JP2006274420A - Plasma film deposition method, and plasma cvd apparatus - Google Patents

Plasma film deposition method, and plasma cvd apparatus Download PDF

Info

Publication number
JP2006274420A
JP2006274420A JP2005099005A JP2005099005A JP2006274420A JP 2006274420 A JP2006274420 A JP 2006274420A JP 2005099005 A JP2005099005 A JP 2005099005A JP 2005099005 A JP2005099005 A JP 2005099005A JP 2006274420 A JP2006274420 A JP 2006274420A
Authority
JP
Japan
Prior art keywords
plasma
density
vacuum vessel
emission intensity
calculated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005099005A
Other languages
Japanese (ja)
Inventor
Naomasa Miyatake
直正 宮武
Yasunari Mori
康成 森
Kazuki Takizawa
一樹 滝澤
Hiroyuki Tachibana
弘幸 橘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP2005099005A priority Critical patent/JP2006274420A/en
Publication of JP2006274420A publication Critical patent/JP2006274420A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To suppress any change of a plasma state by measuring the density of specified particles in plasma with a simple equipment. <P>SOLUTION: In a plasma film deposition method in which the high-frequency electromagnetic wave output from a high-frequency power supply is radiated in a vacuum container, plasma of a raw material gas is generated by the electromagnetic wave, and film deposition is performed on a surface to be film-deposited on a substrate, the luminescence intensity of the specified particles in plasma is measured, the density of the specified particles is calculated from the luminous intensity, and the film deposition condition is controlled based on the density. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、プラズマ成膜方法及びプラズマCVD装置に関する。   The present invention relates to a plasma film forming method and a plasma CVD apparatus.

プラズマを利用したCVD(化学的気相成長法)装置を用いて、基板の表面に薄膜を形成する技術が知られている。例えば、TFT(薄膜トランジスタ)の製造においては、アモルファスシリコンや結晶シリコンなどの薄膜(ゲート絶縁膜)を基板上の全域又は所定領域に均一に形成するプラズマCVD装置が用いられている。このプラズマCVD装置は、例えば、真空容器内に電極を配置し、高周波電源からの出力により電極から電磁波を放射して原料ガスのプラズマを発生させ、生成されるラジカルを基板面に付着させて成膜するものである。   A technique for forming a thin film on the surface of a substrate using a CVD (chemical vapor deposition) apparatus using plasma is known. For example, in the manufacture of TFT (thin film transistor), a plasma CVD apparatus is used that uniformly forms a thin film (gate insulating film) such as amorphous silicon or crystalline silicon over the entire region or a predetermined region on the substrate. In this plasma CVD apparatus, for example, an electrode is disposed in a vacuum vessel, an electromagnetic wave is emitted from the electrode by an output from a high frequency power source to generate plasma of a source gas, and a generated radical is attached to a substrate surface. It is a film.

ところで、このようなプラズマCVD装置においては、バッチ処理を連続して繰り返し行なうと、容器内のプラズマ状態、例えば、プラズマ中のラジカル密度が変動し、バッチ間で膜厚等の成膜品質にばらつきが生じるおそれがある。このような成膜品質のばらつきを抑制するため、例えば、高周波電源の出力をバッチ処理ごとに調整し、プラズマ状態の変動を抑制することが行なわれている。しかし、この方法によれば、例えば、バッチ処理後の基板面の膜厚を計測し、その結果から次回の成膜条件を選択しなければならず、生産管理上好ましくない。   By the way, in such a plasma CVD apparatus, when batch processing is continuously repeated, the plasma state in the container, for example, the radical density in the plasma fluctuates, and the film quality such as film thickness varies among batches. May occur. In order to suppress such variations in film formation quality, for example, the output of a high-frequency power source is adjusted for each batch process to suppress fluctuations in plasma state. However, according to this method, for example, the film thickness of the substrate surface after batch processing must be measured, and the next film formation condition must be selected from the result, which is not preferable in terms of production management.

そこで、容器内で生成されたプラズマ中の特定粒子、例えば、特定のラジカルを赤外レーザー吸光分光法により測定し、その測定結果に基づいてリアルタイムでプロセス条件を制御する技術が報告されている(例えば、特許文献1参照)。   Therefore, a technique has been reported in which specific particles in a plasma generated in a container, for example, specific radicals are measured by infrared laser absorption spectroscopy, and process conditions are controlled in real time based on the measurement results ( For example, see Patent Document 1).

これによれば、容器内のプラズマ中において、例えば、赤外光領域の特定波長の光を吸収する特定ラジカルの密度を測定することができる。また、レーザー光の光路を複数設けることで、プラズマ中の特定ラジカルの密度分布を検知することができ、その密度分布に基づいて成膜条件を調整することにより、膜厚の均一性を保つことができる。   According to this, in the plasma in a container, the density of the specific radical which absorbs the light of the specific wavelength of an infrared region can be measured, for example. Also, by providing multiple laser light paths, it is possible to detect the density distribution of specific radicals in the plasma, and to maintain film thickness uniformity by adjusting film formation conditions based on the density distribution. Can do.

特開平11−201899号公報Japanese Patent Laid-Open No. 11-201899

ところで、特許文献1の測定方法を用いる場合、レーザー光を照射するレーザー光出力部(発光系)と、そのレーザー光を受光して減衰量を算出する検出部(受光系)を備える必要がある。また、レーザー光の波長を正確に管理する必要があるため、例えば、液体窒素等の冷却機構を装備する必要がある。そのため、装置全体が大型化し、かつ複雑化するという問題がある。   By the way, when using the measuring method of patent document 1, it is necessary to provide the laser beam output part (light emission system) which irradiates a laser beam, and the detection part (light reception system) which light-receives the laser beam and calculates attenuation amount. . Further, since it is necessary to accurately control the wavelength of the laser beam, for example, it is necessary to equip a cooling mechanism such as liquid nitrogen. Therefore, there exists a problem that the whole apparatus enlarges and becomes complicated.

本発明は、簡単な設備でプラズマ中の特定粒子の密度を計測し、プラズマ状態の変化を抑制することを課題とする。   This invention makes it a subject to measure the density of the specific particle | grains in plasma with a simple installation, and to suppress the change of a plasma state.

先ず、本発明の原理を説明する。例えば、半導体や液晶の絶縁膜形成プロセスにおいて、酸化剤として用いる酸素は、プラズマ中でラジカルとなり、絶縁膜の形成、特に、成膜速度を制御する上で重要な制御因子となる。この酸素ラジカルは、プラズマ中において、例えば、電子や分子などの粒子と衝突して基底状態から高い軌道状態へ励起され、この励起状態が崩壊して基底状態に戻る際に発光が生じる。そこで、この発光強度を計測し、所定の演算処理を行なうことで、酸素ラジカルの密度を知ることができる。   First, the principle of the present invention will be described. For example, in a semiconductor or liquid crystal insulating film formation process, oxygen used as an oxidant becomes a radical in plasma, which is an important control factor in controlling the formation of an insulating film, particularly the film formation rate. This oxygen radical collides with particles such as electrons and molecules in the plasma and is excited from the ground state to a high orbital state, and emits light when the excited state collapses and returns to the ground state. Therefore, the density of oxygen radicals can be known by measuring the emission intensity and performing a predetermined calculation process.

具体的に、上記課題を解決するため、本発明は、真空容器内に高周波の電磁波を放射し、その電磁波によって原料ガスのプラズマを発生させて、基板上の成膜対象面に成膜を行なうプラズマ成膜方法において、プラズマ中の特定粒子の発光強度を計測し、その発光強度から該特定粒子の密度を算出し、算出された密度に基づいて成膜条件を制御することを特徴としている。   Specifically, in order to solve the above-described problems, the present invention radiates a high-frequency electromagnetic wave into a vacuum vessel, generates plasma of a source gas by the electromagnetic wave, and forms a film on a film formation target surface on a substrate. The plasma film forming method is characterized in that the emission intensity of specific particles in plasma is measured, the density of the specific particles is calculated from the emission intensity, and the film forming conditions are controlled based on the calculated density.

このように、特定粒子の発光強度を検知する方法によれば、例えば、レーザー吸収分光法において必須となるレーザー光の出力部と検出部、及び液体窒素の冷却装置などが不要となり、設備を小型化、かつ簡単化できる。また、計測値から得られた特定粒子の密度に応じて、リアルタイムで成膜条件を制御できるため、プラズマ中の特定粒子の密度の変化を抑制し、プラズマ状態を安定化させることができる。これにより、バッチ間での成膜品質のばらつきを抑制し、かつ、同一バッチにおいても膜厚の均一性を高めることができる。   As described above, according to the method for detecting the emission intensity of the specific particles, for example, the laser light output unit and the detection unit, the liquid nitrogen cooling device, which are essential in laser absorption spectroscopy, are not required, and the equipment can be reduced in size. Can be simplified and simplified. In addition, since the film formation conditions can be controlled in real time according to the density of the specific particles obtained from the measurement values, the change in the density of the specific particles in the plasma can be suppressed and the plasma state can be stabilized. Thereby, the dispersion | variation in the film-forming quality between batches can be suppressed, and the uniformity of a film thickness can be improved also in the same batch.

この場合において、特定粒子の密度は、真空容器内に参照ガスを供給してプラズマ中の参照ガスに係る粒子の発光強度を計測し、その参照粒子と特定粒子の発光強度比に基づいて特定粒子の密度を算出することができる。このように、例えば、特定粒子の密度は、予め真空容器内の原料ガスと参照ガスの密度を変化させて特定粒子と参照粒子との発光強度比をデータとして記録しておくことにより算出することができる。   In this case, the density of the specific particles is determined based on the emission intensity ratio between the reference particles and the specific particles by supplying the reference gas into the vacuum vessel and measuring the emission intensity of the particles related to the reference gas in the plasma. The density of can be calculated. Thus, for example, the density of the specific particles is calculated by previously changing the density of the source gas and the reference gas in the vacuum vessel and recording the emission intensity ratio between the specific particles and the reference particles as data. Can do.

また、本発明のプラズマCVD装置は、原料ガスが導入される真空容器と、この真空容器内に設けられ成膜対象の平板部材が固定されるホルダーと、平板部材の平板面に対向させて配置されたアンテナとを備え、このアンテナは、表面を誘電体で覆った棒状の導電体からなる複数のアンテナ素子を、間隔を開けて、かつ隣り合う各アンテナ素子の一端に高周波電力を供給する基端部を交互に異なる側に配列してなるプラズマCVD装置において、真空容器内で発光するプラズマ中の特定粒子の発光強度を計測する光計測手段と、この光計測手段により検知された発光強度に基づいて特定粒子の密度を算出する密度算出手段と、密度算出手段により算出された密度に基づいて成膜条件を制御する制御手段とを備えることにより、上記課題を解決できる。   Further, the plasma CVD apparatus of the present invention is disposed so as to face a flat plate surface of a flat plate member, a vacuum vessel into which a source gas is introduced, a holder provided in the vacuum vessel to which a flat plate member to be deposited is fixed. The antenna includes a plurality of antenna elements made of a rod-shaped conductor whose surface is covered with a dielectric, and a base that supplies high-frequency power to one end of each adjacent antenna element at intervals. In a plasma CVD apparatus in which ends are alternately arranged on different sides, an optical measurement means for measuring the emission intensity of specific particles in plasma emitted in a vacuum vessel, and the emission intensity detected by this optical measurement means The above problem is solved by providing a density calculation unit that calculates the density of the specific particle based on the control unit and a control unit that controls the film formation condition based on the density calculated by the density calculation unit. Kill.

この場合において、制御手段は、密度算出手段により算出された特定粒子の密度の算出値が予め定められた設定値よりも小さいとき、高周波電力の出力、真空容器内の圧力、真空容器内に供給する原料ガスの供給流量のうち、少なくとも1つを増加させるように制御する。すなわち、例えば、真空容器内で高周波の出力を増加させると、プラズマ中の特定粒子の密度が増加されることから、特定粒子の密度算出値に基づいて高周波電力などの外部パラメータを適宜調整することで、特定粒子の密度変化を抑制し、プラズマ状態を安定化させることができる。   In this case, when the calculated value of the density of the specific particle calculated by the density calculating unit is smaller than a predetermined set value, the control unit supplies the output of the high frequency power, the pressure in the vacuum container, and the vacuum container. Control is performed so as to increase at least one of the supply flow rates of the raw material gases. That is, for example, if the high frequency output is increased in the vacuum vessel, the density of specific particles in the plasma will increase, so external parameters such as high frequency power may be appropriately adjusted based on the calculated density of specific particles. Thus, the density change of the specific particles can be suppressed and the plasma state can be stabilized.

また、光検知手段は、平板部材の平板面に対し平行に移動する移動機構を備えていることが好ましい。すなわち、光検知手段を平行移動させ、プラズマ中の複数箇所で発光量を検知することにより、プラズマの水平方向における密度分布を知ることができ、膜厚の均一性を向上させることができる。   Moreover, it is preferable that the light detection means is provided with a moving mechanism that moves parallel to the flat plate surface of the flat plate member. That is, by moving the light detection means in parallel and detecting the light emission amount at a plurality of locations in the plasma, the density distribution in the horizontal direction of the plasma can be known, and the film thickness uniformity can be improved.

本発明によれば、簡単な設備でプラズマ中の特定粒子の密度を計測し、プラズマ状態の変化を抑制することができる。   ADVANTAGE OF THE INVENTION According to this invention, the density of the specific particle | grains in plasma can be measured with simple equipment, and the change of a plasma state can be suppressed.

以下、本発明に係るプラズマCVD装置の一例について図面を参照して説明する。図1は、本実施の形態のプラズマCVD装置の全体構成図である。図2は、図1の真空容器を拡大して示す横断平面図である。図3は、図1の真空容器の縦断側面図であり、図1で省略した電極から高周波電源に至る装置構成を表している。   Hereinafter, an example of a plasma CVD apparatus according to the present invention will be described with reference to the drawings. FIG. 1 is an overall configuration diagram of the plasma CVD apparatus according to the present embodiment. FIG. 2 is an enlarged cross-sectional plan view showing the vacuum container of FIG. FIG. 3 is a vertical side view of the vacuum vessel of FIG. 1 and shows a device configuration from the electrode omitted in FIG. 1 to a high frequency power source.

本実施形態のプラズマCVD装置は、図1に示すように、真空容器1、高周波電源3、原料ガスの流量調整器5、真空ポンプ7、圧力計9、レンズ11、発光検出部13、分光器15、冷却CCD17、演算装置19を備えて構成される。   As shown in FIG. 1, the plasma CVD apparatus of this embodiment includes a vacuum vessel 1, a high-frequency power source 3, a source gas flow rate regulator 5, a vacuum pump 7, a pressure gauge 9, a lens 11, a light emission detector 13, and a spectrometer. 15 includes a cooling CCD 17 and an arithmetic unit 19.

高周波電源3は、真空容器1内に設けられた図示しない電極と電気的に接続されている。真空容器1内に供給される原料ガスの供給経路には、流量調整器5が配設される一方、排気経路には、排気バルブ21を介して真空ポンプ7が接続されている。流量調整器5は、例えば、後述する原料ガス成分毎に供給バルブが設けられ、各々バルブ開度が調整可能になっている。真空容器1の側壁には観測窓が設けられ、この観測窓から出射した光は、レンズ11、発光検出部13、光ファイバー23を介して分光器15に取り込まれ、冷却CCD17にて発光強度が検出される。この冷却CCD17により検出された発光強度は、演算装置19に入力されて演算処理される。   The high frequency power source 3 is electrically connected to an electrode (not shown) provided in the vacuum vessel 1. A flow rate regulator 5 is disposed in the supply path of the source gas supplied into the vacuum vessel 1, while a vacuum pump 7 is connected to the exhaust path via an exhaust valve 21. For example, the flow rate regulator 5 is provided with a supply valve for each raw material gas component to be described later, and each valve opening degree can be adjusted. An observation window is provided on the side wall of the vacuum vessel 1, and light emitted from the observation window is taken into the spectroscope 15 through the lens 11, the light emission detection unit 13, and the optical fiber 23, and the light emission intensity is detected by the cooling CCD 17. Is done. The light emission intensity detected by the cooling CCD 17 is input to the arithmetic unit 19 and processed.

演算装置19は、高周波電源3、流量調整器5、排気バルブ21、圧力計9とそれぞれ電気的に接続されている。圧力計9により計測された真空容器1内の圧力は、電気信号に変換されて演算装置19に入力され、ここにおいて演算処理された結果に基づいて、高周波電源3、流量調整器5、排気バルブ21にそれぞれ制御信号が出力されるようになっている。   The computing device 19 is electrically connected to the high-frequency power source 3, the flow rate regulator 5, the exhaust valve 21, and the pressure gauge 9. The pressure in the vacuum vessel 1 measured by the pressure gauge 9 is converted into an electric signal and input to the arithmetic unit 19, and the high frequency power source 3, the flow regulator 5, and the exhaust valve are based on the result of arithmetic processing here. A control signal is output to each 21.

次に、真空容器1内の構成を説明する。本実施形態の真空容器1は、図2、3に示すように、棒状の電極31(電磁波結合型電極ともいう)を複数本配列して構成される。電極31の下方には、成膜対象となる基板33を載せる基板ホルダー35が設けられ、例えば、基板33を加熱するための発熱体(図示せず)が設けられている。なお、基板ホルダー35は、真空容器1とともに電気的に接地されている。   Next, the configuration inside the vacuum vessel 1 will be described. As shown in FIGS. 2 and 3, the vacuum container 1 of the present embodiment is configured by arranging a plurality of rod-shaped electrodes 31 (also referred to as electromagnetic coupling electrodes). A substrate holder 35 on which a substrate 33 to be deposited is placed is provided below the electrode 31. For example, a heating element (not shown) for heating the substrate 33 is provided. The substrate holder 35 is electrically grounded together with the vacuum container 1.

真空容器1の上方側壁には、原料ガスを導入するガス供給口37が設けられ、対向する側壁の下方には原料ガスを排気するガス排気口39が設けられている。本実施形態では、原料ガスとして、例えば、TEOS(テトラエトキシシラン)と酸素との混合ガスを用いるが、目的とする成膜の種類に応じて適宜設定することができる。ガス排気口39は、排気経路を通じて真空ポンプ7と接続されている。   A gas supply port 37 for introducing a source gas is provided on the upper side wall of the vacuum vessel 1, and a gas exhaust port 39 for exhausting the source gas is provided below the opposite side wall. In the present embodiment, for example, a mixed gas of TEOS (tetraethoxysilane) and oxygen is used as the source gas, but can be appropriately set according to the type of film formation. The gas exhaust port 39 is connected to the vacuum pump 7 through an exhaust path.

電極31は、給電方向が交互に異なるように平行に配置され、隣り合う電極31と一対の電極単位を構成し、基板33の平板面と平行な面内に複数の電極31が等間隔で配列されている。各電極31の基端部(給電部)には、図示しない電力供給端子が接続されている。この電力供給端子は、同軸ケーブルなどの電送線路41により整合器43、電力分配器45、電力増幅器47を介して高周波電源3に接続されている。高周波電源3から出力される高周波電力は、電力増幅器47により増幅された後、電力分配器45で分配され、各整合器43を介して各電極31の給電部に供給されるようになっている。各電極31に供給される高周波電力は、例えば、30〜300MHz(VHF)に設定される。なお、本実施形態では、図に示すように、すべての電極31が平板状のアース板49と接触して接地される構成になっている。   The electrodes 31 are arranged in parallel so that the feeding directions are alternately different, constitute a pair of electrode units with the adjacent electrodes 31, and a plurality of electrodes 31 are arranged at equal intervals in a plane parallel to the flat plate surface of the substrate 33. Has been. A power supply terminal (not shown) is connected to the base end portion (feeding portion) of each electrode 31. This power supply terminal is connected to the high-frequency power source 3 via a matching line 43, a power distributor 45, and a power amplifier 47 by a transmission line 41 such as a coaxial cable. The high frequency power output from the high frequency power source 3 is amplified by the power amplifier 47, then distributed by the power distributor 45, and supplied to the power feeding portion of each electrode 31 via each matching unit 43. . The high frequency power supplied to each electrode 31 is set to 30 to 300 MHz (VHF), for example. In the present embodiment, as shown in the figure, all the electrodes 31 are in contact with the flat earth plate 49 and grounded.

電極31は、例えば、銅、アルミニウム、白金などの非磁性の電気良導体によって棒状又はパイプ状に形成され、その表面を石英などの誘電体で被覆して形成されている。電極31の先端から基端部までの長さ、つまり真空容器1内に延在する電極長さは、例えば、電極31に供給される高周波電力の波長λに対して(2n+1)/4倍(nは0又は正の整数)となり、少なくとも基板33の幅寸法よりも長めに設定されている。   The electrode 31 is formed in a rod shape or a pipe shape by a nonmagnetic good electric conductor such as copper, aluminum, or platinum, and its surface is formed by covering with a dielectric such as quartz. The length from the tip of the electrode 31 to the base end, that is, the length of the electrode extending into the vacuum vessel 1 is, for example, (2n + 1) / 4 times the wavelength λ of the high frequency power supplied to the electrode 31 ( n is 0 or a positive integer), and is set to be longer than at least the width dimension of the substrate 33.

次に、本実施形態のプラズマCVD装置を用いて基板33表面に薄膜を形成する動作について説明する。   Next, the operation of forming a thin film on the surface of the substrate 33 using the plasma CVD apparatus of this embodiment will be described.

先ず、真空容器1を開放して基板33を基板ホルダー35の上に載せた後、真空ポンプ7を作動させ、例えば、1mmPa〜1Pa程度に真空容器1内を減圧する。ここで、基板33は、基板ホルダー35上の発熱体により所定温度に加熱される。   First, after the vacuum vessel 1 is opened and the substrate 33 is placed on the substrate holder 35, the vacuum pump 7 is operated to depressurize the interior of the vacuum vessel 1 to about 1 mmPa to 1Pa, for example. Here, the substrate 33 is heated to a predetermined temperature by a heating element on the substrate holder 35.

次に、原料ガスとなるTEOSと酸素の混合ガスをガス供給口37から真空容器1内に供給する。この状態で真空容器1内の圧力が安定したのち、各電極31に高周波電力を供給し、電極31から高周波の電磁波を放射させることで、混合ガスが電離し、基板33と電極31との間にプラズマ51が発生する。プラズマ51は、導電性を有し、真空容器1内にプラズマ51が充満して全体の導電性が増すことにより、放射された電磁波はプラズマ51によって反射されて電極31の周囲に閉じ込められ、この部分にプラズマ加熱領域が限定されるようになる。なお、図3に示すプラズマ51は、発生領域を模式的に表したものである。   Next, a mixed gas of TEOS and oxygen serving as a source gas is supplied into the vacuum container 1 from the gas supply port 37. After the pressure in the vacuum vessel 1 is stabilized in this state, high-frequency power is supplied to each electrode 31 and high-frequency electromagnetic waves are radiated from the electrodes 31, whereby the mixed gas is ionized and the substrate 33 and the electrode 31 are separated. The plasma 51 is generated. The plasma 51 has conductivity, and when the vacuum vessel 1 is filled with the plasma 51 and the overall conductivity increases, the radiated electromagnetic wave is reflected by the plasma 51 and confined around the electrode 31. The plasma heating region is limited to a part. Note that the plasma 51 shown in FIG. 3 schematically represents a generation region.

本実施形態の電極31は、電極31周囲に放射される電磁波エネルギーが軸方向に沿って定在波の振幅の2乗に比例して変化し、一対の電極単位でみると、給電方向が互いに反対に配置されているため、軸方向の電磁波エネルギーが合成されて相互に補完され、軸方向のエネルギー分布は略均一になる。このため、生成するプラズマ51の状態、つまり空間密度は水平方向で比較的均一となり、均一性の高い蒸着膜を形成することができる。   In the electrode 31 of the present embodiment, the energy of electromagnetic waves radiated around the electrode 31 changes in proportion to the square of the amplitude of the standing wave along the axial direction. Since they are arranged in the opposite direction, the electromagnetic energy in the axial direction is synthesized and complemented with each other, and the energy distribution in the axial direction becomes substantially uniform. For this reason, the state of the plasma 51 to be generated, that is, the spatial density is relatively uniform in the horizontal direction, and a highly uniform vapor deposition film can be formed.

ところで、このようなプラズマCVD装置において、例えば、同一の成膜条件下で連続的にバッチ処理を行なう場合、バッチ間で成膜品質、例えば、膜厚に変化が生じる場合がある。その理由は必ずしも明確ではないが、例えば、膜厚変化の周期が、真空容器1内の定期的なクリーニングの間隔と対応することから、真空容器1内の汚染などが膜厚変化の要因と考えられる。また、一般に、プラズマ中のラジカル密度は、成膜速度に影響を及ぼす因子となるため、例えば、真空容器1内の汚染の進行に伴い、バッチ毎にプラズマ中のラジカル密度が異なることが推測される。   By the way, in such a plasma CVD apparatus, for example, when batch processing is continuously performed under the same film forming conditions, film forming quality, for example, film thickness may vary between batches. The reason for this is not necessarily clear, but for example, since the period of change in film thickness corresponds to the interval of periodic cleaning in the vacuum vessel 1, contamination in the vacuum vessel 1 is considered to be a factor in the change in film thickness. It is done. In general, since the radical density in the plasma is a factor that affects the film formation rate, for example, it is estimated that the radical density in the plasma varies from batch to batch as the contamination in the vacuum vessel 1 progresses. The

そこで、本実施形態では、先ず、プラズマ中の酸素ラジカルの発光強度を検知し、その発光強度からアクチノメトリ法を用いて酸素ラジカル密度を算出する。そして、得られたラジカル密度がバッチ間或いは同一バッチ内で均一に保たれるように、成膜条件を適宜調整するようにしている。ここで、アクチノメトリ法による酸素ラジカル密度の計測原理は、例えば、「H.M.Katsch,A.Tewes,E.Quandt,A.Goehlich,T.Kawetzki共著、J.Appl.Phys、2000年、88,6262」などに示されている。   Therefore, in the present embodiment, first, the emission intensity of oxygen radicals in the plasma is detected, and the oxygen radical density is calculated from the emission intensity using the actinometry method. The film forming conditions are adjusted as appropriate so that the obtained radical density is kept uniform between batches or within the same batch. Here, the principle of measuring the oxygen radical density by the actinometry method is, for example, “HM Katsch, A. Tewes, E. Quantt, A. Goehrich, T. Kawetzki, J. Appl. Phys, 2000, 88, 6262 "and the like.

以下、アクチノメトリ法による酸素ラジカル密度の計測原理を説明する。発光観測対象となる酸素原子の励起状態(O)は、主に基底状態からの電子衝突励起と酸素分子の電子衝突解離により生成され、自然寿命や親ガス(O)との衝突クエンチングにより消滅する。この場合、励起状態酸素原子からの発光I(O)は、〔数1〕式のように与えられる。ここで、c(O)は、観測系の量子効率で標準光源を用いて調べることができる。 Hereinafter, the measurement principle of the oxygen radical density by the actinometry method will be described. Excited state of oxygen atom as an emission observation object (O *) is produced mainly by electron impact dissociation of electron impact excitation and oxygen molecules from the ground state, the collision quenching of the natural life and parent (O 2) gas It disappears by. In this case, the emission I (O) from the excited state oxygen atom is given by the formula [1]. Here, c (O) can be examined using a standard light source with the quantum efficiency of the observation system.

Figure 2006274420
Figure 2006274420

〔数1〕式の〔O〕、〔O〕、〔O〕は、それぞれ基底状態酸素原子密度、励起状態酸素原子密度、基底状態酸素分子密度を表し、nは電子密度を表す。A (O)は酸素原子の励起状態の自然寿命の逆数、Aij (O)は観測対象遷移のアインシュタインA係数である。hはプランク定数、cは光速、λは光の波長である。k (O)、kde (O)はそれぞれ、励起状態酸素原子の基底状態からの電子衝突励起による生成のレート係数、酸素分子からの電子衝突解離による生成のレート係数を表し、以下の式が与えられる。また、k (O)は、クエンチングによる消滅のレート係数を表し、「N.Sadeghi,D.N.Setser,A.Francis,V.Czarnefzki,H.F.Dobele共著、J.Chem.Phys、2001年、115,3144」、「K.Niemi,V.Schulz−von der Gathen,H.F.Dobele共著、J.Phys.D:Appl.Phys、2001年、34,2330」などの文献に記載されている値を用いた。 [Equation 1] formula [O], [O *], [O 2] represents the ground state oxygen atom density, respectively, excited state oxygen atom density, the ground state molecular oxygen density, n e represents an electron density. A i (O) is the reciprocal of the natural lifetime of the excited state of the oxygen atom, and A ij (O) is the Einstein A coefficient of the transition to be observed. h is Planck's constant, c is the speed of light, and λ is the wavelength of light. k e (O) and k de (O) respectively represent a rate coefficient of generation due to electron collision excitation from the ground state of an excited state oxygen atom and a rate coefficient of generation due to electron collision dissociation from an oxygen molecule. Is given. Further, k q (O) represents the rate coefficient of quenching annihilation, “N. Sadeghi, DN Setser, A. Francis, V. Czarnefzki, HF Dobele, J. Chem. Phys. , 2001, 115, 3144 ”,“ K. Niemi, V. Schulz-von der Gathen, HF Dobele, J. Phys. D: Appl. Phys, 2001, 34, 2330 ”. The stated values were used.

Figure 2006274420
Figure 2006274420

Figure 2006274420
Figure 2006274420

ここで、f(E)は規格化された電子エネルギー分布関数(EEDF)であり、電子温度で決まるマクスウェル分布を仮定したものである。電子温度は予めラングミュアプローブなどを用いて測定することができる。Eは電子のエネルギー、σ(E)、σde(E)は基底状態酸素原子の電子衝突励起断面積、酸素原子の電子衝突解離断面積、mは電子の質量を表す。 Here, f (E) is a normalized electron energy distribution function (EEDF), and assumes a Maxwell distribution determined by the electron temperature. The electron temperature can be measured in advance using a Langmuir probe or the like. E is the electron energy, σ e (E), σ de (E) is the electron collision excitation cross section of the ground state oxygen atom, the electron collision dissociation cross section of the oxygen atom, and me is the electron mass.

同様に、アルゴン原子に関しても、以下の〔数4〕式が与えられる。   Similarly, the following [Formula 4] formula is given also about an argon atom.

Figure 2006274420
Figure 2006274420

そして、〔数1〕式と〔数4〕式から、以下の〔数5〕式と〔数6〕式が与えられる。   The following [Equation 5] and [Equation 6] are given from the [Equation 1] and [Equation 4].

Figure 2006274420
Figure 2006274420

Figure 2006274420
Figure 2006274420

このように、酸素原子とアルゴン原子との発光強度比を測定することで、酸素密度を評価することができる。   Thus, the oxygen density can be evaluated by measuring the emission intensity ratio between oxygen atoms and argon atoms.

以下、具体的に成膜条件の制御方法について説明する。真空容器1内には、原料ガスと酸素に加えて参照ガスとして所定量のアルゴンガスを導入する。真空容器1内で生成されたプラズマ中の発光は、観測窓からレンズ11、発光検出部13、光ファイバー23を介して分光器15に取り込まれ、冷却CCD17にて発光スペクトルとして計測される。この発光スペクトルにより酸素原子とアルゴン原子の発光強度が検出されると、演算装置19においてこれらの発光強度比から酸素ラジカル密度が算出される。ここで、酸素分子密度やアルゴン原子密度は、圧力計9により予め測定しておき、そのデータをテーブルとして記録しておく。なお、酸素分子やアルゴン原子以外の粒子(例えば、TEOSやその解離種等)の影響については無視する。   Hereinafter, a method for controlling the film forming conditions will be specifically described. A predetermined amount of argon gas is introduced into the vacuum vessel 1 as a reference gas in addition to the source gas and oxygen. Light emission in the plasma generated in the vacuum vessel 1 is taken into the spectroscope 15 from the observation window through the lens 11, the light emission detection unit 13, and the optical fiber 23, and is measured as an emission spectrum by the cooling CCD 17. When the light emission intensity of oxygen atoms and argon atoms is detected from this light emission spectrum, the arithmetic unit 19 calculates the oxygen radical density from the light emission intensity ratio. Here, the oxygen molecular density and the argon atom density are measured in advance by the pressure gauge 9, and the data is recorded as a table. Note that the influence of particles other than oxygen molecules and argon atoms (for example, TEOS and its dissociated species) is ignored.

このようにして、成膜中に酸素ラジカル密度をモニターし、成膜条件となるプラズマパラメータを変化させる。ここで、プラズマ制御のパラメータとしては、例えば、プラズマ生成のための高周波電力、原料ガスのガス流入量、真空容器1内の圧力などが挙げられる。   In this way, the oxygen radical density is monitored during film formation, and the plasma parameters that serve as film formation conditions are changed. Here, as parameters for plasma control, for example, high-frequency power for plasma generation, gas inflow of raw material gas, pressure in the vacuum vessel 1 and the like can be cited.

図4は、上記方法により測定した酸素ラジカル密度の投入電力依存性を示す図であり、横軸は高周波電源3が出力する電力(W)、縦軸は酸素ラジカル密度(a.u.(arbitrary unit))を表している。図に示すように、電力変化に伴い、酸素ラジカル密度が増加することがわかる。すなわち、バッチ間或いは同一バッチにおいて成膜品質を安定化させるため、酸素ラジカル密度を計測し、その計測値が最適値となるように、高周波電力を含めた成膜条件を制御する。   4 is a graph showing the dependence of the oxygen radical density measured by the above method on the input power, where the horizontal axis represents the power (W) output from the high-frequency power source 3, and the vertical axis represents the oxygen radical density (au (arbitrary). unit)). As shown in the figure, it can be seen that the oxygen radical density increases as the power changes. That is, in order to stabilize the film formation quality between batches or in the same batch, the oxygen radical density is measured, and the film formation conditions including the high frequency power are controlled so that the measured value becomes the optimum value.

図5は、本実施形態の制御の一例を示すフロー図である。図に示すように、先ず、ステップS01において、分光器15の計測結果に基づいて演算装置19により酸素ラジカル密度(以下、演算値(a)と略す)を算出する。次に、ステップS02において、予め設定された酸素ラジカル密度の狙い値(以下、設定値(b)と略す)とステップS01の演算値(a)とを比較する。   FIG. 5 is a flowchart showing an example of the control of the present embodiment. As shown in the figure, first, in step S01, the oxygen radical density (hereinafter abbreviated as a calculation value (a)) is calculated by the calculation device 19 based on the measurement result of the spectroscope 15. Next, in step S02, a preset target value of oxygen radical density (hereinafter abbreviated as set value (b)) is compared with the calculated value (a) in step S01.

ここで、演算値(a)が設定値(b)よりも小さい場合は、ステップS03に進み、電極31による出力電力の増加、真空容器1内の圧力増加、酸素供給量増加のうち、いずれか1つ又はこれらの組み合わせの制御が行なわれる。すなわち、高周波電源3、排気バルブ21、流量調整器5のいずれかに、演算装置19から制御信号が出力され、電源出力、バルブ開度(供給、排気)などが調整される。一方、演算値が設定値よりも大きい場合は、ステップS04に進み、電極31の入力電力の減少、真空容器1内の圧力減少、酸素供給量減少のうち、いずれか1つ又はこれらの組み合わせの制御が行なわれる。   Here, when the calculated value (a) is smaller than the set value (b), the process proceeds to step S03, and one of the increase in output power by the electrode 31, the increase in pressure in the vacuum vessel 1, and the increase in oxygen supply amount is selected. One or a combination of these controls. That is, a control signal is output from the arithmetic unit 19 to any of the high-frequency power source 3, the exhaust valve 21, and the flow rate regulator 5, and the power output, valve opening (supply, exhaust), and the like are adjusted. On the other hand, when the calculated value is larger than the set value, the process proceeds to step S04, and any one of the reduction of the input power of the electrode 31, the pressure reduction in the vacuum vessel 1, the oxygen supply amount reduction, or a combination thereof. Control is performed.

以上述べたように、本実施形態では、プラズマ中で発光する酸素ラジカルの発光量に基づいて酸素ラジカル密度を算出しているため、例えば、レーザー吸収分光法のように、発光系と受光系、及び液体窒素などの冷却設備を備える必要がなく、装置構成を簡単化できる。また、得られた酸素ラジカル密度に基づいて、リアルタイムで成膜条件を変化させ、酸素ラジカル密度を最適値に制御することができる。このため、バッチ間でのプラズマ状態の変化を抑制し、成膜品質(膜厚等)を安定化することができる。   As described above, in the present embodiment, since the oxygen radical density is calculated based on the light emission amount of oxygen radicals emitted in plasma, for example, as in laser absorption spectroscopy, a light emitting system and a light receiving system, In addition, it is not necessary to provide cooling equipment such as liquid nitrogen, and the apparatus configuration can be simplified. Moreover, based on the obtained oxygen radical density, the film-forming conditions can be changed in real time, and the oxygen radical density can be controlled to an optimum value. For this reason, the change of the plasma state between batches can be suppressed and film formation quality (film thickness etc.) can be stabilized.

また、本実施形態では、酸素ラジカル密度の設定値を固定して、プラズマ状態を常に一定に保つように制御しているが、これに限定されるものではなく、例えば、酸素ラジカル密度の設定値を可変に制御し、時間経過とともに適宜変化させるようにしてもよい。   In the present embodiment, the set value of the oxygen radical density is fixed and controlled so that the plasma state is always kept constant. However, the present invention is not limited to this. For example, the set value of the oxygen radical density May be controlled variably and may be changed as time passes.

また、本実施形態では、プラズマ中の発光粒子として酸素ラジカルを計測対象として説明したが、発光量が計測できる粒子であれば、これに限定されるものではない。   In the present embodiment, oxygen radicals are measured as light emitting particles in plasma. However, the present invention is not limited to this as long as the light emission amount can be measured.

また、本実施形態では、固定された観測窓から所定領域の発光量を検知する例を説明したが、これに限定されるものではなく、例えば、光を受光するレンズ11及び発光検出部13を基板の平板面に対して平行な面に沿って移動させ、プラズマの複数箇所において発光量を計測するようにしてもよい。これによれば、水平方向におけるプラズマの密度分布を知ることができ、膜厚の均一性を向上させることができる。   In this embodiment, the example in which the light emission amount of the predetermined region is detected from the fixed observation window has been described. However, the present invention is not limited to this. For example, the lens 11 that receives light and the light emission detection unit 13 are provided. It may be moved along a plane parallel to the flat surface of the substrate, and the amount of light emission may be measured at a plurality of plasma locations. According to this, the plasma density distribution in the horizontal direction can be known, and the film thickness uniformity can be improved.

なお、本実施形態のプラズマ成膜方法は、例えば、他の電極構成を有するCVD装置においても適用することができ、薄膜太陽電池の製造、液晶薄膜の製造、薄膜トランジスタの製造、半導体などのエッチングその他の工業的用途に広く用いることができる。   The plasma film forming method of the present embodiment can also be applied to, for example, CVD apparatuses having other electrode configurations, such as thin film solar cell manufacturing, liquid crystal thin film manufacturing, thin film transistor manufacturing, semiconductor etching, etc. It can be widely used for industrial applications.

次に、図1のプラズマCVD装置を用いて、基板上にシリコン絶縁膜を形成する場合の一実施例について説明する。プラズマ放電条件は、以下の通りである。   Next, an example in which a silicon insulating film is formed on a substrate using the plasma CVD apparatus of FIG. 1 will be described. The plasma discharge conditions are as follows.

(放電条件)電極31による高周波出力は160W、周波数は130MHz、真空容器1内の圧力は20Pa、真空容器1内への供給流量は、TEOSが2sccm、酸素が100sccm、アルゴンが5sccmである。   (Discharge conditions) The high frequency output from the electrode 31 is 160 W, the frequency is 130 MHz, the pressure in the vacuum vessel 1 is 20 Pa, and the supply flow rate into the vacuum vessel 1 is 2 sccm for TEOS, 100 sccm for oxygen, and 5 sccm for argon.

上記の条件によりプラズマを発生させ、酸素ラジカルの発光量を計測して得られた発光スペクトルを図6に示す。なお、図6の横軸は波長(nm)、縦軸は発光強度(a.u.)を表している。発光スペクトル中には、図示しないが、酸素原子とアルゴン原子の発光ピークがそれぞれ特定波長にて現れるため、これらの発光ピークから、酸素原子とアルゴン原子の発光強度比を求め、酸素ラジカル密度を算出すると、1.7×1014cm−3が得られた。よって、この値を酸素ラジカル密度の設定値とし、以後この値を一定に保つように以下の制御を行なった。 FIG. 6 shows an emission spectrum obtained by generating plasma under the above conditions and measuring the emission amount of oxygen radicals. 6, the horizontal axis represents wavelength (nm) and the vertical axis represents emission intensity (au). Although not shown in the emission spectrum, the emission peaks of oxygen atoms and argon atoms appear at specific wavelengths, respectively. From these emission peaks, the emission intensity ratio of oxygen atoms and argon atoms is obtained to calculate the oxygen radical density. As a result, 1.7 × 10 14 cm −3 was obtained. Therefore, this value was set as the oxygen radical density setting value, and the following control was performed so as to keep this value constant thereafter.

先ず、上記の放電条件を保持したまま、図6の計測をしてから5分後に再び計測を行なった。このときの発光スペクトルを図7に示す。図7の発光スペクトルは、図6と比較すると変化が明らかであり、酸素ラジカル密度を算出すると、1.5×1014cm−3が得られた。このように、5分後の酸素ラジカル密度が設定値よりも小さいことから、高周波電源3の出力値を所定量増加させたところ、発光スペクトルは、図8のように変化し、酸素ラジカル密度は、1.7×1014cm−3となった。すなわち、高周波電源3の出力値という外部パラメータを操作することで、酸素ラジカル密度というプラズマの内部パラメータを一定に保つことができる。 First, measurement was performed again 5 minutes after the measurement of FIG. The emission spectrum at this time is shown in FIG. The emission spectrum of FIG. 7 is clearly different from that of FIG. 6, and when the oxygen radical density was calculated, 1.5 × 10 14 cm −3 was obtained. Thus, since the oxygen radical density after 5 minutes is smaller than the set value, when the output value of the high-frequency power source 3 is increased by a predetermined amount, the emission spectrum changes as shown in FIG. It became 1.7 × 10 14 cm −3 . That is, by manipulating an external parameter called the output value of the high-frequency power source 3, the plasma internal parameter called the oxygen radical density can be kept constant.

表1に本実施例の制御の内容を示す。5分おきに酸素ラジカルの密度計測を行い、その度に高周波電源3の出力値を制御することで、酸素ラジカル密度を設置値に保持することができた。なお、本実施例では、5分おきに発光強度の計測を行なっているが、その間隔を短くすることで、酸素ラジカル密度の時間変化を減少させ、プラズマ状態を一層安定化させることができる。   Table 1 shows the contents of the control of this embodiment. By measuring the density of oxygen radicals every 5 minutes and controlling the output value of the high-frequency power source 3 each time, the oxygen radical density could be maintained at the set value. In this embodiment, the emission intensity is measured every 5 minutes. However, by shortening the interval, the time change of the oxygen radical density can be reduced and the plasma state can be further stabilized.

Figure 2006274420
Figure 2006274420

本発明の実施形態におけるプラズマCVD装置の全体構成図である。1 is an overall configuration diagram of a plasma CVD apparatus in an embodiment of the present invention. 図1の真空容器を拡大して示す横断平面図である。It is a cross-sectional top view which expands and shows the vacuum vessel of FIG. 図1の真空容器を拡大して示す縦断側面図であり、図1で省略した電極から高周波電源に至る装置構成を表している。It is a vertical side view which expands and shows the vacuum vessel of FIG. 1, and represents the apparatus structure from the electrode omitted in FIG. 1 to the high frequency power supply. 酸素ラジカル密度の投入電力依存性を示す図であり、横軸は電力(W)、縦軸は酸素ラジカル密度(a.u.)を表している。It is a figure which shows the input electric power dependence of oxygen radical density, and a horizontal axis | shaft represents electric power (W) and the vertical axis | shaft represents oxygen radical density (au). 本発明の本実施形態における制御手順を示すフロー図である。It is a flowchart which shows the control procedure in this embodiment of this invention. 本発明の実施例において酸素ラジカルの発光量を計測して得られた発光スペクトルを示す図であり、横軸は波長(nm)、縦軸は発光強度(a.u.)を表している。It is a figure which shows the light emission spectrum obtained by measuring the light emission amount of oxygen radical in the Example of this invention, a horizontal axis represents wavelength (nm) and a vertical axis | shaft represents the light emission intensity (au). 本発明の実施例において図6の計測から5分後に計測して得られた発光スペクトルを示す図である。It is a figure which shows the emission spectrum obtained by measuring 5 minutes after the measurement of FIG. 6 in the Example of this invention. 本発明の実施例において図7の結果を受けて高周波電源の出力値を増加させた後に計測して得られた発光スペクトルを示す図である。It is a figure which shows the emission spectrum obtained by measuring after increasing the output value of a high frequency power supply in response to the result of FIG. 7 in the Example of this invention.

符号の説明Explanation of symbols

1 真空容器
3 高周波電源
5 流量調整器
7 真空ポンプ
9 圧力計
11 レンズ
13 発光検出部
15 分光器
17 冷却CCD
19 演算装置
21 排気バルブ
31 電極
33 基板
37 ガス供給口
39 ガス排出口
51 プラズマ
DESCRIPTION OF SYMBOLS 1 Vacuum container 3 High frequency power supply 5 Flow regulator 7 Vacuum pump 9 Pressure gauge 11 Lens 13 Luminescence detection part 15 Spectrometer 17 Cooling CCD
19 Arithmetic unit 21 Exhaust valve 31 Electrode 33 Substrate 37 Gas supply port 39 Gas exhaust port 51 Plasma

Claims (5)

真空容器内に高周波の電磁波を放射し、該電磁波によって原料ガスのプラズマを発生させて、基板上の成膜対象面に成膜を行なうプラズマ成膜方法において、前記プラズマ中の特定粒子の発光強度を計測し、該発光強度から前記特定粒子の密度を算出し、該算出された密度に基づいて成膜条件を制御することを特徴とするプラズマ成膜方法。 In a plasma film forming method for radiating high-frequency electromagnetic waves into a vacuum vessel, generating plasma of a raw material gas by the electromagnetic waves, and forming a film on a film formation target surface on a substrate, emission intensity of specific particles in the plasma Is measured, the density of the specific particles is calculated from the emission intensity, and the film forming conditions are controlled based on the calculated density. 前記特定粒子の密度は、前記真空容器内に参照ガスを供給して前記プラズマ中の前記参照ガスに係る粒子の発光強度を計測し、該参照粒子と前記特定粒子の発光強度比に基づいて前記特定粒子の密度を算出することを特徴とする請求項1に記載のプラズマ成膜方法。 The density of the specific particles is obtained by supplying a reference gas into the vacuum vessel, measuring the emission intensity of the particles related to the reference gas in the plasma, and based on the emission intensity ratio between the reference particles and the specific particles. The plasma film forming method according to claim 1, wherein the density of the specific particles is calculated. 原料ガスが導入される真空容器と、該真空容器内に設けられ成膜対象の平板部材が固定されるホルダーと、前記平板部材の平板面に対向させて配置されたアンテナとを備え、前記アンテナは、表面を誘電体で覆った棒状の導電体からなる複数のアンテナ素子を、間隔を開けて、かつ隣り合う前記各アンテナ素子の一端に高周波電力を供給する基端部を交互に異なる側に配列してなるプラズマCVD装置において、
前記真空容器内で発光するプラズマ中の特定粒子の発光強度を計測する光計測手段と、該光計測手段により検知された前記発光強度に基づいて前記特定粒子の密度を算出する密度算出手段と、該密度算出手段により算出された前記密度に基づいて成膜条件を制御する制御手段とを備えることを特徴とするプラズマCVD装置。
A vacuum vessel into which a source gas is introduced; a holder provided in the vacuum vessel to which a flat plate member to be formed is fixed; and an antenna arranged to face the flat plate surface of the flat plate member, A plurality of antenna elements composed of rod-shaped conductors whose surfaces are covered with a dielectric, and base ends that supply high-frequency power to one end of each of the adjacent antenna elements are alternately arranged on different sides. In an arrayed plasma CVD apparatus,
An optical measurement means for measuring the emission intensity of the specific particles in the plasma that emits light in the vacuum vessel; and a density calculation means for calculating the density of the specific particles based on the emission intensity detected by the optical measurement means; A plasma CVD apparatus comprising: control means for controlling film formation conditions based on the density calculated by the density calculation means.
前記制御手段は、前記密度算出手段により算出された前記密度の算出値が予め定められた設定値よりも小さいとき、前記高周波電力の出力、前記真空容器内の圧力、前記真空容器内に供給する前記原料ガスの供給流量のうち、少なくとも1つを増加させることを特徴とする請求項3に記載のプラズマCVD装置。 The control means supplies the output of the high-frequency power, the pressure in the vacuum container, and the vacuum container when the calculated value of the density calculated by the density calculation means is smaller than a predetermined set value. The plasma CVD apparatus according to claim 3, wherein at least one of the supply flow rates of the source gas is increased. 前記光検知手段は、前記平板部材の平板面に対し平行に移動する移動機構を備えていることを特徴とする請求項3または4に記載のプラズマCVD装置。
5. The plasma CVD apparatus according to claim 3, wherein the light detection unit includes a moving mechanism that moves in parallel with a flat plate surface of the flat plate member.
JP2005099005A 2005-03-30 2005-03-30 Plasma film deposition method, and plasma cvd apparatus Pending JP2006274420A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005099005A JP2006274420A (en) 2005-03-30 2005-03-30 Plasma film deposition method, and plasma cvd apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005099005A JP2006274420A (en) 2005-03-30 2005-03-30 Plasma film deposition method, and plasma cvd apparatus

Publications (1)

Publication Number Publication Date
JP2006274420A true JP2006274420A (en) 2006-10-12

Family

ID=37209450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005099005A Pending JP2006274420A (en) 2005-03-30 2005-03-30 Plasma film deposition method, and plasma cvd apparatus

Country Status (1)

Country Link
JP (1) JP2006274420A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008123186A1 (en) * 2007-03-30 2008-10-16 Mitsui Engineering & Shipbuilding Co., Ltd. Plasma electron temperature measuring method and device
JP2008277263A (en) * 2007-05-01 2008-11-13 Taida Electronic Ind Co Ltd Plasma generating device
JP2009295658A (en) * 2008-06-03 2009-12-17 Renesas Technology Corp Calibration method of semiconductor manufacturing apparatus, manufacturing system for semiconductor device, and manufacturing method thereof
WO2010092757A1 (en) * 2009-02-12 2010-08-19 三井造船株式会社 Atomic layer growing apparatus and thin film forming method
US20130256266A1 (en) * 2012-03-30 2013-10-03 Andreas Fischer Methods and apparatuses for effectively reducing gas residence time in a plasma processing chamber
WO2014030224A1 (en) * 2012-08-22 2014-02-27 株式会社Jcu Plasma treatment device and plasma treatment method
JP2014137324A (en) * 2013-01-18 2014-07-28 Mitsui Eng & Shipbuild Co Ltd Measurement method of impurity in plasma, measuring device, and deposition apparatus
US9376754B2 (en) 2009-02-12 2016-06-28 Mitsui Engineering & Shipbuilding Thin film forming method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0582289A (en) * 1991-09-20 1993-04-02 Hitachi Ltd Microwave plasma processing method and device
JPH0831747A (en) * 1994-07-13 1996-02-02 Hitachi Ltd Method and equipment for supporting plasma process operation and plasma process equipment
JP2001176853A (en) * 1999-12-16 2001-06-29 Hitachi Ltd Plasma processing system
JP2003086581A (en) * 2001-09-14 2003-03-20 Mitsui Eng & Shipbuild Co Ltd Antenna for generating large-area plasma

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0582289A (en) * 1991-09-20 1993-04-02 Hitachi Ltd Microwave plasma processing method and device
JPH0831747A (en) * 1994-07-13 1996-02-02 Hitachi Ltd Method and equipment for supporting plasma process operation and plasma process equipment
JP2001176853A (en) * 1999-12-16 2001-06-29 Hitachi Ltd Plasma processing system
JP2003086581A (en) * 2001-09-14 2003-03-20 Mitsui Eng & Shipbuild Co Ltd Antenna for generating large-area plasma

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101031327B1 (en) 2007-03-30 2011-04-29 미쯔이 죠센 가부시키가이샤 Plasma electron temperature measuring method and device
WO2008123186A1 (en) * 2007-03-30 2008-10-16 Mitsui Engineering & Shipbuilding Co., Ltd. Plasma electron temperature measuring method and device
US8214173B2 (en) 2007-03-30 2012-07-03 Mitsui Engineering & Shipbuilding Co., Ltd. Plasma electron temperature measuring method and device
JP2008277263A (en) * 2007-05-01 2008-11-13 Taida Electronic Ind Co Ltd Plasma generating device
JP2009295658A (en) * 2008-06-03 2009-12-17 Renesas Technology Corp Calibration method of semiconductor manufacturing apparatus, manufacturing system for semiconductor device, and manufacturing method thereof
WO2010092757A1 (en) * 2009-02-12 2010-08-19 三井造船株式会社 Atomic layer growing apparatus and thin film forming method
JP4575984B2 (en) * 2009-02-12 2010-11-04 三井造船株式会社 Atomic layer growth apparatus and thin film forming method
JP2010186885A (en) * 2009-02-12 2010-08-26 Mitsui Eng & Shipbuild Co Ltd Atomic layer growing apparatus and thin film forming method
KR101314582B1 (en) 2009-02-12 2013-10-07 미쯔이 죠센 가부시키가이샤 Atomic layer growing apparatus and thin film forming method
US9376754B2 (en) 2009-02-12 2016-06-28 Mitsui Engineering & Shipbuilding Thin film forming method
US20130256266A1 (en) * 2012-03-30 2013-10-03 Andreas Fischer Methods and apparatuses for effectively reducing gas residence time in a plasma processing chamber
US9299541B2 (en) * 2012-03-30 2016-03-29 Lam Research Corporation Methods and apparatuses for effectively reducing gas residence time in a plasma processing chamber
WO2014030224A1 (en) * 2012-08-22 2014-02-27 株式会社Jcu Plasma treatment device and plasma treatment method
TWI582820B (en) * 2012-08-22 2017-05-11 Jcu Corp Plasma processing device and plasma processing method
JP2014137324A (en) * 2013-01-18 2014-07-28 Mitsui Eng & Shipbuild Co Ltd Measurement method of impurity in plasma, measuring device, and deposition apparatus

Similar Documents

Publication Publication Date Title
JP6890459B2 (en) Plasma processing equipment and control method
JP2006274420A (en) Plasma film deposition method, and plasma cvd apparatus
KR0170419B1 (en) Plasma processing method
KR101656762B1 (en) System, method, and a medium in which program is stored for predicting processing shape by plasma processing
CN100565816C (en) Engraving method and Etaching device
Hori et al. Measurements of electron temperature, electron density, and neutral density in a radio‐frequency inductively coupled plasma
JP5631088B2 (en) Plasma processing apparatus and plasma processing method
JP5062658B2 (en) Standing wave measuring unit and standing wave measuring method in waveguide, electromagnetic wave utilizing apparatus, plasma processing apparatus, and plasma processing method
US10800092B1 (en) Low temperature atmospheric pressure plasma for cleaning and activating metals
JP2015029093A5 (en)
TW201721736A (en) Method and apparatus for determining process rate
US20110174776A1 (en) Plasma processing apparatus, plasma processing method and end point detection method
KR101290676B1 (en) Plasma processing apparatus and plasma processing method
US20090152243A1 (en) Plasma processing apparatus and method thereof
CN110494967A (en) Optical Emission Spectrometer (OES) for remote plasma monitoring
Henriques et al. Wave driven N 2–Ar discharge. II. Experiment and comparison with theory
TW201724247A (en) Apparatus for determining process rate
Hebner CF, CF2, and SiF densities in inductively driven discharges containing C2F6, C4F8, and CHF3
US6976782B1 (en) Methods and apparatus for in situ substrate temperature monitoring
Srivastava et al. Quartz-crystal microbalance study for characterizing atomic oxygen in plasma ash tools
JP6097097B2 (en) Plasma state measuring probe and plasma state measuring apparatus
JP5572019B2 (en) Plasma processing apparatus and plasma processing method
Rehman et al. Characterization of 13.56 MHz RF Ne–N2 mixture plasma using intrusive and non-intrusive diagnostic techniques
Hebner Metastable chlorine ion temperature and drift velocity in an inductively coupled plasma
Svarnas Vibrational temperature of excited nitrogen molecules detected in a 13.56 MHz electrical discharge by sheath-side optical emission spectroscopy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100928