JP6010718B1 - Iron compound-supported titanium oxide photocatalyst - Google Patents

Iron compound-supported titanium oxide photocatalyst Download PDF

Info

Publication number
JP6010718B1
JP6010718B1 JP2016157313A JP2016157313A JP6010718B1 JP 6010718 B1 JP6010718 B1 JP 6010718B1 JP 2016157313 A JP2016157313 A JP 2016157313A JP 2016157313 A JP2016157313 A JP 2016157313A JP 6010718 B1 JP6010718 B1 JP 6010718B1
Authority
JP
Japan
Prior art keywords
titanium oxide
photocatalyst
ppm
iron
chlorine atom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016157313A
Other languages
Japanese (ja)
Other versions
JP2018008257A (en
Inventor
徹 中井
徹 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Corp filed Critical Daicel Corp
Application granted granted Critical
Publication of JP6010718B1 publication Critical patent/JP6010718B1/en
Publication of JP2018008257A publication Critical patent/JP2018008257A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • B01J35/39
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • B01J27/128Halogens; Compounds thereof with iron group metals or platinum group metals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/08Radiation
    • A61L2/088Radiation using a photocatalyst or photosensitiser
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/16Disinfection, sterilisation or deodorisation of air using physical phenomena
    • A61L9/18Radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/16Disinfection, sterilisation or deodorisation of air using physical phenomena
    • A61L9/18Radiation
    • A61L9/20Ultra-violet radiation
    • A61L9/205Ultra-violet radiation using a photocatalyst or photosensitiser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • B01J35/40
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/14Paints containing biocides, e.g. fungicides, insecticides or pesticides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/16Antifouling paints; Underwater paints
    • C09D5/1606Antifouling paints; Underwater paints characterised by the anti-fouling agent
    • C09D5/1612Non-macromolecular compounds
    • C09D5/1618Non-macromolecular compounds inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/16Antifouling paints; Underwater paints
    • C09D5/1687Use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/80Employing electric, magnetic, electromagnetic or wave energy, or particle radiation
    • B01D2259/81X-rays
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Abstract

【課題】可視光線及び紫外線の何れに対しても優れた応答性を有する、高活性な光触媒を提供する。【解決手段】本発明の光触媒は、酸化チタン表面に鉄化合物を担持した構成を有する光触媒であって、前記酸化チタンがルチル型酸化チタンとアナターゼ型酸化チタンとを15/85〜25/75(前者/後者(重量比))の範囲で含み、前記酸化チタンの平均粒子径(レーザー回折式粒度分布測定による)が100nm以下であり、酸化チタン基準での、鉄元素含有量が50〜1200ppm、塩素原子含有量が50〜1200ppmであり、鉄元素含有量/塩素原子含有量(重量比)が1.0以下であることを特徴とする。【選択図】なしA highly active photocatalyst having excellent response to both visible light and ultraviolet light is provided. A photocatalyst according to the present invention is a photocatalyst having a structure in which an iron compound is supported on a titanium oxide surface, wherein the titanium oxide is obtained by converting rutile titanium oxide and anatase titanium oxide to 15/85 to 25/75 ( The former / the latter (weight ratio)), the average particle diameter of the titanium oxide (by laser diffraction particle size distribution measurement) is 100 nm or less, and the content of iron element on the basis of titanium oxide is 50 to 1200 ppm, The chlorine atom content is 50 to 1200 ppm, and the iron element content / chlorine atom content (weight ratio) is 1.0 or less. [Selection figure] None

Description

本発明は、鉄化合物担持酸化チタン光触媒、及びその製造方法に関する。   The present invention relates to an iron compound-supported titanium oxide photocatalyst and a method for producing the same.

酸化チタンに紫外線を照射すると強い酸化力を有するラジカルが発生して、有機化合物(例えば、汚れ、悪臭ガス等)の酸化・分解、無機化合物(例えば、NOx、NH3等)の酸化、ウィルス、細菌、カビ等の死滅、不活性化などに効果を発揮することから、近年、環境浄化、脱臭、防汚、抗菌防カビなどに応用が進められている。しかし、酸化チタンは太陽光の照射下では優れた光触媒能を発揮できるが、白熱灯、蛍光灯等の通常の生活空間における光源に含まれる紫外線量は4%程度と少なく、大部分が可視光線と赤外線で構成されていることから、このような光源下では十分な光触媒能を発揮することができないという問題があった。 And radicals having a strong oxidizing power is irradiated with ultraviolet rays of titanium oxide is generated, an organic compound (e.g., dirt, malodorous gas, etc.) oxidation and decomposition of the oxidation of inorganic compounds (e.g., NOx, NH 3, etc.), viruses, Since it is effective in killing and inactivating bacteria, molds, etc., in recent years, it has been applied to environmental purification, deodorization, antifouling, antibacterial and antifungal. However, although titanium oxide can exhibit excellent photocatalytic activity under sunlight, the amount of ultraviolet rays contained in light sources in ordinary living spaces such as incandescent lamps and fluorescent lamps is as low as 4%, and most of them are visible light. Therefore, there is a problem that sufficient photocatalytic ability cannot be exhibited under such a light source.

上記問題を解決する方法としては、酸化チタンに窒素や特定の金属(例えば、鉄化合物等)を担持させることにより、可視光応答性を付与する方法が知られている。特許文献1には、アナターゼ型酸化チタンを含む酸化チタンをFe(acac)3溶液中に浸漬させて、酸化チタン表面にFe(acac)3錯体を担持させ、その後、焼成することにより前記Fe(acac)3錯体を酸化鉄とすることにより得られる酸化鉄担持酸化チタンは、優れた可視光応答性を有し、可視光線、紫外線の何れを照射した場合にも優れた光触媒活性を示すことが記載されている。しかし、未だ光触媒活性の点で不十分であった。 As a method for solving the above problem, a method of imparting visible light responsiveness by supporting titanium or a specific metal (for example, an iron compound) on titanium oxide is known. In Patent Document 1, titanium oxide containing anatase-type titanium oxide is immersed in a Fe (acac) 3 solution to carry a Fe (acac) 3 complex on the surface of titanium oxide, and then calcined, thereby firing the Fe ( acac) The iron oxide-supported titanium oxide obtained by converting the 3 complex into iron oxide has excellent visible light responsiveness, and exhibits excellent photocatalytic activity when irradiated with either visible light or ultraviolet light. Have been described. However, the photocatalytic activity is still insufficient.

特開2012−153591号公報JP2012-153591A

従って、本発明の目的は、可視光線及び紫外線の何れに対しても優れた応答性を有する、高活性な光触媒を提供することにある。
本発明の他の目的は、可視光線及び紫外線の何れに対しても優れた応答性を有する、高活性な光触媒の製造方法を提供することにある。
Accordingly, an object of the present invention is to provide a highly active photocatalyst having excellent responsiveness to both visible light and ultraviolet light.
Another object of the present invention is to provide a method for producing a highly active photocatalyst having excellent responsiveness to both visible light and ultraviolet light.

本発明者は上記課題を解決するため鋭意検討した結果、ルチル型酸化チタンとアナターゼ型酸化チタンとを特定の割合で含有する混合物に、励起光照射下において塩化鉄(III)を担持(若しくは、吸着)させて得られる光触媒は、特定量の鉄元素と塩素原子とを特定の割合で含有するため、可視光線及び紫外線に対して優れた応答性を有し、特に優れた光触媒能を発揮することを見いだした。本発明はこれらの知見に基づいて完成させたものである。   As a result of intensive studies to solve the above problems, the inventor carried iron chloride (III) on a mixture containing rutile type titanium oxide and anatase type titanium oxide at a specific ratio under irradiation of excitation light (or, The photocatalyst obtained by adsorption) contains a specific amount of iron element and chlorine atom in a specific ratio, and therefore has excellent responsiveness to visible light and ultraviolet light, and exhibits particularly excellent photocatalytic ability. I found out. The present invention has been completed based on these findings.

尚、本明細書において、「体積ppm」と記載した以外の「ppm」は「重量ppm」である。   In the present specification, “ppm” other than “volume ppm” is “ppm by weight”.

すなわち、本発明は、酸化チタン表面に鉄化合物を担持した構成を有する光触媒であって、前記酸化チタンがルチル型酸化チタンとアナターゼ型酸化チタンとを15/85〜25/75(前者/後者(重量比))の範囲で含み、前記酸化チタンの平均粒子径(レーザー回折式粒度分布測定による)が100nm以下であり、酸化チタン基準での、鉄元素含有量が50〜1200ppm、塩素原子含有量が50〜1200ppmであり、鉄元素含有量/塩素原子含有量(重量比)が1.0以下であることを特徴とする光触媒を提供する。   That is, the present invention is a photocatalyst having a structure in which an iron compound is supported on the surface of titanium oxide, and the titanium oxide converts rutile titanium oxide and anatase titanium oxide to 15/85 to 25/75 (the former / the latter ( Weight ratio)), the average particle diameter of the titanium oxide (by laser diffraction particle size distribution measurement) is 100 nm or less, the iron element content on the basis of titanium oxide is 50 to 1200 ppm, the chlorine atom content The photocatalyst is characterized by having an iron element content / a chlorine atom content (weight ratio) of 1.0 or less.

本発明は、また、反応容器(容量:0.5L)の中に、当該光触媒200mgを仕込み、メタノールガス(空気希釈、800体積ppm)で前記反応容器内を満たした状態で、25℃において、24時間光照射(光源:455nmLED、照度:2.5W/m2)を行った際の前記反応容器中における二酸化炭素の生成量(濃度換算)が400体積ppm以上である、前記の光触媒を提供する。 In the present invention, the reaction vessel (capacity: 0.5 L) is charged with 200 mg of the photocatalyst and filled with methanol gas (air dilution, 800 ppm by volume) at 25 ° C. Provided is the photocatalyst, wherein the amount of carbon dioxide produced (concentration conversion) in the reaction vessel when irradiated with light for 24 hours (light source: 455 nm LED, illuminance: 2.5 W / m 2 ) is 400 vol ppm or more. To do.

本発明は、また、ルチル型酸化チタンとアナターゼ型酸化チタンとを15/85〜25/75(前者/後者(重量比))の範囲で含み、平均粒子径(レーザー回折式粒度分布測定による)が100nm以下である酸化チタンに塩化鉄(III)を担持させ、その後、励起光を照射する工程を経て、前記の光触媒を得る、光触媒の製造方法を提供する。   The present invention also includes rutile type titanium oxide and anatase type titanium oxide in the range of 15/85 to 25/75 (the former / the latter (weight ratio)), and the average particle size (by laser diffraction particle size distribution measurement). Provided is a method for producing a photocatalyst, in which iron (III) chloride is supported on titanium oxide having a thickness of 100 nm or less and then irradiated with excitation light.

本発明は、また、前記の光触媒を含むコーティング液を提供する。   The present invention also provides a coating liquid containing the photocatalyst.

本発明は、また、基材表面に前記の光触媒を含むコーティング層を備えた光触媒塗装体を提供する。   The present invention also provides a photocatalyst-coated body provided with a coating layer containing the above-mentioned photocatalyst on the surface of a substrate.

本発明の光触媒は、紫外線域から可視光線域の広い波長範囲の光を吸収することにより、価電子帯にホール、伝導帯に励起電子を生成し、光触媒表面に付着した種々の物質を酸化、或いは還元して、環境浄化、脱臭、防汚、又は抗菌防カビを発現する。そのため、本発明の光触媒は、太陽光だけでなく、白熱灯、蛍光灯、及びLEDライト等の通常の生活空間における紫外線量の少ない光源を利用して優れた光触媒能を発揮することができ、車内や屋内等の従来は光触媒能を十分に発揮することが困難であった空間において環境浄化等に好適に使用することができる。   The photocatalyst of the present invention absorbs light in a wide wavelength range from the ultraviolet region to the visible light region, thereby generating holes in the valence band, excited electrons in the conduction band, and oxidizing various substances attached to the surface of the photocatalyst. Or it reduces and expresses environmental purification, deodorization, antifouling, or antibacterial and antifungal. Therefore, the photocatalyst of the present invention can exhibit excellent photocatalytic ability using not only sunlight but also a light source with a small amount of ultraviolet light in a normal living space such as an incandescent lamp, a fluorescent lamp, and an LED light, Conventionally, it can be suitably used for environmental purification or the like in a space where it has been difficult to sufficiently exhibit the photocatalytic activity, such as in a car or indoors.

実施例及び比較例で得られた光触媒の光触媒活性を示す図である。It is a figure which shows the photocatalytic activity of the photocatalyst obtained by the Example and the comparative example.

[光触媒]
本発明の光触媒は、酸化チタン表面に鉄化合物を担持した構成を有する光触媒であって、前記酸化チタンがルチル型酸化チタンとアナターゼ型酸化チタンとを15/85〜25/75(前者/後者(重量比))の範囲で含み、前記酸化チタンの平均粒子径(レーザー回折式粒度分布測定による)が100nm以下であり、酸化チタン基準での、鉄元素含有量が50〜1200ppm、塩素原子含有量が50〜1200ppmであり、鉄元素含有量/塩素原子含有量(重量比)が1.0以下であることを特徴とする。
[photocatalyst]
The photocatalyst of the present invention is a photocatalyst having a structure in which an iron compound is supported on the surface of titanium oxide, and the titanium oxide converts rutile titanium oxide and anatase titanium oxide to 15/85 to 25/75 (the former / the latter ( Weight ratio)), the average particle diameter of the titanium oxide (by laser diffraction particle size distribution measurement) is 100 nm or less, the iron element content on the basis of titanium oxide is 50 to 1200 ppm, the chlorine atom content Is 50 to 1200 ppm, and the iron element content / chlorine atom content (weight ratio) is 1.0 or less.

前記酸化チタンのルチル型酸化チタンとアナターゼ型酸化チタンの混合割合は、15/85〜25/75である。アナターゼ型酸化チタンの含有割合が上記範囲を上回ると、触媒活性が低下する傾向がある。   The mixing ratio of the rutile type titanium oxide and the anatase type titanium oxide of the titanium oxide is 15/85 to 25/75. When the content ratio of the anatase type titanium oxide exceeds the above range, the catalytic activity tends to decrease.

ルチル型酸化チタンとアナターゼ型酸化チタンとを上記範囲で含有する酸化チタン(若しくは、ルチル型酸化チタンとアナターゼ型酸化チタンとを上記範囲で含有する混合物)は、例えば、アナターゼ型酸化チタンを、気相にて500℃以上の温度で燃焼させてその一部をルチル型酸化チタンへ変換させることにより製造することができ、燃焼時間を調整することでルチル型酸化チタンとアナターゼ型酸化チタンの混合割合をコントロールすることができる。   Titanium oxide containing rutile type titanium oxide and anatase type titanium oxide in the above range (or a mixture containing rutile type titanium oxide and anatase type titanium oxide in the above range) is, for example, anatase type titanium oxide. It can be manufactured by burning at a temperature of 500 ° C. or higher in the phase and converting a part thereof to rutile type titanium oxide, and the mixing ratio of rutile type titanium oxide and anatase type titanium oxide by adjusting the combustion time Can be controlled.

また、アナターゼ型酸化チタンは、周知慣用の方法で製造することができ、例えば、以下の方法を挙げることができる。
(I)チタンテトライソプロポキシドを600℃〜800℃で熱処理し、熱分解反応によりアナターゼ型酸化チタンを製造する方法(気相法)
(II)ゾル−ゲル法で得られた非晶質酸化チタンを、300℃〜600℃の高温で焼成する方法(液相法)
(III)オートクレーブ中、チタンアルコキシドを250℃で水熱処理する方法(水熱法)
Moreover, anatase type titanium oxide can be manufactured by a well-known and usual method, for example, the following method can be mentioned.
(I) Method of producing anatase-type titanium oxide by thermal treatment of titanium tetraisopropoxide at 600 ° C. to 800 ° C. (gas phase method)
(II) A method of firing amorphous titanium oxide obtained by a sol-gel method at a high temperature of 300 ° C. to 600 ° C. (liquid phase method)
(III) Hydrothermal treatment of titanium alkoxide at 250 ° C in an autoclave (hydrothermal method)

ルチル型酸化チタンとアナターゼ型酸化チタンとを上記範囲で含有する酸化チタンの平均粒子径は100nm以下であり、好ましくは70nm以下、特に好ましくは60nm以下、最も好ましくは50nm以下である。尚、平均粒子径の下限は、例えば5nm、好ましくは10nm、特に好ましくは20nmである。平均粒子径が上記範囲の酸化チタンは、高活性面の露出量が多く、優れた光触媒能を発揮することができる。尚、酸化チタンの平均粒子径は、レーザー回折式粒度分布測定装置(商品名「SALD-2000J」、島津製作所製)を使用して得られた値である。   The average particle size of titanium oxide containing rutile titanium oxide and anatase titanium oxide in the above range is 100 nm or less, preferably 70 nm or less, particularly preferably 60 nm or less, and most preferably 50 nm or less. The lower limit of the average particle diameter is, for example, 5 nm, preferably 10 nm, particularly preferably 20 nm. Titanium oxide having an average particle size in the above range has a large amount of exposure on the highly active surface and can exhibit excellent photocatalytic ability. The average particle diameter of titanium oxide is a value obtained using a laser diffraction particle size distribution analyzer (trade name “SALD-2000J”, manufactured by Shimadzu Corporation).

酸化チタンの比表面積(BET法による)としては、例えば10m2/g以上、好ましくは20m2/g以上、特に好ましくは30m2/g以上、最も好ましくは40m2/g以上である。尚、比表面積の上限は、例えば100m2/g、好ましくは80m2/g、特に好ましくは70m2/g、最も好ましくは60m2/gである。酸化チタンの比表面積が上記範囲を下回ると、反応物質を吸着する能力が低下して光触媒能が低下する傾向がある。一方、酸化チタンの比表面積が上記範囲を上回ると、励起電子とホールの分離性が低下し、光触媒能が低下する傾向がある。 The specific surface area (by the BET method) of titanium oxide is, for example, 10 m 2 / g or more, preferably 20 m 2 / g or more, particularly preferably 30 m 2 / g or more, and most preferably 40 m 2 / g or more. The upper limit of the specific surface area is, for example, 100 m 2 / g, preferably 80 m 2 / g, particularly preferably 70 m 2 / g, and most preferably 60 m 2 / g. When the specific surface area of titanium oxide is less than the above range, the ability to adsorb reactants tends to decrease and the photocatalytic ability tends to decrease. On the other hand, when the specific surface area of titanium oxide exceeds the above range, the separability between excited electrons and holes tends to decrease, and the photocatalytic ability tends to decrease.

本発明の光触媒において、酸化チタン表面に担持する鉄化合物は、鉄イオン、鉄単体、鉄塩、鉄酸化物、鉄水酸化物、鉄錯体等のいずれの状態であってもよい。   In the photocatalyst of the present invention, the iron compound supported on the titanium oxide surface may be in any state such as iron ion, iron simple substance, iron salt, iron oxide, iron hydroxide, iron complex and the like.

本発明の光触媒における、酸化チタン基準での鉄元素含有量は50〜1200ppmであり、上限は、好ましくは1000ppm、更に好ましくは800ppm、特に好ましくは500ppm、最も好ましくは400ppmである。また、下限は、好ましくは100ppm、更に好ましくは150ppm、特に好ましくは200ppmである。鉄元素含有量が上記範囲を上回ると、励起電子が有効に作用せず、光触媒能が低下する傾向がある。一方、鉄元素含有量が上記範囲を下回ると、可視光応答性が低下する傾向がある。   In the photocatalyst of the present invention, the content of iron element on the basis of titanium oxide is 50 to 1200 ppm, and the upper limit is preferably 1000 ppm, more preferably 800 ppm, particularly preferably 500 ppm, and most preferably 400 ppm. The lower limit is preferably 100 ppm, more preferably 150 ppm, and particularly preferably 200 ppm. When the iron element content exceeds the above range, excited electrons do not act effectively, and the photocatalytic ability tends to decrease. On the other hand, when the iron element content is below the above range, the visible light responsiveness tends to decrease.

また、本発明の光触媒における、酸化チタン基準での塩素原子含有量は50〜1200ppmであり、上限は、好ましくは1000ppm、更に好ましくは900ppm、特に好ましくは800ppmである。また、下限は、好ましくは100ppm、更に好ましくは200ppm、特に好ましくは400ppm、最も好ましくは500ppm、とりわけ好ましくは600ppmである。塩素原子含有量が上記範囲を外れると、触媒活性が低下する傾向がある。   In the photocatalyst of the present invention, the chlorine atom content based on titanium oxide is 50 to 1200 ppm, and the upper limit is preferably 1000 ppm, more preferably 900 ppm, and particularly preferably 800 ppm. The lower limit is preferably 100 ppm, more preferably 200 ppm, particularly preferably 400 ppm, most preferably 500 ppm, and particularly preferably 600 ppm. When the chlorine atom content is outside the above range, the catalytic activity tends to decrease.

更に、本発明の光触媒における、酸化チタン基準での鉄元素含有量/塩素原子含有量(重量比)は1.0以下であり、好ましくは0.8以下、特に好ましくは0.6以下、最も好ましくは0.5以下である。尚、下限は、例えば0.05、好ましくは0.1、特に好ましくは0.2、最も好ましくは0.3である。   Furthermore, in the photocatalyst of the present invention, the iron element content / chlorine atom content (weight ratio) based on titanium oxide is 1.0 or less, preferably 0.8 or less, particularly preferably 0.6 or less, Preferably it is 0.5 or less. The lower limit is, for example, 0.05, preferably 0.1, particularly preferably 0.2, and most preferably 0.3.

更に、本発明の光触媒は鉄化合物以外の遷移金属化合物も担持していても良いが、酸化チタンに担持される全遷移金属化合物に占める鉄化合物の割合(金属元素換算)は、例えば80重量%以上、好ましくは90重量%以上、特に好ましくは95重量%以上である。他の遷移金属化合物の担持量が上記範囲を上回ると、本発明の効果が得られにくくなる傾向があるため好ましくない。   Furthermore, although the photocatalyst of the present invention may carry a transition metal compound other than the iron compound, the ratio of the iron compound to the total transition metal compound supported on titanium oxide (in terms of metal element) is, for example, 80% by weight. Above, preferably 90% by weight or more, particularly preferably 95% by weight or more. If the amount of other transition metal compound supported exceeds the above range, the effect of the present invention tends to be difficult to obtain, which is not preferable.

[光触媒の製造方法]
本発明の光触媒は、例えば、ルチル型酸化チタンとアナターゼ型酸化チタンとを15/85〜25/75(前者/後者(重量比))の範囲で含み、平均粒子径(レーザー回折式粒度分布測定による)が100nm以下である酸化チタンに塩化鉄(III)を担持させ、その後、励起光を照射する工程を経て製造することができる。
[Method for producing photocatalyst]
The photocatalyst of the present invention contains, for example, rutile type titanium oxide and anatase type titanium oxide in a range of 15/85 to 25/75 (the former / the latter (weight ratio)), and an average particle size (laser diffraction type particle size distribution measurement). Can be produced through a step of supporting iron (III) chloride on titanium oxide having a thickness of 100 nm or less and then irradiating with excitation light.

酸化チタンに塩化鉄(III)を担持させる方法としては、例えば、酸化チタンに塩化鉄(III)を含浸させる含浸法により行うことができる。   As a method of supporting iron (III) chloride on titanium oxide, for example, an impregnation method in which titanium oxide is impregnated with iron (III) chloride can be performed.

含浸は、具体的には、酸化チタンの水懸濁液中に塩化鉄(III)水溶液を添加すること等により行うことができる。塩化鉄(III)水溶液中の塩化鉄(III)濃度は、例えば10〜80重量%程度である。含浸時間としては、例えば1〜48時間程度、好ましくは3〜24時間、特に好ましくは3〜12時間である。塩化鉄(III)水溶液濃度や含浸時間を調整することにより、得られる光触媒の鉄元素含有量や塩素原子含有量をコントロールすることができる。   Specifically, the impregnation can be performed by adding an aqueous iron (III) chloride solution to an aqueous suspension of titanium oxide. The iron (III) chloride concentration in the iron (III) chloride aqueous solution is, for example, about 10 to 80% by weight. The impregnation time is, for example, about 1 to 48 hours, preferably 3 to 24 hours, and particularly preferably 3 to 12 hours. By adjusting the iron (III) chloride aqueous solution concentration and the impregnation time, the iron element content and chlorine atom content of the resulting photocatalyst can be controlled.

さらに、本発明においては、酸化チタンに塩化鉄(III)を含浸させる際、系内に犠牲剤を添加することが好ましい。犠牲剤を添加することにより、酸化チタンの表面に効率よく鉄化合物を担持させることができる。犠牲剤としては、それ自体が電子を放出しやすい有機化合物を使用することが好ましく、例えば、メタノール、エタノール等のアルコール;酢酸等のカルボン酸;エチレンジアミン四酢酸(EDTA)、トリエタノールアミン(TEA)等のアミン等を挙げることができる。   Furthermore, in the present invention, it is preferable to add a sacrificial agent to the system when impregnating titanium oxide with iron (III) chloride. By adding the sacrificial agent, the iron compound can be efficiently supported on the surface of the titanium oxide. As the sacrificial agent, it is preferable to use an organic compound that easily emits electrons. For example, alcohols such as methanol and ethanol; carboxylic acids such as acetic acid; ethylenediaminetetraacetic acid (EDTA) and triethanolamine (TEA) And the like.

犠牲剤の添加量としては、適宜調整することができ、例えば、酸化チタンの0.5〜20.0重量%程度、好ましくは1.0〜5.0重量%である。犠牲剤は過剰量を使用してもよい。   The addition amount of the sacrificial agent can be adjusted as appropriate, and is, for example, about 0.5 to 20.0% by weight of titanium oxide, preferably 1.0 to 5.0% by weight. An excessive amount of the sacrificial agent may be used.

本発明においては、酸化チタン表面に塩化鉄(III)を担持(若しくは、吸着)させた後、励起光を照射することを特徴とする。励起光を照射すると、酸化チタンの表面に担持された鉄イオンの一部が剥がれて溶液中に溶出し、鉄イオンと対に存在する塩素イオンも共に剥がれて溶出する。そのため、上記特定量の鉄元素と塩素原子とを、上記特定の割合で含有する本発明の光触媒が得られる。   The present invention is characterized by irradiating excitation light after iron (III) chloride is supported (or adsorbed) on the surface of titanium oxide. When irradiated with excitation light, part of the iron ions supported on the surface of the titanium oxide is peeled off and eluted in the solution, and the chlorine ions present in pairs with the iron ions are also peeled off and eluted. Therefore, the photocatalyst of the present invention containing the specific amount of iron element and chlorine atom in the specific ratio is obtained.

励起光の照射方法としては、バンドギャップエネルギー以上のエネルギーを有する光を照射することができればよく、例えば、紫外線を照射することにより行うことができる。紫外線照射手段としては、例えば、中・高圧水銀灯、UVレーザー、UV−LED、ブラックライト等の紫外線を効率よく発生させる光源を有する紫外線露光装置等を使用することができる。励起光の照射量としては、例えば0.1〜300mW/cm2程度、好ましくは0.5〜100mW/cm2である。励起光の照射時間としては、例えば1〜48時間程度、好ましくは3〜36時間、特に好ましくは6〜36時間である。 As a method for irradiating the excitation light, it is only necessary to irradiate light having energy equal to or higher than the band gap energy. As the ultraviolet irradiation means, for example, an ultraviolet exposure apparatus having a light source for efficiently generating ultraviolet rays such as a medium / high pressure mercury lamp, a UV laser, a UV-LED, and a black light can be used. The irradiation amount of the excitation light is, for example, about 0.1 to 300 mW / cm 2 , preferably 0.5 to 100 mW / cm 2 . The irradiation time of the excitation light is, for example, about 1 to 48 hours, preferably 3 to 36 hours, and particularly preferably 6 to 36 hours.

上記工程を経て得られた本発明の光触媒は精製処理を施すことが好ましく、特に、上記工程を経て得られた本発明の光触媒を、水懸濁液の上澄み液の電気伝導度が300μS/cm以下(例えば0.5〜300μS/cm)、好ましくは250μS/cm以下、特に好ましくは200μS/cm以下となるまで繰り返し水洗することが好ましい。水懸濁液の電気伝導度が上記範囲となるまで水洗することにより、本発明の光触媒に含まれる不純物[例えば、酸化チタンに含まれる未反応原料(チタン化合物)、鉄化合物(例えば、塩化鉄(III)、硝酸鉄(III)、硫酸鉄(III)等の3価の鉄化合物等)、反応中間体(例えば、2価の鉄化合物等)]を分離・除去することができ、光触媒能を一層向上させることができる。   The photocatalyst of the present invention obtained through the above steps is preferably subjected to purification treatment, and in particular, the electrical conductivity of the supernatant liquid of the aqueous suspension of the photocatalyst of the present invention obtained through the above steps is 300 μS / cm. It is preferable to repeatedly wash with water until the following (for example, 0.5 to 300 μS / cm), preferably 250 μS / cm or less, particularly preferably 200 μS / cm or less. By washing with water until the electric conductivity of the aqueous suspension is within the above range, impurities contained in the photocatalyst of the present invention [for example, unreacted raw material (titanium compound) contained in titanium oxide, iron compound (for example, iron chloride) (III), iron (III) nitrate, trivalent iron compounds such as iron (III) sulfate, etc.) and reaction intermediates (eg divalent iron compounds)] can be separated and removed, and photocatalytic activity Can be further improved.

上記水洗に使用する水としては、例えば、精製水、蒸留水、イオン交換水、純水等を挙げることができる。   Examples of water used for the water washing include purified water, distilled water, ion exchange water, and pure water.

水洗処理方法としては、例えば、水に分散−水洗−遠心分離を、遠心分離後の上澄み液の電気伝導度が上記範囲となるまで繰り返し行ってもよく、濾過膜を使用し濾過液(若しくは透過液)の電気伝導度が上記範囲になるまで繰り返し膜濾過してもよい。膜濾過には、全量ろ過方式とクロスフロー方式(濾過膜面に平行に被処理水を流し、流れの側方で濾過する方式)が含まれる。本発明においては、特に、クロスフロー方式により膜濾過することが、本発明の光触媒の結晶構造及び分散性を維持しつつ、イオン性不純物の含有量を低減することができる点で好ましい。   As the water washing treatment method, for example, dispersion in water, washing with water, and centrifugation may be repeated until the electrical conductivity of the supernatant after centrifugation falls within the above range, and a filtrate (or permeation) is used using a filtration membrane. Membrane filtration may be repeated until the electric conductivity of the liquid reaches the above range. Membrane filtration includes a total amount filtration method and a cross flow method (a method in which water to be treated is flowed parallel to the filtration membrane surface and filtered on the side of the flow). In the present invention, it is particularly preferable to perform membrane filtration by the crossflow method in that the content of ionic impurities can be reduced while maintaining the crystal structure and dispersibility of the photocatalyst of the present invention.

上記方法により得られる本発明の光触媒は非常に優れた光触媒活性を有し、反応容器(容量:0.5L)の中に、当該光触媒200mgを仕込み、メタノールガス(空気希釈、800体積ppm)で前記反応容器内を満たした状態で、25℃において、24時間光照射(光源:455nmLED、照度:2.5W/m2)を行った際の前記反応容器中における二酸化炭素の生成量(濃度換算)は、例えば400体積ppm以上、好ましくは450体積ppm以上、特に好ましくは500体積ppm以上である。
これは、励起光の照射により、酸化チタン表面の特定部位に担持されていた鉄化合物が選択的に剥がれ、酸化反応と還元反応の反応場が空間的に大きく引き離されることにより、励起電子とホールの分離性が高められ、励起電子とホールの再結合及び逆反応の進行が極めて低く抑制されるためと考えられる。
The photocatalyst of the present invention obtained by the above method has a very excellent photocatalytic activity. In a reaction vessel (volume: 0.5 L), 200 mg of the photocatalyst is charged and methanol gas (air dilution, 800 ppm by volume) is used. The amount of carbon dioxide produced in the reaction vessel (concentration conversion) when irradiated with light (light source: 455 nm LED, illuminance: 2.5 W / m 2 ) for 24 hours at 25 ° C. with the inside of the reaction vessel filled. ) Is, for example, 400 ppm by volume or more, preferably 450 ppm by volume or more, and particularly preferably 500 ppm by volume or more.
This is because the iron compound supported on a specific part of the titanium oxide surface is selectively peeled off by excitation light irradiation, and the reaction field of the oxidation reaction and the reduction reaction is largely separated spatially, thereby causing excitation electrons and holes. This is thought to be due to the fact that the separability of the electrons is enhanced, and the recombination of excited electrons and holes and the progress of the reverse reaction are suppressed to a very low level.

本発明の光触媒は紫外線域から可視光線域までの広い波長範囲において優れた応答性を有し、上述の通り優れた光触媒能を発揮することができるため、屋外だけでなく、屋内や車内等の紫外線量が低い環境下において、環境浄化や家電製品の高機能化等に応用が可能である。   The photocatalyst of the present invention has excellent responsiveness in a wide wavelength range from the ultraviolet region to the visible light region, and can exhibit excellent photocatalytic activity as described above, so that it can be used not only outdoors but also indoors and in vehicles. In an environment where the amount of ultraviolet rays is low, it can be applied to environmental purification and enhancement of functions of home appliances.

[コーティング液]
本発明のコーティング液は、任意の塗布対象物に塗布することで、当該塗布対象物表面に上記光触媒を含むコーティング層を形成する用途に用いられるものであり、少なくとも上記光触媒を含む。本発明のコーティング液は、上記光触媒の他に、例えば、バインダー樹脂、着色顔料、分散媒等を必要に応じて適宜含有することができる。
[Coating solution]
The coating liquid of this invention is used for the use which forms the coating layer containing the said photocatalyst on the said application | coating object surface by apply | coating to arbitrary application | coating objects, and contains the said photocatalyst at least. In addition to the photocatalyst, the coating liquid of the present invention can appropriately contain, for example, a binder resin, a color pigment, a dispersion medium, and the like as necessary.

本発明のコーティング液を、例えば、スプレー、刷毛、ローラー、グラビア印刷等を使用することにより塗布し、その後、乾燥及び/又は硬化させることによってコーティング層を形成することができる。   The coating liquid of the present invention can be applied, for example, by using a spray, a brush, a roller, gravure printing, etc., and then dried and / or cured to form a coating layer.

[光触媒塗装体]
本発明の光触媒塗装体は、基材表面に前記光触媒を含むコーティング層を1層又は2層以上備えることを特徴とする。
[Photocatalyst coated body]
The photocatalyst-coated body of the present invention is characterized by comprising one or more coating layers containing the photocatalyst on the substrate surface.

コーティング層の厚み(2層以上有する場合はその総厚み)としては、例えば0.1〜1μm程度である。   The thickness of the coating layer (the total thickness when it has two or more layers) is, for example, about 0.1 to 1 μm.

基材の素材からみた前記基材としては、例えば、各種プラスチック材料[例えば、ポリエチレン、ポリプロピレン、エチレン−プロピレン共重合体、エチレン−酢酸ビニル共重合体等のα−オレフィンをモノマー成分とするオレフィン系樹脂;ポリエチレンテレフタラート、ポリエチレンナフタレート、ポリブチレンテレフタラート等のポリエステル系樹脂;ポリ塩化ビニル;酢酸ビニル系樹脂;ポリフェニレンスルフィド;ポリアミド(ナイロン)、全芳香族ポリアミド(アラミド)等のアミド系樹脂;ポリイミド系樹脂;ポリエーテルエーテルケトン等]、ゴム材料(例えば、天然ゴム、合成ゴム、シリコンゴム等)、金属材料(例えば、アルミニウム、銅、鉄、ステンレス等)、紙質材料(例えば、紙、紙類似物質等)、木質材料(例えば、木材、MDF等の木質ボード、合板等)、繊維材料(例えば、不織布、織布等)、革材料、無機材料(例えば、石、コンクリート等)、ガラス材料、磁器材料等の各種の素材を挙げることができる。   Examples of the base material from the viewpoint of the material of the base material include various plastic materials [for example, olefins containing α-olefin such as polyethylene, polypropylene, ethylene-propylene copolymer, ethylene-vinyl acetate copolymer, etc. as monomer components. Resins; Polyester resins such as polyethylene terephthalate, polyethylene naphthalate, and polybutylene terephthalate; Polyvinyl chloride; Vinyl acetate resins; Polyphenylene sulfide; Amide resins such as polyamide (nylon) and wholly aromatic polyamide (aramid); Polyimide resin; polyether ether ketone, etc.], rubber material (eg, natural rubber, synthetic rubber, silicon rubber, etc.), metal material (eg, aluminum, copper, iron, stainless steel, etc.), paper material (eg, paper, paper) Similar materials), woody materials (eg Various materials such as wood, wood board such as MDF, plywood, etc., fiber materials (eg, non-woven fabric, woven fabric, etc.), leather materials, inorganic materials (eg, stone, concrete, etc.), glass materials, porcelain materials, etc. Can be mentioned.

用途からみた前記基材としては、例えば、レンズ(例えば、眼鏡やカメラのレンズ等)、プリズム、自動車や鉄道車両等の乗物部材(窓ガラス、照明灯カバー、バックミラー等)、建築部材(例えば、外壁材、内壁材、窓枠、窓ガラス等)、機械構成部材、交通標識等の各種表示装置、広告塔、遮音壁(道路用、鉄道用等)、橋梁、ガードレール、トンネル、碍子、太陽電池カバー、太陽熱温水器集熱カバー、照明器具、浴室用品、浴室部材(例えば、鏡、浴槽等)、台所用品、台所部材(例えば、キッチンパネル、流し台、レンジフード、換気扇等)、空調、トイレ用品、トイレ部材(例えば、便器等)等の抗菌防カビ、脱臭、大気浄化、水質浄化、防汚効果が期待される物品や、前記物品表面に貼着させるためのフィルム、シート、シール等を挙げることができる。   Examples of the base material from the viewpoint of use include lenses (for example, glasses and camera lenses), prisms, vehicle members such as automobiles and railway vehicles (window glass, illumination lamp covers, rearview mirrors, etc.), building members (for example, , Outer wall materials, inner wall materials, window frames, window glass, etc.), machine components, various display devices such as traffic signs, advertising towers, sound insulation walls (for roads, railways, etc.), bridges, guardrails, tunnels, insulators, solar cells Covers, solar water heater heat collection covers, lighting fixtures, bathroom items, bathroom components (eg, mirrors, bathtubs, etc.), kitchen appliances, kitchen components (eg, kitchen panels, sinks, range hoods, exhaust fans, etc.), air conditioning, toilet articles , Antibacterial and antifungal products such as toilet members (for example, toilets, etc.), deodorizing, air purification, water purification, antifouling effects, and films, sheets, sheets to be adhered to the surface of the articles And the like can be given.

本発明の光触媒塗装体は、上記光触媒を含むコーティング層を有するため、太陽光の照射環境下はもちろん、白熱灯、蛍光灯等の通常の生活空間の低照度環境下でも、優れた抗菌防カビ、脱臭、大気浄化、水質浄化、防汚等の効果を発揮することができる。   Since the photocatalyst-coated body of the present invention has a coating layer containing the above-mentioned photocatalyst, it is excellent in antibacterial and antifungal properties not only in the sunlight irradiation environment but also in a low light environment of a normal living space such as an incandescent lamp and a fluorescent lamp. It can exhibit effects such as deodorization, air purification, water purification, and antifouling.

以下、実施例により本発明をより具体的に説明するが、本発明はこれらの実施例により限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention more concretely, this invention is not limited by these Examples.

実施例1
酸化チタン(ルチル型酸化チタン(20重量%)とアナターゼ型酸化チタン(80重量%)との混合物、平均粒子径:30nm、比表面積:50m2/g、商品名「AEROXIDE TiO2 P25」、日本アエロジル(株)製)10gとイオン交換水90gを撹拌混合して懸濁液(1)を得た。
得られた懸濁液(1)に、塩化鉄(III)水溶液(塩化鉄(III)濃度:38重量%)0.15gを添加し、25℃にて30分撹拌した。その後、メタノール2.3g(酸化チタンの23重量%に相当)を添加し、10Wのブラックライトを用いて紫外線(UV)を6時間照射(UV照射量:10mW/cm2)した。
その後、懸濁液を高速遠心沈降機(遠心力:20000G、時間:10〜20分)に付して、粉体洗浄(上澄み液の電気伝導度が200μS/cm以下となるまで水洗)を行いながら、粉体を沈降させた。
沈降した粉体を分取し、真空乾燥機を用いて60℃で乾燥を行って乾燥粉体を得た。
得られた乾燥粉体を乳鉢ですり潰して、光触媒(1)(酸化チタンに対して、鉄元素含有量:240ppm、塩素原子含有量:680ppm、鉄元素含有量/塩素原子含有量:0.35、平均粒子径:30nm)を得た。
Example 1
Titanium oxide (mixture of rutile type titanium oxide (20% by weight) and anatase type titanium oxide (80% by weight), average particle size: 30 nm, specific surface area: 50 m 2 / g, trade name “AEROXIDE TiO 2 P25”, Japan Aerosil Co., Ltd. (10 g) and ion-exchanged water (90 g) were stirred and mixed to obtain a suspension (1).
To the obtained suspension (1), 0.15 g of an aqueous iron (III) chloride solution (iron (III) chloride concentration: 38% by weight) was added and stirred at 25 ° C. for 30 minutes. Thereafter, 2.3 g of methanol (corresponding to 23% by weight of titanium oxide) was added, and ultraviolet rays (UV) were irradiated for 6 hours (UV irradiation amount: 10 mW / cm 2 ) using a 10 W black light.
Thereafter, the suspension is subjected to a high-speed centrifugal settling machine (centrifugal force: 20000 G, time: 10 to 20 minutes), and powder washing (washing with water until the electric conductivity of the supernatant becomes 200 μS / cm or less) is performed. The powder was allowed to settle.
The settled powder was collected and dried at 60 ° C. using a vacuum dryer to obtain a dry powder.
The obtained dry powder was ground in a mortar and photocatalyst (1) (iron element content: 240 ppm, chlorine atom content: 680 ppm, iron element content / chlorine atom content: 0.35 with respect to titanium oxide) , Average particle diameter: 30 nm).

実施例2
塩化鉄(III)水溶液(38重量%)の添加量を、0.15gから0.075gに変更した以外は実施例1と同様にして、光触媒(2)(鉄元素含有量:220ppm、塩素原子含有量:600ppm、鉄元素含有量/塩素原子含有量:0.37、平均粒子径:30nm)を得た。
Example 2
Photocatalyst (2) (iron element content: 220 ppm, chlorine atom) was carried out in the same manner as in Example 1 except that the amount of iron (III) chloride aqueous solution (38 wt%) was changed from 0.15 g to 0.075 g. Content: 600 ppm, iron element content / chlorine atom content: 0.37, average particle size: 30 nm).

実施例3
塩化鉄(III)水溶液(38重量%)の添加量を、0.15gから0.3gに変更した以外は実施例1と同様にして、光触媒(3)(鉄元素含有量:320ppm、塩素原子含有量:760ppm、鉄元素含有量/塩素原子含有量:0.42、平均粒子径:30nm)を得た。
Example 3
Photocatalyst (3) (iron element content: 320 ppm, chlorine atoms) was carried out in the same manner as in Example 1 except that the addition amount of the iron (III) chloride aqueous solution (38% by weight) was changed from 0.15 g to 0.3 g. Content: 760 ppm, iron element content / chlorine atom content: 0.42, average particle size: 30 nm).

比較例1
紫外線照射を行わなかった以外は実施例1と同様にして、光触媒(4)(鉄元素含有量:2120ppm、塩素原子含有量:1500ppm、鉄元素含有量/塩素原子含有量:1.41、平均粒子径:30nm)を得た。
Comparative Example 1
Photocatalyst (4) (iron element content: 2120 ppm, chlorine atom content: 1500 ppm, iron element content / chlorine atom content: 1.41, average, except that no ultraviolet irradiation was performed) Particle size: 30 nm) was obtained.

比較例2
塩化鉄(III)水溶液(38重量%)に代えて、Fe(acac)3水溶液(38重量%)を使用した以外は実施例1と同様にして、光触媒(5)(鉄元素含有量:230ppm、塩素原子含有量:15ppm、鉄元素含有量/塩素原子含有量:15.3、平均粒子径:30nm)を得た。
Comparative Example 2
Photocatalyst (5) (iron element content: 230 ppm) was carried out in the same manner as in Example 1 except that an Fe (acac) 3 aqueous solution (38 wt%) was used instead of the iron (III) chloride aqueous solution (38 wt%). Chlorine atom content: 15 ppm, iron element content / chlorine atom content: 15.3, average particle size: 30 nm).

<鉄元素含有量の測定方法>
実施例及び比較例で得られた光触媒について、それぞれ約20mgを精秤し、硫酸1mLを加えた後、砂浴上で加熱溶解した。溶解後、少量の超純水を加えてリフラックスした後、これをIWAKI製PP容器にて20mLにメスアップし、更に0.2μmフィルター処理を施してサンプルを調製し、これをICP発光分析(ICP発光分析装置:(株)リガク製、CIROS)に付した。
また、光触媒を加えなかった以外は前記と同様にして得られたサンプルをブランクとして使用した。検量線用の標準液は、SPEX社製ICP−MS用混合標準液XSTC−22を同濃度の硫酸水溶液にて希釈調整したものを使用した。
<Measurement method of iron element content>
About 20 mg of each of the photocatalysts obtained in Examples and Comparative Examples was precisely weighed, 1 mL of sulfuric acid was added, and the mixture was heated and dissolved on a sand bath. After dissolution, a small amount of ultrapure water is added and refluxed, and this is made up to 20 mL in an IWAKI PP container, further 0.2 μm filtered to prepare a sample, and this is analyzed by ICP emission spectrometry ( ICP emission analyzer: manufactured by Rigaku Corporation, CIROS).
Moreover, the sample obtained by carrying out similarly to the above except having not added a photocatalyst was used as a blank. As the standard solution for the calibration curve, a solution prepared by diluting a mixed standard solution XSTC-22 for ICP-MS manufactured by SPEX with an aqueous sulfuric acid solution having the same concentration was used.

<塩素原子含有量の測定方法>
実施例及び比較例で得られた光触媒について、下記条件で塩素原子含有量を測定した。
(燃焼条件)
使用機器:ダイアインスツルメンツ製AQF−100
サンプル:約20mg
燃焼プログラム:2
吸収液:H22 150ppm
内部標準液:酒石酸 5ppm
吸収液量:10mL
(イオンクロマト条件)
使用機器:DIONEX ICS−2000(低濃度分析モード)
本カラム:AS−12
プレカラム:AG−12
溶離液:3.0mM K2CO3+0.3mM DIONEX EPM 500(Electrolytic pH Modifier;炭酸水素カリウム)
サプレッサー:ASRS(リサイクルモード)
流速:1.2mL/分
検出器:電気伝導度検出器
カラム温度:35℃
注入量:100μL
<Method for measuring chlorine atom content>
About the photocatalyst obtained by the Example and the comparative example, chlorine atom content was measured on condition of the following.
(Combustion conditions)
Equipment used: AQF-100 manufactured by Dia Instruments
Sample: about 20mg
Combustion program: 2
Absorbent: H 2 O 2 150 ppm
Internal standard solution: Tartaric acid 5ppm
Absorbing liquid volume: 10mL
(Ion chromatography conditions)
Equipment used: DIONEX ICS-2000 (low concentration analysis mode)
This column: AS-12
Precolumn: AG-12
Eluent: 3.0 mM K 2 CO 3 +0.3 mM DIONEX EPM 500 (Electrolytic pH Modifier; potassium bicarbonate)
Suppressor: ASRS (recycle mode)
Flow rate: 1.2 mL / min Detector: Conductivity detector Column temperature: 35 ° C
Injection volume: 100 μL

<光触媒活性評価方法(メタノール酸化法)>
実施例及び比較例で得られた光触媒(1)〜(5)について、気相にてメタノールを酸化し、生成するCO2量を測定することにより光触媒活性を評価した。
光触媒(1)〜(5)各200mgをガラス製皿に広げ、反応容器(容量:0.5L、スマートバッグPA、ジーエルサイエンス(株)製)の中に入れ、真空状態にした後、メタノールガス(空気希釈;800体積ppm)0.5Lを反応容器内に吹き込んだ。メタノールガスの光触媒への吸着が平衡に達した後、25℃で光照射(光源:455nmLED、照度:2.5W/m2)を行った。
光照射開始24時間後における反応容器内のCO2濃度をメタナイザー(商品名「MT221」、GLサイエンス(株)製)が付属した水素炎イオン化検出器付きガスクロマトグラフ(商品名「GC−14B」、島津製作所製)を使用して測定し、光照射開始前における反応用器内のCO2濃度を差し引いた値を、CO2の生成量とした。結果を図1に示す。
<Photocatalytic activity evaluation method (methanol oxidation method)>
For the photocatalysts (1) to (5) obtained in Examples and Comparative Examples, the photocatalytic activity was evaluated by oxidizing methanol in the gas phase and measuring the amount of CO 2 produced.
200 mg of each of the photocatalysts (1) to (5) was spread on a glass dish, placed in a reaction vessel (capacity: 0.5 L, smart bag PA, manufactured by GL Sciences), evacuated, and then methanol gas 0.5 L (air dilution; 800 ppm by volume) was blown into the reaction vessel. After the adsorption of methanol gas to the photocatalyst reached equilibrium, light irradiation (light source: 455 nm LED, illuminance: 2.5 W / m 2 ) was performed at 25 ° C.
A gas chromatograph with a flame ionization detector (trade name “GC-14B”) attached with a methanizer (trade name “MT221”, manufactured by GL Science Co., Ltd.) for the CO 2 concentration in the reaction vessel 24 hours after the start of light irradiation, A value obtained by subtracting the CO 2 concentration in the reactor before the start of light irradiation was defined as the amount of CO 2 produced. The results are shown in FIG.

Claims (5)

酸化チタン表面に鉄化合物を担持した構成を有する光触媒であって、前記酸化チタンがルチル型酸化チタンとアナターゼ型酸化チタンとを15/85〜25/75(前者/後者(重量比))の範囲で含み、前記酸化チタンの平均粒子径(レーザー回折式粒度分布測定による)が100nm以下であり、酸化チタン基準での、鉄元素含有量が50〜1200ppm、塩素原子含有量が50〜1200ppmであり、鉄元素含有量/塩素原子含有量(重量比)が1.0以下であることを特徴とする光触媒。   A photocatalyst having a structure in which an iron compound is supported on a titanium oxide surface, wherein the titanium oxide is a rutile type titanium oxide and anatase type titanium oxide in a range of 15/85 to 25/75 (the former / the latter (weight ratio)). The titanium oxide has an average particle diameter (by laser diffraction particle size distribution measurement) of 100 nm or less, an iron element content of 50 to 1200 ppm, and a chlorine atom content of 50 to 1200 ppm, based on titanium oxide. A photocatalyst having an iron element content / chlorine atom content (weight ratio) of 1.0 or less. 反応容器(容量:0.5L)の中に、当該光触媒200mgを仕込み、メタノールガス(空気希釈、800体積ppm)で前記反応容器内を満たした状態で、25℃において、24時間光照射(光源:455nmLED、照度:2.5W/m2)を行った際の前記反応容器中における二酸化炭素の生成量(濃度換算)が400体積ppm以上である、請求項1に記載の光触媒。 In a reaction vessel (capacity: 0.5 L), 200 mg of the photocatalyst was charged, and the reaction vessel was filled with methanol gas (air dilution, 800 ppm by volume). : 455 nm LED, illuminance: 2.5 W / m 2 ) The photocatalyst according to claim 1, wherein the amount of carbon dioxide produced (concentration conversion) in the reaction vessel is 400 ppm by volume or more. ルチル型酸化チタンとアナターゼ型酸化チタンとを15/85〜25/75(前者/後者(重量比))の範囲で含み、平均粒子径(レーザー回折式粒度分布測定による)が100nm以下である酸化チタンに塩化鉄(III)を担持させ、その後、励起光を照射する工程を経て、請求項1又は2に記載の光触媒を得る、光触媒の製造方法。   Oxidation containing rutile-type titanium oxide and anatase-type titanium oxide in the range of 15/85 to 25/75 (the former / the latter (weight ratio)) and an average particle size (by laser diffraction particle size distribution measurement) of 100 nm or less A method for producing a photocatalyst, wherein the photocatalyst according to claim 1 or 2 is obtained by carrying iron chloride (III) on titanium and then irradiating with excitation light. 請求項1又は2に記載の光触媒を含むコーティング液。   The coating liquid containing the photocatalyst of Claim 1 or 2. 基材表面に請求項1又は2に記載の光触媒を含むコーティング層を備えた光触媒塗装体。   The photocatalyst coating body provided with the coating layer containing the photocatalyst of Claim 1 or 2 on the base-material surface.
JP2016157313A 2016-07-01 2016-08-10 Iron compound-supported titanium oxide photocatalyst Active JP6010718B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016131589 2016-07-01
JP2016131589 2016-07-01

Publications (2)

Publication Number Publication Date
JP6010718B1 true JP6010718B1 (en) 2016-10-19
JP2018008257A JP2018008257A (en) 2018-01-18

Family

ID=57140215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016157313A Active JP6010718B1 (en) 2016-07-01 2016-08-10 Iron compound-supported titanium oxide photocatalyst

Country Status (3)

Country Link
JP (1) JP6010718B1 (en)
KR (1) KR101763079B1 (en)
CN (1) CN106964375B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018079432A (en) * 2016-11-17 2018-05-24 株式会社ダイセル Iron compound carrying titanium oxide photocatalyst

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102285333B1 (en) * 2019-05-22 2021-08-03 주식회사 제이치글로벌 Surface reinforcement material contained visible light responsive photocatalytic material
CN110272085B (en) * 2019-07-30 2023-02-24 江南大学 Modified blue algae biochar composite material and application thereof in treatment of electroplating wastewater

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06279026A (en) * 1993-02-02 1994-10-04 Degussa Ag Powder of titanium dioxide containing iron oxide, preparation thereof and said powder containing cosmetics, coating material, catalyst, photocatalyst and ultraviolet ray absorbent
JPH07303835A (en) * 1994-02-07 1995-11-21 Ishihara Sangyo Kaisha Ltd Titanium oxide for photocatalyst, and manufacture of the same
JP2011084462A (en) * 2009-09-16 2011-04-28 Toho Titanium Co Ltd Method for producing titanium oxide compound, method for producing active metal-supporting titanium oxide compound, and method for producing fine particle of the active metal-supporting titanium oxide compound
JP2012096152A (en) * 2010-11-01 2012-05-24 Toho Titanium Co Ltd Photocatalyst
JP2012153591A (en) * 2011-01-28 2012-08-16 Nippon Shokubai Co Ltd Composite oxide
WO2014045903A1 (en) * 2012-09-19 2014-03-27 株式会社ダイセル Transition metal compound-loaded titanium oxide suspension
JP2015131282A (en) * 2014-01-15 2015-07-23 昭和電工株式会社 Photocatalyst, coating agent and interior material

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2787039B1 (en) * 1998-12-11 2001-02-09 Rhodia Chimie Sa DISPERSION OF MINERAL PARTICLES STABILIZED BY ALUMINUM COMPLEXES
CN101780416B (en) * 2010-01-27 2012-07-25 石家庄经济学院 Iron and chrome co-doped nano titanium dioxide/zeolite compound photocatalyst and preparation method thereof
KR101868192B1 (en) * 2011-06-07 2018-06-15 주식회사 다이셀 Photocatalytic coating film and method for producing same
CN103861601B (en) * 2012-12-18 2016-03-02 中国科学院大连化学物理研究所 A kind of preparation method of fixing crystalline phase composition different content Fe2O3 doping titanium dioxide
CN105073258A (en) * 2013-03-15 2015-11-18 株式会社大赛璐 Titanium oxide liquid dispersion, titanium oxide liquid coating, and photocatalyst coating film

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06279026A (en) * 1993-02-02 1994-10-04 Degussa Ag Powder of titanium dioxide containing iron oxide, preparation thereof and said powder containing cosmetics, coating material, catalyst, photocatalyst and ultraviolet ray absorbent
JPH07303835A (en) * 1994-02-07 1995-11-21 Ishihara Sangyo Kaisha Ltd Titanium oxide for photocatalyst, and manufacture of the same
JP2011084462A (en) * 2009-09-16 2011-04-28 Toho Titanium Co Ltd Method for producing titanium oxide compound, method for producing active metal-supporting titanium oxide compound, and method for producing fine particle of the active metal-supporting titanium oxide compound
JP2012096152A (en) * 2010-11-01 2012-05-24 Toho Titanium Co Ltd Photocatalyst
JP2012153591A (en) * 2011-01-28 2012-08-16 Nippon Shokubai Co Ltd Composite oxide
WO2014045903A1 (en) * 2012-09-19 2014-03-27 株式会社ダイセル Transition metal compound-loaded titanium oxide suspension
JP2015131282A (en) * 2014-01-15 2015-07-23 昭和電工株式会社 Photocatalyst, coating agent and interior material

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6016034917; S.J. KIM et al.: 'Phase transition control of nanostructured TiO2 powders with additions of various metal-chlorides' Proceedings of SPIE Vol. 5275, 2004, Page.317-324 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018079432A (en) * 2016-11-17 2018-05-24 株式会社ダイセル Iron compound carrying titanium oxide photocatalyst

Also Published As

Publication number Publication date
KR101763079B1 (en) 2017-07-28
CN106964375A (en) 2017-07-21
JP2018008257A (en) 2018-01-18
CN106964375B (en) 2020-12-29

Similar Documents

Publication Publication Date Title
KR101868192B1 (en) Photocatalytic coating film and method for producing same
JP4256070B2 (en) Photocatalyst composition
JP6231550B2 (en) Titanium oxide dispersion, titanium oxide coating solution, and photocatalytic coating
JP6010718B1 (en) Iron compound-supported titanium oxide photocatalyst
JP6807629B2 (en) Iron compound-supported titanium oxide photocatalyst
JP6263123B2 (en) Transition metal compound-supported titanium oxide
JP6046732B2 (en) Method for producing transition metal compound-supported titanium oxide suspension, and method for producing transition metal compound-supported titanium oxide
Bahreini et al. A comparative study of photocatalytic degradation and mineralisation of an azo dye using supported and suspended nano-TiO2 under UV and sunlight irradiations
JP2010150434A (en) Method for manufacturing weatherproof and foulingproof emulsion coating material and coated film thereof
JP6143168B2 (en) Photocatalyst coated body
US20160040353A1 (en) Method for depositing a photocatalytic coating and related coatings, textile materials and use in photocatalysis
KR100631337B1 (en) Preparation of Visible Light Responding Photocatalytic Coating Solution
JP5065636B2 (en) Method for producing optical semiconductor fine particles
JP2014177384A (en) Titanium oxide dispersion, titanium oxide coating liquid, and photocatalyst coating film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160810

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20160810

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20160830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160916

R150 Certificate of patent or registration of utility model

Ref document number: 6010718

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150