JP5996654B2 - Plasma processing equipment - Google Patents

Plasma processing equipment Download PDF

Info

Publication number
JP5996654B2
JP5996654B2 JP2014531421A JP2014531421A JP5996654B2 JP 5996654 B2 JP5996654 B2 JP 5996654B2 JP 2014531421 A JP2014531421 A JP 2014531421A JP 2014531421 A JP2014531421 A JP 2014531421A JP 5996654 B2 JP5996654 B2 JP 5996654B2
Authority
JP
Japan
Prior art keywords
electrode
holder
plasma
processing chamber
process gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014531421A
Other languages
Japanese (ja)
Other versions
JPWO2014030224A1 (en
Inventor
正浩 佐波
正浩 佐波
浩幸 上山
浩幸 上山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JCU Corp
Original Assignee
JCU Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JCU Corp filed Critical JCU Corp
Publication of JPWO2014030224A1 publication Critical patent/JPWO2014030224A1/en
Application granted granted Critical
Publication of JP5996654B2 publication Critical patent/JP5996654B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32403Treating multiple sides of workpieces, e.g. 3D workpieces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32357Generation remote from the workpiece, e.g. down-stream
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32532Electrodes
    • H01J37/32568Relative arrangement or disposition of electrodes; moving means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32715Workpiece holder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32798Further details of plasma apparatus not provided for in groups H01J37/3244 - H01J37/32788; special provisions for cleaning or maintenance of the apparatus
    • H01J37/32816Pressure
    • H01J37/32834Exhausting
    • H01J37/32844Treating effluent gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32798Further details of plasma apparatus not provided for in groups H01J37/3244 - H01J37/32788; special provisions for cleaning or maintenance of the apparatus
    • H01J37/32853Hygiene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/78Apparatus for connecting with wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4821Flat leads, e.g. lead frames with or without insulating supports
    • H01L21/4835Cleaning, e.g. removing of solder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • H01L2224/7801Means for cleaning, e.g. brushes, for hydro blasting, for ultrasonic cleaning, for dry ice blasting, using gas-flow, by etching, by applying flux or plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • H01L2224/7865Means for transporting the components to be connected
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • H01L2224/789Means for monitoring the connection process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • H01L2224/7898Apparatus for connecting with wire connectors specially adapted for batch processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85009Pre-treatment of the connector or the bonding area
    • H01L2224/8501Cleaning, e.g. oxide removal step, desmearing
    • H01L2224/85013Plasma cleaning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/30Capture or disposal of greenhouse gases of perfluorocarbons [PFC], hydrofluorocarbons [HFC] or sulfur hexafluoride [SF6]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Plasma Technology (AREA)
  • Drying Of Semiconductors (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
  • ing And Chemical Polishing (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Description

本発明は、真空の処理室内でクリーニングやエッチング、表面改質などのプラズマ処理を行うプラズマ処理装置に関する。 The present invention relates to a plasma processing apparatus that performs plasma processing such as cleaning, etching, and surface modification in a vacuum processing chamber.

基板やリードフレーム等の被処理物に対して、プラズマを用いてクリーニング(洗浄)、デスミア、デスカム、エッチング、表面改質などのプラズマ処理を行うプラズマ処理装置が知られている。例えば、半導体素子の電極と基板とを接続するワイヤボンディング工程の前段階では、プラズマ処理によるクリーニング(以下、プラズマ洗浄という)を行い、半導体素子の電極の表面と、基板に形成された接続部(ランド)の表面の汚れを除去し、ボンディングワイヤと接続部との接続強度を向上させている。   2. Description of the Related Art Plasma processing apparatuses that perform plasma processing such as cleaning (cleaning), desmear, descum, etching, and surface modification on an object to be processed such as a substrate and a lead frame are known. For example, in the pre-stage of the wire bonding process for connecting the electrode of the semiconductor element and the substrate, cleaning by plasma treatment (hereinafter referred to as plasma cleaning) is performed, and the surface of the electrode of the semiconductor element and the connection portion ( The dirt on the surface of the land is removed, and the connection strength between the bonding wire and the connection portion is improved.

特許文献1のプラズマ処理装置では、真空の処理室と、この処理室内に配された一対の平板電極とを備え、この平板電極の間に1枚の板状の被処理物を配置して、プラズマ洗浄を行っている。一対の平板電極は、一方が高周波電圧が印加されるRF電極(活性電極)で、他方が接地された接地電極である。被処理物を処理室内にセットした後、十分に減圧してからプロセスガス(例えばアルゴンガス)を導入すると共に、平板電極に電力を供給して、プロセスガスをプラズマ化する。発生したプラズマ中のラジカルやイオンが被処理物の表面に接触ないし衝突することによって表面の汚れが除去される。   The plasma processing apparatus of Patent Document 1 includes a vacuum processing chamber and a pair of flat plate electrodes arranged in the processing chamber, and a single plate-like object to be processed is disposed between the flat plate electrodes. Plasma cleaning is performed. One of the pair of plate electrodes is an RF electrode (active electrode) to which a high-frequency voltage is applied, and the other is a ground electrode that is grounded. After the object to be processed is set in the processing chamber, the process gas (for example, argon gas) is introduced after the pressure is sufficiently reduced, and power is supplied to the plate electrode to convert the process gas into plasma. The radicals and ions in the generated plasma come into contact with or collide with the surface of the object to be processed, thereby removing the surface contamination.

特許文献1のプラズマ処理装置は、いわゆる枚葉式であり、被処理物の処理室への搬入,処理室の減圧,プラズマ洗浄,被処理物処理室からの搬出などの工程を1枚の被処理物ごとに行う必要があり効率が悪い。そこで、複数枚の被処理物を保持したホルダーを処理室に配し、それら複数枚の被処理物に一括してプラズマ洗浄を行うプラズマ処理装置が知られている。例えば特許文献2のプラズマ処理装置では、対向配置された平板状のRF電極と接地電極との間にホルダーを配している。また、特許文献3のプラズマ処理装置では、対向配置された一対の平板状のRF電極の間にホルダーを配し、それらの外側を囲む処理室を接地電極としている。   The plasma processing apparatus of Patent Document 1 is a so-called single-wafer type, and processes such as loading of a workpiece into a processing chamber, decompression of the processing chamber, plasma cleaning, and carrying out of the processing chamber from one workpiece are performed. It is necessary to carry out each treatment, and the efficiency is poor. Therefore, a plasma processing apparatus is known in which a holder that holds a plurality of objects to be processed is disposed in a processing chamber, and the plurality of objects to be processed are collectively subjected to plasma cleaning. For example, in the plasma processing apparatus of Patent Document 2, a holder is disposed between a flat plate-like RF electrode and a ground electrode that are arranged to face each other. Further, in the plasma processing apparatus of Patent Document 3, a holder is disposed between a pair of flat plate-like RF electrodes arranged opposite to each other, and a processing chamber surrounding the outside thereof is used as a ground electrode.

特開2001−271183号公報JP 2001-271183 A 特開2004−8830号公報JP 2004-8830 A 特開2008−29930号公報JP 2008-29930 A

ところで、特許文献2,3のように電極とホルダーを配した構成では、プラズマ洗浄が不均一になるという問題があった。このため、例えば十分な洗浄が行われなかった部分ではワイヤボンディングの接続強度が不十分となって、製品不良が生じることがあった。ホルダーに収容された被処理物では周辺部分に比べて中央部に対する洗浄力が低いことから、ホルダーの奥にまで十分なプラズマが供給されていないことが原因と推測される。なお、このような問題は、プラズマ洗浄に限らず、プラズマエッチングなどのプラズマ処理にも同様に生じる。   By the way, in the configuration in which the electrode and the holder are arranged as in Patent Documents 2 and 3, there is a problem that the plasma cleaning becomes non-uniform. For this reason, for example, in a portion where sufficient cleaning has not been performed, the connection strength of wire bonding becomes insufficient, and product defects may occur. The object to be processed accommodated in the holder has a lower cleaning power with respect to the central portion than the peripheral portion, and it is assumed that sufficient plasma is not supplied to the back of the holder. Such a problem occurs not only in plasma cleaning but also in plasma processing such as plasma etching.

本発明は、複数の被処理物に対するプラズマによる表面処理を均一に行うことができるプラズマ処理装置を提供することを目的とする。 An object of this invention is to provide the plasma processing apparatus which can perform the surface treatment by the plasma with respect to several to-be-processed object uniformly.

本発明のプラズマ処理装置は、ホルダーと、ガス導入部と、排気口と、電源と、電極ユニットと、流路制御部材とを備え、被処理物を処理室内に収容し、真空にした処理室内に導入したプロセスガスからプラズマを発生させ、プラズマによって被処理物の表面に処理を行う。ホルダーは、一対の側面の間に側面と直交する方向で、複数の被処理物を間隔あけて積層した状態に保持し、且つ積層された被処理物の間の各側面の部分を露出する側面開口を有し、処理室内に載置される。ガス導入部は、ホルダーが処理室内に載置された状態で、ホルダーの一方の側面開口に対向して配される。ガス導入部は、側面開口に向けて配される複数の導入口を有し、導入口からプロセスガスを側面開口に向けて放出する。排気口は、ホルダーが処理室内に載置された状態で、ホルダーを挟んでガス導入部とは反対側の処理室の領域に配され、処理室内からプラズマを含むプロセスガスを排気する。電源は、プラズマを発生させる高周波電圧を出力する。電極ユニットは、電源からの高周波電圧が印加される円柱形状の第1電極及び接地される円柱形状の第2電極を有する。第1電極及び第2電極は、ホルダーと導入口との間で互いに略平行状態で離間し、且つプロセスガスの放出方向と直交する方向に並べられる1列以上の電極列を有する。流路制御部材は、ホルダーの一対の側面及び処理室への載置面を除く周囲で処理室との間に配され、処理室を導入口側の導入口側空間と排気口側の排気口側空間に分けて、ホルダーの周囲を通り導入口から排気口へのプラズマの流れを抑制する。 The plasma processing apparatus of the present invention includes a holder, a gas introduction part, an exhaust port, a power source, an electrode unit, and a flow path control member, and accommodates an object to be processed in a processing chamber and is evacuated. Plasma is generated from the process gas introduced into the substrate, and the surface of the object to be processed is processed by the plasma. The holder is a side surface that holds a plurality of objects to be processed in a direction perpendicular to the side surface between a pair of side surfaces and exposes a portion of each side surface between the stacked objects to be processed. It has an opening and is placed in the processing chamber. The gas introduction part is arranged to face one side opening of the holder in a state where the holder is placed in the processing chamber. The gas inlet has a plurality of inlets arranged toward the side opening, and discharges the process gas from the inlet toward the side opening. The exhaust port is disposed in a region of the processing chamber opposite to the gas introduction unit with the holder placed in the processing chamber, and exhausts process gas including plasma from the processing chamber. The power source outputs a high-frequency voltage that generates plasma. The electrode unit includes a cylindrical first electrode to which a high frequency voltage from a power source is applied and a cylindrical second electrode to be grounded. The first electrode and the second electrode have one or more electrode rows that are separated from each other in a substantially parallel state between the holder and the introduction port and are arranged in a direction orthogonal to the process gas discharge direction. The flow path control member is arranged between the processing chamber around the pair of side surfaces of the holder and the mounting surface on the processing chamber, and the processing chamber is connected to the inlet side space on the inlet side and the exhaust port on the exhaust port side. Dividing into side spaces, the flow of plasma from the inlet to the exhaust through the holder is suppressed.

電極ユニットは、ホルダーを挟む位置で、導入口側空間及び排気口側空間にそれぞれ設けられていることが好ましい。 The electrode units are preferably provided in the inlet side space and the exhaust side space, respectively, at positions where the holder is sandwiched .

処理室は箱状であり、処理室の側面及び上面を構成する蓋部と、処理室の底面部を構成する底面部とを備え、蓋部が底面部から離される開放状態で、被処理物が積層されているホルダーが底面部に載置され、ホルダーの載置後に蓋部及び底面部が閉鎖状態になることが好ましい。 The processing chamber is box-shaped, and includes a lid portion that forms the side surface and top surface of the processing chamber, and a bottom surface portion that forms the bottom surface portion of the processing chamber, and the processing object is in an open state in which the lid portion is separated from the bottom surface portion. Is preferably placed on the bottom surface, and the lid and the bottom surface are preferably closed after the holder is placed .

ホルダーは、側面開口が形成される平行な一対の側板と、側板の上端縁及び下端縁を連結する天板及び底板を有する角筒であり、角筒の両端の開口から被処理物がセットされ、閉鎖状態では開口が流路制御部材により塞がれることが好ましい。 The holder is a rectangular tube having a pair of parallel side plates in which side openings are formed, and a top plate and a bottom plate that connect the upper and lower edges of the side plates, and a workpiece is set from the openings at both ends of the rectangular tube. In the closed state, the opening is preferably closed by the flow path control member .

本発明によれば、電極間で発生したプラズマをホルダー内に十分かつ均一に供給することができ、被処理物の表面に対するプラズマによる処理を十分にかつ均一に行うことができる。   According to the present invention, the plasma generated between the electrodes can be sufficiently and uniformly supplied into the holder, and the surface of the workpiece can be sufficiently and uniformly treated with the plasma.

本発明のプラズマ処理装置の外観を示す斜視図である。It is a perspective view which shows the external appearance of the plasma processing apparatus of this invention. 複数枚の基板を保持するホルダーを示す斜視図である。It is a perspective view which shows the holder holding several board | substrates. 閉鎖状態としたときの処理室の各部の状態を示す斜視図である。It is a perspective view which shows the state of each part of a process chamber when it is set as a closed state. 開放状態としたときの処理室の各部の状態を示す斜視図である。It is a perspective view which shows the state of each part of a process chamber when it is set as an open state. 第1,第2電極の取付けを示す説明図である。It is explanatory drawing which shows attachment of the 1st, 2nd electrode. 開放状態におけるホルダーと第1流路制御板との位置を示す斜視図である。It is a perspective view which shows the position of the holder and 1st flow-path control board in an open state. 閉鎖状態におけるホルダーと第1流路制御板との位置を示す斜視図である。It is a perspective view which shows the position of the holder and 1st flow-path control board in a closed state. 処理ユニットの電気的な接続関係を示す説明図である。It is explanatory drawing which shows the electrical connection relationship of a processing unit. 電極ユニットを2列の電極列から構成した列を示す説明図である。It is explanatory drawing which shows the row | line | column which comprised the electrode unit from two rows of electrode rows. 導入口側の他に排気口側に電極ユニットを設けた列を示す説明図である。It is explanatory drawing which shows the row | line | column which provided the electrode unit on the exhaust port side other than the inlet port side. 第1電極の電極列と第2電極の電極列とから構成した例を示す説明図である。It is explanatory drawing which shows the example comprised from the electrode row | line of a 1st electrode, and the electrode row | line of a 2nd electrode. 2列の電極列の相互で第1電極と第2電極の配置をずらした例を示す説明図である。It is explanatory drawing which shows the example which shifted arrangement | positioning of the 1st electrode and the 2nd electrode between two electrode rows. 電極ユニットを第1電極の電極列と第2電極の電極列とから構成し、電極列の位置をずらした例を示す説明図である。It is explanatory drawing which shows the example which comprised the electrode unit from the electrode row | line of a 1st electrode, and the electrode row | line of a 2nd electrode, and shifted the position of the electrode row | line | column. 各電極を角柱形状にした例を示す斜視図である。It is a perspective view which shows the example which made each electrode the prismatic shape. 各電極を板状にした例を示す斜視図である。It is a perspective view which shows the example which made each electrode plate shape. 電極を中空にして冷却水で冷却する例を示す断面図である。It is sectional drawing which shows the example which makes an electrode hollow and cools with cooling water. 各電極の端部を接続して冷却水を流す例を示す斜視図である。It is a perspective view which shows the example which connects the edge part of each electrode, and flows cooling water. 一対の格子状の電極板を用いた例を示す斜視図である。It is a perspective view which shows the example using a pair of grid | lattice-like electrode plate. 真空槽の一部を引き出して処理室を開放する例を示す断面図である。It is sectional drawing which shows the example which pulls out a part of vacuum chamber and open | releases a process chamber. ガス導入口を中空管で構成した例を示す説明図である。It is explanatory drawing which shows the example which comprised the gas inlet port with the hollow tube. 第2電極を接地しない例を示す説明図である。It is explanatory drawing which shows the example which does not earth | ground a 2nd electrode. 比較のための従来のプラズマ処理装置を示す説明図である。It is explanatory drawing which shows the conventional plasma processing apparatus for a comparison.

図1に示すように、本発明を実施したプラズマ処理装置10は、複数枚の被処理物に対してプラズマ処理を行う。この例では被処理物として、板状の被処理物である基板11(図2参照)の上面と下面とを被処理面としてプラズマ洗浄する。基板11は、その上面に複数の半導体素子を実装したものである。プラズマ洗浄では、半導体素子の電極、その電極とワイヤボンディングで接続される基板の接続部をクリーニングする。また、はんだボール(電極)を形成するための基板11の下面もクリーニングする。   As shown in FIG. 1, a plasma processing apparatus 10 embodying the present invention performs plasma processing on a plurality of objects to be processed. In this example, plasma cleaning is performed using the upper and lower surfaces of the substrate 11 (see FIG. 2), which is a plate-shaped object, as the object to be processed. The substrate 11 has a plurality of semiconductor elements mounted on the upper surface thereof. In the plasma cleaning, the electrode of the semiconductor element and the connection portion of the substrate connected to the electrode by wire bonding are cleaned. Also, the lower surface of the substrate 11 for forming solder balls (electrodes) is cleaned.

なお、被処理物としては、上記のように半導体素子を実装した基板11に限らず、リードフレームなどでもよい。また、後述するように間隔をあけて積層した状態でホルダーに保持できるものであれば、基板等に電子部品を実装したものや凹凸があっても板状といえる被処理物や、立体的な形状の被処理物に対してプラズマ処理をすることができる。さらに、この例では、プラズマ処理として基板の接続面、半導体素子の電極に付着した樹脂等を除去するプラズマ洗浄について説明するが、プラズマ処理は、デスミア、デスカム、エッチング、表面改質などでもよい。   In addition, as a to-be-processed object, not only the board | substrate 11 which mounted the semiconductor element as mentioned above but a lead frame etc. may be sufficient. In addition, as long as it can be held in a holder in a state of being laminated with a gap as will be described later, an electronic component mounted on a substrate etc. Plasma treatment can be performed on a workpiece having a shape. Furthermore, in this example, plasma cleaning for removing the resin and the like attached to the connection surface of the substrate and the electrode of the semiconductor element will be described as plasma processing. However, the plasma processing may be desmear, descum, etching, surface modification, or the like.

プラズマ処理装置10は、プラズマ処理を行う処理ユニット12と、処理を制御する制御ユニット13を有する。処理ユニット12は、内部に処理室14を形成する真空槽15、処理室14内に配された電極や、真空ポンプ16,ガス供給装置17、高周波電源18等などで構成される。真空槽15は、箱状であり、真空槽15の側面及び上面となる蓋部15aと、底面部15bとからなる。これら蓋部15a,底面部15bは、例えばステンレス製である。蓋部15aは、上下方向に移動自在であり、下方に移動することによって底面部15bとともに閉じた空間としての処理室14を形成する(図4参照)。 The plasma processing apparatus 10 includes a processing unit 12 that performs plasma processing and a control unit 13 that controls processing. The processing unit 12 includes a vacuum chamber 15 that forms a processing chamber 14 therein, electrodes disposed in the processing chamber 14, a vacuum pump 16, a gas supply device 17, a high-frequency power source 18, and the like. The vacuum chamber 15 has a box shape, and includes a lid portion 15a that serves as a side surface and an upper surface of the vacuum chamber 15, and a bottom surface portion 15b. The lid portion 15a and the bottom surface portion 15b are made of, for example, stainless steel. The lid portion 15a is movable in the vertical direction, and forms a processing chamber 14 as a closed space together with the bottom surface portion 15b by moving downward (see FIG. 4).

真空ポンプ16は、処理室14の排気を行う。この排気により処理室14を例えば1〜100Paの真空度にする。また、真空ポンプ16は、プラズマ洗浄中においても、処理室14からの排気を継続して行い、所定の真空度を維持する。ガス供給装置17は、処理室14に導入するプロセスガス、例えばアルゴンガスを供給する。プロセスガスは、プラズマ処理の内容や処理対象によって適宜に選択することができ、アルゴンガスの他に窒素ガス、酸素ガス,水素ガス、四フッ化炭素(CF)ガス等や、それらの混合ガスを用いてもよい。高周波電源18は、高周波電圧を出力し、それを後述する電極に印加することでプラズマを発生させる。高周波電圧の周波数は、プラズマ処理の内容や処理対象によって適宜決定されるものであり、通常は例えば3kHz〜300MHzの範囲が用いられる。The vacuum pump 16 exhausts the processing chamber 14. By this evacuation, the processing chamber 14 is set to a vacuum degree of 1 to 100 Pa, for example. Further, the vacuum pump 16 continuously exhausts from the processing chamber 14 even during plasma cleaning, and maintains a predetermined degree of vacuum. The gas supply device 17 supplies a process gas to be introduced into the processing chamber 14, for example, an argon gas. The process gas can be appropriately selected depending on the content of the plasma treatment and the object to be treated. In addition to the argon gas, nitrogen gas, oxygen gas, hydrogen gas, carbon tetrafluoride (CF 4 ) gas, etc., or a mixed gas thereof May be used. The high-frequency power source 18 outputs a high-frequency voltage and generates plasma by applying it to an electrode described later. The frequency of the high-frequency voltage is appropriately determined depending on the content of the plasma processing and the object to be processed. For example, a frequency range of 3 kHz to 300 MHz is usually used.

