してしまうことを抑制でき、第1実施形態と同様の効果を得ることができる。
さらに、本実施形態の冷凍サイクル装置10によれば、放熱器側冷媒流量Gcの増加率が極大値に近づくように、流量比調整手段である流量調整弁25の作動を制御しているので、室内凝縮器12における加熱能力が低下してしまうことを効果的に抑制できる。
(他の実施形態)
本発明は上述の実施形態に限定されることなく、本発明の趣旨を逸脱しない範囲内で、以下のように種々変形可能である。
(1)上述の第1、第2実施形態では、暖房運転モードと強暖房運転モードとを切替可能とした冷凍サイクル装置10について説明したが、本発明に係る冷凍サイクル装置10は、少なくとも強暖房運転モードの運転を実行可能に構成されたものであればよい。従って、強暖房運転モードでの運転のみを実行する冷凍サイクル装置10では、冷媒回路切替手段を廃止してもよい。また、第2実施形態では、ノズル部用開閉弁22を廃止して、バイパス通路用開閉弁24によって冷媒回路を切り替えるようにしてもよい。
(2)上述の第1実施形態では、冷媒回路切替手段として、第1分岐部13aの他方の冷媒流出口とエジェクタ21のノズル部21aの冷媒流入口とを接続する冷媒通路を開閉する開閉手段(ノズル部用開閉弁22)を採用した例を説明したが、冷媒回路切替手段はこれに限定されない。
すなわち、この種の開閉手段としては、ノズル部21aを流通する冷媒の冷媒流路を開閉することによって、ノズル部21aから冷媒が噴射される状態と噴射されない状態とを切替可能なものであれば、他の形式のものを採用してもよい。例えば、ノズル部21aの内部に形成された冷媒通路を開閉する開閉手段を採用し、冷媒回路切替手段とエジェクタ21とを一体的に構成してもよい。
上述の第2実施形態では、冷媒回路切替手段として、バイパス通路23を開閉する開閉手段(バイパス通路用開閉弁24)を採用した例を採用したが、冷媒回路切替手段はこれに限定されない。例えば、この種の開閉手段として、バイパス通路23の入口側に配置されて、アキュムレータ19から流出した気相冷媒をエジェクタ21の冷媒吸引口21d側へ流出させる冷媒回路とバイパス通路23側へ流出させる冷媒回路とを切り替える三方弁を採用してもよい。
(3)上述の第3実施形態では、流量比調整手段として、第1分岐部13aの他方の冷媒流出口とエジェクタ21のノズル部21aの冷媒流入口とを接続する冷媒通路に配置された流量調整弁25を採用した例を説明したが、流量比調整手段はこれに限定されない。例えば、エジェクタ21のノズル部21aとして冷媒通路面積を調整可能な可変ノズルを採用して、流量比調整手段とエジェクタ21とを一体的に構成してもよい。
具体的には、図7に示すように、ノズル部21aの冷媒通路内に配置されて喉部21cの冷媒通路面積を変化させるニードル弁21g、およびニードル弁21gをノズル部21aの軸方向に変位させる駆動手段としてのステッピングモータ21hを有するエジェクタ21等を採用することができる。
さらに、ニードル弁21gをノズル部21aの冷媒通路の内周壁面に当接させて、ノズル部21aの冷媒通路を閉塞することができれば、上述した冷媒回路切替手段一体型のエジェクタとして用いることができる。また、図8に示す変形例のように、ニードル弁21gとして喉部21cよりも冷媒流れ下流側に配置されて、喉部21cよりも冷媒流れ下流側から喉部21cへ向かって先細る形状のものを採用してもよい。
(4)上述の第1、第2実施形態では、冷媒回路制御手段40bが、圧縮機11の冷媒吐出能力が基準冷媒吐出能力以上となった際に、非昇圧用冷媒回路から昇圧用冷媒回路へ切り替えるようにした例を説明したが、冷媒回路制御手段40bによる冷媒回路切替手段の制御はこれに限定されない。
例えば、冷媒回路制御手段40bは、外気温Tamが予め定めた基準外気温KTam以下となった際に、非昇圧用冷媒回路から昇圧用冷媒回路へ切り替えるものであってもよい。また、冷媒回路制御手段40bは、暖房運転モード時に、室内凝縮器12(放熱器)にて加熱された送風空気(加熱対象流体)の温度TAVが、目標吹出温度TAO以下となった際に、非昇圧用冷媒回路から昇圧用冷媒回路へ切り替えるものであってもよい。
(5)上述の実施形態では、本発明に係る冷凍サイクル装置10を電気自動車の車両用空調装置1に適用した例を説明したが、冷凍サイクル装置10の適用はこれに限定されない。例えば、内燃機関(エンジン)から車両走行用の駆動力を得る通常の車両や、内燃機関と走行用電動モータとの双方から車両走行用の駆動力を得るハイブリッド車両の空調装置に適用してもよい。また、車両用に限定されることなく、定置型空調装置、冷温保存庫、液体加熱冷却装置等に適用してもよい。
(6)冷凍サイクル装置10を構成する各構成機器は、上述の実施形態に開示されたものに限定されない。
具体的には、上述の実施形態では、圧縮機11として電動圧縮機を採用した例を説明したが、内燃機関を有する車両に適用する場合は、圧縮機11として、プーリ、ベルト等を介して車両走行用エンジンから伝達された回転駆動力によって駆動されるエンジン駆動式のものを採用してもよい。
この種のエンジン駆動式の圧縮機としては、吐出容量の変化により冷媒吐出能力を調整できる可変容量型圧縮機、あるいは電磁クラッチの断続により圧縮機の稼働率を変化させて冷媒吐出能力を調整する固定容量型圧縮機を採用することができる。
また、上述の実施形態では、室内凝縮器12の冷媒出口側に暖房用膨張弁14を配置した例を説明したが、この暖房用膨張弁14に代えて、減圧手段としてオリフィス、キャピラリチューブあるいはノズル等からなる暖房用固定絞りを採用し、さらに、室内凝縮器12から流出した冷媒を暖房用固定絞りを迂回させて室外熱交換器15側へ導く固定絞り迂回通路、および固定絞り迂回通路を開閉する開閉手段を採用してもよい。
この場合は、少なくとも冷房運転モード時には、開閉手段が固定絞り迂回通路を開き、暖房運転モードおよび強暖房運転モード時には、開閉手段が固定絞り迂回通路を閉じるようにすればよい。
また、上述の実施形態では、アキュムレータ19を設けた例を説明したが、このアキュムレータ19は、本発明の冷凍サイクル装置10による加熱能力向上効果を得るための必須の構成ではない。従って、アキュムレータ19を廃止してもよい。つまり、エジェクタ21の冷媒吸引口21dから気液二相冷媒や過熱度を有する気相冷媒を吸引してもよい。
また、上述の実施形態では、エジェクタ21のノズル部21aおよびボデー部21bを金属で形成した例を説明したが、それぞれの構成部材の機能を発揮可能であれば材質は限定されない。従って、これらの構成部材を樹脂等にて形成してもよい。
さらに、エジェクタ21のディフューザ部21fの冷媒出口と圧縮機11の冷媒吸入口が直接接続されるように、エジェクタ21と圧縮機11とを一体化してもよい。さらに、エジェクタ21の冷媒吸引口21dとアキュムレータ19の気相冷媒流出口が直接接続されるように、エジェクタ21とアキュムレータ19とを一体化してもよい。
(7)上述の実施形態では、冷媒としてR134aあるいはR1234yfを採用可能であることを説明したが、冷媒はこれに限定されない。例えば、R600a、R410A、R404A、R32、R1234yfxf、R407C等を採用することができる。または、これらの冷媒のうち複数種を混合させた混合冷媒等を採用してもよい。
11 圧縮機
12 室内凝縮器(放熱器)
14 暖房用膨張弁
15 室外熱交換器(蒸発器)
21 エジェクタ
21a ノズル部
21d 冷媒吸引口
21f ディフューザ部

Claims (4)

  1. 冷媒を圧縮して吐出する圧縮機(11)と、
    前記圧縮機(11)から吐出された高圧冷媒と加熱対象流体とを熱交換させて、前記高圧冷媒を放熱させる放熱器(12)と、
    前記放熱器(12)から流出した冷媒を減圧させる減圧手段(14)と、
    前記減圧手段(14)にて減圧された低圧冷媒と吸熱対象流体とを熱交換させて、前記低圧冷媒を蒸発させる蒸発器(15)と
    記圧縮機(11)から吐出された高圧冷媒を減圧させるノズル部(21a)から噴射される高速度の噴射冷媒の吸引作用によって、冷媒吸引口(21d)から前記蒸発器(15)下流側冷媒を吸引し、前記噴射冷媒と前記冷媒吸引口(21d)から吸引された吸引冷媒との混合冷媒を昇圧させて、前記圧縮機(11)の吸入口側へ流出させる昇圧部(21f)を有するエジェクタ(21)と
    前記圧縮機(11)から吐出される冷媒の流量を吐出冷媒流量(Gr)と定義し、前記ノズル部(21a)へ流入させる冷媒の流量をエジェクタ側冷媒流量(Gn)と定義したときに、前記吐出冷媒流量(Gr)に対する前記エジェクタ側冷媒流量(Gn)の流量比(Gn/Gr)を調整する流量比調整手段(25)と、
    前記流量比調整手段(25)の作動を制御する流量比制御手段(40c)、を備え、
    さらに、前記放熱器へ流入させる冷媒の流量を放熱器側冷媒流量(Gc)と定義したときに、
    前記流量比制御手段(40c)は、実際の前記放熱器側冷媒流量(Gc)が、前記流量比(Gn/Gr)が0となっている際の前記放熱器側冷媒流量(Gc)以上となるように、前記流量比調整手段(25)の作動を制御するものであることを特徴とする冷凍サイクル装置。
  2. 前記蒸発器(15)から流出した冷媒の気液を分離する気液分離手段(19)を備え、
    前記気液分離手段(19)の気相冷媒流出口には、前記冷媒吸引口(21d)が接続されていることを特徴とする請求項1に記載の冷凍サイクル装置。
  3. 前記流量比調整手段は、前記エジェクタ側冷媒流量(Gn)を調整する流量調整弁(25)で構成されていることを特徴とする請求項1または2に記載の冷凍サイクル装置。
  4. 前記流量比制御手段(40c)は、前記放熱器側冷媒流量(Gc)が極大値に近づくように、前記流量比調整手段(25)の作動を制御するものであることを特徴とする請求項1ないし3のいずれか1つに記載の冷凍サイクル装置。
JP2013211076A 2013-10-08 2013-10-08 冷凍サイクル装置 Expired - Fee Related JP6011507B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2013211076A JP6011507B2 (ja) 2013-10-08 2013-10-08 冷凍サイクル装置
DE112014004647.7T DE112014004647T5 (de) 2013-10-08 2014-09-22 Kälteerzeugungskreis-Einrichtung
US15/027,120 US10131203B2 (en) 2013-10-08 2014-09-22 Refrigeration cycle device
PCT/JP2014/004845 WO2015052881A1 (ja) 2013-10-08 2014-09-22 冷凍サイクル装置
CN201480051006.XA CN105556218B (zh) 2013-10-08 2014-09-22 制冷循环装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013211076A JP6011507B2 (ja) 2013-10-08 2013-10-08 冷凍サイクル装置

Publications (3)

Publication Number Publication Date
JP2015075268A JP2015075268A (ja) 2015-04-20
JP2015075268A5 JP2015075268A5 (ja) 2015-10-15
JP6011507B2 true JP6011507B2 (ja) 2016-10-19

Family

ID=52812717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013211076A Expired - Fee Related JP6011507B2 (ja) 2013-10-08 2013-10-08 冷凍サイクル装置

Country Status (5)

Country Link
US (1) US10131203B2 (ja)
JP (1) JP6011507B2 (ja)
CN (1) CN105556218B (ja)
DE (1) DE112014004647T5 (ja)
WO (1) WO2015052881A1 (ja)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5240332B2 (ja) * 2011-09-01 2013-07-17 ダイキン工業株式会社 冷凍装置
JP6088753B2 (ja) * 2012-06-13 2017-03-01 サンデンホールディングス株式会社 車両用空気調和装置
EP3032192B1 (en) * 2014-12-09 2020-07-29 Danfoss A/S A method for controlling a valve arrangement in a vapour compression system
RU2680447C1 (ru) 2015-08-14 2019-02-21 Данфосс А/С Паровая компрессионная система с по меньшей мере двумя испарительными установками
BR112018007382B1 (pt) 2015-10-20 2023-03-21 Danfoss A/S Método para controlar um sistema de compressão a vapor com um ponto de ajuste de pressão de receptor variável
EP3365619B1 (en) 2015-10-20 2019-08-21 Danfoss A/S A method for controlling a vapour compression system in ejector mode for a prolonged time
US10556484B2 (en) * 2015-10-28 2020-02-11 Ford Global Technologies, Llc Vehicle climate control valve and operating method
JP2017219262A (ja) * 2016-06-08 2017-12-14 株式会社デンソー エジェクタ式冷凍サイクル装置
JP6547781B2 (ja) * 2016-06-16 2019-07-24 株式会社デンソー 冷凍サイクル装置
WO2018080150A1 (en) * 2016-10-25 2018-05-03 Samsung Electronics Co., Ltd. Air conditioner
US11105544B2 (en) * 2016-11-07 2021-08-31 Trane International Inc. Variable orifice for a chiller
US10254015B2 (en) * 2017-02-28 2019-04-09 Thermo King Corporation Multi-zone transport refrigeration system with an ejector system
EP3524904A1 (en) 2018-02-06 2019-08-14 Carrier Corporation Hot gas bypass energy recovery
JP7028079B2 (ja) * 2018-06-22 2022-03-02 株式会社デンソー 冷凍サイクル装置
JP7099899B2 (ja) * 2018-07-25 2022-07-12 三菱重工サーマルシステムズ株式会社 車両用空調装置
DK180146B1 (en) 2018-10-15 2020-06-25 Danfoss As Intellectual Property Heat exchanger plate with strenghened diagonal area
CN113883738B (zh) * 2021-09-29 2022-11-11 浙江工业大学 一种新型太阳能喷射-压缩制冷***
DE102022130636A1 (de) * 2022-11-18 2024-05-23 Denso Corporation Kältemittelkreislauf, insbesondere für ein Kraftfahrzeug und Verfahren zum Betreiben eines solchen

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2513361A (en) * 1944-11-01 1950-07-04 Specialties Dev Corp Method and system for producing low-temperature refrigeration
GB660771A (en) * 1949-02-03 1951-11-14 Svenska Turbinfab Ab Improvements in refrigerating machinery
US2887857A (en) * 1955-06-28 1959-05-26 Hugh J Scullen Jet pumps in refrigeration system
JPS59225259A (ja) * 1983-06-02 1984-12-18 三洋電機株式会社 冷凍装置
JP3257361B2 (ja) 1995-08-01 2002-02-18 株式会社デンソー 車両用空調装置
US5704219A (en) 1995-08-01 1998-01-06 Nippondenso Co., Ltd. Air conditioning apparatus
US6698221B1 (en) * 2003-01-03 2004-03-02 Kyung Kon You Refrigerating system
JP2004257694A (ja) * 2003-02-27 2004-09-16 Denso Corp 蒸気圧縮式冷凍機
JP5021326B2 (ja) * 2007-02-05 2012-09-05 株式会社デンソー エジェクタ式冷凍サイクル
US10527329B2 (en) * 2008-04-18 2020-01-07 Denso Corporation Ejector-type refrigeration cycle device
JP5108606B2 (ja) 2008-04-23 2012-12-26 カルソニックカンセイ株式会社 空気調和システム
JP5605191B2 (ja) * 2010-12-01 2014-10-15 東京電力株式会社 ヒートポンプ
DE102012205200B4 (de) 2011-04-04 2020-06-18 Denso Corporation Kältemittelkreislaufvorrichtung
JP5321647B2 (ja) 2011-06-15 2013-10-23 株式会社デンソー 冷凍サイクル装置
CN102734989B (zh) 2011-04-08 2014-05-07 约克广州空调冷冻设备有限公司 一种快速排出气液分离器中积存的液体的热泵空调***及方法
JP5482767B2 (ja) 2011-11-17 2014-05-07 株式会社デンソー エジェクタ式冷凍サイクル
JP6102552B2 (ja) 2012-11-16 2017-03-29 株式会社デンソー 冷凍サイクル装置

Also Published As

Publication number Publication date
CN105556218B (zh) 2017-06-20
DE112014004647T5 (de) 2016-07-21
WO2015052881A1 (ja) 2015-04-16
JP2015075268A (ja) 2015-04-20
US10131203B2 (en) 2018-11-20
US20160280041A1 (en) 2016-09-29
CN105556218A (zh) 2016-05-04

Similar Documents

Publication Publication Date Title
JP6011507B2 (ja) 冷凍サイクル装置
JP6277888B2 (ja) 冷凍サイクル装置
JP5967022B2 (ja) 冷凍サイクル装置
JP6528733B2 (ja) エジェクタ式冷凍サイクル
WO2014076903A1 (ja) エジェクタ
JP6102552B2 (ja) 冷凍サイクル装置
JP6225709B2 (ja) 空調装置
JP2018118540A (ja) 冷凍サイクル装置
JP2017219262A (ja) エジェクタ式冷凍サイクル装置
JP6561922B2 (ja) 統合弁
WO2019017169A1 (ja) エジェクタモジュール
JP6973539B2 (ja) 冷凍サイクル装置
JP6720932B2 (ja) エジェクタ式冷凍サイクル
JP6642297B2 (ja) エジェクタ式冷凍サイクル
JP6669033B2 (ja) エジェクタ式冷凍サイクル
WO2018003352A1 (ja) 冷凍サイクル装置
US10442274B2 (en) Ejector refrigeration cycle device and low outside temperature operation thereof
WO2018088033A1 (ja) 冷凍サイクル装置
JP6582843B2 (ja) 冷凍サイクル装置
JP2020029983A (ja) 冷凍サイクル装置
WO2024101062A1 (ja) 車両用ヒートポンプサイクル装置
JP2018063071A (ja) 膨張弁

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150827

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160905

R151 Written notification of patent or utility model registration

Ref document number: 6011507

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees