JP6010844B2 - Tension measurement method - Google Patents

Tension measurement method Download PDF

Info

Publication number
JP6010844B2
JP6010844B2 JP2012241702A JP2012241702A JP6010844B2 JP 6010844 B2 JP6010844 B2 JP 6010844B2 JP 2012241702 A JP2012241702 A JP 2012241702A JP 2012241702 A JP2012241702 A JP 2012241702A JP 6010844 B2 JP6010844 B2 JP 6010844B2
Authority
JP
Japan
Prior art keywords
magnetization
tension
magnetic
measurement
magnetic material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012241702A
Other languages
Japanese (ja)
Other versions
JP2014092390A (en
Inventor
及川 雅司
雅司 及川
康弘 星野
康弘 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo SEI Steel Wire Corp
Original Assignee
Sumitomo SEI Steel Wire Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo SEI Steel Wire Corp filed Critical Sumitomo SEI Steel Wire Corp
Priority to JP2012241702A priority Critical patent/JP6010844B2/en
Publication of JP2014092390A publication Critical patent/JP2014092390A/en
Application granted granted Critical
Publication of JP6010844B2 publication Critical patent/JP6010844B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)

Description

本発明は、長尺の磁性体に作用する張力を、その磁性体の応力磁気効果を利用して測定する張力測定方法に関する。   The present invention relates to a tension measuring method for measuring a tension acting on a long magnetic body by using a stress magnetic effect of the magnetic body.

吊り構造物のケーブルやグラウンドアンカーの引張部材等、長尺の鋼製部材にかかっている張力を長期間にわたって精度よく測定する装置として、鋼等の磁性体に現れる応力磁気効果(応力によって磁化が変化する現象)を利用した張力測定装置が提案されている(例えば、特許文献1参照。)。   As a device for accurately measuring the tension applied to long steel members, such as cables for suspension structures and tension members for ground anchors over a long period of time, the stress magnetic effect (magnetization caused by stress) appears in magnetic materials such as steel. A tension measuring device utilizing a changing phenomenon) has been proposed (see, for example, Patent Document 1).

特許文献1の張力測定装置は、本出願人が提案したもので、測定対象材となる磁性体の一部を長手方向に飽和漸近磁化範囲(磁化特性のヒステリシス環線が閉じた領域、磁性物理学の用語では「回転磁化領域」)まで直流磁化し、磁化された部位の表面近傍の空間磁界強度を検出して、その検出値から磁性体に作用する張力を測定するものである。この張力測定装置を用いれば、既設の長尺鋼製部材の任意の位置で張力測定を行うことができるが、測定開始時に限って、低荷重領域で通常求められる測定精度(測定誤差が使用領域の最大荷重の±5%以内)を得られないという難点があることがわかった。   The tension measuring device of Patent Document 1 was proposed by the present applicant, and a part of a magnetic material to be measured is partially saturated asymptotically magnetized in the longitudinal direction (the region where the hysteresis ring of magnetization characteristics is closed, magnetic physics In this term, DC magnetization is performed up to the “rotational magnetization region”), the spatial magnetic field strength in the vicinity of the surface of the magnetized portion is detected, and the tension acting on the magnetic material is measured from the detected value. If this tension measuring device is used, it is possible to measure the tension at an arbitrary position of the existing long steel member, but only when starting the measurement, the measurement accuracy normally required in the low load area (measurement error is in the use area) It was found that there was a problem that it was not possible to obtain (within ± 5% of the maximum load).

上記の測定開始時の測定誤差は、図4に示すように、一定磁界下において磁性体に繰り返し応力変化を与えると、2回目以降の応力変化による磁化の変化は可逆的でほぼ線形な関係(理想的な応力と磁化の関係、以下これを理想磁化曲線と呼ぶ)に近づくが、初回応力負荷前の初期状態は理想磁化曲線から外れていることが原因と考えられる。すなわち、
測定開始前(荷重が負荷される前)の磁化の状態が理想磁化曲線から外れているために、理想磁化曲線を用いて測定開始時(初めて荷重が負荷される時)の空間磁界強度の検出値から張力を求めると、その測定値が実際の張力と大きくずれてしまうと推定される。
As shown in FIG. 4, the measurement error at the start of the measurement described above is that when a change in stress is repeatedly applied to a magnetic body under a constant magnetic field, the change in magnetization due to the second and subsequent stress changes is reversible and has a substantially linear relationship ( This is close to the ideal stress-magnetization relationship (hereinafter referred to as the ideal magnetization curve), but the initial state before the initial stress loading is considered to be out of the ideal magnetization curve. That is,
Detection of spatial magnetic field strength at the start of measurement (when the load is applied for the first time) using the ideal magnetization curve because the magnetization state before the start of measurement (before the load is applied) deviates from the ideal magnetization curve When the tension is obtained from the value, it is estimated that the measured value greatly deviates from the actual tension.

これに対し、本出願人は、特許文献1の張力測定装置を用いた張力測定を行う場合に、測定開始前の磁性体にその飽和漸近磁化範囲の磁界下で使用荷重領域の上限値以上の荷重を負荷する工程を1回以上実施して、その磁化状態を理想磁化曲線に近づけておくことにより、測定誤差を低減する張力測定方法を提案した(特許文献2)。   On the other hand, when performing the tension measurement using the tension measuring device of Patent Document 1, the applicant of the present invention is not less than the upper limit value of the working load region under the magnetic field in the saturation asymptotic magnetization range of the magnetic body before the measurement is started. A tension measurement method has been proposed that reduces the measurement error by carrying out the step of applying a load once or more and keeping the magnetization state close to an ideal magnetization curve (Patent Document 2).

特開2009−265003号公報JP 2009-265003 A 特開2011−95033号公報JP 2011-95033 A

ところが、特許文献2で提案した張力測定方法では、既設の長尺部材に対して測定開始前に大きな負荷をかけようとすると、大がかりな油圧機器等を用いる必要があり、非常に手間がかかる。このため、実際には、既設の長尺部材の張力測定には適用しにくく、新設の長尺部材に適用する場合も、予め工場で負荷をかけた短尺のPC鋼棒等の測定用磁性体を工事現場で架設中の長尺部材に接続するという方法を採らざるをえず、手間がかかっていた。   However, in the tension measuring method proposed in Patent Document 2, if a large load is to be applied to an existing long member before starting measurement, it is necessary to use a large-scale hydraulic device or the like, which is very laborious. For this reason, it is actually difficult to apply to the tension measurement of the existing long member, and even when applying to the new long member, the magnetic material for measurement such as a short PC steel bar previously loaded at the factory It was necessary to take the method of connecting the cable to the long member currently installed at the construction site.

そこで、本発明は、磁性体の応力磁気効果を利用した張力測定方法において、簡単な操作で測定開始時の測定精度を向上させることを課題とする。   Therefore, an object of the present invention is to improve measurement accuracy at the start of measurement with a simple operation in a tension measurement method using the stress magnetic effect of a magnetic material.

上記の課題を解決するために、本発明は、磁性体の一部を長手方向に飽和漸近磁化範囲まで直流磁化した状態で、前記磁性体の磁化区間の長手方向中央部の表面近傍の空間磁界強度を検出し、その検出値に基づいて磁性体に作用する張力を測定する張力測定方法において、前記磁性体の磁化区間での張力測定を開始する前に、その磁化区間の長手方向両側の隣接部のうちの少なくとも一方を飽和漸近磁化範囲まで直流磁化する隣接部磁化工程を実施しておくようにした。この方法によれば、測定開始前の磁性体に大きな負荷をかける従来の方法に比べて簡単な操作を行うだけで、測定開始時の測定精度を向上させることができる。   In order to solve the above-described problems, the present invention provides a spatial magnetic field in the vicinity of the surface of the central portion in the longitudinal direction of the magnetization section of the magnetic material in a state where a part of the magnetic material is DC-magnetized in the longitudinal direction to the saturation asymptotic magnetization range. In the tension measurement method for detecting the strength and measuring the tension acting on the magnetic body based on the detected value, before starting the tension measurement in the magnetization section of the magnetic body, adjacent to both sides in the longitudinal direction of the magnetization section An adjacent portion magnetization step is performed in which at least one of the portions is DC magnetized to the saturation asymptotic magnetization range. According to this method, the measurement accuracy at the start of measurement can be improved only by performing a simple operation compared to the conventional method in which a large load is applied to the magnetic material before the start of measurement.

ここで、上記のように測定開始前に磁性体の磁化区間の隣接部を直流磁化しておくことによって測定開始時の測定精度が向上する理由は、次のように考えられる。   Here, the reason why the measurement accuracy at the start of measurement is improved by DC magnetizing the adjacent portion of the magnetization section of the magnetic material before the start of measurement as described above is considered as follows.

図5に示すように、磁化器によって磁性体を飽和漸近磁化範囲まで直流磁化(準飽和磁化)すると、この後に磁化器による磁化作用がなくなってもある程度の磁束密度が残留すること(残留磁化)が知られている。したがって、張力測定を開始する前に測定対象の磁性体の磁化区間の隣接部を準飽和磁化しておくことにより、測定開始時にはその隣接部が残留磁化状態になっていると考えられる。そして、従来のように磁化区間だけを準飽和磁化した場合は、磁化区間からの磁束の漏洩によって隣接部の磁化特性が不安定となり、それに伴って磁化区間の磁化特性も不安定な挙動を示すのに対し、隣接部を残留磁化状態とすると、隣接部の磁化特性が安定するため磁化区間の磁化特性も安定し、これが測定精度の向上に寄与するものと推定される。   As shown in FIG. 5, when a magnetic material is DC magnetized to a saturation asymptotic magnetization range (quasi-saturated magnetization) by a magnetizer, a certain amount of magnetic flux density remains even after the magnetizing action by the magnetizer disappears (residual magnetization). It has been known. Therefore, it is considered that the adjacent portion of the magnetization section of the magnetic material to be measured is quasi-saturated before starting the tension measurement, so that the adjacent portion is in a residual magnetization state at the start of measurement. And, when quasi-saturated magnetization is performed only in the magnetization section as in the prior art, the magnetization characteristics of the adjacent portion become unstable due to the leakage of magnetic flux from the magnetization section, and accordingly the magnetization characteristics of the magnetization section also show unstable behavior. On the other hand, when the adjacent portion is in the residual magnetization state, the magnetization characteristic of the adjacent portion is stabilized, so that the magnetization property of the magnetization section is also stabilized, which is presumed to contribute to improvement of measurement accuracy.

ここで、測定開始時の測定精度をより向上させるには、前記隣接部磁化工程を、前記張力測定を開始する前に2回以上実施しておくこと、および前記磁性体の磁化区間の両側の隣接部を、少なくとも磁性体に磁場を与える磁化器の1/2以上の長さにわたって直流磁化することが望ましい。   Here, in order to further improve the measurement accuracy at the start of measurement, the adjacent portion magnetization step is performed twice or more before starting the tension measurement, and on both sides of the magnetization section of the magnetic body. It is desirable that the adjacent portion be DC magnetized over at least a length of ½ or more of a magnetizer that applies a magnetic field to the magnetic material.

前記磁性体の磁化区間を直流磁化する磁化器と、前記磁化区間の長手方向中央部の表面近傍の空間磁界強度を検出する磁気センサとを備えた張力測定装置を用いる場合は、前記隣接部磁化工程の具体的な実施方法として、その張力測定装置を前記磁化区間から長手方向にスライドさせる方法を採用することができる。   When using a tension measuring device comprising a magnetizer for direct current magnetization in the magnetization section of the magnetic material and a magnetic sensor for detecting the spatial magnetic field intensity in the vicinity of the surface in the longitudinal center of the magnetization section, the adjacent section magnetization is used. As a specific implementation method of the process, a method of sliding the tension measuring device in the longitudinal direction from the magnetization section can be adopted.

また、本発明は、張力測定の対象となる前記磁性体が、伸線加工した鋼線、複数の鋼線を撚り合わせた撚り線、鋼製ロープまたは鋼棒である場合に、特に有効に適用することができる。   The present invention is particularly effective when the magnetic material to be subjected to tension measurement is a drawn steel wire, a stranded wire obtained by twisting a plurality of steel wires, a steel rope, or a steel rod. can do.

本発明の張力測定方法は、上述したように、磁性体の応力磁気効果を利用した測定を開始する前に、磁性体の測定時における磁化区間の長手方向両側の隣接部のうちの少なくとも一方を準飽和磁化しておくことにより、測定開始時の測定精度を向上させるものであるから、測定開始前の磁性体に大きな負荷をかける従来の方法に比べて簡単に実施でき、新たに架設される長尺部材の張力測定だけでなく、既設の長尺部材の張力測定にも容易に適用することができる。   As described above, the tension measuring method according to the present invention is configured so that at least one of the adjacent portions on both sides in the longitudinal direction of the magnetization section at the time of measurement of the magnetic material is measured before starting the measurement using the stress magnetic effect of the magnetic material. Since the measurement accuracy at the start of measurement is improved by quasi-saturated magnetization, it can be easily implemented compared to the conventional method in which a large load is applied to the magnetic material before the measurement is started, and a new construction is provided. The present invention can be easily applied not only to measuring the tension of a long member but also to measuring the tension of an existing long member.

実施形態の張力測定方法に用いる張力測定装置の概略を示す縦断正面図Longitudinal front view schematically showing a tension measuring device used in the tension measuring method of the embodiment a〜cは、それぞれ図1の張力測定装置を用いた隣接部磁化工程の説明図FIGS. 1A to 1C are explanatory diagrams of adjacent part magnetization steps using the tension measuring device of FIG. a、bは、それぞれ張力測定精度確認実験の結果を示すグラフa and b are graphs showing the results of tension measurement accuracy confirmation experiments, respectively. 一定磁界における応力と磁束密度の関係を示すグラフGraph showing the relationship between stress and magnetic flux density in a constant magnetic field 残留磁化の発生挙動を説明するグラフGraph explaining remanent magnetization generation behavior

以下、図面に基づき、本発明の実施形態を説明する。この実施形態の張力測定方法に用いる張力測定装置1は、図1に示すように、長尺の磁性体(測定対象材)Aの一部を囲むように配される筒状の磁化器2と、この磁化器2と磁性体Aとの間に挿入されるスペーサ3と、磁性体A表面近傍の空間磁界強度を検出する磁気センサとしてのホール素子4と、ホール素子4の出力を増幅する増幅器5とで基本的に構成されている。その磁化器2およびスペーサ3は周方向に2分割され、装置全体が既設部材の任意の位置に装着できるようになっている。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. As shown in FIG. 1, a tension measuring device 1 used in the tension measuring method of this embodiment includes a cylindrical magnetizer 2 disposed so as to surround a part of a long magnetic body (measurement target material) A, and The spacer 3 inserted between the magnetizer 2 and the magnetic body A, the Hall element 4 as a magnetic sensor for detecting the spatial magnetic field intensity in the vicinity of the surface of the magnetic body A, and an amplifier for amplifying the output of the Hall element 4 5 is basically configured. The magnetizer 2 and the spacer 3 are divided into two in the circumferential direction so that the entire apparatus can be mounted at an arbitrary position of an existing member.

前記磁化器2は、円筒形の鋼製ヨーク6の内周両端部に、円筒の一部をなす形状の4個の永久磁石7をそれぞれ接着剤で固定し、各永久磁石7の外側端面を覆うカバー8をヨーク6の両端面に取り付けたものである。永久磁石7は、上下一対ずつ磁性体Aの長手方向に間隔をおいて互いに異なる磁極で対向する姿勢で配されており、磁性体Aを長手方向に短い範囲で飽和漸近磁化範囲まで直流磁化(準飽和磁化)するものとなっている。   The magnetizer 2 fixes four permanent magnets 7 each having a shape of a cylinder to both ends of the inner periphery of a cylindrical steel yoke 6 with an adhesive, and the outer end surfaces of the permanent magnets 7 are attached to the magnetizer 2. Covering covers 8 are attached to both end faces of the yoke 6. The permanent magnets 7 are arranged in such a posture that they are opposed to each other with different magnetic poles spaced apart in the longitudinal direction of the magnetic body A one by one in the vertical direction, and the magnetic body A is DC magnetized to a saturation asymptotic magnetization range in a short range in the longitudinal direction. Quasi-saturated magnetization).

前記スペーサ3は、非磁性のポリエチレン製で、各永久磁石7の内周側に接着固定されて、永久磁石7と磁性体Aとの接触を防止している。そして、その外周面のヨーク6内周面と対向する位置に、前記ホール素子4および増幅器5が複数取り付けられている。   The spacer 3 is made of nonmagnetic polyethylene and is adhesively fixed to the inner peripheral side of each permanent magnet 7 to prevent contact between the permanent magnet 7 and the magnetic body A. A plurality of the Hall elements 4 and the amplifiers 5 are attached to positions on the outer peripheral surface facing the inner peripheral surface of the yoke 6.

前記ホール素子4は、磁化器2内周側の一対の永久磁石7の中間点、すなわち磁性体Aの磁化区間の長手方向中央部の近傍に、周方向に等間隔で配されている。そして、各ホール素子4の出力を増幅器5で増幅してデータ処理装置(図示省略)に送り、その平均値として得られる磁性体A表面近傍の空間磁界強度を、予め実験等により決定された磁界強度と張力との関係式にあてはめて、磁性体Aに作用する張力を求めるようになっている。   The Hall elements 4 are arranged at equal intervals in the circumferential direction near the midpoint of the pair of permanent magnets 7 on the inner peripheral side of the magnetizer 2, that is, in the vicinity of the central portion in the longitudinal direction of the magnetization section of the magnetic material A. Then, the output of each Hall element 4 is amplified by an amplifier 5 and sent to a data processing device (not shown), and the spatial magnetic field strength in the vicinity of the surface of the magnetic material A obtained as an average value thereof is determined in advance by experiments or the like. The tension acting on the magnetic body A is obtained by applying the relational expression between strength and tension.

この実施形態の張力測定方法では、上記構成の張力測定装置1による測定を行う前に、この張力測定装置1(の磁化器2)を用いて、磁性体Aの測定時における磁化区間の長手方向両側の隣接部を準飽和磁化する隣接部磁化工程を実施しておく。   In the tension measuring method of this embodiment, before the measurement by the tension measuring device 1 having the above-described configuration, the tension measuring device 1 (magnetizer 2) is used to measure the longitudinal direction of the magnetization section during the measurement of the magnetic substance A. An adjacent portion magnetization step is performed in which the adjacent portions on both sides are quasi-saturated.

具体的には、まず、張力測定装置1を、図2(a)に示すように磁性体Aの所定位置に装着した状態から、図2(b)に示すように磁性体Aの長手方向の一方側(図2では左側)へスライドさせる。これにより、図2(a)の状態のときに準飽和磁化された磁化区間は残留磁化状態となり、磁化区間の左側の隣接部が準飽和磁化される。ここで、張力測定装置1のスライド量は、準飽和磁化される隣接部の長さが少なくとも磁性体Aに磁場を与える磁化器2の1/2以上となるように設定することが望ましい。図2(b)では、張力測定装置1をその長さ寸法と同程度スライドさせることにより、隣接部を十分な長さにわたって準飽和磁化した例を示している。   Specifically, first, the tension measuring device 1 is installed in a predetermined position of the magnetic body A as shown in FIG. 2A, and then the longitudinal direction of the magnetic body A as shown in FIG. Slide to one side (left side in FIG. 2). As a result, the magnetization section that is quasi-saturated in the state of FIG. 2A becomes a residual magnetization state, and the adjacent portion on the left side of the magnetization section is quasi-saturated. Here, it is desirable that the slide amount of the tension measuring device 1 is set so that the length of the adjacent portion to be quasi-saturated is at least ½ or more of the magnetizer 2 that applies a magnetic field to the magnetic body A. FIG. 2B shows an example in which the adjacent portion is quasi-saturated magnetized over a sufficient length by sliding the tension measuring device 1 as much as its length.

そして、図示は省略するが、張力測定装置1を図2(b)と逆方向にスライドさせて、磁化区間の右側の隣接部を左側の隣接部と同様に準飽和磁化する。このときには、磁化区間と左側の隣接部が残留磁化状態となる。このように磁化区間の左右の隣接部を準飽和磁化する操作を2回以上繰り返す。   And although illustration is abbreviate | omitted, the tension | tensile_strength measuring apparatus 1 is slid to the reverse direction to FIG.2 (b), and the adjacent part on the right side of a magnetization area is quasi-saturated similarly to the adjacent part on the left side. At this time, the magnetization section and the adjacent portion on the left side are in a residual magnetization state. In this manner, the operation of quasi-saturating the adjacent portions on the left and right of the magnetization interval is repeated twice or more.

最後に、図2(c)に示すように、張力測定装置1を装着時の所定位置に戻す。これにより、磁化区間が再び準飽和磁化され、その左右の隣接部が残留磁化状態となるので、この状態で張力測定装置1による測定を開始する。   Finally, as shown in FIG. 2 (c), the tension measuring device 1 is returned to the predetermined position at the time of wearing. As a result, the magnetization section is quasi-saturated again and the left and right adjacent portions are in a residual magnetization state. In this state, measurement by the tension measuring device 1 is started.

次に、この実施形態の張力測定方法の測定精度向上効果を確認した実験について説明する。この実験では、測定対象の磁性体として、標準径15.2mmの7本撚りのPC鋼撚り線(JIS規格:SWPR7BN)を用いた。そして、このPC鋼撚り線を引張試験機にセットし、これに実施形態の張力測定装置1(外径:40mm、長さ:120mm)を装着して、引張試験機の負荷を変化させながら張力測定装置1での測定を行い、測定前に張力測定装置1を上述のように長手方向両側にスライドさせて隣接部磁化工程を実施した場合(実施例)と、隣接部磁化工程を実施せずに測定を行った場合(比較例)について、引張試験機のロードセルで測定した実際の張力と張力測定装置1の測定値に相当する出力電圧との関係を調べた。その結果を図3に示す。   Next, an experiment for confirming the measurement accuracy improvement effect of the tension measurement method of this embodiment will be described. In this experiment, a 7-strand PC steel stranded wire (JIS standard: SWPR7BN) having a standard diameter of 15.2 mm was used as a magnetic material to be measured. Then, this PC steel stranded wire is set in a tensile testing machine, and the tension measuring device 1 (outer diameter: 40 mm, length: 120 mm) of the embodiment is attached to the PC steel stranded wire, and the tension is changed while changing the load of the tensile testing machine. When the measurement with the measuring device 1 is performed and the tension measuring device 1 is slid to both sides in the longitudinal direction as described above and the adjacent portion magnetization step is performed before the measurement (Example), the adjacent portion magnetization step is not performed. When the measurement was performed (Comparative Example), the relationship between the actual tension measured with the load cell of the tensile tester and the output voltage corresponding to the measured value of the tension measuring device 1 was examined. The result is shown in FIG.

図3から明らかなように、初期状態および初回応力負荷時における張力測定装置1の出力電圧の挙動は、比較例(図3(a))では、特に低荷重領域で2回目以降の負荷に対する出力電圧の再現性のある挙動と大きく異なっているのに対し、実施例(図3(b))では、2回目以降の負荷に対する出力電圧の挙動に近いものとなっている。このことから、比較例では初期状態および初回応力負荷時に大きな測定誤差が生じるが、実施例ではその測定誤差を大幅に低減できることがわかる。   As apparent from FIG. 3, the behavior of the output voltage of the tension measuring device 1 in the initial state and the initial stress load is the output for the second and subsequent loads in the comparative example (FIG. 3A), particularly in the low load region. In contrast to the voltage reproducible behavior, the example (FIG. 3B) is close to the behavior of the output voltage for the second and subsequent loads. This shows that a large measurement error occurs in the initial state and the initial stress load in the comparative example, but the measurement error can be greatly reduced in the example.

定量的には、初期状態における比較例の測定誤差が50%程度(測定誤差は使用領域の最大荷重に対する比率で表す、以下同じ。)であるのに対して実施例では10%程度であり、架設後に通常導入される応力(規格荷重の60%)を負荷したときには、比較例の測定誤差が10%程度であるのに対して実施例では5%程度となっている。なお、この測定誤差は、2回目以降の負荷と出力電圧との関係におけるヒステリシスによるばらつきを含むものである。   Quantitatively, the measurement error of the comparative example in the initial state is about 50% (measurement error is expressed as a ratio to the maximum load in the use area, the same shall apply hereinafter), whereas in the example, it is about 10%. When a stress (60% of the standard load) that is normally introduced after installation is applied, the measurement error of the comparative example is about 10%, whereas in the example, it is about 5%. This measurement error includes variations due to hysteresis in the relationship between the load and output voltage for the second and subsequent times.

したがって、この実施形態のように、測定開始前に張力測定装置1をスライドさせて、磁化区間の長手方向両側の隣接部を準飽和磁化しておくことにより、測定開始時からほぼ実用に耐える精度で張力測定を行えることが確認された。   Therefore, as in this embodiment, the tension measuring device 1 is slid before the start of measurement, and the adjacent portions on both sides in the longitudinal direction of the magnetization section are quasi-saturated, so that the accuracy that can withstand practical use from the start of the measurement. It was confirmed that tension could be measured with

今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した意味ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the meanings described above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

例えば、隣接部磁化工程は、2回以上実施することが望ましいが、1回実施するだけでもよい。また、準飽和磁化する隣接部は磁化区間の長手方向両側が望ましいが、片側だけでもよい。さらに、測定対象材としては、実施形態のような複数の鋼線を撚り合わせた撚り線だけでなく、伸線加工した鋼線、鋼製ロープ、鋼棒等、磁性体で形成されたすべての長尺部材を含む。   For example, it is desirable to perform the adjacent portion magnetization step twice or more, but it may be performed only once. Moreover, although the adjacent part which carries out a quasi-saturation magnetization is desirable for the longitudinal direction both sides of a magnetization area, only one side may be sufficient. Furthermore, as a material to be measured, not only a stranded wire obtained by twisting a plurality of steel wires as in the embodiment, but also all steel wires, steel ropes, steel bars, etc. formed of a magnetic material such as a drawn wire. Includes a long member.

1 張力測定装置
2 磁化器
3 スペーサ
4 ホール素子
5 増幅器
6 ヨーク
7 永久磁石
8 カバー
A 磁性体
DESCRIPTION OF SYMBOLS 1 Tension measuring device 2 Magnetizer 3 Spacer 4 Hall element 5 Amplifier 6 Yoke 7 Permanent magnet 8 Cover A Magnetic body

Claims (5)

磁性体の一部を長手方向に飽和漸近磁化範囲まで直流磁化した状態で、前記磁性体の磁化区間の長手方向中央部の表面近傍の空間磁界強度を検出し、その検出値に基づいて磁性体に作用する張力を測定する張力測定方法において、前記磁性体の磁化区間での張力測定を開始する前に、その磁化区間の長手方向両側の隣接部のうちの少なくとも一方を飽和漸近磁化範囲まで直流磁化する隣接部磁化工程を実施しておくことを特徴とする張力測定方法。   In a state in which a part of the magnetic material is DC magnetized in the longitudinal direction to the saturation asymptotic magnetization range, the spatial magnetic field strength in the vicinity of the surface of the central portion in the longitudinal direction of the magnetization section of the magnetic material is detected, and based on the detected value, the magnetic material is detected. In the tension measuring method for measuring the tension acting on the magnetic material, before starting the tension measurement in the magnetization section of the magnetic material, at least one of the adjacent portions on both sides in the longitudinal direction of the magnetization section is dc to the saturation asymptotic magnetization range. The tension measuring method characterized by carrying out the adjacent part magnetization process to magnetize. 前記隣接部磁化工程を、前記張力測定を開始する前に2回以上実施しておくことを特徴とする請求項1に記載の張力測定方法。   The tension measuring method according to claim 1, wherein the adjacent portion magnetization step is performed twice or more before starting the tension measurement. 前記磁性体の磁化区間の両側の隣接部を、少なくとも磁性体に磁場を与える磁化器の1/2以上の長さにわたって直流磁化することを特徴とする請求項1または2に記載の張力測定方法。   3. The tension measuring method according to claim 1, wherein the adjacent portions on both sides of the magnetization section of the magnetic material are DC-magnetized over at least a length of ½ or more of a magnetizer that applies a magnetic field to the magnetic material. . 前記磁性体の磁化区間を直流磁化する磁化器と、前記磁化区間の長手方向中央部の表面近傍の空間磁界強度を検出する磁気センサとを備えた張力測定装置を、前記磁性体の磁化区間から長手方向にスライドさせることによって、前記隣接部磁化工程を実施することを特徴とする請求項1乃至3のいずれかに記載の張力測定方法。   A tension measuring device comprising a magnetizer for direct current magnetization in a magnetization section of the magnetic body and a magnetic sensor for detecting a spatial magnetic field intensity in the vicinity of the surface in the longitudinal center of the magnetization section from the magnetization section of the magnetic body. The tension measuring method according to claim 1, wherein the adjacent portion magnetization step is performed by sliding in the longitudinal direction. 前記磁性体が、伸線加工した鋼線、複数の鋼線を撚り合わせた撚り線、鋼製ロープまたは鋼棒であることを特徴とする請求項1乃至4のいずれかに記載の張力測定方法。   The tension measuring method according to any one of claims 1 to 4, wherein the magnetic body is a drawn steel wire, a stranded wire obtained by twisting a plurality of steel wires, a steel rope, or a steel rod. .
JP2012241702A 2012-11-01 2012-11-01 Tension measurement method Active JP6010844B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012241702A JP6010844B2 (en) 2012-11-01 2012-11-01 Tension measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012241702A JP6010844B2 (en) 2012-11-01 2012-11-01 Tension measurement method

Publications (2)

Publication Number Publication Date
JP2014092390A JP2014092390A (en) 2014-05-19
JP6010844B2 true JP6010844B2 (en) 2016-10-19

Family

ID=50936567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012241702A Active JP6010844B2 (en) 2012-11-01 2012-11-01 Tension measurement method

Country Status (1)

Country Link
JP (1) JP6010844B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109990925A (en) * 2019-05-07 2019-07-09 四川睿铁科技有限责任公司 A kind of integral structure of bridge cable magnetic stress sensor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5195377A (en) * 1990-04-17 1993-03-23 Garshelis Ivan J Magnetoelastic force transducer for sensing force applied to a ferromagnetic member using leakage flux measurement
US6145387A (en) * 1997-10-21 2000-11-14 Magna-Lastic Devices, Inc Collarless circularly magnetized torque transducer and method for measuring torque using same
JP2006300902A (en) * 2005-04-25 2006-11-02 Nissan Motor Co Ltd Stress detection method and device
JP5035729B2 (en) * 2008-04-28 2012-09-26 国立大学法人京都大学 Tension measuring device
JP4961625B2 (en) * 2009-10-28 2012-06-27 住友電工スチールワイヤー株式会社 Tension measurement method

Also Published As

Publication number Publication date
JP2014092390A (en) 2014-05-19

Similar Documents

Publication Publication Date Title
KR101484032B1 (en) Device for measuring tension
WO2018138850A1 (en) Magnetic body inspection device and magnetic body inspection method
CN111684276B (en) Magnetic body inspection device
Jomdecha et al. Design of modified electromagnetic main-flux for steel wire rope inspection
US11125722B2 (en) Method and apparatus for evaluating damage to magnetic linear body
JP6289732B2 (en) Rope damage diagnostic inspection apparatus and rope damage diagnostic inspection method
CN107290091B (en) Tension force measurement system and method for prestressed steel strand
JP7187855B2 (en) Magnetic material inspection system, magnetic material inspection apparatus, and magnetic material inspection method
US11016061B2 (en) Method and apparatus for evaluating damage to magnetic linear body
KR101607480B1 (en) Apparatus for Defect Detection in Cable of Bridges
JP6010844B2 (en) Tension measurement method
CN112119301B (en) Magnetic substance inspection device and magnetic substance inspection method
JP2010014659A (en) Flaw detector of wire rope
JP4961625B2 (en) Tension measurement method
JP4432476B2 (en) Wire rope breakage detector
JP2010160068A (en) Calibration apparatus for flaw detector of wire rope
KR101254300B1 (en) Apparatus for detecting thickness of the conductor using dual core
KR20180071586A (en) Tensile stress measurement apparatus of tendon using maximum magnetic flux density
US11480546B2 (en) Magnetic material inspection system, magnetic material inspection device, and magnetic material inspection method
Jackiewicz et al. New methodology of testing the stress dependence of magnetic hysteresis loop of the L17HMF heat resistant steel casting
JP4179149B2 (en) Wire rope magnetic flaw detector and pulley with magnetic flaw detector
CN109154639B (en) Magnetic field sensor and method for measuring an external magnetic field
WO2018100727A1 (en) Device and method for evaluating damage to magnetic linear object
JP2012233849A (en) Detector for corrosion part of linear body, and corrosion part detecting method

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20150729

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160902

R150 Certificate of patent or registration of utility model

Ref document number: 6010844

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250