制御ユニット13は、処理ユニット12を制御する制御回路などで構成される。また、この制御ユニット13には、蓋部15aを上下方向に移動させる昇降機構19を備えている。この昇降機構19により蓋部15aは、図3に示すように、プラズマ洗浄を行うために処理室14を形成する閉鎖状態と、図4に示すように、下降位置から上昇して処理室14を開放した開放状態との間で移動する。蓋部15aを開放状態とすることにより、基板11の処理室14への搬入・搬出を行うことができる。   The control unit 13 includes a control circuit that controls the processing unit 12. Further, the control unit 13 includes an elevating mechanism 19 that moves the lid portion 15a in the vertical direction. As shown in FIG. 3, the elevating mechanism 19 causes the lid portion 15a to move upward from the lowered position as shown in FIG. Move between open states. By opening the lid portion 15a, the substrate 11 can be carried into and out of the processing chamber.

図2に示すように、プラズマ洗浄すべき基板11は、ホルダー21に保持した状態で処理室14内にセットされる。ホルダー21は、複数の基板11を間隔をあけて積層した状態で保持するものである。このホルダー21は、平行な一対の側板22、平行な天板23と底板24を有する断面が矩形の角筒形状であり、両端部が基板11を出し入れするための開口25となっている。なお、各開口25に開閉自在な蓋を設け、プラズマ洗浄中にその蓋で開口25を閉じてもよい。このようにすることで、開口25を通したプラズマの流れや流れの乱れの発生を阻止し、プラズマ洗浄の均一性を向上させることができる。この例では、後述する第1流路制御板が各開口25を塞ぐ蓋として機能する。   As shown in FIG. 2, the substrate 11 to be plasma-cleaned is set in the processing chamber 14 while being held by a holder 21. The holder 21 holds the plurality of substrates 11 in a state where they are stacked at intervals. The holder 21 has a rectangular tube shape with a rectangular cross section having a pair of parallel side plates 22, a parallel top plate 23 and a bottom plate 24, and both ends are openings 25 for taking in and out the substrate 11. Note that each opening 25 may be provided with a lid that can be opened and closed, and the opening 25 may be closed with the lid during plasma cleaning. By doing in this way, generation | occurrence | production of the flow of the plasma through the opening 25 and the disturbance of a flow can be prevented, and the uniformity of plasma cleaning can be improved. In this example, a first flow path control plate, which will be described later, functions as a lid that closes each opening 25.

各側板22の内面には、それぞれ複数本の保持溝26が適当な間隔で水平に設けられている。一方の側板22に設けられる各保持溝26のそれぞれに対向して、他方の側板22の保持溝26が設けられている。各側板22の相対する保持溝26に基板11の両側縁を差し込むことにより、基板11は、上面を上に向けた姿勢でホルダー21内に水平に保持される。各保持溝26にそれぞれ基板11を差し込むことにより、ホルダー21内に複数枚の基板11が上下方向に所定の間隔をあけて積層された状態に保持される。なお、下面を上に向けた姿勢で保持してもよい。   A plurality of holding grooves 26 are horizontally provided on the inner surface of each side plate 22 at appropriate intervals. A holding groove 26 of the other side plate 22 is provided opposite to each holding groove 26 provided on one side plate 22. By inserting both side edges of the substrate 11 into the holding grooves 26 facing each side plate 22, the substrate 11 is horizontally held in the holder 21 with the upper surface facing upward. By inserting the substrate 11 into each holding groove 26, a plurality of substrates 11 are held in the holder 21 in a state where they are stacked at predetermined intervals in the vertical direction. In addition, you may hold | maintain with the attitude | position which turned the lower surface upward.

各側板22には、水平方向に伸びた側面開口27が各保持溝26の上側及び下側にそれぞれ配されるように複数設けられ、積層された基板11の間の部分が開口となっている。側面開口27を通して、ホルダー21内の積層された基板11の間にプラズマを導入する。側面開口27から導入されるプラズマを均一かつ十分とするために、側面開口27から基板11の任意の部分までの距離を短くするのがよい。すなわち、対向する一対の側面開口27の間隔を短くすることが好ましい。このため、ホルダー21は、基板11の長辺の縁部を保持溝26で保持するようにしてある。   Each side plate 22 is provided with a plurality of side openings 27 extending in the horizontal direction so as to be respectively arranged on the upper side and the lower side of each holding groove 26, and the portion between the stacked substrates 11 is an opening. . Plasma is introduced between the stacked substrates 11 in the holder 21 through the side opening 27. In order to make the plasma introduced from the side opening 27 uniform and sufficient, it is preferable to shorten the distance from the side opening 27 to any part of the substrate 11. That is, it is preferable to shorten the distance between the pair of side opening 27 facing each other. For this reason, the holder 21 is configured to hold the edge of the long side of the substrate 11 with the holding groove 26.

基板のスルーホールやビアホールの壁面に付着する樹脂残渣を除去するデスミアの場合、基板に設けたスルーホールやビアホールの側面及び底面などの壁面が処理面となる。この場合には、スルーホール等の開口が形成された基板の上面または下面がプラズマを一次的に供給すべき面となり、その一次的に供給すべき面の開口からスルーホール等の内部にプラズマを供給すればよい。   In the case of desmear that removes resin residues adhering to the wall of the through hole or via hole of the substrate, the wall surface such as the side and bottom surfaces of the through hole and via hole provided in the substrate becomes the processing surface. In this case, the upper surface or the lower surface of the substrate in which an opening such as a through hole is formed becomes a surface to which plasma is primarily supplied, and plasma is supplied from the opening in the surface to be primarily supplied into the through hole and the like. What is necessary is just to supply.

なお、上記ホルダー21の構成は一例であり、例えばパイプなどを用いたフレーム構造のホルダー21を利用してもよい。この場合、ホルダー21の側面に側板を設けず開口のままとして、それをホルダー内にプラズマを導入する側面開口とすることができる。また、図2では、7枚の基板11を保持するホルダー21を描いてあるが、実際には20枚程度を保持する。ホルダー21に保持される基板11の枚数は適宜に設定でき、1枚でも任意の複数枚でもよい。さらに、この例では上下方向に基板11を積層しているが、例えば左右方向に基板11を積層してもよい。   Note that the configuration of the holder 21 is an example, and for example, a holder 21 having a frame structure using a pipe or the like may be used. In this case, it is possible to leave the side plate on the side surface of the holder 21 and leave it as an opening, which can be used as a side opening for introducing plasma into the holder. In FIG. 2, the holder 21 for holding the seven substrates 11 is illustrated, but in reality, about 20 substrates are held. The number of substrates 11 held by the holder 21 can be set as appropriate, and may be one or any plurality. Further, in this example, the substrate 11 is stacked in the vertical direction, but the substrate 11 may be stacked in the horizontal direction, for example.

図3,4に示すように、処理室14内には、載置台29、ガス導入部30、電極ユニット31、第1,第2流路制御板32,33などが配される。これらのうちガス導入部30、電極ユニット31、第1,第2流路制御板32,33は、蓋部15aに取付けられており、蓋部15aと一体に上下方向に移動する。   As shown in FIGS. 3 and 4, in the processing chamber 14, a mounting table 29, a gas introduction unit 30, an electrode unit 31, first and second flow path control plates 32 and 33 are arranged. Among these, the gas introduction part 30, the electrode unit 31, and the first and second flow path control plates 32 and 33 are attached to the cover part 15a, and move in the vertical direction integrally with the cover part 15a.

載置台29は、底面部15bの略中央に配され、絶縁性の脚部36を挟んで底面部15bに固定されており、真空槽15とは電気的に絶縁されている。脚部36に用いられる絶縁性の材料としては、例えばテフロン(登録商標)が用いられている。なお、後述する他の絶縁性の部材についても同様である。   The mounting table 29 is disposed substantially at the center of the bottom surface portion 15 b, is fixed to the bottom surface portion 15 b with the insulating leg portions 36 interposed therebetween, and is electrically insulated from the vacuum chamber 15. As an insulating material used for the leg portion 36, for example, Teflon (registered trademark) is used. The same applies to other insulating members described later.

載置台29には、上述のホルダー21がセットされる。ホルダー21は、ガス導入部30に一方の側板22を向けた姿勢で載置台29上に置かれる。この例では、ホルダー21を処理室14内に固定していない。このため未処理の複数枚の基板11をホルダー21に保持したまま載置台29上にセットし、プラズマ洗浄後では処理済みの複数枚の基板11をホルダー21に保持したまま一括して載置台29から移動させて処理室14の外に取り出すことができる。このホルダー21のセット、取り出しはロボットアーム(図示省略)によって行われるが、手動で行ってもよい。   The above-described holder 21 is set on the mounting table 29. The holder 21 is placed on the mounting table 29 in a posture in which one side plate 22 faces the gas introduction part 30. In this example, the holder 21 is not fixed in the processing chamber 14. Therefore, a plurality of unprocessed substrates 11 are set on the mounting table 29 while being held by the holder 21, and after the plasma cleaning, the plurality of processed substrates 11 are collectively held by the holder 21. And can be taken out of the processing chamber 14. The holder 21 is set and removed by a robot arm (not shown), but may be manually set.

なお、ホルダー21を処理室14内に固定した構成とすることもできる。この場合には、プラズマ洗浄毎に、処理室14に配置されたホルダー21から処理済みの基板11を1枚ずつ取り出し、また未処理の基板11を1枚ずつそのホルダー21に差し入れる。   Note that the holder 21 may be fixed in the processing chamber 14. In this case, for each plasma cleaning, the processed substrates 11 are taken out one by one from the holder 21 disposed in the processing chamber 14, and the untreated substrates 11 are inserted into the holder 21 one by one.

ガス導入部30は、箱形状であり、載置台29上にホルダー21の側板22が対面する蓋部15aの1つの側面に取付けられている。このガス導入部30は、その中空部にガス供給パイプ37を介してガス供給装置17からのプロセスガスが供給される。また、処理室14の中央を向いたガス導入部30の面、すなわちホルダ−21の側板22に対向する面30aには、微小な例えば直径が1mm程度の複数の導入口38が形成されている。なお、ガス導入部30は、絶縁板30bを挟んで蓋部15aに取付けられており、真空槽15とは電気的に絶縁されている。   The gas introduction part 30 has a box shape, and is attached to one side surface of the lid part 15 a on which the side plate 22 of the holder 21 faces on the mounting table 29. The gas introduction unit 30 is supplied with the process gas from the gas supply device 17 through the gas supply pipe 37 in the hollow portion. A plurality of small inlets 38 having a diameter of about 1 mm, for example, are formed on the surface of the gas introduction portion 30 facing the center of the processing chamber 14, that is, the surface 30a facing the side plate 22 of the holder-21. . In addition, the gas introduction part 30 is attached to the cover part 15a across the insulating plate 30b, and is electrically insulated from the vacuum chamber 15.

各導入口38は、それぞれ中空部に供給されたプロセスガスをホルダー21の側面(側板22)に向けて水平に放出する。これにより、基板11の積層方向と直交する向きであり、また基板11と平行な放出方向でプロセスガスを処理室14内に導入する。複数の導入口38は、面30a上における側板22に対応する領域に均一に分布している。これにより、ホルダー21の側面の全面にプロセスガスが向かうようにシャワー状にプロセスガスを放出して、ホルダー21の側面開口27からその内部にプラズマを均一に供給する。なお、導入口38が分布する領域は、側板22に対向する範囲よりも広くても狭くてもよいが、同等の範囲であることが好ましい。   Each inlet 38 discharges the process gas supplied to the hollow part horizontally toward the side surface (side plate 22) of the holder 21. As a result, the process gas is introduced into the processing chamber 14 in a direction perpendicular to the stacking direction of the substrates 11 and in a discharge direction parallel to the substrates 11. The plurality of introduction ports 38 are uniformly distributed in a region corresponding to the side plate 22 on the surface 30a. Thereby, the process gas is discharged in a shower shape so that the process gas is directed to the entire side surface of the holder 21, and plasma is uniformly supplied from the side opening 27 of the holder 21 to the inside thereof. The region where the introduction ports 38 are distributed may be wider or narrower than the range facing the side plate 22, but is preferably in an equivalent range.

電極ユニット31は、プロセスガスを励起してプラズマを発生させる。この電極ユニット31は、1列の電極列31aを構成する各々複数本の第1及び第2電極41,42と、一対の電極保持板43a,43bを備えている。各電極41,42は、導電性を有する金属製、例えばアルミ製であって、断面が円柱の棒状(円柱形状)に形成されている。また、電極保持板43a,43bは、例えばアルミ製である。   The electrode unit 31 excites a process gas to generate plasma. The electrode unit 31 includes a plurality of first and second electrodes 41 and 42 and a pair of electrode holding plates 43a and 43b, respectively, constituting one electrode row 31a. Each of the electrodes 41 and 42 is made of a metal having conductivity, for example, aluminum, and is formed in a bar shape (cylindrical shape) having a cylindrical cross section. The electrode holding plates 43a and 43b are made of, for example, aluminum.

第1及び第2電極41,42は、いずれも絶縁部材44(図5参照)を介して上端が電極保持板43aに下端が電極保持板43bに取付けられ、互いに略平行、かつ所定の間隔で離間させた格子状(連子)に配列されて電極列31aを形成している。この電極列31aでは、第1電極41と第2電極42とが交互に並べられている。   The first and second electrodes 41 and 42 are both attached to the electrode holding plate 43a and the lower end to the electrode holding plate 43b via an insulating member 44 (see FIG. 5), and are substantially parallel to each other at a predetermined interval. The electrode rows 31a are formed by being arranged in a spaced grid pattern (stripes). In the electrode row 31a, the first electrodes 41 and the second electrodes 42 are alternately arranged.

上記のように構成される電極列31aは、ホルダー21と導入口38との間で、プロセスガスの放出方向と直交する面内に第1及び第2電極41,42が配される。すなわち、各電極41,42がプロセスガスの放出方向と直交する方向に並べた状態に配置される。この例では各電極41,42を上下方向に長尺に、すなわち各電極41,42の軸方向を上下方向としているが、各電極41,42の軸方向が水平方向となるようにしてもよい。   In the electrode array 31 a configured as described above, the first and second electrodes 41 and 42 are arranged between the holder 21 and the introduction port 38 in a plane orthogonal to the process gas discharge direction. That is, the electrodes 41 and 42 are arranged in a state in which they are arranged in a direction orthogonal to the process gas discharge direction. In this example, the electrodes 41 and 42 are long in the vertical direction, that is, the axial direction of the electrodes 41 and 42 is the vertical direction, but the axial direction of the electrodes 41 and 42 may be horizontal. .

上記のように電極列31aを配置することによって、ホルダー21の側板22に対面させて配置した第1及び第2電極41,42の間に導入口38から導入されるプロセスガスを供給し、効率的にプラズマを発生させ、また発生したプラズマを効率的にホルダー21に供給する。また、放出方向と直交する面内に第1及び第2電極41,42を配することにより、プラズマ発生領域とホルダー21の側面との距離を均等にして、ホルダー21内でのプラズマ密度を均一にしている。   By arranging the electrode array 31a as described above, the process gas introduced from the introduction port 38 is supplied between the first and second electrodes 41 and 42 arranged to face the side plate 22 of the holder 21, and the efficiency is increased. Plasma is generated, and the generated plasma is efficiently supplied to the holder 21. Further, by arranging the first and second electrodes 41 and 42 in a plane orthogonal to the emission direction, the distance between the plasma generation region and the side surface of the holder 21 is made uniform, and the plasma density in the holder 21 is made uniform. I have to.

さらに、ホルダー21の側面開口27からその内部にプラズマを均一に導入するために、ホルダー21の側面が各電極41,42の配列している範囲に対面している。より厳密には、各電極41,42の配列範囲内でプラズマが発生する領域にホルダー21が側面を対向されている。   Further, in order to uniformly introduce plasma into the inside from the side opening 27 of the holder 21, the side of the holder 21 faces the range where the electrodes 41 and 42 are arranged. More precisely, the holder 21 faces the region where plasma is generated within the arrangement range of the electrodes 41 and 42.

図5に示すように、電極ユニット31は、絶縁材料で作成されたスペーサ45を介して電極保持板43aを蓋部15aの天井面にネジ止めすることによって処理室14内に取り付けられている。また、各電極41,42は、上述のように絶縁部材44を介して電極保持板43a,43bに取り付けられている。絶縁部材44は、略円柱形状であり、上部にフランジ44aが、中心に孔44bがそれぞれ形成されている。絶縁部材44は、電極保持板43aの開口に通されてフランジ44aを電極保持板43aの上面に係合した状態に組み付けられる。電極41,42は、その上端部が孔44bに通したネジ46に螺合されることで、絶縁部材44の下端面に上端面を密着させた状態とされて電極保持板43aに固定される。各電極41,42の下端についても、同様に絶縁部材44を介して電極保持板43bに固定される。   As shown in FIG. 5, the electrode unit 31 is mounted in the processing chamber 14 by screwing the electrode holding plate 43a to the ceiling surface of the lid portion 15a through a spacer 45 made of an insulating material. The electrodes 41 and 42 are attached to the electrode holding plates 43a and 43b via the insulating member 44 as described above. The insulating member 44 has a substantially cylindrical shape, and has a flange 44a at the top and a hole 44b at the center. The insulating member 44 is assembled in a state where the flange 44a is engaged with the upper surface of the electrode holding plate 43a through the opening of the electrode holding plate 43a. The upper ends of the electrodes 41 and 42 are screwed into screws 46 passed through the holes 44b, so that the upper end surface is brought into close contact with the lower end surface of the insulating member 44 and fixed to the electrode holding plate 43a. . Similarly, the lower ends of the electrodes 41 and 42 are also fixed to the electrode holding plate 43b via the insulating member 44.

ネジを緩めることにより蓋部15aから電極ユニット31を取り外し、また各電極41,42を電極保持板43a,43bから取り外して、各電極41,42のクリーニングや交換を行うことができる。ネジ46は、導電性を有するものが用いられており、上側のネジ46のうちの第1電極41と螺合するものは、蓋部15aの内部の配線で高周波電源18に接続され、第2電極42に螺合するものは接地される。これにより、第1電極41に高周波電圧が印加され、第2電極42が接地される。   By loosening the screws, the electrode unit 31 can be removed from the lid portion 15a, and the electrodes 41 and 42 can be removed from the electrode holding plates 43a and 43b, whereby the electrodes 41 and 42 can be cleaned and replaced. The screw 46 has conductivity, and the screw 46 that is screwed to the first electrode 41 of the upper screw 46 is connected to the high-frequency power source 18 through the wiring inside the lid portion 15a, and the second What is screwed to the electrode 42 is grounded. As a result, a high frequency voltage is applied to the first electrode 41, and the second electrode 42 is grounded.

図3,4に示されるように、ホルダー21を挟んでガス導入部30と反対側の蓋部15aの側面に、すなわちガス導入部30に対向する位置に排気口47が設けられている。排気口47には、真空ポンプ16が接続されており、この排気口47から処理室14内からプラズマを含むプロセスガスの排気を行う。排気口47に対向し、かつ排気口47からホルダー側に適当な距離で離れた位置に第2流路制御板33が配されている。第2流路制御板33は、ホルダー21側から見たときに排気口47を覆い隠すように、排気口47の口径よりも大きな板状に形成されている。第2流路制御板33は、ホルダー21から排気口47に向かうプラズマの流路を遮るようにプラズマの排気流路を制御する。これにより、処理室14内において均一なプラズマの流れ形成する。   As shown in FIGS. 3 and 4, an exhaust port 47 is provided on the side surface of the lid portion 15 a opposite to the gas introduction unit 30 with the holder 21 interposed therebetween, that is, at a position facing the gas introduction unit 30. A vacuum pump 16 is connected to the exhaust port 47, and process gas containing plasma is exhausted from the inside of the processing chamber 14 through the exhaust port 47. The second flow path control plate 33 is disposed at a position facing the exhaust port 47 and spaced from the exhaust port 47 to the holder side by an appropriate distance. The second flow path control plate 33 is formed in a plate shape larger than the diameter of the exhaust port 47 so as to cover the exhaust port 47 when viewed from the holder 21 side. The second flow path control plate 33 controls the plasma exhaust flow path so as to block the plasma flow path from the holder 21 toward the exhaust port 47. Thereby, a uniform plasma flow is formed in the processing chamber 14.

なお、排気口47の位置は、この他にも真空槽15の底面部15bや天井面など適宜に決めることができるが、排気口47は、ホルダー21を挟んで導入口38とは反対側の処理室14の領域に配するのがよい。したがって、処理室14内においてホルダー21を挟んで導入口38側とは反対の領域側を囲む真空槽15の底面部15b,天井面や各側面等に排気口47を設けるのがよい。また、第2流路制御板33の有無は、真空下でのプラズマの流れに対する影響は、あまり大きくない。このため、例えば第2流路制御板33を省略してもよい。   In addition to this, the position of the exhaust port 47 can be determined as appropriate, such as the bottom surface portion 15b of the vacuum chamber 15 or the ceiling surface, but the exhaust port 47 is on the opposite side of the introduction port 38 with the holder 21 in between. It is preferable to arrange in the region of the processing chamber 14. Therefore, the exhaust port 47 is preferably provided in the bottom surface portion 15b, the ceiling surface, each side surface, and the like of the vacuum chamber 15 surrounding the region opposite to the introduction port 38 side with the holder 21 in the processing chamber 14. The presence or absence of the second flow path control plate 33 does not have a great influence on the plasma flow under vacuum. For this reason, for example, the second flow path control plate 33 may be omitted.

図6に示すように、第1流路制御板32は、ホルダー21とほぼ同じ大きさに切り欠かれた収容部32aを有し、ガス導入部30側から見て略コ字状に形成されている。この第1流路制御板32は、図6に示されるように、蓋部15aが開放状態のときには、載置台29の上方に移動して、載置台29上からホルダ−21の移動、及び載置台29上へのホルダー21のセットを許容する。   As shown in FIG. 6, the first flow path control plate 32 has an accommodating portion 32 a that is cut out to approximately the same size as the holder 21, and is formed in a substantially U shape when viewed from the gas introduction portion 30 side. ing. As shown in FIG. 6, the first flow path control plate 32 moves above the mounting table 29 and moves the holder 21 from the mounting table 29 and mounts it when the lid portion 15 a is in the open state. The holder 21 is allowed to be set on the mounting table 29.

図7に示すように、第1流路制御板32は、蓋部15aが閉鎖状態のときには、収容部32a内にホルダー21を収容してこのホルダー21の周囲に配される。これにより、ホルダー21と真空槽15の内面との間を塞ぎ、ホルダー21の周囲を通って、処理室14の導入口38側の領域から排気口47側の領域にプラズマが流れることを抑制し、ホルダー21内部にプラズマを効率的に供給する。脚部36は、第1流路制御板32と同様に流路を制御する機能を有し、載置台29と底面部15aとの間を塞ぎ、これらの間にプラズマが流れないようにする。なお、第1流路制御板32,第2流路制御板33は、脚部36と同様に絶縁性の材料で作製されている。   As shown in FIG. 7, when the lid portion 15a is in the closed state, the first flow path control plate 32 accommodates the holder 21 in the accommodating portion 32a and is arranged around the holder 21. Thereby, the space between the holder 21 and the inner surface of the vacuum chamber 15 is blocked, and the flow of plasma from the region on the inlet 38 side to the region on the exhaust port 47 side of the processing chamber 14 through the periphery of the holder 21 is suppressed. The plasma is efficiently supplied into the holder 21. The leg portion 36 has a function of controlling the flow path in the same manner as the first flow path control plate 32, blocks the space between the mounting table 29 and the bottom surface portion 15a, and prevents plasma from flowing therebetween. In addition, the 1st flow path control board 32 and the 2nd flow path control board 33 are produced with the insulating material similarly to the leg part 36. FIG.

図8に示すように、蓋部15a及び底面部15bは接地されている。前述のように、第1電極41は、高周波電源18が接続されて高周波電圧が印加される。第2電極42は、接地されている。ホルダー21,載置台29は、例えば金属製であるが、上述のように脚部36及び第1流路制御板32を絶縁性とすることによって、電気的には高周波電源18に接続されておらず、また接地もされない。また、ガス導入部30についても、前述のように真空槽15とは絶縁されており、高周波電源18に接続されておらず、また接地もされない。   As shown in FIG. 8, the lid portion 15a and the bottom surface portion 15b are grounded. As described above, the first electrode 41 is connected to the high frequency power supply 18 and applied with a high frequency voltage. The second electrode 42 is grounded. The holder 21 and the mounting table 29 are made of, for example, metal, but are electrically connected to the high-frequency power source 18 by making the legs 36 and the first flow path control plate 32 insulative as described above. Neither is it grounded. Further, the gas introduction part 30 is also insulated from the vacuum chamber 15 as described above, and is not connected to the high frequency power source 18 and is not grounded.

次に上記構成の作用について説明する。まず、処理室14内が大気圧になっていることを確認してから昇降機構19を作動し、蓋部15aを上昇させて開放状態にする。次に図示しないロボットアームにより、複数の基板11を保持したホルダー21を載置台29の上に所定の向きでセットする。   Next, the operation of the above configuration will be described. First, after confirming that the inside of the processing chamber 14 is at atmospheric pressure, the elevating mechanism 19 is operated to raise the lid 15a to an open state. Next, the holder 21 holding the plurality of substrates 11 is set on the mounting table 29 in a predetermined direction by a robot arm (not shown).

ロボットアームの退避後に、昇降機構19により蓋部15aを下降し、閉鎖状態にする。続いて真空ポンプ16が作動されて、処理室14内が所定の真空度となるまで排気される。所定の真空度に達すると、ガス供給装置17からのプロセスガスの供給が開始されるとともに、高周波電源18により第1電極41に高周波電圧が印加される。プロセスガスは、各導入口38のそれぞれから処理室14内に導入される。そして、このプロセスガスが、第1電極41に対する高周波電圧の印加により第1電極41と第2電極42と間に生じる電界で励起されてプラズマが発生する。   After retracting the robot arm, the lid 15a is lowered by the elevating mechanism 19 to be in a closed state. Subsequently, the vacuum pump 16 is operated, and the processing chamber 14 is exhausted until a predetermined degree of vacuum is reached. When a predetermined degree of vacuum is reached, supply of process gas from the gas supply device 17 is started, and a high-frequency voltage is applied to the first electrode 41 by the high-frequency power source 18. The process gas is introduced into the processing chamber 14 from each of the introduction ports 38. The process gas is excited by an electric field generated between the first electrode 41 and the second electrode 42 by applying a high-frequency voltage to the first electrode 41 to generate plasma.

発生したプラズマがホルダー21の内部に供給されると、そのプラズマ中のラジカルやイオンにより、半導体素子の電極の表面を含む基板11の上面及び下面に付着している汚染物質が除去される。このときに、プロセスガスは、各導入口38からホルダー21に向けて放出され、処理室14内はホルダー21を挟んで各導入口38と反対側の排気口47で排気されている。このため、マクロ的に見ればプロセスガスから生成されるプラズマがホルダー21に向けて流れる。また、第1流路制御板32,脚部36により、プラズマのほとんどがホルダ−21内を通る。   When the generated plasma is supplied into the holder 21, contaminants attached to the upper and lower surfaces of the substrate 11 including the surface of the electrode of the semiconductor element are removed by radicals and ions in the plasma. At this time, the process gas is discharged from each introduction port 38 toward the holder 21, and the inside of the processing chamber 14 is exhausted through the exhaust port 47 opposite to each introduction port 38 with the holder 21 interposed therebetween. For this reason, when viewed macroscopically, plasma generated from the process gas flows toward the holder 21. Further, most of the plasma passes through the holder 21 by the first flow path control plate 32 and the leg portion 36.

さらに、側板22に対応する領域に均一に分布させた複数の導入口38からプロセスガスをシャワー状に放出するとともに、プラズマの発生領域にホルダー21の側面が全面的に対面するようにしているため、ホルダー21の側面開口27からホルダー21の内部にプラズマが均一に供給される。しかも、第2流路制御板33の作用で排気口47からの排気によるプラズマのホルダー21内への導入ムラも抑制されている。したがって、各基板11の上面及び下面は、十分なプラズマが均一に供給されて、均一かつ十分に洗浄される。   Further, the process gas is discharged in a shower form from a plurality of inlets 38 uniformly distributed in the region corresponding to the side plate 22, and the side surface of the holder 21 is entirely opposed to the plasma generation region. The plasma is uniformly supplied from the side opening 27 of the holder 21 into the holder 21. In addition, the introduction of plasma into the holder 21 due to the exhaust from the exhaust port 47 is also suppressed by the action of the second flow path control plate 33. Therefore, the upper surface and the lower surface of each substrate 11 are uniformly and sufficiently cleaned by sufficiently supplying sufficient plasma.

上記のようにして各基板11に対してプラズマ洗浄を行った後、プロセスガスの供給、排気、及び高周波電圧の印加を停止する。この後、処理室14内を大気圧に戻してから昇降機構19を作動させ、蓋部15aを開放状態にしてから、載置台29上からホルダー21を取り出す。 After plasma cleaning is performed on each substrate 11 as described above, supply of process gas, exhaust, and application of high-frequency voltage are stopped. Thereafter, after the inside of the processing chamber 14 is returned to atmospheric pressure, the elevating mechanism 19 is operated to open the lid portion 15a, and then the holder 21 is taken out from the mounting table 29.

上記実施形態では、第1電極と第2電極とを交互に配列した1列の電極列であるが、第1電極と第2電極の配列、電極列の配置などは種々のものを採用することができる。図9は、電極ユニット51を2列の電極列51aから構成したものである。各電極列51aは、最初の実施形態と同様に、プロセスガスの放出方向と直交する面内に第1電極41と第2電極42とを交互に並べて格子状(連子)に配列したものであり、2列の電極列51aは、プロセスガスの放出方向に所定の間隔をあけて配してある。   In the above-described embodiment, the first electrode and the second electrode are arranged in an alternating manner. However, various arrangements of the first electrode and the second electrode, the arrangement of the electrode rows, and the like are adopted. Can do. In FIG. 9, the electrode unit 51 is composed of two rows of electrode rows 51a. As in the first embodiment, each electrode row 51a is formed by alternately arranging the first electrodes 41 and the second electrodes 42 in a plane perpendicular to the process gas emission direction. The two electrode rows 51a are arranged at a predetermined interval in the process gas discharge direction.

なお、図9に示す例では、電極列51aは2列であるが3列以上であってもよい。また、図10に示すように、ホルダー21を挟んで導入口38側と排気口47側との処理室14の各領域に電極ユニット51をそれぞれ設けてもよい。図10に示す例では、導入口38側と排気口47側のいずれの電極ユニット51も2列ずつ電極列51aを設けているが、導入口38側と排気口47側に電極列を1列ずつ設けてもよく、それぞれ3列以上設けてもよい。さらには、導入口38側と排気口47側の列数や電極数が異なってもよい。   In the example shown in FIG. 9, the electrode rows 51a are two rows, but may be three or more rows. Further, as shown in FIG. 10, electrode units 51 may be provided in each region of the processing chamber 14 on the introduction port 38 side and the exhaust port 47 side across the holder 21. In the example shown in FIG. 10, each electrode unit 51 on the introduction port 38 side and the exhaust port 47 side is provided with two electrode rows 51a, but one electrode row is provided on the introduction port 38 side and the exhaust port 47 side. Each may be provided, or three or more rows may be provided. Furthermore, the number of rows and the number of electrodes on the introduction port 38 side and the exhaust port 47 side may be different.

図11は、電極列を同じ種類の複数本の電極で構成し、電極の種類の異なる電極列を互いに離間させて配した例を示すものである。図11に示す例では、電極ユニット52は、プロセスガスの放出方向と直交する面内に複数の第1電極41を並べて格子状に配列した電極列52aと複数の第2電極42を並べて格子状に配列した電極列52bとからなる。電極列52aと電極列52bは、プロセスガスの放出方向に所定の間隔で離間させてある。この例では、第1電極41と第2電極42とは、互いにプロセスガスの放出方向に離間して配されるが同様な効果が得られる。   FIG. 11 shows an example in which an electrode array is composed of a plurality of electrodes of the same type, and electrode arrays of different electrode types are arranged apart from each other. In the example shown in FIG. 11, the electrode unit 52 has a grid shape in which a plurality of first electrodes 41 are arranged in a grid shape in a plane orthogonal to the process gas discharge direction and a plurality of second electrodes 42 are arranged in a grid pattern. The electrode array 52b is arranged in a row. The electrode row 52a and the electrode row 52b are separated from each other at a predetermined interval in the process gas discharge direction. In this example, the first electrode 41 and the second electrode 42 are arranged apart from each other in the process gas discharge direction, but the same effect can be obtained.

図11の例では、処理室14のホルダー21を挟んで導入口38側と排気口47側との各領域にそれぞれ電極ユニット52を設けている。導入口38側及び排気口47側の各電極ユニット52では、いずれも電極列52aが電極列52bよりもホルダー21に近い位置に配されており、ホルダー21を挟んで対称的な電極配置となっている。なお、図11の例とは逆に電極列52bが電極列52aよりもホルダー21に近い位置に配されるようにしてもよい。また、このような電極列52a,52bからなる電極ユニット52を
導入口38側だけに設けてもよい。
In the example of FIG. 11, electrode units 52 are provided in the respective regions on the introduction port 38 side and the exhaust port 47 side across the holder 21 of the processing chamber 14. In each of the electrode units 52 on the introduction port 38 side and the exhaust port 47 side, the electrode row 52a is disposed closer to the holder 21 than the electrode row 52b, and the electrode arrangement is symmetrical with respect to the holder 21. ing. In contrast to the example of FIG. 11, the electrode row 52b may be arranged at a position closer to the holder 21 than the electrode row 52a. Further, the electrode unit 52 including such electrode rows 52a and 52b may be provided only on the introduction port 38 side.

なお、図10や図11に示される例のように、導入口38側と排気口47側とに電極列をそれぞれ設ける場合には、導入口38側の電極と排気口47側の電極との間がプラズマ発生領域とならないように、電極の配列や位置、電極列の位置等を決めるべきである。このような観点から、ホルダー21を挟んで対称的な電極配置とすることは好ましい態様である。   10 and 11, when the electrode rows are provided on the introduction port 38 side and the exhaust port 47 side, respectively, the electrode on the introduction port 38 side and the electrode on the exhaust port 47 side The arrangement and position of the electrodes, the position of the electrode rows, etc. should be determined so that the gap does not become the plasma generation region. From such a point of view, it is a preferable embodiment to have a symmetrical electrode arrangement with the holder 21 in between.

図12は、隣接した電極列間で電極の配列をずらした電極ユニットの列を示すものである。この例では、電極ユニット53として、プロセスガスの放出方向と直交する面内に第1電極41と第2電極42とを交互に並べて格子状に配列した2列の電極列53a,53bを設けるとともに、各電極列53a,53bの第1,第2電極41,42の配列を1本分ずらしている。これにより、同一の電極列中で第1,第2電極41,42が互いに離間して配されてとともに、隣接した電極列間の第1,第2電極41,42がプロセスガスの放出方向に互いに離間して配されている。なお、隣接した電極列間で電極の配列をずらした電極列を3列以上設けてもよい。   FIG. 12 shows a row of electrode units in which the arrangement of electrodes is shifted between adjacent electrode rows. In this example, the electrode unit 53 is provided with two electrode rows 53a and 53b in which first electrodes 41 and second electrodes 42 are alternately arranged in a lattice pattern in a plane orthogonal to the process gas discharge direction. The arrangement of the first and second electrodes 41 and 42 of the electrode rows 53a and 53b is shifted by one. As a result, the first and second electrodes 41 and 42 are spaced apart from each other in the same electrode row, and the first and second electrodes 41 and 42 between the adjacent electrode rows are arranged in the process gas discharge direction. They are spaced apart from each other. Note that three or more electrode rows in which the electrode arrangement is shifted between adjacent electrode rows may be provided.

図13は、電極の種類が異なる隣接した電極列間で電極位置を配列方向にずらした電極ユニットの例を示している。この例の電極ユニット56では、プロセスガスの放出方向と直交する面内に複数の第1電極41を並べて格子状に配列した電極列56aと複数の第2電極42を並べて格子状に配列した電極列56bとをプロセスガスの放出方向に所定間隔で並べるとともに、電極列56a,56bの電極の位置を電極の配列方向にずらして配してある。電極列56a,56bは、同じピッチで電極が配列されているが、そのピッチの半分だけ電極の位置がずらされている。   FIG. 13 shows an example of an electrode unit in which the electrode positions are shifted in the arrangement direction between adjacent electrode rows of different electrode types. In the electrode unit 56 of this example, an electrode array 56a in which a plurality of first electrodes 41 are arranged in a lattice pattern and a plurality of second electrodes 42 are arranged in a lattice pattern in a plane orthogonal to the process gas discharge direction. The rows 56b are arranged at predetermined intervals in the process gas discharge direction, and the positions of the electrodes of the electrode rows 56a and 56b are shifted in the electrode arrangement direction. In the electrode rows 56a and 56b, electrodes are arranged at the same pitch, but the positions of the electrodes are shifted by half the pitch.

なお、図13の例では、第1電極41の電極列56aを第2電極42の電極列56bよりもホルダー21に近い位置に配置しているが、これとは逆に、第2電極42の電極列を第1電極42の電極列よりもホルダー21に近い位置に配置してもよい。また、隣接した電極列間で電極の種類が異なり、さらに電極位置を配列方向にずらした電極列を3列以上設けてもよい。   In the example of FIG. 13, the electrode array 56 a of the first electrode 41 is disposed closer to the holder 21 than the electrode array 56 b of the second electrode 42, but conversely, The electrode array may be arranged at a position closer to the holder 21 than the electrode array of the first electrode 42. Further, three or more electrode rows in which the electrode types are different between adjacent electrode rows and the electrode positions are shifted in the arrangement direction may be provided.

図12,図13に示されるような電極列の配列の場合にも、処理室14のホルダー21を挟んで導入口38側と排気口47側との各領域にそれぞれ電極ユニットを設けてもよい。   Also in the case of the arrangement of the electrode rows as shown in FIGS. 12 and 13, electrode units may be provided in the respective regions on the introduction port 38 side and the exhaust port 47 side across the holder 21 of the processing chamber 14. .

上記各実施形態では、第1,第2電極の形状を円柱形状としたが、形状はこれに限らず例えば図14に示す第1,第2電極61,62のように角柱形状や、図15に示す第1,第2電極63,64のように板状のものでもよい。また、電極を筒形状としてもよい。   In each of the above embodiments, the shape of the first and second electrodes is a cylindrical shape. However, the shape is not limited to this, for example, a prismatic shape such as the first and second electrodes 61 and 62 shown in FIG. The first and second electrodes 63 and 64 shown in FIG. The electrode may be cylindrical.

図16は、筒形状の電極の中空な内部に熱媒体を流すことにより電極の温度を制御する例を示すものである。電極65は上端が開口し、下端が閉じた筒形状となっている。この電極65を第1,第2電極として真空槽15に取付けたときに、その中空部の中心に供給管66が挿入される。供給管66は、温度制御部67から熱媒体としての冷却水が供給される。   FIG. 16 shows an example in which the temperature of the electrode is controlled by flowing a heat medium into the hollow interior of the cylindrical electrode. The electrode 65 has a cylindrical shape with an upper end opened and a lower end closed. When this electrode 65 is attached to the vacuum chamber 15 as the first and second electrodes, the supply pipe 66 is inserted into the center of the hollow portion. The supply pipe 66 is supplied with cooling water as a heat medium from the temperature control unit 67.

供給管66を通して電極65の中空部の先端にまで冷却水が送られ、その冷却水が供給管66と電極65の内壁との間を通って電極65は上端にまで流れる。電極65は上端に達した冷却水は、図示しない排水パイプを通して温度制御部67に送られる。温度制御部67は、このようにして戻ってくる冷却水の温度に基づいて電極65の温度が所定の範囲に維持し高温にならないように冷却水の温度や流量を調整する。これにより、電極65の高温になることによる基板などの被処理物への影響を低減することができる。   Cooling water is sent to the tip of the hollow portion of the electrode 65 through the supply pipe 66, and the cooling water passes between the supply pipe 66 and the inner wall of the electrode 65 and flows to the upper end. The cooling water that has reached the upper end of the electrode 65 is sent to the temperature controller 67 through a drain pipe (not shown). The temperature control unit 67 adjusts the temperature and flow rate of the cooling water so that the temperature of the electrode 65 is maintained within a predetermined range and does not reach a high temperature based on the temperature of the cooling water returning in this way. Thereby, the influence on to-be-processed objects, such as a board | substrate, by the electrode 65 becoming high temperature can be reduced.

図17に示すように、第1電極41同士、第2電極42同士で、それらを上端または下端で順次につないで、それぞれに冷却水を流すように構成してもよい。また、2本の電極の一端、例えば下端を接続して、一方の電極の上端から冷却水を流し入れ、他方の電極の上端から冷却水を排出してもよい。熱媒体の絶縁性が担保できる場合は、第1電極と第2電極とを絶縁性のパイプで接続して、熱媒体を通してもよい。さらに、電極の一端から冷却水を流し入れ、その電極の他端から排出させてもよい。   As shown in FIG. 17, the first electrodes 41 and the second electrodes 42 may be sequentially connected at the upper end or the lower end so that the cooling water flows. Alternatively, one end, for example, the lower end of the two electrodes may be connected, cooling water may be poured from the upper end of one electrode, and the cooling water may be discharged from the upper end of the other electrode. When the insulation of the heat medium can be ensured, the first electrode and the second electrode may be connected by an insulating pipe and passed through the heat medium. Furthermore, cooling water may be poured from one end of the electrode and discharged from the other end of the electrode.

図18は、各電極として格子形状の電極板を用いた例を示すものである。この例では、第1,第2電極板71,72は、いずれも導電性の板部材に多数の矩形状の開口を形成することにより格子状にしてある。第1,第2電極板71,72は、プロセスガスの放出方向に互いに離間して配されるとともに、ホルダー21と導入口との間に、いずれもプロセスガスの放出方向と直交する面内に配される。このようにしても同様な効果が得られる。第1,第2電極板71,72に形成する開口は矩形に限らず円形、三角形など様々な形にすることができる。また、規則的に開口を形成する必要はなくランダムでもよい。さらには、第1,第2電極板が網目状であってもよい。   FIG. 18 shows an example in which a grid-shaped electrode plate is used as each electrode. In this example, the first and second electrode plates 71 and 72 are both in a lattice shape by forming a number of rectangular openings in a conductive plate member. The first and second electrode plates 71 and 72 are spaced apart from each other in the process gas discharge direction, and are both in a plane perpendicular to the process gas discharge direction between the holder 21 and the introduction port. Arranged. Even if it does in this way, the same effect is acquired. The openings formed in the first and second electrode plates 71 and 72 are not limited to a rectangle, but may be various shapes such as a circle and a triangle. Moreover, it is not necessary to form an opening regularly, and it may be random. Furthermore, the first and second electrode plates may have a mesh shape.

また、図1に示すプラズマ処理装置では、真空槽の蓋部を上方に移動させて処理室を開放することにより、ホルダーのセットや取り出しを行う構成であるが、ホルダーのセットや取り出すための構成は、各電極の取り付け構造などに応じて適宜変更できる。図19の例では、真空槽75を本体部75aと、この本体部75aから引き出される引き出し部75bとに分けている。本体部75aに、第1,第2流路制御板32,33、第2流路制御板33、排気口47、排気口47側の電極ユニット50を設け、引き出し部75bに載置台29、ガス導入部30、ガス導入口側の電極ユニット50を設けている。ホルダー21のセットや取り出しを行う場合には、本体部75aから引き出し部75bを引き出して行う。なお、電極ユニット50に代えて、他の電極の配列・配置の電極ユニットを設けてもよい。 Further, in the plasma processing apparatus shown in FIG. 1, by opening the processing chamber by moving the lid of the vacuum chamber upwardly, but is configured to perform a set or retrieve the holder, a structure for taking out and set holder Can be appropriately changed according to the mounting structure of each electrode. In the example of FIG. 19, the vacuum chamber 75 is divided into a main body portion 75a and a drawer portion 75b drawn from the main body portion 75a. The main body portion 75a is provided with the first and second flow path control plates 32 and 33, the second flow path control plate 33, the exhaust port 47, and the electrode unit 50 on the exhaust port 47 side. An introduction unit 30 and a gas introduction side electrode unit 50 are provided. When the holder 21 is set or removed, the drawer portion 75b is pulled out from the main body portion 75a. Instead of the electrode unit 50, an electrode unit having another electrode arrangement / arrangement may be provided.

上記各実施形態では、ガス導入部を箱状としたが、ガス導入部は、均一にプロセスガスを放出できるものであればよい。例えば、図20に示すガス導入部80は、環状管81と複数の放出管82とで構成したものである。環状管81は、端部がないように中空管を環状に形成したものである。環状管81は、供給部83にガス供給パイプ37が接続されており、プロセスガスが供給部83を通して環状管81の内部に供給される。各放出管82は、直線状の中空管に複数の導入口38を形成したものである。複数の導入口38は軸方向に並べて列状に形成してある。放出管82は、環状管81の内側で、その両端が環状管81に接続されている。これにより、環状管81から放出管82の内部にプロセスガスを供給し、各導入口38から放出する。環状管81に対する放出管82の両端の接続位置は、供給部83と異なる位置としてある。 In each of the above embodiments, the gas introduction part has a box shape. However, the gas introduction part may be any as long as it can discharge the process gas uniformly. For example, the gas introduction unit 80 shown in FIG. 20 includes an annular pipe 81 and a plurality of discharge pipes 82. The annular tube 81 is a hollow tube formed in an annular shape so that there is no end. In the annular pipe 81, the gas supply pipe 37 is connected to the supply unit 83, and the process gas is supplied into the annular pipe 81 through the supply unit 83. Each discharge tube 82 is formed by forming a plurality of inlets 38 in a linear hollow tube. The plurality of inlets 38 are arranged in a line in the axial direction. The discharge pipe 82 is connected to the annular pipe 81 at both ends inside the annular pipe 81. As a result, the process gas is supplied from the annular pipe 81 to the inside of the discharge pipe 82 and discharged from each inlet 38. The connection positions of both ends of the discharge pipe 82 with respect to the annular pipe 81 are different from the supply unit 83.

上記のようにガス導入部80を構成することにより、均一な各放出管82のそれぞれに均一な圧力でプロスガスを供給し、各導入口38から放出されるプロセスガスの放出量を均一にしている。そして、これにより、電極ユニット内で発生するプラズマが均一になるようにしている。   By configuring the gas introduction unit 80 as described above, the process gas is supplied to each of the uniform discharge pipes 82 with a uniform pressure, and the amount of process gas discharged from each of the inlets 38 is made uniform. . Thereby, the plasma generated in the electrode unit is made uniform.

上記各実施形態では、第1電極が高周波電圧が印加されるアノード電極、第2電極が接地されたカソード電極となっているが、図21に一例を示すように、カソード電極としての第2電極42を接地しない構成としてもよい。   In each of the embodiments described above, the first electrode is an anode electrode to which a high-frequency voltage is applied, and the second electrode is a grounded cathode electrode. However, as shown in FIG. 21 as an example, the second electrode is a cathode electrode. 42 may be configured not to be grounded.

本発明の効果を確認するために、各電極41,42が図10のように配列され、その他構成は、第1実施形態の構成と同じプラズマ処理装置10でプラズマ処理を行った。また、比較のために、図22に示す構成の従来のプラズマ処理装置90で同様の表面処理を行った。なお、プラズマ処理では、プロセスガスとして、アルゴンガスを用い、真空度を10Paとした。   In order to confirm the effect of the present invention, the electrodes 41 and 42 are arranged as shown in FIG. 10, and the plasma processing is performed by the same plasma processing apparatus 10 as in the first embodiment. For comparison, the same surface treatment was performed with a conventional plasma processing apparatus 90 configured as shown in FIG. In the plasma treatment, argon gas was used as a process gas, and the degree of vacuum was 10 Pa.

プラズマ処理装置90は、真空槽91内に高周波電圧が印加される一対の電極板92の間にホルダーを配置し、真空槽91自体を接地電極としたものである。このプラズマ処理装置90では、プラズマ処理装置10のものと同じホルダ−21を用い、側板22が電極板92に対面するように配した。プロセスガスは、ホルダ−21の開口25に対向する位置から真空槽91内に導入し、それと反対側から排気を行った。   In the plasma processing apparatus 90, a holder is disposed between a pair of electrode plates 92 to which a high-frequency voltage is applied in a vacuum chamber 91, and the vacuum chamber 91 itself is used as a ground electrode. In this plasma processing apparatus 90, the same holder 21 as that of the plasma processing apparatus 10 was used, and the side plate 22 was disposed so as to face the electrode plate 92. The process gas was introduced into the vacuum chamber 91 from a position facing the opening 25 of the holder-21, and exhausted from the opposite side.

[プラズマ洗浄1]
約10cm×20cmの銅板を被処理物としてホルダー21にセットし、プラズマ処理装置10、及びプラズマ処理装置90で、それぞれ1分間処理を行った。処理後、銅板の表面の接触角度を測定した。
[Plasma cleaning 1]
A copper plate of about 10 cm × 20 cm was set in the holder 21 as an object to be processed, and the plasma processing apparatus 10 and the plasma processing apparatus 90 were each processed for 1 minute. After the treatment, the contact angle on the surface of the copper plate was measured.

本発明のプラズマ処理装置10で処理した銅板の表面は、その全面にわたって均一な値の接触角度が得られ、しかも接触角度が低い値となった。この結果より、プラズマ処理装置10では、ホルダー21の内には、プラズマが均一に今供給されていることが分かった。   The surface of the copper plate treated with the plasma processing apparatus 10 of the present invention has a uniform contact angle over the entire surface, and has a low contact angle. From this result, it was found that in the plasma processing apparatus 10, the plasma is now uniformly supplied into the holder 21.

他方、従来のプラズマ処理装置90で処理した銅板は、その表面の接触角度が不均一であり、周辺部と中央部とで差が生じた。周辺部では、低い値の接触角度となったが、中央部では高い値の接触角度となった。この結果から従来のプラズマ処理装置90では、ホルダー21内でのプラズマの供給量にムラがあり、銅板の表面に対するプラズマ処理が不均一となることが分かった。   On the other hand, the copper plate processed by the conventional plasma processing apparatus 90 has a non-uniform contact angle on the surface, and a difference has occurred between the peripheral portion and the central portion. In the peripheral portion, the contact angle was low, but in the central portion, the contact angle was high. From this result, it was found that in the conventional plasma processing apparatus 90, the amount of plasma supplied in the holder 21 is uneven, and the plasma processing on the surface of the copper plate becomes non-uniform.

[プラズマ洗浄2]
約10cm×20cmの基板の表面に複数のICチップを搭載したものを被処理物としてホルダー21にセットし、プラズマ処理装置10、及びプラズマ処理装置90で、それぞれ1分間処理を行った。処理後、ICチップの電極と基板の接続面とを金線で接続するワイヤボンディングを実施した。ワイヤボンディングの後に、ICチップの電極と金線との接続信頼性を評価した。接続信頼性は、ICチップの電極と金線との溶着強度(接合強度)をせん断力として測定し、その測定結果に基づいて評価した。せん断力の測定には、ボンドテスター4000Plus(デイジ・ジャパン株式会社製)を用いた。
[Plasma cleaning 2]
A substrate having a plurality of IC chips mounted on the surface of a substrate of about 10 cm × 20 cm was set in the holder 21 as an object to be processed, and the plasma processing apparatus 10 and the plasma processing apparatus 90 were each processed for 1 minute. After the treatment, wire bonding was performed to connect the electrode of the IC chip and the connection surface of the substrate with a gold wire. After wire bonding, the connection reliability between the IC chip electrode and the gold wire was evaluated. The connection reliability was evaluated based on the measurement result obtained by measuring the welding strength (bonding strength) between the electrode of the IC chip and the gold wire as the shearing force. For the measurement of the shearing force, a bond tester 4000 Plus (manufactured by Daisy Japan Co., Ltd.) was used.

本発明のプラズマ処理装置10では、基板の表面の周辺部に搭載されたICチップ、基板の表面の中央部に搭載されたICチップのいずれについても、電極と金線の溶着強度が大きく、ワイヤボンディングの接続信頼性が高いという結果になった。   In the plasma processing apparatus 10 according to the present invention, the welding strength between the electrode and the gold wire is large for both the IC chip mounted on the peripheral portion of the substrate surface and the IC chip mounted on the central portion of the substrate surface. As a result, the connection reliability of bonding was high.

従来のプラズマ処理装置90で処理したものは、基板の表面の周辺部に搭載されたICチップ、基板の表面の中央部に搭載されたICチップのいずれについても、電極と金線の溶着強度が小さく、ワイヤボンディングの接続信頼性が低いという結果になった。プラズマ処理装置90による処理時間を2分とした場合も同様な結果となった。   What was processed with the conventional plasma processing apparatus 90 has the welding strength of an electrode and a gold wire about both the IC chip mounted in the peripheral part of the surface of a board | substrate, and the IC chip mounted in the center part of the surface of a board | substrate. As a result, the connection reliability of wire bonding was low. The same result was obtained when the processing time by the plasma processing apparatus 90 was 2 minutes.

以上より、本発明のプラズマ処理装置10は、短時間でホルダー21内に十分なプラズマが供給されて、基板の表面が全面的に十分な洗浄性が得られることが確認された。   From the above, it has been confirmed that the plasma processing apparatus 10 of the present invention can supply sufficient plasma into the holder 21 in a short time to obtain a sufficient cleaning property on the entire surface of the substrate.

[プラズマエッチング]
i線レジストを表面に形成した9個のウエハチップをマトリクス状に基板の表面に配置したものを被処理物として、ホルダー21にセットして、プラズマ処理装置10、及びプラズマ処理装置90で、プラズマによるエッチングを実施した。基板のサイズは約10cm×20cmである。また、ホルダー21には、上下方向に離間させてウエハチップを積層配置した基板を複数枚保持させた。エッチングは、電極41,42の温度上昇を考慮して、断続的に5回行った。各1回の処理時間は2分間とし、1回の処理ごとに30分間の冷却期間を設けた。評価では、エリプソメータを用いてエッチング前後のi線レジストの膜厚を測定し、エッチングレートの均一性を評価した。
[Plasma etching]
A set of nine wafer chips formed with an i-line resist on the surface of the substrate arranged in a matrix on the surface of the substrate is set as an object to be processed in the holder 21, and the plasma processing apparatus 10 and the plasma processing apparatus 90 Etching was performed. The size of the substrate is about 10 cm × 20 cm. The holder 21 holds a plurality of substrates on which wafer chips are stacked and spaced apart in the vertical direction. The etching was intermittently performed 5 times in consideration of the temperature rise of the electrodes 41 and 42. Each treatment time was 2 minutes, and a cooling period of 30 minutes was provided for each treatment. In the evaluation, the thickness of the i-line resist before and after etching was measured using an ellipsometer, and the uniformity of the etching rate was evaluated.

プラズマ処理装置10で処理したものは、表面中央部でも周辺部とほぼ同等のエッチングレートが得られていた。また、積層配置された各基板について同様なものとなった。この結果より、プラズマ処理装置10では、ホルダ−21内の全体にプラズマが均一に供給されて、均一に処理されていることが確認された。   The thing processed with the plasma processing apparatus 10 was able to obtain the etching rate substantially equivalent to the peripheral part also in the center part of the surface. Moreover, it became the same about each board | substrate laminated | stacked. From this result, it was confirmed that in the plasma processing apparatus 10, the plasma was uniformly supplied to the entire inside of the holder 21 and processed uniformly.

他方、従来のプラズマ処理装置90で処理したものは、基板の表面に配置されたウエハチップのうちの表面中央部に配されたウエハチップのi線レジストに対するエッチングレートが周辺部のものに対して低い結果となった。この結果は、積層配置された各基板について同様なものとなった。   On the other hand, in the case of processing with the conventional plasma processing apparatus 90, the etching rate with respect to the i-line resist of the wafer chip arranged at the center of the surface among the wafer chips arranged on the surface of the substrate is that of the peripheral part The result was low. This result was the same for each of the stacked substrates.

10 プラズマ処理装置
11 基板
14 処理室
18 高周波電源
21 ホルダー
27 側面開口
31,51,52,53,56 電極ユニット
31a,51a,52a,52b,53a,53b,56a,56b 電極列
32,33 流路制御板
38 導入口
41,42 電極
47 排気口
71,72 電極板
DESCRIPTION OF SYMBOLS 10 Plasma processing apparatus 11 Substrate 14 Processing chamber 18 High frequency power supply 21 Holder 27 Side opening 31, 51, 52, 53, 56 Electrode unit 31a, 51a, 52a, 52b, 53a, 53b, 56a, 56b Electrode row 32, 33 Flow path Control plate 38 Inlet 41, 42 Electrode 47 Exhaust port 71, 72 Electrode plate

Claims (4)

被処理物を処理室内に収容し、真空にした前記処理室内に導入したプロセスガスからプラズマを発生させ、前記プラズマによって前記被処理物の表面に処理を行うプラズマ処理装置において、
一対の側面の間に前記側面と直交する方向で、複数の前記被処理物を間隔あけて積層した状態に保持し、且つ積層された前記被処理物の間の各前記側面の部分を露出する側面開口を有し、前記処理室内に載置されるホルダーと、
前記ホルダーが前記処理室内に載置された状態で、前記ホルダーの一方の前記側面開口に対向して配されるガス導入部であって、前記側面開口に向けて配される複数の導入口を有し、前記導入口からプロセスガスを前記側面開口に向けて放出するガス導入部と、
前記ホルダーが前記処理室内に載置された状態で、前記ホルダーを挟んで前記ガス導入部とは反対側の前記処理室の領域に配され、前記処理室内から前記プラズマを含むプロセスガスを排気する排気口と、
前記プラズマを発生させる高周波電圧を出力する電源と、
前記電源からの高周波電圧が印加される円柱形状の第1電極及び接地される円柱形状の第2電極を有し、前記第1電極及び前記第2電極は、前記ホルダーと前記導入口との間で互いに略平行状態で離間し、且つ前記プロセスガスの放出方向と直交する方向に並べられる1列以上の電極列を有する電極ユニットと、
前記ホルダーの一対の前記側面及び前記処理室への載置面を除く周囲で前記処理室との間に配され、前記処理室を前記導入口側の導入口側空間と前記排気口側の排気口側空間に分けて、前記ホルダーの周囲を通り前記導入口から前記排気口への前記プラズマの流れを抑制する流路制御部材と
を備えるプラズマ処理装置。
Accommodating an object to be processed in the processing chamber to generate a plasma from the process gas introduced into the treatment chamber is evacuated, the plasma treating apparatus for treating the surface of the object to be processed by said plasma,
In a direction perpendicular to the side surface between the pair of side surfaces, holding a plurality of said object to be processed stacked state apart intervals, and to expose portions of each of said side surfaces between the stacked the processing object A holder having a side opening and placed in the processing chamber ;
In the state where the holder is placed in the processing chamber, the gas inlet is arranged to face one side opening of the holder, and a plurality of inlets arranged toward the side opening are provided. a, a gas introducing unit for emitting toward the front SL side opening process gas from the inlet port,
In a state where the holder is placed in the processing chamber, wherein the said gas inlet across the holder is arranged in the region of the processing chamber on the opposite side, exhaust process gas containing the plasma before Symbol treatment chamber An exhaust port to
A power source that outputs a high frequency voltage for generating the plasma,
A first cylindrical electrode to which a high-frequency voltage from the power source is applied and a second cylindrical electrode to be grounded are provided, and the first electrode and the second electrode are between the holder and the introduction port. An electrode unit having one or more electrode rows that are separated from each other in a substantially parallel state and arranged in a direction orthogonal to the process gas discharge direction ;
The holder is disposed between the processing chamber around the pair of side surfaces and the mounting surface on the processing chamber, and the processing chamber is evacuated from the inlet side space on the inlet side and the exhaust side. A plasma processing apparatus comprising: a flow path control member that divides into a mouth side space and suppresses the flow of the plasma from the introduction port to the exhaust port through the periphery of the holder .
前記電極ユニットは、前記ホルダーを挟む位置で、前記導入口側空間及び前記排気口側空間にそれぞれ設けられている請求項1記載のプラズマ処理装置。 The plasma processing apparatus according to claim 1 , wherein the electrode unit is provided in each of the inlet side space and the exhaust side space at a position sandwiching the holder . 前記処理室は箱状であり、前記処理室の側面及び上面を構成する蓋部と、前記処理室の底面部を構成する底面部とを備え、
前記蓋部が前記底面部から離される開放状態で、前記被処理物が積層されている前記ホルダーが前記底面部に載置され、前記ホルダーの載置後に前記蓋部及び前記底面部が閉鎖状態になる請求項1又は2記載のプラズマ処理装置。
The processing chamber is box-shaped, and includes a lid portion that forms a side surface and an upper surface of the processing chamber, and a bottom surface portion that forms a bottom surface portion of the processing chamber,
In the open state in which the lid part is separated from the bottom surface part, the holder on which the workpieces are stacked is placed on the bottom part, and the lid part and the bottom part are closed after the holder is placed. The plasma processing apparatus according to claim 1 or 2 .
前記ホルダーは、前記側面開口が形成される平行な一対の側板と、前記側板の上端縁及び下端縁を連結する天板及び底板を有する角筒であり、前記角筒の両端の開口から前記被処理物がセットされ、前記閉鎖状態では前記開口が前記流路制御部材により塞がれる請求項3記載のプラズマ処理装置。 The holder is a square tube having a pair of parallel side plates in which the side opening is formed, and a top plate and a bottom plate that connect the upper and lower edges of the side plate, and the holder is open from the openings at both ends of the square tube. The plasma processing apparatus according to claim 3, wherein a processing object is set, and the opening is closed by the flow path control member in the closed state .
JP2014531421A 2012-08-22 2012-08-22 Plasma processing equipment Expired - Fee Related JP5996654B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/071172 WO2014030224A1 (en) 2012-08-22 2012-08-22 Plasma treatment device and plasma treatment method

Publications (2)

Publication Number Publication Date
JPWO2014030224A1 JPWO2014030224A1 (en) 2016-07-28
JP5996654B2 true JP5996654B2 (en) 2016-09-21

Family

ID=50149560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014531421A Expired - Fee Related JP5996654B2 (en) 2012-08-22 2012-08-22 Plasma processing equipment

Country Status (3)

Country Link
JP (1) JP5996654B2 (en)
TW (1) TWI582820B (en)
WO (1) WO2014030224A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102009348B1 (en) * 2017-09-20 2019-08-09 주식회사 유진테크 Batch type plasma substrate processing apparatus
CN113518510B (en) * 2020-04-10 2022-10-11 南通深南电路有限公司 PCB glue removing device and method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002141325A (en) * 2000-11-01 2002-05-17 Mori Engineering:Kk Vacuum plasma device of magazine electrode method
JP4161533B2 (en) * 2000-12-28 2008-10-08 松下電工株式会社 Plasma processing method and plasma processing apparatus
JP2010103544A (en) * 2001-01-11 2010-05-06 Hitachi Kokusai Electric Inc Film forming apparatus and method
JP2005032700A (en) * 2003-06-17 2005-02-03 Nittetsu Mining Co Ltd Gas excitation device with plate-shaped electrode, and gas excitation method
JP4549735B2 (en) * 2004-05-21 2010-09-22 フィーサ株式会社 Plasma processing method and apparatus
JP2006274420A (en) * 2005-03-30 2006-10-12 Mitsui Eng & Shipbuild Co Ltd Plasma film deposition method, and plasma cvd apparatus
JP2008029930A (en) * 2006-07-27 2008-02-14 Hitachi High-Tech Instruments Co Ltd Plasma cleaning apparatus
JP5168907B2 (en) * 2007-01-15 2013-03-27 東京エレクトロン株式会社 Plasma processing apparatus, plasma processing method, and storage medium
JP4925843B2 (en) * 2007-01-30 2012-05-09 株式会社日立ハイテクインスツルメンツ Plasma cleaning device

Also Published As

Publication number Publication date
JPWO2014030224A1 (en) 2016-07-28
TW201409528A (en) 2014-03-01
WO2014030224A1 (en) 2014-02-27
TWI582820B (en) 2017-05-11

Similar Documents

Publication Publication Date Title
JP5248370B2 (en) Shower head and plasma processing apparatus
WO2014064779A1 (en) Plasma treatment device and method
JP6078571B2 (en) Equipment for processing products
KR101037812B1 (en) Shower plate and substrate processing apparatus
JP2014049529A (en) Plasma processing apparatus and method of cleaning oxide film of metal
KR101496841B1 (en) Compound plasma reactor
CN103794540A (en) Electrostatic chuck and substrate processing apparatus
KR20160096981A (en) Plasma equipment for treating powder
JP5996654B2 (en) Plasma processing equipment
JP2007273752A (en) Plasma treatment apparatus, and plasma generating apparatus
JP4141560B2 (en) Circuit board plasma processing equipment
TW200804618A (en) Microwave plasma treatment apparatus and its manufacturing method, and plasma treatment method
KR100980291B1 (en) Inductive plasma chamber having multi discharge tube bridge
KR20080074587A (en) Plasma processing apparatus and plasma processing method
JP6418543B2 (en) Plasma processing apparatus and antenna unit for plasma processing apparatus
TW201320145A (en) E-beam plasma source with profiled e-beam extraction grid for uniform plasma generation
JP2006331664A (en) Plasma treatment device
JP4983713B2 (en) Atmospheric pressure plasma generator
JPS62281427A (en) Electrode for electric discharge machining
JP2002141325A (en) Vacuum plasma device of magazine electrode method
KR100832335B1 (en) Apparatus of supporting substrate and apparatus of etching substrate using plasma
JP6573164B2 (en) Plasma processing equipment
KR20040083577A (en) Plasma Cleaning Device and Method Using Remote Plasma
KR102093251B1 (en) Electrode assembly for dielectric barrier discharge and plasma generator using the same
KR102018987B1 (en) Substrate processing apparatus and film-forming apparatus

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160824

R150 Certificate of patent or registration of utility model

Ref document number: 5996654

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees