JP5996217B2 - Glass composite, input device using glass composite, and electronic device - Google Patents

Glass composite, input device using glass composite, and electronic device Download PDF

Info

Publication number
JP5996217B2
JP5996217B2 JP2012047009A JP2012047009A JP5996217B2 JP 5996217 B2 JP5996217 B2 JP 5996217B2 JP 2012047009 A JP2012047009 A JP 2012047009A JP 2012047009 A JP2012047009 A JP 2012047009A JP 5996217 B2 JP5996217 B2 JP 5996217B2
Authority
JP
Japan
Prior art keywords
glass
glass composite
arc
glass member
frame body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012047009A
Other languages
Japanese (ja)
Other versions
JP2013182200A (en
Inventor
橋田 淳二
淳二 橋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP2012047009A priority Critical patent/JP5996217B2/en
Priority to TW101145866A priority patent/TWI511107B/en
Priority to KR1020130000728A priority patent/KR101445476B1/en
Priority to CN201310038422.3A priority patent/CN103294302B/en
Publication of JP2013182200A publication Critical patent/JP2013182200A/en
Application granted granted Critical
Publication of JP5996217B2 publication Critical patent/JP5996217B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133308Support structures for LCD panels, e.g. frames or bezels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133308Support structures for LCD panels, e.g. frames or bezels
    • G02F1/133331Cover glasses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/202LCD, i.e. liquid crystal displays
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/28Adhesive materials or arrangements

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Liquid Crystal (AREA)
  • Position Input By Displaying (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Joining Of Glass To Other Materials (AREA)

Description

本発明は、ガラス複合体と、ガラス複合体を用いた入力装置、及び電子機器に関し、特にガラス部材と枠体の接合部に作用する剥離応力(内部残留応力)を低減できるガラス複合体の構造に関する。   The present invention relates to a glass composite, an input device using the glass composite, and an electronic device, and in particular, a structure of a glass composite that can reduce peeling stress (internal residual stress) acting on a joint between a glass member and a frame. About.

各特許文献には、本体部と、その周囲に位置する枠体との間を接着部材により接合してなる複合体の構成が開示されている。特許文献1等には本体部がガラスであるとの記載がある。   Each patent document discloses a configuration of a composite body in which a main body portion and a frame body positioned around the main body portion are joined by an adhesive member. Patent Document 1 and the like describe that the main body is glass.

各特許文献では、本体部の側面と前記側面と対向する枠体の側壁部とは平面に対して直交する垂直面で形成され、側面と側壁部との間に形成された隙間内に接着剤が介在する構成となっている。   In each patent document, the side surface of the main body portion and the side wall portion of the frame opposite to the side surface are formed by a vertical surface orthogonal to the plane, and the adhesive is formed in a gap formed between the side surface and the side wall portion. It is the composition which intervenes.

特開平11−142818号公報JP-A-11-142818 特開2006−276623号公報JP 2006-276623 A 特開2002−366046号公報JP 2002-366046 A

しかしながら、熱が加わった際、枠体とガラス部材との線膨張係数の違いから、従来の構成では、ガラス部材と枠体との間の接合部分に大きな剥離応力(内部残留応力)が作用し、特に垂直面とされた側面及び側壁部のコーナー部分で強い剥離応力が作用することがわかった。   However, when heat is applied, due to the difference in coefficient of linear expansion between the frame body and the glass member, in the conventional configuration, a large peeling stress (internal residual stress) acts on the joint between the glass member and the frame body. In particular, it has been found that strong peeling stress acts on the side surface and the corner portion of the side wall portion, which are particularly vertical surfaces.

そこで本発明は上記従来の課題を解決するものであり、特に従来に比べて剥離応力(内部残留応力)を低減できるガラス複合体、ガラス複合体を用いた入力装置及び電子機器を提供することを目的としている。   Accordingly, the present invention solves the above-described conventional problems, and in particular, provides a glass composite that can reduce peeling stress (internal residual stress) compared to the conventional technique, an input device using the glass composite, and an electronic apparatus. It is aimed.

本発明は、 ガラス部材と、前記ガラス部材の側方を支持する枠体と、前記ガラス部材と前記枠体とを接着する接着部材と、を有して、その表面に入力装置の入力操作面が形成されるガラス複合体であって、
前記ガラス複合体は、表面と裏面とを有し、前記ガラス部材の表面が、前記入力操作面となっており、
前記ガラス部材を構成する複数の側面および前記複数の側面と対向する枠体の複数の側壁部傾斜面を有し、前記側面と前記側壁部との間に、隙間が形成されて、前記接着部材が隙間内に充填されており、
前記隙間は、前記ガラス複合体の裏面側から表面側に向けて先細る形状で形成されるとともに、
隣り合う各側面間、及び隣り合う各側壁部間の夫々が、前記ガラス複合体の表面から裏面にわたって平面視で略円弧状となる円弧状コーナー部で構成されていることを特徴とするものである。
The present invention includes a glass member, and a frame for supporting the side of the glass member, and have a, a bonding member for bonding the said frame body and said glass member, the input operation surface of the input device on the surface A glass composite in which is formed ,
The glass composite has a front surface and a back surface, and the surface of the glass member is the input operation surface,
Said plurality of sidewalls of the plurality of sides and a plurality of side surfaces opposite to the frame body constituting the glass member has an inclined surface, between the side surface and the side wall portion, a gap is formed, the adhesive The member is filled in the gap,
The gap is formed by tapering shape toward the surface side from the back side of the glass composite Rutotomoni,
Between adjacent side surfaces, and each between the side walls adjacent, characterized in that it is constituted by an arcuate corner portion as a substantially arc shape in a plan view over the surface or found back surface of the glass composite Is.

本発明では、ガラス部材の側面と枠体の側壁部とを、その間の隙間が表面側に向けて先細る形状となる傾斜面で形成している。しかも本発明では、隣り合う各側面間、及び隣り合う各側壁部間の夫々が、表面から裏面にわたって平面視にて略円弧状の円弧状コーナー部で形成した。このように、側面及び側壁部を傾斜面としたことで、垂直面とした従来例に比べてガラス部材と枠体との接合部分に作用する剥離応力を低減でき、加えて、各側面間及び各側壁部間を円弧状コーナー部としたことで、コーナー部を円弧状とせず角張る形状とした比較例と比べて、剥離応力を低減でき、特に、接合部分の接着領域が狭まる表面付近での剥離応力を効果的に緩和することができる。   In this invention, the side surface of a glass member and the side wall part of a frame are formed in the inclined surface used as the shape where the clearance gap between them tapers toward the surface side. Moreover, in the present invention, each of the side surfaces adjacent to each other and between the side walls adjacent to each other is formed of a substantially arc-shaped corner portion in a plan view from the front surface to the back surface. Thus, by making the side surfaces and the side wall portions into inclined surfaces, it is possible to reduce the peeling stress acting on the joint portion between the glass member and the frame body as compared with the conventional example in which the vertical surfaces are used. By using arc-shaped corners between the side walls, the peeling stress can be reduced compared with the comparative example in which the corners are not arc-shaped but squared, especially near the surface where the bonding area of the joint is narrowed. The peeling stress can be effectively reduced.

本発明では、前記各側面間の円弧状コーナー部のほうが、前記各側壁部間の円弧状コーナー部よりも小さい円弧半径で形成されることが好ましい。これにより、各円弧状コーナー部間の間隔から各側面と各側壁部間の間隔にかけて略一定間隔に調整でき、剥離応力の低減を図るとともに接着部材をガラス部材と枠体との間の隙間に適切に充填でき、良好な接合状態を保つことができる。   In the present invention, it is preferable that the arc-shaped corner portion between the side surfaces is formed with a smaller arc radius than the arc-shaped corner portion between the side wall portions. Thereby, it can adjust to the substantially constant space | interval from the space | interval between each arc-shaped corner part to the space | interval between each side surface and each side wall part, and while aiming at reduction of peeling stress, an adhesive member is made into the clearance gap between a glass member and a frame. It can be filled properly and a good bonding state can be maintained.

また本発明では、前記円弧状コーナー部は、前記ガラス複合体の表面から裏面にわたって、平面視で円弧半径が徐々に大きく形成されることが好ましい。この際、前記円弧状コーナー部は、夫々、前記ガラス複合体の表面から裏面に向けた厚さ方向に平行な方向を中心軸とした同心円の円弧で形成されることが好ましい。これにより各円弧状コーナー部を表面から裏面にかけて一定半径の略円弧状で形成するよりも、より効果的に剥離応力の低減を図ることができる。 With this embodiment, the arcuate corner portions, across the surface or found back surface of said glass composite, it is preferable that the arc radius is gradually larger in plan view. At this time, the arcuate corner portions, respectively, preferably formed by an arc of a concentric circle whose center axis to a direction parallel to the thickness direction toward the surface or found back surface of the glass composite. Thereby, it is possible to reduce the peeling stress more effectively than when each arcuate corner portion is formed in a substantially arc shape with a constant radius from the front surface to the back surface.

また本発明では、前記ガラス複合体の表面における前記側面と前記側壁部との間にギャップが形成されていることが好ましい。これにより、効果的に剥離応力の低減を図ることができる。 Moreover, in this invention, it is preferable that the gap is formed between the said side surface and the said side wall part in the surface of the said glass composite . Thereby, reduction of peeling stress can be aimed at effectively.

本発明では、前記ガラス部材の表面と前記枠体の表面が、同一平面をなすことが好ましい。これにより剥離応力を効果的に低減できる。 In this invention, it is preferable that the surface of the said glass member and the surface of the said frame form the same plane . Thereby, peeling stress can be reduced effectively.

本発明では、前記枠体が樹脂で形成されることが好ましい。枠体を樹脂で形成することにより、ガラスよりも耐衝撃性に優れ、軽量且つ複雑な曲部や孔部を有する形状を容易に形成することができる。   In this invention, it is preferable that the said frame is formed with resin. By forming the frame body from resin, it is possible to easily form a shape that is superior in impact resistance to glass and that has a light and complicated curved portion or hole portion.

本発明における入力装置は、上記いずれかのガラス複合体と、前記ガラス複合体の裏面側に位置して、操作体で前記入力操作面上操作されたことを検出可能なセンサ部材と、を有することを特徴とするものである。
An input device according to the present invention includes any one of the glass composites described above and a sensor member that is located on the back side of the glass composite and that can detect that the input operation surface has been operated with an operating body. It is characterized by having.

また本発明における電子機器は、上記入力装置の裏面側に、表示装置が配置されていることを特徴とするものである。   The electronic device according to the present invention is characterized in that a display device is arranged on the back side of the input device.

本発明によれば、ガラス部材と枠体との熱膨張係数の違いに基づく剥離が生じにくく、信頼性に優れた入力装置及び電子機器を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the peeling based on the difference in the thermal expansion coefficient of a glass member and a frame cannot produce easily, and the input device and electronic device excellent in reliability can be provided.

本発明では、ガラス部材の側面と枠体の側壁部とを、その間の隙間が表面側に向けて先細る形状となる傾斜面で形成している。しかも本発明では、各側面間、及び各側壁部間の夫々が表面から裏面にわたって平面視で略円弧状の円弧状コーナー部で形成した。このように、側面及び側壁部を傾斜面としたことで、垂直面とした従来例に比べてガラス部材と枠体との接合部分に作用する剥離応力を低減でき、加えて、各側面間及び各側壁部間を円弧状コーナー部としたことで、コーナー部を円弧状とせず角張る形状とした比較例と比べて、剥離応力を低減でき、特に、接合部分の接着領域が狭まる表面付近での剥離応力を効果的に緩和することができる。   In this invention, the side surface of a glass member and the side wall part of a frame are formed in the inclined surface used as the shape where the clearance gap between them tapers toward the surface side. Moreover, in the present invention, each side surface and each side wall portion are formed by arc-shaped corner portions that are substantially arc-shaped in plan view from the front surface to the back surface. Thus, by making the side surfaces and the side wall portions into inclined surfaces, it is possible to reduce the peeling stress acting on the joint portion between the glass member and the frame body as compared with the conventional example in which the vertical surfaces are used. By using arc-shaped corners between the side walls, the peeling stress can be reduced compared with the comparative example in which the corners are not arc-shaped but squared, especially near the surface where the bonding area of the joint is narrowed. The peeling stress can be effectively reduced.

図1(a)は、本実施形態におけるガラス部材の平面図であり、図1(b)は、ガラス部材を図1(a)のA−A線に沿って切断し矢印方向から見た縦断面図であり、図1(c)は、本実施形態における枠体の平面図であり、図1(d)は、枠体を図1(c)のB−B線に沿って切断し矢印方向から見た縦断面図である。Fig.1 (a) is a top view of the glass member in this embodiment, FIG.1 (b) is the vertical section which cut | disconnected the glass member along the AA line of Fig.1 (a), and was seen from the arrow direction. FIG. 1C is a plan view of the frame body in the present embodiment, and FIG. 1D is a cross-sectional view of the frame body taken along the line BB in FIG. It is the longitudinal cross-sectional view seen from the direction. 図2(a)は、図1(a)に示すガラス部材と図1(c)に示す枠体とを接合したガラス複合体の平面図である。Fig.2 (a) is a top view of the glass complex which joined the glass member shown to Fig.1 (a), and the frame shown in FIG.1 (c). 図2(b)は、ガラス複合体の裏面図である。FIG. 2B is a back view of the glass composite. 図2(c)は、図3のD−D線に沿って切断し矢印方向から見た平面断面図である。FIG.2 (c) is the plane sectional view cut | disconnected along the DD line | wire of FIG. 3, and was seen from the arrow direction. 図3は、ガラス複合体を図2に示すC−C線に沿って切断し矢印方向から見た部分拡大縦断面図である。FIG. 3 is a partially enlarged longitudinal sectional view of the glass composite taken along line CC shown in FIG. 2 and viewed from the arrow direction. 図4(a)は、本実施形態のガラス複合体を用いた入力装置及び電子機器を示す縦断面図であり、図4(b)は、本実施形態のガラス複合体を用いた図4(a)とは一部異なる入力装置の縦断面図である。4A is a longitudinal sectional view showing an input device and an electronic apparatus using the glass composite of the present embodiment, and FIG. 4B is a diagram of FIG. 4 using the glass composite of the present embodiment. It is a longitudinal cross-sectional view of an input device partially different from a). 図5(a)(b)は、別の実施形態を示すガラス複合体の縦断面図である。5 (a) and 5 (b) are longitudinal sectional views of a glass composite showing another embodiment. 図6は、ガラス部材及び枠体の各コーナー部分を拡大した平面図であり、特に各コーナー部を同じ半径の略円弧状で形成した図である。FIG. 6 is an enlarged plan view of each corner portion of the glass member and the frame, and in particular, each corner portion is formed in a substantially arc shape with the same radius. 図7は、ガラス部材と枠体とを接合したガラス複合体の変形例を示す斜視図である。FIG. 7 is a perspective view showing a modified example of the glass composite in which the glass member and the frame are joined. 図8は、図7のガラス複合体をE−E線で切断した模式縦断面図である。FIG. 8 is a schematic longitudinal sectional view of the glass composite of FIG. 7 cut along the line EE. 図9は、図7のガラス複合体をE−E線で切断した模式縦断面図であり、図8とは異なる変形例を示す。FIG. 9 is a schematic longitudinal sectional view of the glass composite of FIG. 7 cut along line EE, and shows a modification different from FIG. 図10は、本実施形態のガラス複合体の製造工程を説明するための工程図(縦断面図)である。FIG. 10 is a process diagram (longitudinal sectional view) for explaining a process for producing the glass composite of the present embodiment. 図11(a)は、コーナー部の円弧半径を変化させて剥離応力を解析したシミュレーションで使用した実施例であり、図11(b)は比較例の模式図である。FIG. 11A is an example used in a simulation in which peeling stress is analyzed by changing the arc radius of the corner portion, and FIG. 11B is a schematic diagram of a comparative example. 図12は、実施例及び比較例におけるコーナー部の円弧半径と平均剥離応力との関係を示すグラフである。FIG. 12 is a graph showing the relationship between the arc radius of the corner portion and the average peel stress in Examples and Comparative Examples. 図13は、実施例及び比較例におけるコーナー部の円弧半径と剥離応力(表面から裏面へ向けての20%内での剥離応力)との関係を示すグラフである。FIG. 13 is a graph showing the relationship between the arc radius of the corner portion and the peeling stress (peeling stress within 20% from the front surface to the back surface) in Examples and Comparative Examples. 図14(a)は、表面における側面と側壁部との間のギャップの大きさを変化させて剥離応力を解析したシミュレーションで使用した実施例であり、図14(b)は好ましくない状態を示し、図14(c)は比較例の模式図である。FIG. 14A is an example used in a simulation in which the separation stress is analyzed by changing the size of the gap between the side surface and the side wall portion on the surface, and FIG. 14B shows an unfavorable state. FIG. 14C is a schematic diagram of a comparative example. 図15は、実施例及び比較例におけるギャップ寸法と平均剥離応力との関係を示すグラフである。FIG. 15 is a graph showing the relationship between the gap dimension and the average peel stress in Examples and Comparative Examples. 図16は、実施例及び比較例におけるギャップ寸法と剥離応力(表面から裏面へ向けての20%内での剥離応力)との関係を示すグラフである。FIG. 16 is a graph showing the relationship between the gap size and the peeling stress (peeling stress within 20% from the front surface to the back surface) in Examples and Comparative Examples. 図17は、実施例において、コーナー部を一定半径の略円弧状で形成した場合と、コーナー部を同心円の略円弧状で形成した場合におけるギャップと剥離応力との関係を示すグラフである。FIG. 17 is a graph showing the relationship between the gap and the peeling stress when the corner portion is formed in a substantially arc shape with a constant radius and the corner portion is formed in a substantially arc shape of a concentric circle in the example.

図1(a)は、本実施形態におけるガラス部材の平面図であり、図1(b)は、ガラス部材を図1(a)のA−A線に沿って切断し矢印方向から見た縦断面図であり、図1(c)は、本実施形態における枠体の平面図であり、図1(d)は、枠体を図1(c)のB−B線に沿って切断し矢印方向から見た縦断面図である。図2(a)は、図1(a)に示すガラス部材と図1(c)に示す枠体とを接合したガラス複合体の平面図であり、図2(b)は、ガラス複合体の裏面図である。図3は、ガラス複合体を図2に示すC−C線に沿って切断し矢印方向から見た部分拡大縦断面図である。図4(a)は、本実施形態のガラス複合体を用いた入力装置及び電子機器を示す縦断面図であり、図4(b)は、本実施形態のガラス複合体を用いた図4(a)とは一部異なる入力装置の縦断面図である。   Fig.1 (a) is a top view of the glass member in this embodiment, FIG.1 (b) is the vertical section which cut | disconnected the glass member along the AA line of Fig.1 (a), and was seen from the arrow direction. FIG. 1C is a plan view of the frame body in the present embodiment, and FIG. 1D is a cross-sectional view of the frame body taken along the line BB in FIG. It is the longitudinal cross-sectional view seen from the direction. Fig.2 (a) is a top view of the glass composite_body | complex which joined the glass member shown to FIG.1 (a), and the frame shown in FIG.1 (c), FIG.2 (b) is a glass composite_body | complex. It is a back view. FIG. 3 is a partially enlarged longitudinal sectional view of the glass composite taken along line CC shown in FIG. 2 and viewed from the arrow direction. 4A is a longitudinal sectional view showing an input device and an electronic apparatus using the glass composite of the present embodiment, and FIG. 4B is a diagram of FIG. 4 using the glass composite of the present embodiment. It is a longitudinal cross-sectional view of an input device partially different from a).

図2に示すガラス複合体10は、図4(a)、図4(b)に示す入力装置1を構成する基材であり、携帯電話、携帯用のゲーム装置などに使用される。   A glass composite 10 shown in FIG. 2 is a base material constituting the input device 1 shown in FIGS. 4A and 4B, and is used for a mobile phone, a portable game device, and the like.

図2に示すガラス複合体10は、図1(a)(b)に示すガラス部材11と、図1(c)(d)に示すガラス部材11の周囲を囲む枠体20とを有して構成される。図2、図3、図4に示すように、ガラス部材11は枠体20に接着部材30を介して固定されている。図2、図3、図4に示すように、ガラス部材11と枠体20との間には接着部材30を充填可能な隙間40が設けられている。   A glass composite 10 shown in FIG. 2 includes a glass member 11 shown in FIGS. 1A and 1B and a frame 20 surrounding the periphery of the glass member 11 shown in FIGS. 1C and 1D. Composed. As shown in FIGS. 2, 3, and 4, the glass member 11 is fixed to the frame body 20 via an adhesive member 30. As shown in FIGS. 2, 3, and 4, a gap 40 that can be filled with the adhesive member 30 is provided between the glass member 11 and the frame body 20.

ガラス部材11は透光性であり、表示光を透過させることができる。図2に示すガラス複合体2は厚さ方向に表面10aと裏面10bとを有している。   The glass member 11 is translucent and can transmit display light. The glass composite 2 shown in FIG. 2 has a front surface 10a and a back surface 10b in the thickness direction.

本明細書での透光性とは、透明または半透明など光を透過可能な状態を意味しており、透過率が50%以上で好ましくは80%以上であることを意味している。ガラス部材11は、通常ガラス、強化ガラス等、特に種類を限定するものではない。またガラス部材11の線膨張係数は、8ppm/K〜10ppm/K程度である。   The translucency in this specification means a state capable of transmitting light such as transparent or translucent, and means that the transmittance is 50% or more, preferably 80% or more. The glass member 11 is not particularly limited in kind, such as normal glass or tempered glass. The linear expansion coefficient of the glass member 11 is about 8 ppm / K to 10 ppm / K.

一方、枠体20は透光性部材を用いており、例えば、その一部が着色されている。例えば、枠体20は金型に熱可塑性樹脂を充填して成形したものである。例えば、枠体20は、ポリカーボネート(PC)やポリメタクリル酸メチル(PMMA)で形成される。なお枠体20には熱可塑性樹脂以外に、熱硬化性樹脂や光硬化性樹脂を用いることが可能である。枠体20の線膨張係数は、10ppm/K〜100ppm/K程度である。また、枠体20を成形樹脂で形成することにより、ガラスよりも耐衝撃性に優れ、軽量且つ複雑な曲部や孔部を有する形状を容易に形成することができる。   On the other hand, the frame 20 uses a translucent member, for example, a part thereof is colored. For example, the frame 20 is formed by filling a mold with a thermoplastic resin. For example, the frame 20 is formed of polycarbonate (PC) or polymethyl methacrylate (PMMA). In addition to the thermoplastic resin, it is possible to use a thermosetting resin or a photocurable resin for the frame 20. The linear expansion coefficient of the frame 20 is about 10 ppm / K to 100 ppm / K. Moreover, by forming the frame body 20 from a molding resin, it is possible to easily form a shape that is superior in impact resistance to glass and that has a light and complicated curved portion or hole portion.

接着部材30は可視光を透過する透明樹脂であることが好ましい。接着部材30に可視光を透過する透明タイプの樹脂を用いれば、ガラス部材11との境界が目立たず、ほとんど一体化して透光性の領域を形成でき、目視で透明なガラス複合体とすることができる。さらに透明樹脂の枠体20と組み合わせたときは、全体が透明なガラス複合体10とすることができる。ただし後述するように、例えば加飾領域が、接着部材30の位置にまでかかる場合には、接着部材30が透光性でなくてもよく、材質としては透明樹脂に限定されない。加飾領域(非透光性領域)の形成は、印刷等によって行うことができる。   The adhesive member 30 is preferably a transparent resin that transmits visible light. If a transparent resin that transmits visible light is used for the adhesive member 30, the boundary with the glass member 11 is inconspicuous and can be almost integrated to form a light-transmitting region, and a transparent glass composite is formed visually. Can do. Further, when combined with the transparent resin frame 20, the entire glass composite 10 can be obtained. However, as will be described later, for example, when the decoration region extends to the position of the adhesive member 30, the adhesive member 30 may not be translucent, and the material is not limited to transparent resin. The decoration region (non-translucent region) can be formed by printing or the like.

また、接着部材30に1液性の常温硬化型接着剤である紫外線硬化型の樹脂を用いることが好ましい。紫外線硬化型の樹脂は短時間で硬化でき、接着時の温度変化や体積収縮が少ないため残留応力が小さい。また、ガラス部材11と枠体20とを接着する工程が簡単であり、量産性に優れている。また、常温硬化型のほか、熱硬化併用型の紫外線硬化樹脂を用いることができる。低収縮・低応力であれば接着時の残留応力が小さいので、ウレタン系、アクリル系、エポキシ系などの熱硬化併用型の紫外線硬化樹脂を使用できる。   Further, it is preferable to use an ultraviolet curable resin which is a one-component room temperature curable adhesive for the adhesive member 30. The UV curable resin can be cured in a short time and has little residual stress because of little temperature change and volume shrinkage during bonding. Moreover, the process of bonding the glass member 11 and the frame body 20 is simple, and the mass productivity is excellent. In addition to the room temperature curable type, a thermosetting UV curable resin can be used. If the shrinkage is low and the stress is low, the residual stress at the time of adhesion is small, and therefore, a thermosetting UV curable resin such as urethane, acrylic or epoxy can be used.

図1(a)(b)に示すようにガラス部材11は厚さ方向にて対向する平坦面の表面11aと裏面11bとを備え、厚さ方向(Z)に一定の厚みを有する。   As shown in FIGS. 1A and 1B, the glass member 11 includes a flat surface 11a and a back surface 11b opposed to each other in the thickness direction, and has a certain thickness in the thickness direction (Z).

ガラス部材11の表面11aには、X1−X2方向に平行でY1側に形成された第1表縁部11a1と、X1−X2方向に平行でY2側に形成された第2表縁部11a2と、Y1−Y2方向に平行でX1側に形成され、第1表縁部11a1と第2表縁部11a2間を繋ぐ第3表縁部11a3と、Y1−Y2方向に平行でX2側に形成され、第1表縁部11a1と第2表縁部11a2間を繋ぐ第4表縁部11a4と、を備える。   On the surface 11a of the glass member 11, a first surface edge portion 11a1 formed on the Y1 side parallel to the X1-X2 direction, and a second surface edge portion 11a2 formed on the Y2 side parallel to the X1-X2 direction, Are formed on the X1 side parallel to the Y1-Y2 direction, and formed on the X2 side parallel to the Y1-Y2 direction, and a third surface edge portion 11a3 connecting the first surface edge portion 11a1 and the second surface edge portion 11a2. The 4th surface edge part 11a4 which connects between the 1st surface edge part 11a1 and the 2nd surface edge part 11a2 is provided.

またガラス部材11の裏面11bには、X1−X2方向に平行でY1側に形成された第1裏縁部11b1と、X1−X2方向に平行でY2側に形成された第2裏縁部11b2と、Y1−Y2方向に平行でX1側に形成され、第1裏縁部11b1と第2裏縁部11b2間を繋ぐ第3裏縁部11b3と、Y1−Y2方向に平行でX2側に形成され、第1裏縁部11b1と第2裏縁部11b2間を繋ぐ第4裏縁部11b4と、を備える。   Further, on the back surface 11b of the glass member 11, a first back edge portion 11b1 formed on the Y1 side parallel to the X1-X2 direction, and a second back edge portion 11b2 formed on the Y2 side parallel to the X1-X2 direction. And formed on the X1 side parallel to the Y1-Y2 direction, and formed on the X2 side parallel to the Y1-Y2 direction and a third back edge portion 11b3 connecting the first back edge portion 11b1 and the second back edge portion 11b2. And a fourth back edge portion 11b4 connecting the first back edge portion 11b1 and the second back edge portion 11b2.

そして、ガラス部材11は、表面11aの第1表縁部11a1と裏面11bの第1裏縁部11b1間を繋ぐ第1側面11cと、表面11aの第2表縁部11a2と裏面11bの第2裏縁部11b2間を繋ぐ第2側面11dと、表面11aの第3表縁部11a3と裏面11bの第3裏縁部11b3間を繋ぐ第3側面11eと、表面11aの第4表縁部11a4と裏面11bの第4裏縁部11b4間を繋ぐ第4側面11fを備える。   The glass member 11 includes a first side surface 11c that connects the first front edge portion 11a1 of the front surface 11a and the first back edge portion 11b1 of the back surface 11b, a second surface edge portion 11a2 of the front surface 11a, and a second surface of the back surface 11b. The second side surface 11d connecting the back edge portions 11b2, the third side surface 11e connecting the third front edge portion 11a3 of the front surface 11a and the third back edge portion 11b3 of the back surface 11b, and the fourth front edge portion 11a4 of the front surface 11a. And a fourth side surface 11f that connects the fourth back edge portion 11b4 of the back surface 11b.

本実施形態ではガラス部材11が平板状とされている。ただしガラス部材11の表面11aが加工により凸型の湾曲面状となっていたり、凹型の湾曲面状となっていてもよい。   In the present embodiment, the glass member 11 has a flat plate shape. However, the surface 11a of the glass member 11 may have a convex curved surface shape by processing, or may have a concave curved surface shape.

なお、ガラス部材11の表面11aは、入力装置1の入力操作面1aを構成する(図4(a)(b)参照)。   In addition, the surface 11a of the glass member 11 comprises the input operation surface 1a of the input device 1 (refer FIG. 4 (a) (b)).

図1(a)(b)に示すように、各側面11c〜11fは第1の傾斜角θ1を備える第1の傾斜面13で形成される。ここで第1の傾斜角θ1は、裏面11bからの傾き角度で示される。図1(b)に示すようにガラス部材11の縦断面は台形状となっている。   As shown in FIGS. 1A and 1B, each of the side surfaces 11c to 11f is formed by a first inclined surface 13 having a first inclination angle θ1. Here, the first inclination angle θ1 is indicated by an inclination angle from the back surface 11b. As shown in FIG.1 (b), the vertical cross section of the glass member 11 is trapezoid shape.

図1(c)(d)に示すように枠体20は厚さ方向(Z)に対向する表面20aと裏面20bとを備え、厚さ方向(Z)に一定の厚さ寸法を有する。   As shown in FIGS. 1C and 1D, the frame body 20 includes a front surface 20a and a back surface 20b facing each other in the thickness direction (Z), and has a certain thickness dimension in the thickness direction (Z).

枠体20には、その中央に上面20aから下面20bに貫通する貫通孔21が形成されている。貫通孔21の表面20a側の周囲には、X1−X2方向に平行でY1側に形成された第1表縁部20a1と、X1−X2方向に平行でY2側に形成された第2表縁部20a2と、Y1−Y2方向に平行でX1側に形成され、第1表縁部20a1と第2表縁部20a2間を繋ぐ第3表縁部20a3と、Y1−Y2方向に平行でX2側に形成され、第1表縁部20a1と第2表縁部20a2間を繋ぐ第4表縁部20a4と、を備える。   The frame body 20 is formed with a through-hole 21 penetrating from the upper surface 20a to the lower surface 20b at the center thereof. Around the surface 20a side of the through hole 21, a first surface edge portion 20a1 formed on the Y1 side parallel to the X1-X2 direction and a second surface edge formed on the Y2 side parallel to the X1-X2 direction Part 20a2, parallel to the Y1-Y2 direction and formed on the X1 side, the third surface edge part 20a3 connecting the first surface edge part 20a1 and the second surface edge part 20a2, and the X2 side parallel to the Y1-Y2 direction And a fourth surface edge portion 20a4 connecting the first surface edge portion 20a1 and the second surface edge portion 20a2.

また枠体20の裏面20b側の周囲には、X1−X2方向に平行でY1側に形成された第1裏縁部20b1と、X1−X2方向に平行でY2側に形成された第2裏縁部20b2と、Y1−Y2方向に平行でX1側に形成され、第1裏縁部20b1と第2裏縁部20b2間を繋ぐ第3裏縁部20b3と、Y1−Y2方向に平行でX2側に形成され、第1裏縁部20b1と第2裏縁部20b2間を繋ぐ第4縁部20b4と、を備える。   Further, around the back surface 20b side of the frame body 20, there are a first back edge portion 20b1 formed on the Y1 side parallel to the X1-X2 direction, and a second back surface formed on the Y2 side parallel to the X1-X2 direction. The edge 20b2, the third back edge 20b3 that is formed on the X1 side parallel to the Y1-Y2 direction and connects the first back edge 20b1 and the second back edge 20b2, and parallel to the Y1-Y2 direction X2 4th edge part 20b4 which is formed in the side and connects between 1st back edge part 20b1 and 2nd back edge part 20b2.

そして、貫通孔21の周囲には、表面20aの第1表縁部20a1と裏面20bの第1裏縁部20b1間を繋ぐ第1側壁部20cと、表面20aの第2表縁部20a2と裏面20bの第2裏縁部20b2間を繋ぐ第2側壁部20dと、表面20aの第3表縁部20a3と裏面20bの第3裏縁部20b3間を繋ぐ第3側壁部20eと、表面20aの第4表縁部20a4と裏面20bの第4裏縁部20b4間を繋ぐ第4側壁部20fを備える。   Around the through hole 21, there are a first side wall portion 20c connecting the first front edge portion 20a1 of the front surface 20a and the first back edge portion 20b1 of the back surface 20b, and a second front edge portion 20a2 of the front surface 20a and the back surface. A second side wall portion 20d connecting the second back edge portions 20b2 of the 20b, a third side wall portion 20e connecting the third front edge portion 20a3 of the front surface 20a and the third back edge portion 20b3 of the back surface 20b, and a surface 20a A fourth side wall portion 20f that connects the fourth front edge portion 20a4 and the fourth back edge portion 20b4 of the back surface 20b is provided.

図1(c)(d)に示すように各側壁部20c〜20fは第2の傾斜角θ2を備える第2の傾斜面14で形成される。ここで第2の傾斜角θ2は、貫通孔21の下面20bからの傾き角度で示される。   As shown in FIGS. 1C and 1D, each of the side wall portions 20c to 20f is formed by a second inclined surface 14 having a second inclination angle θ2. Here, the second inclination angle θ <b> 2 is indicated by an inclination angle from the lower surface 20 b of the through hole 21.

本実施形態では、第1の傾斜角θ1と第2の傾斜角θ2は異なる値であり、第1の傾斜角θ1>第2の傾斜角θ2となっている。すなわち第1の傾斜角θ1のほうが急で、第2の傾斜角θ2のほうが緩やかである。   In the present embodiment, the first inclination angle θ1 and the second inclination angle θ2 are different values, and the first inclination angle θ1> the second inclination angle θ2. That is, the first inclination angle θ1 is steeper and the second inclination angle θ2 is gentler.

傾斜角θ1,θ2は限定されないが、例えば第1の傾斜角θ1は、45°程度、第2の傾斜角θ2は25°程度に調整される。   Although the inclination angles θ1 and θ2 are not limited, for example, the first inclination angle θ1 is adjusted to about 45 °, and the second inclination angle θ2 is adjusted to about 25 °.

ここで、図1(a)(b)に示すガラス部材11の表面11aの大きさは、図1(c)(d)に示す枠体20の貫通孔21の表面20a側の大きさよりもやや小さくされている。このため、図2や図3に示すように、ガラス部材11の各側面11c〜11fと表面11aとの間の各表縁部11a1〜11a4と、枠体20の各側壁部20c〜20fと貫通孔21の周囲に位置する表面20aとの間の各表縁部20a1〜20a4の間には、ギャップGが形成されている。   Here, the size of the surface 11a of the glass member 11 shown in FIGS. 1 (a) and 1 (b) is slightly larger than the size of the through hole 21 of the frame body 20 shown in FIGS. 1 (c) and 1 (d) on the surface 20a side. It has been made smaller. For this reason, as shown in FIG.2 and FIG.3, each side edge part 11a1-11a4 between each side surface 11c-11f and the surface 11a of the glass member 11, and each side wall part 20c-20f of the frame 20, and penetration A gap G is formed between each of the front edge portions 20a1 to 20a4 between the surface 20a located around the hole 21.

また上記した傾斜角θ1,θ2の違いにより、ガラス部材11の裏面11bと各側面11c〜11fとの間の各裏縁部11b1〜11b4と、枠体20の各側壁部20c〜20fと貫通孔21の周囲に位置する裏面20bとの間の各裏縁部20b1〜20b4の間に形成された空間幅t2は、表面側のギャップGのギャップ寸法t1よりも大きく形成されている。このため図3や図4に示すように、ガラス部材11の各側面11c〜11fと枠体20の各側壁部20c〜20fとの間に形成された隙間40は、裏面側から表面側に向けて徐々に先細る形状とされている。   Further, due to the difference between the inclination angles θ1 and θ2, the back edge portions 11b1 to 11b4 between the back surface 11b of the glass member 11 and the side surfaces 11c to 11f, the side wall portions 20c to 20f of the frame body 20, and the through holes. The space width t2 formed between the back edge portions 20b1 to 20b4 between the back surface 20b and the back surface 20b located around the periphery 21 is formed larger than the gap dimension t1 of the gap G on the front surface side. Therefore, as shown in FIG. 3 and FIG. 4, the gap 40 formed between each side surface 11 c to 11 f of the glass member 11 and each side wall portion 20 c to 20 f of the frame body 20 is directed from the back surface side to the front surface side. The shape is gradually tapered.

図1(c)(d)では、枠体20の貫通孔21の周囲に広がる表面20a及び裏面20bは共にX−Y平面に平行な面となっているが、例えば表面20aを曲面状で形成することも可能である。   In FIGS. 1C and 1D, the front surface 20a and the rear surface 20b extending around the through hole 21 of the frame 20 are both parallel to the XY plane. For example, the front surface 20a is formed in a curved shape. It is also possible to do.

本実施形態では、図1(a)(b)に示すように、ガラス部材11の隣り合う各側面11c〜11f間が、厚さ方向(Z)の表面11aから裏面11bにわたって平面視で略円弧状の円弧状コーナー部15〜18で構成されている。ここで「略円弧」としたのは、製造誤差等で多少正確な円弧でない場合も含むことを意味する。   In this embodiment, as shown to FIG. 1 (a) (b), between each adjacent side surfaces 11c-11f of the glass member 11 is substantially circular by planar view from the surface 11a of the thickness direction (Z) to the back surface 11b. It consists of arcuate arcuate corners 15-18. Here, “substantially circular arc” means that a case where the circular arc is not somewhat accurate due to a manufacturing error or the like is included.

図1(a)(b)に示すように第1側面11cと第3側面11eとの間の境界部(稜線、角部)に第1の円弧状コーナー部15が形成される。ここで第1の円弧状コーナー部15は、図1(a)や図2(a)(b)に示すように表面11a側や裏面11b側からみて略円弧状であり、さらに、表面11aから裏面11b間の厚さ内の全域にて、略円弧状となっている。「表面11aから裏面11bにわたって平面視で略円弧状の円弧状コーナー部15〜18で構成される」とは、表面11a側や裏面11b側からみて略円弧状であるとともに、図2(c)に示すように図3のD−D線に沿って切断し矢印方向から見た平面断面において、略円弧状であることを指す。ここで「平面断面」とは、厚さ寸法内においてXY平面と平行な面方向から切断し表面側から見た断面を指す。したがって図2(c)はある一つの平面断面を示したものであり、本実施形態では、厚さ範囲内のどの位置から切断しても、その際に現れる平面断面ではコーナー部が円弧状となっている。図2(c)に示す隙間40の空間幅t5は、図2(a)のギャップ寸法t1より大きく図2(b)の空間幅t2より小さい。   As shown in FIGS. 1A and 1B, a first arcuate corner portion 15 is formed at a boundary portion (ridge line, corner portion) between the first side surface 11c and the third side surface 11e. Here, as shown in FIGS. 1A and 2A and 2B, the first arcuate corner portion 15 is substantially arcuate when viewed from the front surface 11a side and the back surface 11b side, and further from the front surface 11a. In the whole area within the thickness between the back surfaces 11b, it has a substantially arc shape. “It is composed of arcuate corner portions 15 to 18 having a substantially arc shape in plan view from the front surface 11a to the back surface 11b” is substantially arc-shaped when viewed from the front surface 11a side and the back surface 11b side, and FIG. As shown in FIG. 3, the cross section taken along the line D-D in FIG. Here, the “plane cross section” refers to a cross section cut from a plane direction parallel to the XY plane and viewed from the surface side within the thickness dimension. Accordingly, FIG. 2C shows a certain plane cross section, and in this embodiment, the corner portion has an arc shape in the plane cross section that appears at any position within the thickness range, even if cut from any position within the thickness range. It has become. The space width t5 of the gap 40 shown in FIG. 2 (c) is larger than the gap dimension t1 in FIG. 2 (a) and smaller than the space width t2 in FIG. 2 (b).

また、図1、図3に示すように、第1の円弧状コーナー部15は、第1の円弧状コーナー部15近傍に位置する厚さ方向(Z)に平行な方向を軸O1とした同心円の略円弧状で形成される。   As shown in FIGS. 1 and 3, the first arcuate corner portion 15 is a concentric circle whose axis O1 is a direction parallel to the thickness direction (Z) located in the vicinity of the first arcuate corner portion 15. It is formed in a substantially arc shape.

すなわち図3に示すように、第1の円弧状コーナー部15は、ガラス部材11の表面11aでは軸O1から円弧半径r1で形成された円弧状で形成されており、ガラス部材11の裏面11bでは軸O1から円弧半径r2で形成された円弧状で形成されている。表面11aと裏面11bとの間においては、第1の傾斜面13の傾斜角θ1に従って、表面11a側から裏面11b側に向けて徐々に円弧半径r3が大きくなる円弧状に形成される。   That is, as shown in FIG. 3, the first arcuate corner portion 15 is formed in an arc shape formed with an arc radius r1 from the axis O1 on the front surface 11a of the glass member 11, and on the back surface 11b of the glass member 11. It is formed in an arc shape formed with an arc radius r2 from the axis O1. Between the front surface 11a and the back surface 11b, it is formed in an arc shape in which the arc radius r3 gradually increases from the front surface 11a side to the back surface 11b side according to the inclination angle θ1 of the first inclined surface 13.

上記では、第1の円弧状コーナー部15のみ説明したが、第2の円弧状コーナー部16〜第4の円弧状コーナー部18においても同じである。すなわち第2の円弧状コーナー部16〜第4の円弧状コーナー部18は、各円弧状コーナー部16〜18近傍に位置する厚さ方向(Z)に平行な方向を軸O2〜O4とした同心円の円弧で形成される。   Although only the first arc-shaped corner portion 15 has been described above, the same applies to the second arc-shaped corner portion 16 to the fourth arc-shaped corner portion 18. That is, the second arcuate corner portion 16 to the fourth arcuate corner portion 18 are concentric circles whose axes O2 to O4 are parallel to the thickness direction (Z) located in the vicinity of the arcuate corner portions 16 to 18. The arc is formed.

また本実施形態では、図1(c)(d)に示すように、枠体20の貫通孔21の周囲にて隣り合う各側壁部20c〜20f間が、厚さ方向(Z)の表面20aから裏面20bにかけて平面断面が略円弧状の円弧状コーナー部25〜28で構成されている。ここで「略円弧」としたのは、製造誤差等で多少正確な円弧でない場合も含むことを意味する。   Moreover, in this embodiment, as shown to FIG.1 (c) (d), between each side wall part 20c-20f adjacent to the circumference | surroundings of the through-hole 21 of the frame 20, the surface 20a of thickness direction (Z). The plane cross section is constituted by arcuate corner portions 25 to 28 having a substantially arcuate shape from the rear surface 20b to the rear surface 20b. Here, “substantially circular arc” means that a case where the circular arc is not somewhat accurate due to a manufacturing error or the like is included.

図1(c)(d)に示すように第1側壁部20cと第3側壁部20eとの間の境界部(稜線、角部)に第1の円弧状コーナー部25が形成される。第1の円弧状コーナー部25は、図1や図2に示すように表面20a側や裏面20b側からみて略円弧状で形成される。また表面20aから裏面20b間の厚さ内の全域にて、第1の円弧状コーナー部25ではXY平面と平行な面方向からの断面が略円弧状となっている。図1、図3に示すように、第1の円弧状コーナー部25は、第1の円弧状コーナー部25近傍に位置する厚さ方向(Z)に平行な方向を軸O1とした同心円の略円弧状で形成される。   As shown in FIGS. 1C and 1D, a first arcuate corner portion 25 is formed at a boundary portion (ridge line, corner portion) between the first side wall portion 20c and the third side wall portion 20e. As shown in FIGS. 1 and 2, the first arc-shaped corner portion 25 is formed in a substantially arc shape when viewed from the front surface 20a side or the back surface 20b side. Further, in the entire region within the thickness between the front surface 20a and the back surface 20b, the first arc-shaped corner portion 25 has a substantially arc-shaped cross section from the plane direction parallel to the XY plane. As shown in FIGS. 1 and 3, the first arcuate corner portion 25 is a substantially concentric circle whose axis O1 is a direction parallel to the thickness direction (Z) located in the vicinity of the first arcuate corner portion 25. It is formed in an arc shape.

すなわち図3に示すように、第1の円弧状コーナー部25は、枠体20の表面20aでは軸O1から円弧半径r4で形成された円弧状で形成されており、枠体20の裏面20bでは軸O1から円弧半径r5で形成された円弧状で形成されている。表面20aと裏面20bとの間においては、第2の傾斜面14の傾斜角θ2に従って、表面20a側から裏面20b側に向けて徐々に円弧半径r6が大きくなる円弧状に形成される。   That is, as shown in FIG. 3, the first arc-shaped corner portion 25 is formed in an arc shape formed from the axis O1 to the arc radius r4 on the front surface 20a of the frame body 20, and on the back surface 20b of the frame body 20 It is formed in an arc shape formed with an arc radius r5 from the axis O1. Between the front surface 20a and the back surface 20b, the arc radius r6 gradually increases from the front surface 20a side to the back surface 20b side according to the inclination angle θ2 of the second inclined surface 14.

上記では、第1の円弧状コーナー部25のみ説明したが、第2の円弧状コーナー部26〜第4の円弧状コーナー部28においても同じである。すなわち第2の円弧状コーナー部26〜第4の円弧状コーナー部28は、各円弧状コーナー部26〜28近傍に位置する厚さ方向(Z)に平行な方向を軸O2〜O4とした同心円の円弧で形成される。   Although only the first arc-shaped corner portion 25 has been described above, the same applies to the second arc-shaped corner portion 26 to the fourth arc-shaped corner portion 28. That is, the second arcuate corner part 26 to the fourth arcuate corner part 28 are concentric circles whose axes O2 to O4 are parallel to the thickness direction (Z) located in the vicinity of each arcuate corner part 26 to 28. The arc is formed.

図3に示すように、ガラス部材11側に形成された第1の円弧状コーナー部15を構成する円弧半径r1〜r3と、枠体20側に形成された第1の円弧状コーナー部25を構成する円弧半径r4〜r6とを対比すると、同じ厚さ位置において、円弧半径r4〜r6>円弧半径r1〜r3の関係となっている。他の円弧状コーナー部16〜18,26〜28においても同じである。   As shown in FIG. 3, arc radii r1 to r3 constituting the first arcuate corner portion 15 formed on the glass member 11 side and the first arcuate corner portion 25 formed on the frame body 20 side When the arc radii r4 to r6 are compared, the arc radii r4 to r6> the arc radii r1 to r3 at the same thickness position. The same applies to the other arc-shaped corner portions 16 to 18 and 26 to 28.

また、図1,図3に示すように、ガラス部材11の第1の円弧状コーナー部15と、枠体20の第1の円弧状コーナー部25とは、同じ軸O1を中心軸とした同心円の円弧で構成されている。また、第2の円弧状コーナー部16,26同士、第3の円弧状コーナー部17,27同士、及び、第4の円弧状コーナー部18,28同士についても夫々、同じ軸O2〜O4を中心軸とした同心円の円弧で構成される。   As shown in FIGS. 1 and 3, the first arcuate corner portion 15 of the glass member 11 and the first arcuate corner portion 25 of the frame body 20 are concentric circles having the same axis O1 as a central axis. It is composed of arcs. The second arcuate corner portions 16, 26, the third arcuate corner portions 17, 27, and the fourth arcuate corner portions 18, 28 are also centered on the same axis O2 to O4. Consists of concentric arcs as axes.

そして本実施形態では、ガラス部材11の各側面11c〜11fと、枠体20の各側壁部20c〜20fとの間、及びガラス部材11の各円弧状コーナー部15〜18と枠体20の各円弧状コーナー部25〜28との間に形成された隙間40に接着部材30が充填されて、ガラス部材11と枠体20間が接合されている(図2、図3、図4参照)。   And in this embodiment, between each side surface 11c-11f of the glass member 11, and each side wall part 20c-20f of the frame 20, and each arc-shaped corner part 15-18 of the glass member 11, and each of the frame 20 The gap member 40 formed between the arcuate corner portions 25 to 28 is filled with the adhesive member 30, and the glass member 11 and the frame body 20 are joined (see FIGS. 2, 3, and 4).

本実施形態では、図1〜図4に示すようにガラス部材11の各側面11c〜11fと枠体20の各側壁部20c〜20fとを、その間の隙間40が表面側に向けて徐々に先細る形状となる傾斜面13,14で形成している。   In this embodiment, as shown in FIGS. 1 to 4, the side surfaces 11 c to 11 f of the glass member 11 and the side wall portions 20 c to 20 f of the frame body 20 are gradually tapered with the gap 40 therebetween facing the surface side. It forms with the inclined surfaces 13 and 14 used as a shape.

さらに本実施形態では、隣り合う各側面11c〜11f間、及び隣り合う各側壁部20c〜20f間を、夫々、厚さ方向(Z)の表面から裏面にかけて略円弧状の平面断面を備える円弧状コーナー部15〜18、25〜28で構成した。これにより、線膨張係数の異なるガラス部材11と枠体20との間の接合部分に生じる剥離応力(内部残留応力)を効果的に小さくできる。なお後述するシミュレーションでは、剥離応力を接着部材30とガラス部材11との間のコーナー部での剥離応力として評価した。   Further, in the present embodiment, an arc shape having a substantially arc-shaped planar cross section between the adjacent side surfaces 11c to 11f and the adjacent side wall portions 20c to 20f from the front surface to the back surface in the thickness direction (Z), respectively. It comprised with the corner parts 15-18, 25-28. Thereby, the peeling stress (internal residual stress) which arises in the junction part between the glass member 11 and the frame 20 from which a linear expansion coefficient differs can be made small effectively. In the simulation described later, the peel stress was evaluated as the peel stress at the corner between the adhesive member 30 and the glass member 11.

また後述のシミュレーションでも示すように、本実施形態では、ガラス部材11の各側面11c〜11f及び枠体20の各側壁部20c〜20fを傾斜面13,14で形成したことで、各側面及び各側壁部を垂直面とした従来例に比べてガラス部材11と枠体20との接合部分に作用する剥離応力を効果的に低減でき、加えて、本実施形態では、ガラス部材11の隣り合う各側面11c〜11f間、及び枠体20の隣り合う各側壁部20c〜20fを円弧状コーナー部15〜18,25〜28としたことで、コーナー部を円弧状とせず角張る形状とした比較例と比べて、剥離応力を低減でき、特に、接合部分の接着領域が狭まる表面付近での剥離応力を効果的に緩和することができる。   Moreover, as shown also in the simulation mentioned later, in this embodiment, by forming each side surface 11c-11f of the glass member 11 and each side wall part 20c-20f of the frame 20 with the inclined surfaces 13 and 14, each side surface and each each Compared to the conventional example in which the side wall portion is a vertical surface, the peeling stress acting on the joint portion between the glass member 11 and the frame body 20 can be effectively reduced. In addition, in the present embodiment, each of the adjacent glass members 11 is adjacent to each other. A comparative example in which the side walls 11c to 11f and the adjacent side wall parts 20c to 20f of the frame 20 are arcuate corner parts 15 to 18 and 25 to 28, so that the corner parts are not arcuate and have an angular shape. As compared with the above, it is possible to reduce the peeling stress, and in particular, it is possible to effectively relieve the peeling stress in the vicinity of the surface where the bonding region of the joint portion is narrowed.

図6に示す部分平面図(ガラス複合体を表面側からみた一部)は、別の実施形態を示すものであり、図6では、ガラス部材11の円弧状コーナー部33と、枠体20の円弧状コーナー部34とを同じ円弧半径で形成している。このような構成も実施形態の一例であるが、内側に位置するガラス部材11の円弧状コーナー部33と、外側に位置する枠体20の円弧状コーナー部34とを同じ円弧半径とすると、図6に示すように、ガラス部材11と枠体20との間に広い空間幅t3と、空間幅t3よりも狭まる空間幅t4が生じ、これら空間幅t3,t4の差が大きくなりやすい。このため、接着部材30が隙間40の全域にスムースに流入せず、接着部材30のない空隙部分ができやすいなど接合状態が不安定になることがある。   The partial plan view shown in FIG. 6 (a part of the glass composite viewed from the surface side) shows another embodiment. In FIG. 6, the arcuate corner portion 33 of the glass member 11 and the frame body 20 are shown. The arcuate corner portion 34 is formed with the same arc radius. Such a configuration is also an example of the embodiment. However, when the arcuate corner portion 33 of the glass member 11 located on the inner side and the arcuate corner portion 34 of the frame body 20 located on the outer side have the same arc radius, FIG. As shown in FIG. 6, a wide space width t3 and a space width t4 narrower than the space width t3 are generated between the glass member 11 and the frame body 20, and the difference between the space widths t3 and t4 tends to increase. For this reason, the bonding member 30 may not flow smoothly over the entire gap 40, and the bonding state may become unstable, for example, a void portion without the bonding member 30 may be easily formed.

よって、図1〜図3に示すように、枠体20側の各円弧状コーナー部25〜28を、ガラス部材11側の各円弧状コーナー部15〜18よりも大きい半径の円弧状で形成することが好ましい。これにより、ガラス部材11の各円弧状コーナー部15〜18と枠体20の各円弧状コーナー部25〜28との間の隙間40から各側面11c〜11fと各側壁部20c〜20f間の隙間40にかけて略一定間隔にでき、剥離応力の低減を図るとともに接着部材30をガラス部材11と枠体20との間の隙間40に適切に充填でき、良好な接合状態を保つことができる。   Accordingly, as shown in FIGS. 1 to 3, the arc-shaped corner portions 25 to 28 on the frame body 20 side are formed in an arc shape having a larger radius than the arc-shaped corner portions 15 to 18 on the glass member 11 side. It is preferable. Thereby, the clearance gap between each side surface part 11c-11f and each side wall part 20c-20f from the clearance gap 40 between each arcuate corner part 15-18 of the glass member 11, and each arcuate corner part 25-28 of the frame 20 is demonstrated. 40, the separation stress can be reduced and the adhesive member 30 can be appropriately filled in the gap 40 between the glass member 11 and the frame body 20, and a good bonded state can be maintained.

また本実施形態では、例えばガラス部材11の各円弧状コーナー部15〜18を、表面11aから裏面11bにかけて図3に示す一定の円弧半径r1で形成し、枠体20の各円弧状コーナー部25〜28を、表面20aから裏面20bにかけて図3に示す一定の円弧半径r1やr4で形成することもできるが、図3に示すように、各円弧状コーナー部15,25(16〜18、26〜28)を、表面から裏面にかけて厚さ方向(Z)に平行な軸O1を中心軸とした同心円の円弧で形成することで、効果的に剥離応力(内部残留応力)を低減できる。   In the present embodiment, for example, the arc-shaped corner portions 15 to 18 of the glass member 11 are formed from the front surface 11a to the back surface 11b with the constant arc radius r1 shown in FIG. Can be formed with the constant arc radii r1 and r4 shown in FIG. 3 from the front surface 20a to the back surface 20b. However, as shown in FIG. 3, the arc-shaped corner portions 15, 25 (16-18, 26) are formed. ˜28) are formed by concentric circular arcs with the axis O1 parallel to the thickness direction (Z) from the front surface to the back surface as the central axis, the peeling stress (internal residual stress) can be effectively reduced.

また、図3に示したような同心円の円弧状とせず、ガラス部材11側の各円弧状コーナー部15〜18及び、枠体20側の各円弧状コーナー部25〜28を表面から裏面にかけて徐々に円弧半径が大きくなるように形成することも可能であるが、図3に示す各円弧状コーナー部を表面から裏面にかけて同心円の円弧状で形成することで、効果的に円弧状コーナー部での剥離応力を低減できるとともに加工がしやすくなり、生産コストの低減を図ることができる。   Further, the concentric circular arcs as shown in FIG. 3 are not formed, but the respective arc-shaped corner portions 15 to 18 on the glass member 11 side and the respective arc-shaped corner portions 25 to 28 on the frame body 20 side are gradually formed from the front surface to the back surface. 3 can be formed so that the arc radius becomes large, but by forming each arc corner portion shown in FIG. 3 in a concentric arc shape from the front surface to the back surface, the arc corner portion can be effectively formed. Peeling stress can be reduced and processing can be facilitated, and production costs can be reduced.

また、ガラス部材11側の各円弧状コーナー部15〜18を同心円の円弧状で形成するための軸O1〜O4と、枠体20側の各円弧状コーナー部25〜28を同心円の円弧状で形成するための軸O1〜O4とが、多少、平面方向にずれた状態であってもよい。ただし、外側に位置する枠体20の各円弧状コーナー部25〜28の円弧半径のほうが、内側に位置するガラス部材11の各円弧状コーナー部15〜18の円弧半径よりも大きくなるように設定する。   Further, the axes O1 to O4 for forming the arcuate corner portions 15 to 18 on the glass member 11 side in a concentric arc shape, and the arcuate corner portions 25 to 28 on the frame 20 side in a concentric arc shape. The axes O1 to O4 for formation may be slightly shifted in the plane direction. However, the arc radii of the arcuate corner portions 25 to 28 of the frame body 20 located on the outside are set to be larger than the arc radii of the arcuate corner portions 15 to 18 of the glass member 11 located on the inside. To do.

また本実施形態では、図2、図3に示すように、ガラス部材11の各表縁部11a1〜11a4と、枠体20の貫通孔21の各表縁部20a1〜20a4との間にギャップGが形成されていることが好ましい。これにより、各側面11c〜11fと、各側壁部20c〜20fとの間が表面側にて接触した状態よりも効果的に剥離応力を低減させることができ、特に表面付近の接合部分にて生じる剥離応力を効果的に低減できる。   In the present embodiment, as shown in FIGS. 2 and 3, a gap G is formed between each surface edge portion 11 a 1 to 11 a 4 of the glass member 11 and each surface edge portion 20 a 1 to 20 a 4 of the through hole 21 of the frame body 20. Is preferably formed. Thereby, it is possible to reduce the peeling stress more effectively than the state in which the side surfaces 11c to 11f and the side wall portions 20c to 20f are in contact with each other on the surface side, and particularly occurs at the joint portion near the surface. The peeling stress can be effectively reduced.

また本実施形態では、ガラス部材11の表面11aと枠体20の表面20aとが同一面で形成されることが好ましい。例えば後述するシミュレーションで示すように、枠体20がガラス部材11の表面11aに乗り上げてしまう構成に比べて、効果的に剥離応力の低減を図ることができる。   Moreover, in this embodiment, it is preferable that the surface 11a of the glass member 11 and the surface 20a of the frame 20 are formed in the same plane. For example, as shown in a simulation described later, the peeling stress can be effectively reduced as compared with a configuration in which the frame body 20 rides on the surface 11a of the glass member 11.

寸法について説明する。
図1(a)(b)に示すガラス部材11の幅寸法(X1−X2方向の寸法)は、60〜110mm程度であり、長さ寸法(Y1−Y2方向の寸法)は、40〜60mm程度である。また、ガラス部材11の厚さ寸法は、0.5〜1.5mm程度である。またガラス部材11の各側面11c〜11fの傾斜角θ1は、30〜60°程度である。
The dimensions will be described.
The width dimension (dimension in the X1-X2 direction) of the glass member 11 shown in FIGS. 1A and 1B is about 60 to 110 mm, and the length dimension (dimension in the Y1-Y2 direction) is about 40 to 60 mm. It is. Moreover, the thickness dimension of the glass member 11 is about 0.5-1.5 mm. The inclination angle θ1 of each side surface 11c to 11f of the glass member 11 is about 30 to 60 °.

また、枠体20の外周の幅寸法(X1−X2方向の寸法)は、80〜130mm程度であり、外周の長さ寸法(Y1−Y2方向の寸法)は、50〜70mm程度である。また、枠体20の厚さ寸法は、0.5〜1.5mm程度である。また枠体20に形成された貫通孔21の幅寸法(X1−X2方向の寸法)は、80〜130mm程度であり、長さ寸法(Y1−Y2方向の寸法)は、50〜70mm程度である。また、枠体20の各側壁部20c〜20fの傾斜角θ2は、20〜50°程度である。   Further, the width dimension (dimension in the X1-X2 direction) of the outer periphery of the frame body 20 is about 80 to 130 mm, and the length dimension of the outer circumference (dimension in the Y1-Y2 direction) is about 50 to 70 mm. Moreover, the thickness dimension of the frame 20 is about 0.5-1.5 mm. Further, the width dimension (dimension in the X1-X2 direction) of the through hole 21 formed in the frame body 20 is about 80 to 130 mm, and the length dimension (dimension in the Y1-Y2 direction) is about 50 to 70 mm. . In addition, the inclination angle θ2 of each of the side wall portions 20c to 20f of the frame body 20 is about 20 to 50 °.

またギャップ寸法t1(図2(a)参照)は、0μmより大きく150μm以下程度であり、ガラス複合体10の裏面側に形成された空間幅t2(図2(b)参照)は、ギャップ寸法t1よりも大きくされる。   The gap dimension t1 (see FIG. 2A) is greater than 0 μm and not more than about 150 μm, and the space width t2 (see FIG. 2B) formed on the back side of the glass composite 10 is the gap dimension t1. Larger than.

また、図3に示すガラス部材11の各円弧状コーナー部15〜18の表面側での円弧半径r1は、0mmより大きければよく、またガラス部材11の各円弧状コーナー部15〜18の裏面側での円弧半径r2は、円弧半径r1以上であることが好ましく、円弧半径r1より大きいことがより好ましい。また、枠体20の各円弧状コーナー部25〜28の表面側での円弧半径r4は、円弧半径r1以上であることが好ましく、円弧半径r1よりも大きいことがより好ましい。また枠体20の各円弧状コーナー部25〜28の裏面側での円弧半径r5は、円弧半径r4以上であることが好ましく、円弧半径r4よりも大きいことがより好ましい。   Further, the arc radius r1 on the surface side of each arcuate corner portion 15 to 18 of the glass member 11 shown in FIG. 3 only needs to be larger than 0 mm, and the back surface side of each arcuate corner portion 15 to 18 of the glass member 11. The arc radius r2 at is preferably greater than or equal to the arc radius r1, and more preferably greater than the arc radius r1. Further, the arc radius r4 on the surface side of each arc-shaped corner portion 25 to 28 of the frame 20 is preferably equal to or greater than the arc radius r1, and more preferably larger than the arc radius r1. Further, the arc radius r5 on the back surface side of each arc-shaped corner portion 25 to 28 of the frame 20 is preferably not less than the arc radius r4, and more preferably larger than the arc radius r4.

図4(a)は、本実施形態におけるガラス複合体10を用いた入力装置1、及び入力装置1を用いた電子機器2の部分縦断面図である。   FIG. 4A is a partial longitudinal sectional view of the input device 1 using the glass composite 10 and the electronic apparatus 2 using the input device 1 in the present embodiment.

図4(a)に示すようにガラス複合体10の裏面10bには、センサ部材3が設けられる。センサ部材3は、例えばフィルム状の静電容量型センサである。センサ部材3とガラス複合体10間は透明な粘着層を介して接合されている。センサ部材3の構成は特に限定されるものでなく、例えば透明基材の表面にITO等からなる電極が配置された構成である。入力装置1(電子機器2)の入力操作面1aを指等の操作体で操作すると、その操作位置(XY座標位置)は、センサ部材3の静電容量変化に基づいて、検出することが可能になっている。   As shown in FIG. 4A, the sensor member 3 is provided on the back surface 10 b of the glass composite 10. The sensor member 3 is, for example, a film-like capacitive sensor. The sensor member 3 and the glass composite 10 are joined via a transparent adhesive layer. The structure of the sensor member 3 is not specifically limited, For example, it is the structure by which the electrode which consists of ITO etc. is arrange | positioned on the surface of a transparent base material. When the input operation surface 1a of the input device 1 (electronic device 2) is operated with an operating body such as a finger, the operation position (XY coordinate position) can be detected based on a change in capacitance of the sensor member 3. It has become.

図4に示すように、入力装置1の裏面側には、液晶ディスプレイ(LCD)等の表示装置4が配置されており、表示装置4の表示形態を入力装置1の入力操作面1aから見ることができ、本実施形態では入力操作面1aに映し出された表示形態を見ながら入力操作を可能としている。   As shown in FIG. 4, a display device 4 such as a liquid crystal display (LCD) is disposed on the back side of the input device 1, and the display form of the display device 4 is viewed from the input operation surface 1 a of the input device 1. In this embodiment, the input operation can be performed while viewing the display form projected on the input operation surface 1a.

図4(b)に示す入力装置1では、ガラス複合体10の裏面に加飾層5が設けられている。加飾層5は非透光性材質でガラス複合体10の裏面に印刷形成されたものである。加飾層5は、枠体20の裏面、あるいは枠体20の裏面からガラス部材11の裏面の外周部分にかけて形成される。厚さ方向(Z)に加飾層5が設けられていないガラス部材11の部分が表示部とされる。図4(b)に示す入力装置1の裏面に図4(a)と同様に表示装置4を配置して電子機器2を構成することができる。   In the input device 1 shown in FIG. 4B, the decorative layer 5 is provided on the back surface of the glass composite 10. The decorative layer 5 is a non-translucent material printed on the back surface of the glass composite 10. The decorative layer 5 is formed from the back surface of the frame body 20 or from the back surface of the frame body 20 to the outer peripheral portion of the back surface of the glass member 11. The part of the glass member 11 in which the decoration layer 5 is not provided in the thickness direction (Z) is the display unit. The electronic device 2 can be configured by arranging the display device 4 on the back surface of the input device 1 shown in FIG.

図5(a)に示す別の実施形態のガラス複合体10では、枠体20(上枠)の裏面に下枠42が設けられている。下枠42にも枠体20と同様に貫通孔43が設けられているが、貫通孔43の大きさは枠体20に設けられた貫通孔21の大きさよりも小さくなっている。図5(a)の構成により、ガラス部材11の裏面を下枠42により支持することができる。   In the glass composite 10 of another embodiment shown in FIG. 5A, a lower frame 42 is provided on the back surface of the frame 20 (upper frame). The lower frame 42 is provided with a through hole 43 as in the case of the frame body 20, but the size of the through hole 43 is smaller than the size of the through hole 21 provided in the frame body 20. With the configuration of FIG. 5A, the back surface of the glass member 11 can be supported by the lower frame 42.

図5(b)の構成では、枠体20にはガラス部材11の裏面にまで延出する延出部46が一体的に形成されている。これにより、ガラス部材11の裏面を延出部46により支持することができる。   In the configuration of FIG. 5B, the frame body 20 is integrally formed with an extending portion 46 that extends to the back surface of the glass member 11. Thereby, the back surface of the glass member 11 can be supported by the extending portion 46.

また、センサ部材3や加飾層5、図示しない表面部材(表面フィルム)をガラス複合体10のガラス部材11の表面11a及び枠体20の表面20aに配置することも可能である。   Moreover, it is also possible to arrange | position the sensor member 3, the decoration layer 5, and the surface member (surface film) which is not shown in figure on the surface 11a of the glass member 11 of the glass complex 10, and the surface 20a of the frame 20.

図7は、図1、図2のガラス複合体10の変形例を示す別の実施形態の斜視図、図8は図7のE−E線で切断した模式断面図である。図1及び図2に示すガラス複合体10は、入力装置1を構成する基材であり、携帯電話、携帯用のゲーム装置などに使用される。   FIG. 7 is a perspective view of another embodiment showing a modification of the glass composite body 10 of FIGS. 1 and 2, and FIG. 8 is a schematic cross-sectional view cut along the line EE of FIG. A glass composite 10 shown in FIGS. 1 and 2 is a base material constituting the input device 1, and is used for a mobile phone, a portable game device, and the like.

図7に示すように、ガラス複合体10は、ガラス部材11とガラス部材11を囲む領域が枠体20とを有して形成される。ガラス部材11は枠体20に接着部材30を介して固定されている。図7及び図8に示すように、接着部材30を充填可能な隙間40が設けられている。ガラス部材11は透光性であり、表示光を透過させることができる。   As shown in FIG. 7, the glass composite 10 is formed such that a glass member 11 and a region surrounding the glass member 11 have a frame body 20. The glass member 11 is fixed to the frame body 20 via an adhesive member 30. As shown in FIGS. 7 and 8, a gap 40 that can be filled with the adhesive member 30 is provided. The glass member 11 is translucent and can transmit display light.

一方、枠体20は透光性部材を用いており、その一部が着色されている。枠体20は金型に熱可塑性樹脂を充填して成形したものである。図7に示すように、枠体20には開口21、22が設けられている。開口21は受話口として、開口22は送話口として、ガラス部材11の領域は表示部として、携帯電話の筐体に適用することが可能である。また枠体20は、周囲端部が表面側から裏面側に向けて屈曲部と、屈曲部に連なる側部を有している。なお、この場合、マイクロホン、スピーカ、液晶表示装置はガラス複合体10の裏面側に配設される。   On the other hand, the frame 20 uses a translucent member, and a part thereof is colored. The frame 20 is formed by filling a mold with a thermoplastic resin. As shown in FIG. 7, the frame body 20 is provided with openings 21 and 22. The opening 21 can be used as a mouthpiece, the opening 22 as a mouthpiece, and the region of the glass member 11 as a display unit. In addition, the frame body 20 has a bent portion and a side portion that is continuous with the bent portion from the front surface side toward the back surface side. In this case, the microphone, the speaker, and the liquid crystal display device are disposed on the back side of the glass composite 10.

図9は、図8の変形例の他の実施形態のガラス複合体10を用いた入力装置2の模式断面図である。図9に示すようにガラス複合体10の裏面10bには、センサ部材3が設けられる。センサ部材3は例えばフィルム状の静電容量型センサである。センサ部材3とガラス複合体10との間は、透明な粘着層を介して接合されている。センサ部材3の構成は特に限定されるものではなく、例えば透明基材の表面にITO等からなる電極が配置された構成である。入力装置の入力操作面1aを指等の操作体で操作すると、その操作位置(XY座標位置)は、センサ部材3の静電容量変化に基づいて、検出することが可能になっている。また枠体20(上枠)の裏側に、枠体20(上枠)とは別体で形成された下枠42が設けられている。下枠42にも枠体20と同様に貫通孔43が設けられているが、貫通孔43の大きさは枠体20に設けられた貫通孔21よりも小さくなっている。 図9の構成により、ガラス部材11の裏面11b、隙間40内の接着部材30、枠体20(上枠)の裏面20bを、センサ部材3を介して下枠42により支持し、ガラス部材11と枠体20との接合強度を補強することができる。下枠42は、粘着層を介してガラス複合体10に接合されている。またセンサ部材3がフィルム状で形成され、ガラス部材11の裏面11b、隙間40内の接着部材30、枠体20(上枠)の裏面20bにわたって形成されている場合には、ガラス部材11と枠体20との接合強度を補強することができる。   FIG. 9 is a schematic cross-sectional view of the input device 2 using the glass composite 10 of another embodiment of the modification of FIG. As shown in FIG. 9, the sensor member 3 is provided on the back surface 10 b of the glass composite 10. The sensor member 3 is, for example, a film-like capacitive sensor. The sensor member 3 and the glass composite 10 are joined via a transparent adhesive layer. The structure of the sensor member 3 is not specifically limited, For example, it is the structure by which the electrode which consists of ITO etc. is arrange | positioned on the surface of a transparent base material. When the input operation surface 1 a of the input device is operated with an operation body such as a finger, the operation position (XY coordinate position) can be detected based on the change in the capacitance of the sensor member 3. Further, a lower frame 42 formed separately from the frame body 20 (upper frame) is provided on the back side of the frame body 20 (upper frame). The lower frame 42 is provided with a through hole 43 as in the case of the frame body 20, but the size of the through hole 43 is smaller than that of the through hole 21 provided in the frame body 20. 9, the back surface 11b of the glass member 11, the adhesive member 30 in the gap 40, and the back surface 20b of the frame body 20 (upper frame) are supported by the lower frame 42 via the sensor member 3, and the glass member 11 The bonding strength with the frame body 20 can be reinforced. The lower frame 42 is joined to the glass composite 10 via an adhesive layer. When the sensor member 3 is formed in a film shape and is formed over the back surface 11b of the glass member 11, the adhesive member 30 in the gap 40, and the back surface 20b of the frame 20 (upper frame), the glass member 11 and the frame are formed. The bonding strength with the body 20 can be reinforced.

ガラス複合体10の製造方法について図10を用いて説明する。
まず、図1(c)(d)に示す枠体20を上下180度、反転させた状態で(すなわち表面20aを下側、裏面20bを上側として)、図10に示す受け台97の平坦面97a上に設置する。このため、受け台97上に枠体20を設置した状態では、枠体20の貫通孔21は下面側から上面側に向けて徐々に広がっている。
The manufacturing method of the glass composite 10 is demonstrated using FIG.
First, in a state where the frame body 20 shown in FIGS. 1C and 1D is inverted 180 degrees up and down (that is, the front surface 20a is the lower side and the rear surface 20b is the upper side), the flat surface of the cradle 97 shown in FIG. Install on 97a. For this reason, in a state where the frame body 20 is installed on the cradle 97, the through hole 21 of the frame body 20 gradually spreads from the lower surface side toward the upper surface side.

続いて、図1(a)(b)に示すガラス部材11を、枠体20と同様に、上下180度、反転させた状態にして(すなわち表面11aを下側、裏面11bを上側にして)、枠体20の貫通孔21内に挿入する。   Subsequently, the glass member 11 shown in FIGS. 1A and 1B is turned upside down 180 degrees in the same manner as the frame body 20 (that is, the front surface 11a is on the lower side and the back surface 11b is on the upper side). Then, it is inserted into the through hole 21 of the frame body 20.

このとき、図1を用いて説明したように、枠体20の貫通孔21を囲む各側壁部20c〜20fの第2の傾斜角θ2は、ガラス部材11の各側面11c〜11fの第1の傾斜角θ1よりも緩やかであり、貫通孔21がガラス部材11よりも大きく形成されているため、ガラス部材11を枠体20の貫通孔21内に無理なく挿入できる。また本実施形態であれば、ガラス部材11の中心と枠体20の貫通孔21の中心とが多少ずれた状態でガラス部材11を貫通孔21に挿入しても、ガラス部材11の側面が貫通孔21の側壁部にガイドされて移動し、ガラス部材11を貫通孔21内に適切に挿入できる。これにより、ガラス部材11の表面11aと枠体20の表面20aとを同一平面に一致させることができる。   At this time, as described with reference to FIG. 1, the second inclination angle θ <b> 2 of the side wall portions 20 c to 20 f surrounding the through hole 21 of the frame body 20 is the first inclination angle of the side surfaces 11 c to 11 f of the glass member 11. Since it is gentler than the inclination angle θ1 and the through hole 21 is formed larger than the glass member 11, the glass member 11 can be inserted into the through hole 21 of the frame body 20 without difficulty. Moreover, if it is this embodiment, even if it inserts the glass member 11 in the through-hole 21 in the state in which the center of the glass member 11 and the center of the through-hole 21 of the frame 20 shifted | deviated somewhat, the side surface of the glass member 11 penetrated The glass member 11 can be guided and moved by the side wall portion of the hole 21, and can be appropriately inserted into the through hole 21. Thereby, the surface 11a of the glass member 11 and the surface 20a of the frame 20 can be made to correspond to the same plane.

ガラス部材11の各側面11c〜11fの表面側の縁部11a1〜11a4と、枠体20の各側壁部20c〜20fの表面側の縁部20a1〜20a4との間にはギャップGが形成された状態になる(図2(a)、図3等参照)。また、ガラス部材11の各側面11c〜11fと、枠体20の各側壁部20c〜20fとに挟まれた隙間40を形成でき、この隙間40内に接着部材30を充填することで、ガラス部材11の各側面11c〜11fと枠体20の各側壁部20c〜20f間を接合することが出来る。   A gap G was formed between the edge portions 11a1 to 11a4 on the surface side of the side surfaces 11c to 11f of the glass member 11 and the edge portions 20a1 to 20a4 on the surface side of the side wall portions 20c to 20f of the frame body 20. It will be in a state (refer to Drawing 2 (a), Drawing 3, etc.). Moreover, the clearance gap 40 pinched | interposed between each side surface 11c-11f of the glass member 11 and each side wall part 20c-20f of the frame 20 can be formed, and the glass member is filled with the adhesive member 30 in this clearance gap 40. 11 side surfaces 11c to 11f and the side wall portions 20c to 20f of the frame body 20 can be joined.

ここで図10に示すように、ガラス部材11を枠体20の貫通孔21内に挿入する前に、接着部材30を、予めガラス部材11の各側面11c〜11f(あるいは枠体20の各側壁部20c〜20f)に塗布しておいてもよいし、または、ガラス部材11を枠体20の貫通孔21内に挿入した後、隙間40内に接着部材30を充填してもよい。   Here, as shown in FIG. 10, before the glass member 11 is inserted into the through hole 21 of the frame body 20, the adhesive member 30 is preliminarily attached to the side surfaces 11 c to 11 f of the glass member 11 (or each side wall of the frame body 20. Alternatively, the adhesive member 30 may be filled in the gap 40 after the glass member 11 is inserted into the through hole 21 of the frame body 20.

接着部材30には、常温硬化型や熱硬化併用型の紫外線硬化樹脂を用いることができる。
よって接着部材30の充填後、紫外線照射、あるいは紫外線照射と加熱硬化を行う。
The adhesive member 30 can be a room temperature curing type or a thermosetting combined type ultraviolet curing resin.
Therefore, after the adhesive member 30 is filled, ultraviolet irradiation, or ultraviolet irradiation and heat curing are performed.

本実施形態によれば、ガラス部材11の各側面11c〜11d間、及び枠体20の貫通孔21の各側壁部20c〜20f間を、円弧状コーナー部15〜18,25〜28で構成した。これにより、各側面11c〜11fと各側壁部20c〜20f間から、各円弧状コーナー部15〜18,25〜28間にかけて簡単且つ満遍なく接着部材30を充填することができる。   According to this embodiment, between each side surface 11c-11d of the glass member 11, and between each side wall part 20c-20f of the through-hole 21 of the frame 20, it comprised with the circular-arc-shaped corner parts 15-18, 25-28. . As a result, the adhesive member 30 can be filled easily and evenly between the side surfaces 11c to 11f and the side wall portions 20c to 20f and between the arcuate corner portions 15 to 18 and 25 to 28.

特に、枠体20側の各円弧状コーナー部25〜28を、ガラス部材11側の各円弧状コーナー部15〜18よりも大きい半径の円弧で形成し、さらに、各円弧状コーナー部15〜18,25〜28を同心円状の円弧で形成することで、各側面11c〜11fと各側壁部20c〜20f間から各円弧状コーナー部15〜18,25〜28間にかけて空間幅が急激に変化する箇所を無くすことができ、接着部材30を隙間40内に満遍なく流入させることができ、ガラス部材11と枠体20との間を接着部材30により適切に接合することができる。   In particular, the arc-shaped corner portions 25 to 28 on the frame body 20 side are formed by arcs having a larger radius than the arc-shaped corner portions 15 to 18 on the glass member 11 side, and the arc-shaped corner portions 15 to 18 are further formed. , 25 to 28 are formed by concentric circular arcs, and the space width changes abruptly from the side surfaces 11c to 11f and the side wall portions 20c to 20f to the arc-shaped corner portions 15 to 18 and 25 to 28. The location can be eliminated, the adhesive member 30 can be evenly introduced into the gap 40, and the glass member 11 and the frame body 20 can be appropriately joined by the adhesive member 30.

(円弧状コーナー部の円弧半径の有限要素法によるシミュレーション)
まず、図11(a)に示す縦断面形状のガラス複合体10のモデルを作成し、有限要素法によるシミュレーションを行った。図11(a)に示すガラス複合体10は、図1等で示したガラス部材11と枠体20と、接着部材30とで構成される。ただし図11(a)では、ガラス部材11の表面側での各表縁部Dと、枠体20に形成された貫通孔21の各表縁部Eとが接している。このシミュレーションでは、ガラス部材11の各側面の傾斜角度θ1を45°、貫通孔21の各側壁部の傾斜角度θ2を25°に設定した。
(Simulation of arc radius of arc corner by finite element method)
First, a model of the glass composite 10 having a longitudinal cross-sectional shape shown in FIG. A glass composite 10 shown in FIG. 11A includes the glass member 11, the frame 20, and the adhesive member 30 shown in FIG. However, in FIG. 11A, each surface edge portion D on the surface side of the glass member 11 is in contact with each surface edge portion E of the through hole 21 formed in the frame body 20. In this simulation, the inclination angle θ1 of each side surface of the glass member 11 was set to 45 °, and the inclination angle θ2 of each side wall portion of the through hole 21 was set to 25 °.

シミュレーションに使用したガラス部材11の線膨張係数は、8ppm/Kで、枠体20の線膨張係数は、70ppm/Kであった。また、接着部材30には硬化後の線膨張係数が180ppm/Kのアクリル系接着剤を用いた。またガラス部材11の縦横長さを、60×40mmで形成し、厚さを0.75mmとした。また枠体20の外周の縦横長さを、80×52mmで形成し、厚さを0.75mmとした。また貫通孔21の縦横長さを、60×40mmとした。なお、ガラス部材、枠体及び接着部材の材質、寸法は、図12、図13、図15〜図17の全てのシミュレーションにおいて同じとした。なおギャップ寸法を変化させるシミュレーションでは、貫通孔21の縦横長さは、60×40mmを基本としてギャップ寸法に応じて変化させた。   The linear expansion coefficient of the glass member 11 used for the simulation was 8 ppm / K, and the linear expansion coefficient of the frame 20 was 70 ppm / K. For the adhesive member 30, an acrylic adhesive having a linear expansion coefficient after curing of 180 ppm / K was used. The length and width of the glass member 11 were 60 × 40 mm, and the thickness was 0.75 mm. Moreover, the length and width of the outer periphery of the frame body 20 were formed at 80 × 52 mm, and the thickness was set to 0.75 mm. The vertical and horizontal lengths of the through holes 21 were 60 × 40 mm. Note that the materials and dimensions of the glass member, the frame, and the adhesive member were the same in all simulations of FIGS. 12, 13, and 15 to 17. In the simulation for changing the gap size, the vertical and horizontal lengths of the through holes 21 were changed according to the gap size on the basis of 60 × 40 mm.

シミュレーションでは、図3に示す各コーナー部での円弧半径r1を0mm〜1mmの範囲で変化させた。なお、このシミュレーションでは、ガラス部材11の各コーナー部15〜18を、表面側から裏面側まで同じ一定の円弧半径r1として、0mm〜1mmの範囲で変化させた。同様に、枠体20側の各コーナー部も表面側から裏面側まで同じ一定の円弧半径r1として、0mm〜1mmの範囲で変化させた。なお、半径r1を0mmとした形態は、コーナー部が円弧状で形成されていない角張ったコーナー部であるため比較例1とし、半径r1を0mmよりも大きくしてコーナー部を円弧状で形成した構成を実施例とした。   In the simulation, the arc radius r1 at each corner shown in FIG. 3 was changed in the range of 0 mm to 1 mm. In this simulation, the corner portions 15 to 18 of the glass member 11 were changed from 0 mm to 1 mm as the same constant arc radius r1 from the front surface side to the back surface side. Similarly, each corner portion on the frame 20 side was also changed from 0 mm to 1 mm as the same constant arc radius r1 from the front surface side to the back surface side. The form in which the radius r1 is 0 mm is an angular corner portion in which the corner portion is not formed in an arc shape, so that it is Comparative Example 1, and the radius r1 is larger than 0 mm and the corner portion is formed in an arc shape. The configuration was taken as an example.

また比較例2として図11(b)に示すガラス複合体70のモデルを作成し有限要素法によるシミュレーションを行った。図11(b)に示すガラス複合体70では、ガラス部材71の各側面と枠体72に形成された貫通孔73の各側壁部とが垂直面で形成されている。比較例2においても、ガラス部材71の各側面間の各コーナー部、及び、枠体72側の各側壁部間の各コーナー部を、0mm〜1mmの範囲で変化させた円弧半径r1からなる円弧状で形成した。   Further, as Comparative Example 2, a model of the glass composite 70 shown in FIG. 11B was created, and a simulation by a finite element method was performed. In the glass composite 70 shown in FIG. 11B, each side surface of the glass member 71 and each side wall portion of the through hole 73 formed in the frame body 72 are formed as vertical surfaces. Also in the comparative example 2, each corner part between each side surface of the glass member 71 and each corner part between each side wall part on the frame body 72 side is a circle formed of an arc radius r1 in a range of 0 mm to 1 mm. It was formed in an arc shape.

また図11(b)におけるガラス部材71の各側面と枠体72の貫通孔73の各側壁部とは接している。   Further, each side surface of the glass member 71 in FIG. 11B is in contact with each side wall portion of the through hole 73 of the frame body 72.

シミュレーションでは、ガラス複合体10,70を80℃の環境下におき、接着部材30とガラス部材11,71との間であってコーナー部分に生じる剥離応力(内部残留応力)を解析した。その解析結果が図12に示されている。   In the simulation, the glass composites 10 and 70 were placed in an environment of 80 ° C., and the peeling stress (internal residual stress) generated between the adhesive member 30 and the glass members 11 and 71 at the corner portion was analyzed. The analysis result is shown in FIG.

図12に示す縦軸の「平均剥離応力」とは、表面側から裏面側に至る全域にて生じる剥離応力(内部残留応力:ガラスコーナー部の側面に垂直な引張残留応力)を平均化したものである。   The “average peel stress” on the vertical axis shown in FIG. 12 is an average of peel stress (internal residual stress: tensile residual stress perpendicular to the side surface of the glass corner) generated in the entire area from the front side to the back side. It is.

図12に示すように、実施例のほうが比較例1,2に比べて効果的に剥離応力を低減できることがわかった。また、円弧状コーナー部の円弧半径r1を大きくすることで比較例2においても、平均剥離応力が小さくなったが、本実施例では、同じ円弧半径r1でみたときに、比較例2よりも平均剥離応力を小さくすることができた。   As shown in FIG. 12, it was found that the example can reduce the peeling stress more effectively than the comparative examples 1 and 2. Further, by increasing the arc radius r1 of the arcuate corner portion, the average peel stress was reduced also in Comparative Example 2, but in this example, when viewed at the same arc radius r1, the average was greater than that of Comparative Example 2. The peel stress could be reduced.

ただし図12のシミュレーションでは、平均剥離応力としたため、実施例において、ガラス部材11と接着部材30との界面の表面付近に作用する剥離応力がどの程度であるか解析するため表面から裏面にかけて厚さ比率で20%の範囲内における接着部材30とガラス部材11間の剥離応力を解析した。その解析結果が図13に示されている。   However, since the average peel stress is used in the simulation of FIG. 12, in the example, the thickness from the front surface to the back surface is analyzed in order to analyze the extent of the peel stress acting near the surface of the interface between the glass member 11 and the adhesive member 30. The peel stress between the adhesive member 30 and the glass member 11 within a range of 20% by ratio was analyzed. The analysis result is shown in FIG.

図13に示すように実施例において、円弧状コーナー部の円弧半径r1を大きくすることで効果的に表面付近に作用する接着部材30とガラス部材11間の剥離応力を低減できることがわかった。   As shown in FIG. 13, it was found that the peeling stress between the adhesive member 30 and the glass member 11 acting near the surface can be effectively reduced by increasing the arc radius r1 of the arc corner portion in the example.

(ギャップ寸法のシミュレーション)
次に図14(a)に示すガラス複合体60(有限要素法によるシミュレーションのモデル1))を作成した。図14(a)では、ガラス部材61と枠体62との間が接着部材63により接合される。ガラス部材61の各側面及び枠体62の各側壁部の傾斜面の傾斜角度θ1,θ2を、夫々45°、及び25°とした。図14(a)に示すように、ガラス部材61の表面61aと枠体62の表面62aとは同一面で形成される。
(Gap dimension simulation)
Next, a glass composite 60 (simulation model 1 by the finite element method) shown in FIG. In FIG. 14A, the glass member 61 and the frame body 62 are joined by the adhesive member 63. The inclination angles θ1 and θ2 of the inclined surfaces of the side surfaces of the glass member 61 and the side walls of the frame body 62 were set to 45 ° and 25 °, respectively. As shown to Fig.14 (a), the surface 61a of the glass member 61 and the surface 62a of the frame 62 are formed in the same surface.

シミュレーションでは、ガラス部材61と枠体62との表面側に形成されるギャップ寸法を0〜0.1mmの範囲内で変化させた。   In the simulation, the gap dimension formed on the surface side of the glass member 61 and the frame body 62 was changed within a range of 0 to 0.1 mm.

またガラス部材61の各円弧状コーナー部を表面61aから裏面61bにかけて一定の円弧半径0.6mmで形成し、枠体62の各円弧状コーナー部を表面62aから裏面62bにかけて一定の円弧半径0.75mmとした。   Further, each arc-shaped corner portion of the glass member 61 is formed with a constant arc radius of 0.6 mm from the front surface 61a to the back surface 61b, and each arc-shaped corner portion of the frame body 62 is formed with a constant arc radius of 0.1 mm from the front surface 62a to the back surface 62b. 75 mm.

また、図14(b)に示すガラス複合体64(有限要素法によるシミュレーションのモデル2)は、ガラス部材61や枠体62の構成は図14(a)に示したガラス複合体60と同じであるが、枠体62がガラス部材61の表面61aに乗り上げた状態であり、枠体62の表面62aとガラス部材61の表面61aとが同一面で形成されていない。図14(b)では、乗り上げ幅を0〜0.1mmの範囲としてシミュレーションを行った。また、ガラス部材61の各円弧状コーナー部と枠体62の各円弧状コーナー部の各円弧半径はモデル1と同様とした。なお、図15、図16のグラフでは横軸のギャップ寸法がマイナス値として示される。   Moreover, the glass composite 64 (simulation model 2 by the finite element method) shown in FIG. 14B is the same as the glass composite 60 shown in FIG. 14A in the configuration of the glass member 61 and the frame 62. However, the frame body 62 rides on the surface 61a of the glass member 61, and the surface 62a of the frame body 62 and the surface 61a of the glass member 61 are not formed on the same plane. In FIG. 14B, the simulation was performed with the riding width in the range of 0 to 0.1 mm. Further, the arc radii of the arc-shaped corner portions of the glass member 61 and the arc-shaped corner portions of the frame body 62 are the same as those of the model 1. In the graphs of FIGS. 15 and 16, the gap dimension on the horizontal axis is shown as a negative value.

また、図14(c)に示すガラス複合体65(有限要素法によるシミュレーションのモデル3)は、図11(b)と同様に側面及び側壁部が垂直面とされたガラス部材66及び枠体67で構成される。そしてシミュレーションでは、ガラス部材61と枠体62との表面側に形成されるギャップ寸法を0〜0.1mmの範囲内で変化させた。また、ガラス部材61の各円弧状コーナー部と枠体62の各円弧状コーナー部の各円弧半径はモデル1と同様とした。   Further, a glass composite 65 (simulation model 3 by the finite element method) shown in FIG. 14C is a glass member 66 and a frame 67 whose side surfaces and side walls are vertical surfaces as in FIG. 11B. Consists of. And in simulation, the gap dimension formed in the surface side of the glass member 61 and the frame 62 was changed within the range of 0-0.1 mm. Further, the arc radii of the arc-shaped corner portions of the glass member 61 and the arc-shaped corner portions of the frame body 62 are the same as those of the model 1.

図15に示す縦軸の「平均剥離応力」とは、表面側から裏面側に至る全域にて生じる接着部材とガラス部材のコーナー部との間での剥離応力(内部残留応力:ガラスコーナー部の側面に垂直な引張残留応力)を平均化したものである。   The “average peel stress” on the vertical axis shown in FIG. 15 is the peel stress (internal residual stress: of the glass corner portion) between the adhesive member and the corner portion of the glass member that occurs in the entire region from the front side to the back side. The tensile residual stress perpendicular to the side surface is averaged.

図15に示すように、ガラス部材66の各側面及び枠体67の各側壁部を垂直面としたモデル3では、モデル1に比べて剥離応力が非常に大きくなった。   As shown in FIG. 15, in the model 3 in which each side surface of the glass member 66 and each side wall portion of the frame body 67 are vertical surfaces, the peeling stress is much larger than that of the model 1.

次に、モデル1及びモデル2に対し、表面から裏面にかけて厚さ比率で20%の範囲内における接着部材とガラス部材間の剥離応力を解析した。その解析結果が図16に示されている。   Next, for the model 1 and the model 2, the peeling stress between the adhesive member and the glass member in the range of 20% in thickness ratio from the front surface to the back surface was analyzed. The analysis result is shown in FIG.

図16に示すようにモデル1のほうがモデル2よりも剥離応力を低減できることがわかった。   As shown in FIG. 16, it was found that the model 1 can reduce the peeling stress more than the model 2.

このように、ガラス部材の側面及び枠体の側壁部を傾斜面で形成し、且つ、表面側にギャップGを設けることで、接合部分での剥離応力を効果的に緩和できることがわかった。   Thus, it turned out that the peeling stress in a junction part can be relieve | moderated effectively by forming the side wall part of a glass member, and the side wall part of a frame with an inclined surface, and providing the gap G on the surface side.

(円弧状コーナー部を同心円状としたシミュレーション)
次に、図11(a)に示した実施例において、図3と同様に表面側から裏面側にかけて円弧状コーナー部が同心円の円弧状となるように円弧半径を大きくした(実施例1)。シミュレーションでは図3に示す円弧半径r1を0.6mmとしたとき、ガラス部材11の裏面側での円弧半径r2は、1.35mmであった。
(Simulation with arc-shaped corners concentric)
Next, in the example shown in FIG. 11 (a), the arc radius was increased so that the arc-shaped corner portion became a concentric arc shape from the front surface side to the back surface side as in FIG. 3 (Example 1). In the simulation, when the arc radius r1 shown in FIG. 3 is 0.6 mm, the arc radius r2 on the back surface side of the glass member 11 is 1.35 mm.

またシミュレーションでは、図3に示すギャップ寸法を0mm〜0.25mmの範囲内で変化ささせた。ギャップ寸法により適宜、枠体20側の円弧状コーナー部の円弧半径(図3に示す円弧半径r4,r5,r6)を調整した。   In the simulation, the gap dimension shown in FIG. 3 was changed within the range of 0 mm to 0.25 mm. The arc radius of the arc-shaped corner portion on the frame body 20 side (arc radii r4, r5, r6 shown in FIG. 3) was appropriately adjusted according to the gap size.

また、ガラス部材11側の円弧状コーナー部の円弧半径及び枠体20の側の円弧状コーナー部の円弧半径を夫々、0.6mmで一定にしたガラス複合体を作製した(実施例2)。   In addition, a glass composite was prepared in which the arc radius of the arc-shaped corner portion on the glass member 11 side and the arc radius of the arc-shaped corner portion on the frame body 20 side were constant at 0.6 mm (Example 2).

上記した実施例1及び実施例2を80℃の環境下におき、ギャップ寸法を0mm〜0.1mmの範囲内で変化させて、剥離応力をシミュレーションにより解析した。その解析結果が図17に示されている。図17での縦軸の剥離応力は、図12で説明した平均剥離応力である。   The above Example 1 and Example 2 were placed in an environment of 80 ° C., and the gap size was changed within a range of 0 mm to 0.1 mm, and the peeling stress was analyzed by simulation. The analysis result is shown in FIG. The peel stress on the vertical axis in FIG. 17 is the average peel stress described in FIG.

図17に示すように、ガラス部材11及び枠体20の円弧状コーナー部を同心円状とした実施例1とすることで、半径を一定とした実施例2に比べて平均剥離応力を小さくできることがわかった。   As shown in FIG. 17, the average peel stress can be reduced by using Example 1 in which the arcuate corners of the glass member 11 and the frame 20 are concentric, compared to Example 2 in which the radius is constant. all right.

また、実施例1において、ギャップ寸法を大きくすることで剥離応力を低減できることがわかった。   Moreover, in Example 1, it turned out that peeling stress can be reduced by enlarging a gap dimension.

G ギャップ
r1〜r6 円弧半径
1 入力装置
3 センサ部材
4 表示装置
5 加飾層
10 ガラス複合体
10a (ガラス複合体の)表面
10b (ガラス複合体の)裏面
11 ガラス部材
11c〜11f 側面
13、14 傾斜面
15〜18、25〜28 円弧状コーナー部
20 枠体
20c〜20f 側壁部
21 貫通孔
30 接着部材
G Gap r1 to r6 Arc radius 1 Input device 3 Sensor member 4 Display device 5 Decorating layer 10 Glass composite 10a (Glass composite) surface 10b (Glass composite) back surface 11 Glass members 11c to 11f Side surfaces 13, 14 Inclined surface 15-18, 25-28 Arc-shaped corner part 20 Frame 20c-20f Side wall part 21 Through-hole 30 Adhesive member

Claims (9)

ガラス部材と、前記ガラス部材の側方を支持する枠体と、前記ガラス部材と前記枠体とを接着する接着部材と、を有して、その表面に入力装置の入力操作面が形成されるガラス複合体であって、
前記ガラス複合体は、表面と裏面とを有し、前記ガラス部材の表面が、前記入力操作面となっており、
前記ガラス部材を構成する複数の側面および前記複数の側面と対向する枠体の複数の側壁部傾斜面を有し、前記側面と前記側壁部との間に、隙間が形成されて、前記接着部材が隙間内に充填されており、
前記隙間は、前記ガラス複合体の裏面側から表面側に向けて先細る形状で形成されるとともに、
隣り合う各側面間、及び隣り合う各側壁部間の夫々が、前記ガラス複合体の表面から裏面にわたって平面視で略円弧状となる円弧状コーナー部で構成されていることを特徴とするガラス複合体。
And the glass member, and a frame for supporting the side of the glass member, and have a, a bonding member for bonding the said frame body and said glass member, the input operation surface of the input device is formed on the surface A glass composite,
The glass composite has a front surface and a back surface, and the surface of the glass member is the input operation surface,
Said plurality of sidewalls of the plurality of sides and a plurality of side surfaces opposite to the frame body constituting the glass member has an inclined surface, between the side surface and the side wall portion, a gap is formed, the adhesive The member is filled in the gap,
The gap is formed by tapering shape toward the surface side from the back side of the glass composite Rutotomoni,
Between adjacent side surfaces, and each between the side walls adjacent, characterized in that it is constituted by an arcuate corner portion as a substantially arc shape in a plan view over the surface or found back surface of the glass composite Glass composite.
前記各側面間の円弧状コーナー部のほうが、前記各側壁部間の円弧状コーナー部よりも小さい円弧半径で形成される請求項1記載のガラス複合体。   The glass composite body according to claim 1, wherein the arc-shaped corner portion between the side surfaces is formed with a smaller arc radius than the arc-shaped corner portion between the side wall portions. 前記円弧状コーナー部は、前記ガラス複合体の表面から裏面にわたって、平面視で円弧半径が徐々に大きく形成される請求項2記載のガラス複合体。 The arcuate corner portions, across the surface or found back surface of said glass composite, glass composite of claim 2, wherein the arc radius in plan view is gradually larger. 前記円弧状コーナー部は、前記ガラス複合体の表面から裏面に向けた厚さ方向に平行な方向を中心軸とした同心円の円弧で形成される請求項3記載のガラス複合体。 The arcuate corner portion, the glass composite according to claim 3, wherein formed by arcs of concentric circles centered axis direction parallel to the thickness direction toward the surface or found back surface of the glass composite. 前記ガラス複合体の表面における前記側面と前記側壁部との間にギャップが形成されている請求項1ないし4のいずれか1項に記載のガラス複合体。 The glass composite according to any one of claims 1 to 4, wherein a gap is formed between the side surface and the side wall portion on the surface of the glass composite. 前記ガラス部材の表面と前記枠体の表面が、同一平面をなす請求項1ないし5のいずれか1項に記載のガラス複合体。 The glass composite according to any one of claims 1 to 5, wherein a surface of the glass member and a surface of the frame body are flush with each other. 前記枠体が、樹脂で形成される請求項1ないし6のいずれか1項に記載のガラス複合体。   The glass composite body according to any one of claims 1 to 6, wherein the frame body is formed of a resin. 請求項1ないし7のいずれか1項に記載されたガラス複合体と、前記ガラス複合体の裏面側に位置して、操作体で前記入力操作面上操作されたことを検出可能なセンサ部材と、を有することを特徴とする入力装置。 The glass composite according to any one of claims 1 to 7, and a sensor member that is located on a back surface side of the glass composite and that can detect that the input operation surface has been operated by an operating body. And an input device. 請求項8記載の入力装置の裏面側に、表示装置が配置されていることを特徴とする電子機器。   9. An electronic device, wherein a display device is disposed on the back side of the input device according to claim 8.
JP2012047009A 2012-03-02 2012-03-02 Glass composite, input device using glass composite, and electronic device Expired - Fee Related JP5996217B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012047009A JP5996217B2 (en) 2012-03-02 2012-03-02 Glass composite, input device using glass composite, and electronic device
TW101145866A TWI511107B (en) 2012-03-02 2012-12-06 Glass composites, input devices using glass composites, and electronic machines
KR1020130000728A KR101445476B1 (en) 2012-03-02 2013-01-03 Glass composite, input device using glass composite, and electronic device
CN201310038422.3A CN103294302B (en) 2012-03-02 2013-01-31 Glass composite, the input media using glass composite and electronic equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012047009A JP5996217B2 (en) 2012-03-02 2012-03-02 Glass composite, input device using glass composite, and electronic device

Publications (2)

Publication Number Publication Date
JP2013182200A JP2013182200A (en) 2013-09-12
JP5996217B2 true JP5996217B2 (en) 2016-09-21

Family

ID=49095295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012047009A Expired - Fee Related JP5996217B2 (en) 2012-03-02 2012-03-02 Glass composite, input device using glass composite, and electronic device

Country Status (4)

Country Link
JP (1) JP5996217B2 (en)
KR (1) KR101445476B1 (en)
CN (1) CN103294302B (en)
TW (1) TWI511107B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6244898B2 (en) * 2013-12-26 2017-12-13 凸版印刷株式会社 Touch-type information input image display device and information device
CN104317091A (en) * 2014-11-13 2015-01-28 合肥鑫晟光电科技有限公司 Touch liquid crystal display device and manufacturing method thereof
JP6638390B2 (en) * 2015-12-28 2020-01-29 株式会社Jvcケンウッド Package and image display device
JP6626191B2 (en) * 2016-04-04 2019-12-25 アルプスアルパイン株式会社 Capacitive sensor

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4742020A (en) * 1985-02-01 1988-05-03 American Telephone And Telegraph Company, At&T Bell Laboratories Multilayering process for stress accommodation in deposited polysilicon
EP0375232B1 (en) * 1988-12-21 1996-03-06 AT&T Corp. Growth-modified thermal oxidation process for thin oxides
JPH1065846A (en) * 1996-08-21 1998-03-06 Fuji Photo Film Co Ltd Original retainer
JPH10333150A (en) * 1997-05-28 1998-12-18 Matsushita Electric Ind Co Ltd Liquid crystal display device and its manufacture
JP3499419B2 (en) * 1997-11-11 2004-02-23 河口湖精密株式会社 Liquid crystal display
US6147388A (en) * 1997-11-24 2000-11-14 Lucent Technologies, Inc. Polycide gate structure with intermediate barrier
JPH11277742A (en) * 1998-03-31 1999-10-12 Ricoh Co Ltd Electrostatic actuator
JP2001100788A (en) * 1999-09-30 2001-04-13 Sony Corp Speech processor, speech processing method and recording medium
CN2473812Y (en) * 2001-04-29 2002-01-23 北京美富勤科技服务中心 Screen fixer for rear projection equipment
JP2002366046A (en) * 2001-06-11 2002-12-20 Seiko Epson Corp Display device and projection device using the same
JP2003302909A (en) * 2002-04-11 2003-10-24 Asahi Glass Co Ltd Structure for fitting protection plate of display device and protection plate
JP2005100333A (en) * 2003-09-04 2005-04-14 Alps Electric Co Ltd Coordinate input device, and liquid crystal display device and electronic apparatus comprising the same
JP4613663B2 (en) * 2005-03-30 2011-01-19 セイコーエプソン株式会社 Electro-optical device, method of manufacturing electro-optical device, and electronic apparatus
EP2066162B1 (en) * 2006-09-22 2012-02-22 Nissha Printing Co., Ltd. Method for manufacturing a housing case and glass insert molding die used in the method
US8023260B2 (en) * 2007-09-04 2011-09-20 Apple Inc. Assembly of an electronic device
BRPI0921298A2 (en) * 2008-11-17 2016-03-08 Sharp Kk display device
US8675147B2 (en) * 2008-12-26 2014-03-18 Nissha Printing Co., Ltd. Protection panel provided with touch input function for display window of electronic device, and manufacturing method therefor
JP2010205906A (en) * 2009-03-03 2010-09-16 Olympus Corp Sealing package
CN201497975U (en) * 2009-07-21 2010-06-02 深圳富泰宏精密工业有限公司 Capacitance type touch module
JP2011133829A (en) * 2009-12-25 2011-07-07 Sharp Corp Display device
JP2012047989A (en) * 2010-08-27 2012-03-08 Hitachi Consumer Electronics Co Ltd Display device
WO2012029347A1 (en) * 2010-09-03 2012-03-08 アルプス電気株式会社 Glass composite, electronic device using glass composite, and input device

Also Published As

Publication number Publication date
JP2013182200A (en) 2013-09-12
TW201340054A (en) 2013-10-01
KR20130100676A (en) 2013-09-11
TWI511107B (en) 2015-12-01
CN103294302A (en) 2013-09-11
CN103294302B (en) 2016-03-30
KR101445476B1 (en) 2014-09-26

Similar Documents

Publication Publication Date Title
JP4948686B2 (en) Glass composite, electronic device using glass composite, and input device
JP5779620B2 (en) Composite light guide plate and display device
JP5996217B2 (en) Glass composite, input device using glass composite, and electronic device
US9288294B2 (en) Handheld electronic device and method for assembling display panel thereof
JP5090553B2 (en) Surface panel and manufacturing method thereof
TW201741840A (en) Computer system with sensor operating functionality
TWI475281B (en) Touch display device
CN102923394B (en) A kind of packing chest for holding plate body
KR20150002148A (en) Foldable transparent composite cover window, manufacturing method of the same, and foldable display device containing the same
JP6348302B2 (en) Image display device
JP2009146354A (en) Touch panel integrated resin molding
TW201335662A (en) Method of manufacturing touch panel
TW201428393A (en) Backlight module
CN103780718B (en) The assemble method of hand-hold electronic device and display floater thereof
TW200821798A (en) Touch panel module and method of fabricating the same
JP2020064488A (en) Housing member and electronic apparatus
CN205862044U (en) A kind of installed part being used in liquid crystal indicator
JP6582699B2 (en) Front plate and display device with front plate
TWI514940B (en) Handheld electronic device and method for assembling display panel thereof
KR101545434B1 (en) Glass composite, input device using glass composite, and electronic device
TWI730278B (en) Display device
TWM613548U (en) Electronic device
KR20150038986A (en) Method of forming hole on window for touch sensor
TW201610519A (en) Hybrid light guide plate and display device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141023

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160824

R150 Certificate of patent or registration of utility model

Ref document number: 5996217

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees