JP5995470B2 - 電気車用電源システム及び電力供給制御方法 - Google Patents

電気車用電源システム及び電力供給制御方法 Download PDF

Info

Publication number
JP5995470B2
JP5995470B2 JP2012057989A JP2012057989A JP5995470B2 JP 5995470 B2 JP5995470 B2 JP 5995470B2 JP 2012057989 A JP2012057989 A JP 2012057989A JP 2012057989 A JP2012057989 A JP 2012057989A JP 5995470 B2 JP5995470 B2 JP 5995470B2
Authority
JP
Japan
Prior art keywords
battery
converter
power
mode
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012057989A
Other languages
English (en)
Other versions
JP2013192409A (ja
Inventor
一喜 吉村
一喜 吉村
卓郎 谷口
卓郎 谷口
小笠 正道
正道 小笠
義晃 田口
義晃 田口
悟志 門脇
悟志 門脇
孝行 仲村
孝行 仲村
真幸 三木
真幸 三木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Kyushu Railway Co
Original Assignee
Railway Technical Research Institute
Kyushu Railway Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute, Kyushu Railway Co filed Critical Railway Technical Research Institute
Priority to JP2012057989A priority Critical patent/JP5995470B2/ja
Publication of JP2013192409A publication Critical patent/JP2013192409A/ja
Application granted granted Critical
Publication of JP5995470B2 publication Critical patent/JP5995470B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Stand-By Power Supply Arrangements (AREA)

Description

本発明は、電気車用電源システム等に関する。
直流電車にバッテリを搭載し、架線からの供給電力(直流電力)とバッテリの放電電力(直流電力)との一方或いは両方によって主電動機を駆動して走行する架線・バッテリハイブリッド電車が知られている。このハイブリッド電車には、回生エネルギーによってバッテリを充電したり、非電化区間ではバッテリの放電電力(直流電力)によって走行可能になるといった特長がある(例えば、特許文献1参照)。
特開2008−253084号公報
開発されたハイブリッド電車としても、本出願人が開発した架線・バッテリハイブリッドLRV「Hi−tram」の他、多くの電車が存在する。しかし、何れのハイブリッド電車についても直流電車であり、交流電車については開発が進んでいないのが実情である。また、機関車については、ハイブリッドのディーゼル機関車の開発が進んでいるが、電気機関車のハイブリッド化の開発は進んでいない。勿論、交流電気車の他、交直流電気車についても同様である。
本発明は、上記事情に鑑みてなされたものであり、その目的とするところは、交流区間を走行可能な電気車の架線・バッテリハイブリッド化を可能とする技術を提案することである。
上記課題を解決するための第1の形態は、
架線からの交流電力をもとに走行する架線モードと、バッテリ(例えば、図1のバッテリ60A)の出力電力をもとに走行するバッテリモードとを切替可能な電気車用電源システム(例えば、図1の電源システム1A)であって、
主変圧器の2次巻線に接続された第1コンバータ部(例えば、図1の主回路側コンバータ31)及び第1インバータ部(例えば、図1のインバータ32)を有し、主電動機を駆動する電力を供給する主変換回路(例えば、図1の主変換回路30)と、
前記主変圧器の3次巻線に接続され、補機に電力を供給する補機用変換回路(例えば、図1の補機用変換回路40)と、
前記補機用変換回路と並列に前記3次巻線に接続され、前記架線モード時に前記バッテリを充電する電力を供給する第2コンバータ部(例えば、図1の三次巻線側コンバータ51)と、
前記主変換回路の直流リンク部と前記バッテリとを接続する遮断器(例えば、図1の高速度遮断器BHB)と、
制御装置(例えば、図1の制御部70)と、
を備え、
前記制御装置は、
前記遮断器を開放することで前記架線モードに切り替える架線モード切替手段と、
前記遮断器を投入し、前記第2コンバータ部をインバータ動作させることで前記バッテリモードに切り替えるバッテリモード切替手段と、
を有する、
電気車用電源システムである。
また、他の形態として、
主変圧器の2次巻線に接続された第1コンバータ部及び第1インバータ部を有して主電動機を駆動する電力を供給する主変換回路と、前記主変圧器の3次巻線に接続されて補機に電力を供給する補機用変換回路と、前記補機用変換回路と並列に前記3次巻線に接続された第2コンバータ部と、前記第2コンバータ部のコンバータ動作による2次側出力電力で充電可能に構成されたバッテリとを備えた電気車用電源システムにおいて、架線からの交流電力をもとに走行する架線モードと、前記バッテリの出力電力をもとに走行するバッテリモードと切り替えて電力供給を制御する電力供給制御方法であって、
前記主変換回路の直流リンク部と前記バッテリとの接続を開放することで前記架線モードに切り替えるステップと、
前記主変換回路の直流リンク部と前記バッテリとを接続し、前記第2コンバータ部をインバータ動作させて前記バッテリモードに切り替えるステップと、
を含む電力供給制御方法を構成しても良い。
この第1の形態等によれば、主電動機に電力を供給する主変換回路と、補機に電力を供給する補機用変換回路の他に、バッテリを充電する第2コンバータ部とを備え、架線からの交流電力をもとに走行する架線モードと、バッテリの出力電力をもとに走行するバッテリモードとを切り替え可能な電気車用電源システムが実現される。
すなわち、架線モードでは遮断器を開放することでバッテリを主変換回路の直流リンク部から切り離し、架線からの交流電力をもとにした主電動機の駆動電力を主変換回路が主電動機に供給する。またこのとき、主変圧器の三次巻線に補機用変換回路と並列接続された第2コンバータ部によって、バッテリが充電される。一方、バッテリモードでは、遮断器を投入することでバッテリを主変換回路の直流リンク部に接続し、バッテリからの直流電力をもとにした主電動機の駆動電力を第1インバータ部が主電動機に供給するとともに、第2コンバータ部のインバータ動作によって補機側にも電力が供給される。これにより、交流区間を走行可能な電気車における架線・バッテリハイブリッド化が実現される。
また、第2の形態として、第1の形態の電気車用電源システムであって、
前記第1コンバータ部は、動作停止時に純ブリッジ回路として機能するよう構成され、
前記バッテリモード切替手段は、更に、前記第1コンバータ部の動作を停止させ、
前記バッテリモードにおいて、インバータ動作によって前記第2コンバータ部の1次側に発生する電力が前記主変圧器を介して前記第1コンバータ部に印加されるよう構成されてなり、前記バッテリモードにおける前記第1コンバータ部の2次側電圧と、前記バッテリの出力電圧とが略同一に設計されてなることを特徴とする電気車用電源システムを構成しても良い。
この第2の形態によれば、第1コンバータ部は、動作停止時に純ブリッジ回路(単相全波整流回路)として機能するように構成されている。そして、バッテリモードへの切り替えは、更に、第1コンバータ部の動作を停止させることでなされる。つまり、バッテリモードでは、主変換回路の直流リンク部には、第1コンバータ部の二次側電圧と、バッテリの出力電圧とが印加されるが、この両電圧は略同一となる。
また、第3の形態として、第1の形態の電気車用電源システムであって、
前記2次巻線と前記第1コンバータ部とを接続する接触器(例えば、図11の接触器Ks)を更に備え、
前記バッテリモード切替手段は、更に、前記第1コンバータ部の動作を停止させるとともに、前記接触器を開放する、
電気車用電源システムを構成しても良い。
この第3の形態によれば、電気車用電源システムは、主変圧器の第2巻線と第1コンバータとを接続する接触器を更に備えて構成される。そして、バッテリモードへの切り替えは、更に、第1コンバータ部の動作を停止させるとともに、接触器を開放することでなされる。これにより、バッテリモードでは、主変換回路の直流リンク部には、バッテリの出力電圧のみが印加される。
また、第4の形態として、第1〜第3の何れかの形態の電気車用電源システムであって、
前記制御装置は、電気車の停止時に、前記遮断器を投入し、前記架線からの交流電力をもとに前記第1コンバータ部に前記バッテリへの充電電力を供給させる制御を行う急速充電制御手段を有する、
電気車用電源システムを構成しても良い。
この第4の形態によれば、電気車の停止時に、架線からの交流電力をもとに、第1コンバータ部がバッテリへの充電電力を供給する急速充電を行うことができる。遮断器の投入によって主変換回路の直流リンク部とバッテリとが接続されることで、架線からの交流電力が第1コンバータ部を介してバッテリに供給可能となる。大容量の充電電力をバッテリに供給できるため、急速充電が可能となるのである。
第1実施形態における電源システムの構成図。 架線モードにおける電力供給動作の説明図。 バッテリモードにおける電力供給動作の説明図。 主回路側コンバータの回路構成図。 バッテリの急速充電における電力供給動作の説明図。 架線モードでの起動の際の制御手順の説明図。 架線モードからバッテリモードへの切り替えの際の制御手順の説明図。 バッテリモードから架線モードへの切り替えの際の制御手順の説明図。 バッテリモードでの起動の際の制御手順の説明図。 バッテリの急速充電の際の制御手順の説明図。 第2実施形態における電源システムの構成図。 架線モードでの起動の際の説明図。 架線モードからバッテリモードへの切り替えの際の制御手順の説明図。 バッテリモードから架線モードへの切り替えの際の制御手順の説明図。 バッテリモードでの起動の際の制御手順の説明図。 バッテリの急速充電の際の制御手順の説明図。
以下、図面を参照して本発明の実施形態を説明する。以下では、電車の回路構成について説明するが、LRVや機関車にも本発明を適用可能である。また、本発明の交直流電車に応用することも可能である。すなわち、本発明の適用可能な実施形態は以下に限定されるものではない。
[第1実施形態]
<構成>
図1は、第1実施形態における電源システム1Aの回路構成図である。この電源システム1Aは、真空遮断器VCBと、主変圧器20と、主変換回路30と、補機用変換回路40と、三次巻線側コンバータ51(第2コンバータ部)と、バッテリ60Aと、接触器Kと、高速度遮断器BHB(遮断器)と、リアクトルLと、制御部70とを備えて構成される。
主変圧器20の一次巻線21は、真空遮断器VCBを介してパンタグラフ2と接続され、二次巻線22は、主回路側コンバータ31の入力端(一次側)に接続され、三次巻線23は、三次巻線側コンバータ51の入力端(一次側)、及び、補機用変換回路40に接続されている。主変圧器20は、一次巻線21に架線電圧の「20000V」の単相交流電力が印加されると、二次巻線22に「1000V」の単相交流電圧を発生し、三次巻線23に「440V」の単相交流電圧を発生するように、一次巻線21と、二次巻線22及び三次巻線23それぞれとの巻線比が構成されている。
主変換回路30は、主回路側コンバータ31(第1コンバータ部)と、インバータ32(第1インバータ部)とを有している。
主回路側コンバータ31の入力端(一次側)は、主変圧器20の二次巻線22に接続され、出力端(二次側)は、インバータ32の入力端(一次側)に接続されている。この主回路側コンバータ31は、入力端(一次側)に入力される交流電圧(単相1000V)を直流電圧(1800V)に変換する位相同期方式のPWMコンバータとして機能する。
インバータ32の入力端(一次側)は、主回路側コンバータ31の出力端(二次側)に接続され、出力端(二次側)は、主電動機4に接続されている。このインバータ32は、入力端(一次側)に入力される直流電圧(900V〜1800V)を、三相交流電圧に変換して主電動機4に駆動電力を供給する。
主電動機4は、インバータ32から電力(三相交流電力)が供給されることで車軸を回転制御する主電動機(メインモータ)であり、例えば三相誘導電動機で実現される。なお、図面では1台のインバータで4台の電動機を制御する1C4M方式を図示しているが、これは一例であり、1C1M方式などの他の方式にも本実施形態を適用可能であることは勿論である。
補機用変換回路40は、空調装置や照明装置といった補助的な機器(補機)に電力を供給するための電源回路であり、交流電力(単相440V)を直流電力に変換する静止形インバータ41を含んで構成される。
三次巻線側コンバータ51の入力端(一次側)は、主変圧器20の三次巻線23に接続され、出力端(二次側)には、接触器Kを介してバッテリ60Aが接続されている。この三次巻線側コンバータ51は、入力端(一次側)に入力される交流電力(単相440V)を直流電力に変換する位相同期方式のPWMコンバータとして機能する(順方向運転)とともに、出力端(二次側)に入力される直流電力を交流電力(単相440V)に変換して入力端(一次側)から出力するPWMインバータとしても機能する(逆方向運転)。
バッテリ60Aは、例えばリチウムイオンバッテリ等のバッテリセルを複数接続したバッテリモジュールであり、定格電圧が「900V以上1800V以下」に構成されている。このバッテリ60Aは、接触器Kを介して、三次巻線側コンバータ51の出力端(二次側)に接続されているとともに、高速度遮断器BHB及びリアクトルLを介して、主回路側コンバータ31とインバータ32との間の直流リンク部に接続されている。
制御部70は、CPUや各種メモリ(ROMやRAM等)から構成されるコンピュータや各種の電子回路によって実現され、制御装置として機能する。この制御部70は、後述する走行モードの切り替え制御を行う。具体的には、主回路側コンバータ31や三次巻線側コンバータ51、インバータ32それぞれの動作を制御するとともに、真空遮断器VCBや接触器K、高速度遮断器BHBそれぞれの投入/開放を制御する。
<走行モード>
電源システム1Aにおける走行モードを説明する。走行モードには、「架線モード」及び「バッテリモード」の2種類がある。
(A)架線モード
架線モードは、架線から供給される交流電圧(単相20000V)によって主電動機4を駆動して走行するモードである。
図2は、架線モードにおける電源システム1Aの電力供給動作を示す図である。架線モードでは、パンタグラフ2が上昇して架線に接触し、真空遮断器VCBが投入される。高速度遮断器BHBは開放され、接触器Kは投入される。つまり、バッテリ60Aは、主回路から切り離されている。また、主回路側コンバータ31、及び、三次巻線側コンバータ51は、ともにコンバータ動作(順方向運転)をするように制御されている。
電気の流れを見ると、架線電圧である交流電圧(単相20000V)が主変圧器20の一次巻線21に印加され、二次巻線22に交流電圧(単相1000V)が発生し、三次巻線23に交流電圧(単相440V)が発生している。
二次巻線22に発生した交流電圧(単相1000V)は、主回路側コンバータ31によって直流電圧(1800V)に変換され、更に、インバータ32によって三相交流電力に変換されて主電動機4に供給される。一方、三次巻線23に発生した交流電圧(単相440V)は、補機用変換回路40に供給されるとともに、三次巻線側コンバータ51によって直流電圧に変換されてバッテリ60Aが充電される。このとき、三次巻線側コンバータ51の変調率制御によって、その出力端(二次側)の出力電流(すなわち、バッテリ60Aの充電電流)が制御される。なお、バッテリ60Aが満充電状態であるなど、充電の必要が無いときには、三次巻線側コンバータ51の動作を停止することができる。このように、架線モードでは、後述の急速充電以外にも、停車中や走行中に、架線からの電力や回生電力によってバッテリ60Aを充電することが可能となる。
(B)バッテリモード
バッテリモードは、バッテリ60Aの蓄積電力によって主電動機4を駆動して走行するモードである。
図3は、バッテリモードにおける電源システム1Aの電力供給動作を示す図である。バッテリモードでは、パンタグラフ2は降下され、真空遮断器VCBは開放される。接触器K、及び、高速度遮断器BHBは、ともに投入される。また、主回路側コンバータ31は動作を停止しており、三次巻線側コンバータ51はインバータ動作(逆方向運転)をするように制御されている。
電気の流れを見ると、バッテリ60Aの放電電圧(直流900V以上1800V以下以下)が、インバータ32によって三相交流電力に変換されて主電動機4に供給される。
また、バッテリ60Aの放電電圧(直流900V以上1800V以下)は、三次巻線側コンバータ51によって交流電圧(単相440V)に変換され、補機用変換回路40に供給されるとともに、主変圧器20の三次巻線23に印加される。主変圧器20の三次巻線23に交流電圧(単相440V)が印加されることで、一次巻線21を介して、二次巻線22には交流電圧(単相1000V)が発生する。一次巻線21に発生する電圧は架線モードと同じである。
主変圧器20の二次巻線22に発生した交流電圧(単相1000V)は、主回路側コンバータ31の入力端(一次側)に入力されるが、主回路側コンバータ31は動作停止しているため、直流電圧(900V)に変換されてインバータ32に供給される。つまり、インバータ32の入力端(一次側)には、主回路側コンバータ31からの直流電圧(900V)と、バッテリ60Aからの直流電圧(900V以上1800V以下)とが供給される。
ここで、動作停止している主回路側コンバータ31の出力が「900V以上」の直流電力になる理由を説明する。図4は、主回路側コンバータ31の回路構成図である。主回路側コンバータ31が動作停止している場合には、IGBTが非導通となっており、ダイオードで構成された単相全波整流回路(単相ブリッジ整流回路)と等価となる。すなわち、いわゆる純ブリッジ回路として機能する。主回路側コンバータ31の負荷側は純抵抗負荷(インダクタンスを含まない)とみなせるため、入力端子間に入力される交流電圧の「0.9倍」の直流電圧が主力端子間に出力される。つまり、主回路側コンバータ31が動作停止している場合、その入力端(一次側)に入力される「単相1000V」の交流電圧の「0.9倍」である「900V」の直流電圧が、出力端(二次側)から出力される。
また、三次巻線側コンバータ51も同様の回路構成であり、動作停止している場合、入力端(一次側)に入力される単相交流電圧の「0.9倍」の直流電圧が、出力端(二次側)から出力される。
(C)急速充電
続いて、架線の供給電力(交流電力)によってバッテリ60Aを急速充電する場合を説明する。なお、この急速充電は、例えば駅などの停車場の停車中に行われる。
図5は、急速充電の際の電源システム1Aの電力供給動作を示す図である。急速充電の際には、停車中であるため、インバータ32は停止している。そして、急速充電時には、接触器K及び高速度遮断器BHBがともに投入される。パンタグラフ2は上昇して架線に接触し、真空遮断器VCBは投入される。また、主回路側コンバータ31及び三次巻線側コンバータ51は、ともにコンバータ動作をするように制御されている。
電気の流れは、主変圧器20の一次巻線21には、架線から供給される交流電圧(単相20000V)が印加され、二次巻線22に交流電圧(単相1000V)が発生し、三次巻線23に交流電圧(単相440V)が発生する。主変圧器20の二次巻線22に発生した交流電圧(単相1000V)は、主回路側コンバータ31によって直流電力に変換され、バッテリ60Aが充電される。このとき、主回路側コンバータ31の変調率制御によって、その出力端(二次側)からの出力電流(すなわち、バッテリ60Aの充電電流)が制御される。架線電力及び主回路側コンバータ31の出力はともに大容量であるため、バッテリ60Aの急速充電が可能となる。
また、主変圧器20の三次巻線23に発生した交流電圧(単相440V)は、補機用変換回路40に供給されるとともに、三次巻線側コンバータ51の入力端(一次側)に入力されるが、三次巻線側コンバータ51は、動作停止、又は、出力端(二次側)の出力電流(すなわち、バッテリ60Aの充電電流)が0となるように制御されているため、三次巻線側コンバータ51の出力電力によるバッテリ60Aの充電はなされない。
<走行モードの切り替え>
次に、これらの走行モードの切り替えの際の制御手順を説明する。この制御は、制御部70によってなされる。
(a)架線モードでの起動
図6は、停車中から架線モードで起動する場合の制御手順である。但し、高速度遮断器BHBは開放され、接触器Kは投入されている。また、パンタグラフ2は下降され、真空遮断器VCBは開放されている。また、インバータ32、主回路側コンバータ31、及び、三次巻線側コンバータ51は、ともに動作停止している。
先ず、パンタグラフ2を上昇させ(ステップA1)、その後、真空遮断器VCBを投入する(ステップA3)。これにより、主変圧器20の一次巻線21に架線電圧である「単相20000V」の交流電圧が印加され、二次巻線22に「単相1000V」の交流電圧が発生するとともに、三次巻線23に「単相440V」の交流電圧が発生する。
主回路側コンバータ31の入力端(一次側)に「単相1000V」の交流電圧が印加されるが、主回路側コンバータ31は停止しているため、この時点では出力端(二次側)からは「約900V」の直流電圧が出力される。また、三次巻線側コンバータ51の入力端(一次側)に「単相440V」の交流電圧が印加され、三次巻線側コンバータ51は停止しているため、出力端(二次側)からは「約396V」の直流電圧が出力されようとする。しかし、バッテリ60Aの両端電圧(バッテリ電圧)が「900V以上」であるため、三次巻線側コンバータ51が有するダイオードによって逆流阻止されて、三次巻線側コンバータ51の出力端(二次側)は、バッテリ60Aの両端電圧(バッテリ電圧)である「900V以上」に維持される。
次いで、三次巻線側コンバータ51を、所与の充電電流指令に応じた出力電流となるよう、変調率制御によるコンバータ動作させる(ステップA5)。これにより、バッテリ60Aが充電される。
また、主回路側コンバータ31を、変調率制御によって出力電圧が「1800V」の直流電圧となるように、コンバータ動作させる(ステップA7)。その後、インバータ32を起動する(ステップA9)。すると、インバータ32によって、主回路側コンバータ31から出力される「1800V」の直流電圧が三相交流電圧に変換されて、主電動機4に供給される。
(b)架線モードからバッテリモードへ切り替え
図7は、架線モードからバッテリモードへ切り替える場合の制御手順である。先ず、インバータ32を停止させ(ステップB1)、次いで、主回路側コンバータ31を停止させる(ステップB3)。これにより、主回路側コンバータ31の出力端(二次側)の出力電力が「直流900V以上」となる。
続いて、高速度遮断器BHBを投入する(ステップB5)。これにより、バッテリ60Aから放電される「900V以上」の直流電力が、インバータ32の入力端(一次側)に入力されるとともに、三次巻線側コンバータ51の出力端(二次側)に入力される。
そして、三次巻線側コンバータ51を、入力端(一次側)の電圧が「単相440V」となるよう、CVCF制御によるインバータ動作に変更させる(ステップB7)。これにより、三次巻線側コンバータ51の入力端(一次側)から出力される「単相440V」の交流電圧が、補機用変換回路40に供給される。続いて、真空遮断器VCBを開放し(ステップB9)、パンタグラフ2を降下させる(ステップB11)。その後、インバータ32を起動(再起動)させる(ステップB13)。
(c)バッテリモードから架線モードへ切り替え
図8は、バッテリモードから架線走行へ切り替える場合の制御手順である。先ず、インバータ32を停止させる(ステップC1)。次いで、パンタグラフ2を上昇させ(ステップC3)、真空遮断器VCBを投入する(ステップC5)。
続いて、三次巻線側コンバータ51を、変調率制御によるコンバータ動作に変更する(ステップC7)。そして、高速度遮断器BHBを開放し(ステップC9)、主回路側コンバータ31を、出力電圧が「直流1800V」となるよう、変調率制御によるコンバータ動作させる(ステップC11)。その後、インバータ32を起動(再起動)させる(ステップC13)。
(d)バッテリモードでの起動
図9は、停車中からバッテリモードで起動する場合の制御手順である。但し、高速度遮断器BHBは開放され、パンタグラフ2は降下し、真空遮断器VCBは開放されている。また、インバータ32、主回路側コンバータ31、及び、三次巻線側コンバータ51は、ともに動作停止している。
先ず、接触器Kを投入する(ステップD1)。次いで、三次巻線側コンバータ51を、出力電圧が「単相440V」となるように、CVCF制御によるインバータ動作させる(ステップD3)。続いて、高速度遮断器BHBを投入し(ステップD5)、その後、インバータ32を起動させる(ステップD7)。
(e)バッテリ60Aの急速充電
図10は、バッテリ60Aを急速充電する場合の制御手順である。先ず、インバータ32を停止させる(ステップE1)。次いで、パンタグラフ2を上昇させ(ステップE3)、真空遮断器VCBを投入する(ステップE5)。続いて、三次巻線側コンバータ51を、出力電流(バッテリ60Aの充電電流)が「0」になるよう、変調率制御によるコンバータ動作させる(ステップE7)。
また、主回路側コンバータ31を、所与の充電電流指令に応じた出力電流となるよう、変調率制御によってコンバータ動作させて、バッテリ60Aを充電する(ステップE9)。そして、バッテリ60Aの充電が完了すると(ステップE11)、走行するモード(バッテリモード/架線モード)を判断する。
すなわち、「バッテリモード」で走行するならば(ステップE13:バッテリ)、主回路側コンバータ31を停止させる(ステップE15)。次いで、三次巻線側コンバータ51を、出力電圧が「単相440V」となるよう、CVCF制御によるインバータ動作に変更する(ステップE17)。続いて、真空遮断器VCBを開放させ(ステップE19)、パンタグラフ2を降下させる(ステップE21)。その後、インバータ32を起動(再起動)させる(ステップE23)。
一方、「架線モード」で走行するならば(ステップE13:架線)、高速度遮断器BHBを開放させ(ステップE25)、主回路側コンバータ31を、出力電圧が「直流1800V」となるよう、コンバータ動作させる(ステップE27)。その後、インバータ32を起動する(ステップE29)。
<作用効果>
このように、本実施形態の電源システム1Aは、主変圧器20の三次巻線23に、バッテリ60Aを充電するための三次巻線側コンバータ51が補機用変換回路40と並列に接続されるとともに、バッテリ60Aが、高速度遮断器BHBを介して主変換回路30の直流リンク部に接続されて構成される。
これにより、架線からの供給電力(交流電力)によって主電動機4を駆動して走行する架線モードと、バッテリ60Aの放電電力(直流電力)によって主電動機4を駆動して走行するバッテリモードとの切り替えが可能となり、交流区間を走行する電気車の架線・バッテリハイブリッド化が実現される。
[第2実施形態]
次に、第2実施形態を説明する。第2実施形態は、上述の第1実施形態において、主回路側コンバータ31の入力端(一次側)を、接触器Ksを介して主変圧器20の二次巻線22に接続する構成とした実施形態である。なお、以下において、上述の実施形態と同一要素については同符号を付し、その詳細な説明を省略又は簡略する。
<構成>
図11は、第2実施形態における電源システム1Bの回路構成図である。電源システム1Bは、真空遮断器VCBと、主変圧器20と、主変換回路30と、補機用変換回路40と、三次巻線側コンバータ51と、バッテリ60Bと、接触器Kと、高速度遮断器BHBと、リアクトルLと、補機用変換回路40と、制御部70とを備えて構成される。主変換回路30は、接触器Ksと、主回路側コンバータ31と、インバータ32とを有している。
接触器Ksは、主変圧器20の二次巻線22と、主回路側コンバータ31の入力端(一次側)との間に設けられている。この接触器Ksは、架線モード及びバッテリ60Aの急速充電の際に投入され、バッテリモードでは開放される。第2実施形態では、バッテリ60Bの定格電圧を「750V」として説明するが、接触器Ksによって、バッテリ60Bの定格電圧を、三次巻線23の電圧の0.9倍以上の直流電圧(例えば、440V×0.9=396V以上)であれば自由に設計することが可能である。
すなわち、主変圧器20の二次巻線22に「単相1000V」の直流電圧が発生している状態で、主回路側コンバータ31が動作停止している場合、その出力端(二次側)には「900V」の直流電圧が発生する。このため、第1実施形態における電源システム1Aでは、バッテリ60Aの定格電圧を、この主回路側コンバータ31の出力電圧以上の「900V以上」に構成する必要があった。
しかし、第2実施形態によれば、バッテリモードにおいて、接触器Ksを開放することで、主回路側コンバータ31の出力が0となり、主変換回路30の直流リンク部には、バッテリ60Bの放電電圧のみが印加される。これにより、バッテリ60Bの定格電圧を、三次巻線23の電圧の0.9倍以上の直流電圧であれば自由に設計することができる。
<走行モードの切り替え>
続いて、電源システム1Bにおける走行モードの切り替えを説明する。
(a)架線モードでの起動
なお、架線モードにおける電力供給動作は、上述の第1実施形態における架線モードでの電力供給動作(図2参照)と同様である。
図12は、停車中から架線モードで起動する場合の制御手順である。但し、停車中であるため、高速度遮断器BHBは開放され、接触器Kは投入されている。また、パンタグラフ2は降下され、真空遮断器VCBは開放されている。また、インバータ32、主回路側コンバータ31、及び、三次巻線側コンバータ51は、ともに動作停止している。
先ず、パンタグラフ2を上昇させ(ステップA1)、その後、真空遮断器VCBを投入する(ステップA3)。次いで、三次巻線側コンバータ51をコンバータ動作させて、バッテリ60Bを充電する(ステップA5)。
また、接触器Ksを投入する(ステップA6)。続いて、主回路側コンバータ31を、変調率制御によって出力電圧が「1800V」の直流電圧となるようにコンバータ動作させる(ステップA7)。その後、インバータ32を起動する(ステップA9)。
(b)架線モードからバッテリモードへ切り替え
図13は、架線モードからバッテリモードへ切り替える場合の制御手順である。先ず、インバータ32を停止させ(ステップB1)、次いで、主回路側コンバータ31を停止させる(ステップB3)。続いて、接触器Ksを開放し(ステップB4)、その後、高速度遮断器BHBを投入する(ステップB5)。
そして、三次巻線側コンバータ51を、入力端(一次側)の電圧が「単相440V」となるよう、CVCF制御によるインバータ動作に変更させる(ステップB7)。続いて、真空遮断器VCBを開放し(ステップB9)、パンタグラフ2を降下させる(ステップB11)。その後、インバータ32を起動(再起動)させる(ステップB13)。
(c)バッテリモードから架線モードへ切り替え
図14は、バッテリモードから架線走行へ切り替える場合の制御手順である。先ず、インバータ32を停止させる(ステップC1)。次いで、パンタグラフ2を上昇させ(ステップC3)、真空遮断器VCBを投入する(ステップC5)。
続いて、三次巻線側コンバータ51を、変調率制御によるコンバータ動作に変更する(ステップC7)。そして、高速度遮断器BHBを開放し(ステップC9)、接触器Ksを投入する(ステップC10)。次いで、主回路側コンバータ31を、出力電圧が「直流1800V」となるよう、変調率制御によるコンバータ動作させる(ステップC11)。その後、インバータ32を起動(再起動)させる(ステップC13)。
(d)バッテリモードでの起動
図15は、停車中からバッテリモードで起動する場合の制御手順である。但し、高速度遮断器BHBは開放され、パンタグラフ2は降下し、真空遮断器VCBは開放されている。また、インバータ32、主回路側コンバータ31、及び、三次巻線側コンバータ51は、ともに動作停止している。
先ず、接触器Kを投入し(ステップD1)、また、接触器Ksを投入する(ステップD2)。次いで、三次巻線側コンバータ51を、入力端(一次側)の電圧が「単相440V」となるように、CVCF制御によるインバータ動作させる(ステップD3)。続いて、高速度遮断器BHBを投入し(ステップD5)、その後、インバータ32を起動させる(ステップD7)。
(e)バッテリ60Aの急速充電
図16は、バッテリ60Aを急速充電する場合の制御手順である。先ず、インバータ32を停止させる(ステップE1)。次いで、パンタグラフ2を上昇させ(ステップE3)、真空遮断器VCBを投入する(ステップE5)。
続いて、三次巻線側コンバータ51を、出力電流(バッテリ60Aの充電電流)が「0」になるよう、変調率制御によりコンバータ動作させる(ステップE7)。次いで、接触器Ksを投入する(ステップE8)。また、主回路側コンバータ31を、所与の充電電流指令に応じた出力電流となるよう、変調率制御によりコンバータ動作させて、バッテリ60Aを充電する(ステップE9)。バッテリ60Aの充電が完了すると(ステップE11)、起動する走行モードを判断する。
バッテリモードで走行するならば(ステップE13:バッテリ)、主回路側コンバータ31を停止させ(ステップE15)、次いで、接触器Ksを開放する(ステップE16)。続いて、三次巻線側コンバータ51を、入力端(一次側)の電圧が「単相440V」となるよう、CVCF制御によるインバータ動作に変更する(ステップE17)。そして、真空遮断器VCBを開放させ(ステップE19)、パンタグラフ2を降下させる(ステップE21)。その後、インバータ32を起動(再起動)させる(ステップE23)。
一方、架線モードで走行するならば(ステップE13:架線)、高速度遮断器BHBを開放させ(ステップE25)、主回路側コンバータ31を、出力電圧が「直流1800V」となるよう、コンバータ動作させる(ステップE27)。その後、インバータ32を起動する(ステップE29)。
<作用効果>
このように、第2実施形態における電源システム1Bは、第1実施形態における電源システム1Aにおいて、主変圧器20の二次巻線22と主回路側コンバータ31との間に接触器Ksが接続されて構成される。そして、バッテリモードにおいて、接触器Ksを開放することで、動作停止している主回路側コンバータ31の出力を0とすることができる。つまり、主変換回路30の直流リンク部には、バッテリ60Aの放電電圧のみが印加されることになる。これにより、第1実施形態における作用・効果に加えて、バッテリ60Bの定格電圧を、三次巻線23の電圧の0.9倍以上の直流電圧であれば自由に設計することが可能となる。
[第1及び第2実施形態の共通の作用効果]
本実施形態における電源システム1A,1Bを交流電気車に搭載することで、交流電気車の架線・バッテリハイブリッド化が可能となる。これにより様々な作用効果が奏される。
例えば、上述の実施形態では電動機4への駆動電力の供給、すなわち力行時の説明を主にしたが、バッテリ60A,60Bは主変換回路30の直流リンク部に接続されているため、回生時には電動機4で発生した電力がバッテリ60A,60Bに蓄積されることとなる。これにより、回生エネルギーをバッテリ60A,60Bに蓄積することで、回生失効を防止し、エネルギーの有効利用が可能となる。
また、架線モードとバッテリモードとの切り替えが可能となるため、架線の停電時にバッテリモードに切り替えることで、最寄り駅まで走行するといったことが可能となる。
また、交流区間では架線電圧が「20000〜25000V程度」と高いため、バッテリの急速充電時に、パンタ点に流れる電流が数十アンペアと小さくて済む。架線電圧が「1500V程度」となる直流区間で急速充電を行おうとすると、大電流に対応した特殊な架線を用いる必要があるが、交流区間では通常(従来)のトロリー線で問題ない。例えば、100kWのバッテリ充電を行う場合には、50A(=100000W/20000V)のパンタ点電流となる。
また、交流電気車ではあるが、バッテリモードに切り替えることで、直流区間も走行できる。直流区間をバッテリモードで走行する際には、真空遮断器VCBを開放しておくことで、万が一、パンタグラフが上昇して架線に接触しても、架線電圧(直流電圧)が主変圧器に印加されることがないため、直流偏磁が発生しない。なお、交流電車は高圧用に設計されているため、直流区間(1500V程度)においてパンタグラフが上昇し、架線に接触したとしても、電圧的に問題が生じることはない。
1A,1B 電源システム
VCB 真空遮断器
20 主変圧器、21 一次巻線、22 二次巻線、23 三次巻線
30 主変換回路、31 主回路側コンバータ、32 インバータ
40 補機用変換回路、41 静止形インバータ
51 三次巻線側コンバータ
60A、60B バッテリ
K,Ks 接触器、BHB 高速度遮断器、L リアクトル
70 制御部
2 パンタグラフ、3 車輪、4 主電動機

Claims (5)

  1. 架線からの交流電力をもとに走行する架線モードと、バッテリの出力電力をもとに走行するバッテリモードとを切替可能な電気車用電源システムであって、
    主変圧器の2次巻線に接続された第1コンバータ部及び第1インバータ部を有し、主電動機を駆動する電力を供給する主変換回路と、
    前記主変圧器の3次巻線に接続され、補機に電力を供給する補機用変換回路と、
    前記補機用変換回路と並列に前記3次巻線に接続され、前記架線モード時に前記バッテリを充電する電力を供給する第2コンバータ部と、
    前記主変換回路の直流リンク部と前記バッテリとを接続する遮断器と、
    制御装置と、
    を備え、
    前記制御装置は、
    前記遮断器を開放することで前記架線モードに切り替える架線モード切替手段と、
    前記遮断器を投入し、前記第2コンバータ部をインバータ動作させることで前記バッテリモードに切り替えるバッテリモード切替手段と、
    を有し、
    前記補機用変換回路は、前記架線モード及び前記バッテリモードの何れにおいても前記3次巻線に係る交流電力に基づいて、前記補機へ電力供給が可能に構成された、
    電気車用電源システム。
  2. 前記第1コンバータ部は、動作停止時に純ブリッジ回路として機能するよう構成され、
    前記バッテリモード切替手段は、更に、前記第1コンバータ部の動作を停止させ、
    前記バッテリモードにおいて、インバータ動作によって前記第2コンバータ部の1次側に発生する電力が前記主変圧器を介して前記第1コンバータ部に印加されるよう構成されてなり、前記バッテリモードにおける前記第1コンバータ部の2次側電圧と、前記バッテリの出力電圧とが略同一に設計されてなることを特徴とする請求項1に記載の電気車用電
    源システム。
  3. 前記2次巻線と前記第1コンバータ部とを接続する接触器を更に備え、
    前記バッテリモード切替手段は、更に、前記第1コンバータ部の動作を停止させるとともに、前記接触器を開放する、
    請求項1に記載の電気車用電源システム。
  4. 前記制御装置は、電気車の停止時に、前記遮断器を投入し、前記架線からの交流電力をもとに前記第1コンバータ部に前記バッテリへの充電電力を供給させる制御を行う急速充電制御手段を有する、
    請求項1〜3の何れか一項に記載の電気車用電源システム。
  5. 主変圧器の2次巻線に接続された第1コンバータ部及び第1インバータ部を有して主電動機を駆動する電力を供給する主変換回路と、前記主変圧器の3次巻線に接続されて補機に電力を供給する補機用変換回路と、前記補機用変換回路と並列に前記3次巻線に接続された第2コンバータ部と、前記第2コンバータ部のコンバータ動作による2次側出力電力で充電可能に構成されたバッテリとを備えた電気車用電源システムにおいて、架線からの交流電力をもとに走行する架線モードと、前記バッテリの出力電力をもとに走行するバッテリモードと切り替えて電力供給を制御する電力供給制御方法であって、
    前記主変換回路の直流リンク部と前記バッテリとの接続を開放することで前記架線モードに切り替えるステップと、
    前記主変換回路の直流リンク部と前記バッテリとを接続し、前記第2コンバータ部をインバータ動作させて前記バッテリモードに切り替えるステップと、
    を含み、前記架線モード及び前記バッテリモードの何れにおいても前記3次巻線に係る交流電力に基づいて、前記補機用変換回路が前記補機へ電力を供給する、
    電力供給制御方法。
JP2012057989A 2012-03-14 2012-03-14 電気車用電源システム及び電力供給制御方法 Expired - Fee Related JP5995470B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012057989A JP5995470B2 (ja) 2012-03-14 2012-03-14 電気車用電源システム及び電力供給制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012057989A JP5995470B2 (ja) 2012-03-14 2012-03-14 電気車用電源システム及び電力供給制御方法

Publications (2)

Publication Number Publication Date
JP2013192409A JP2013192409A (ja) 2013-09-26
JP5995470B2 true JP5995470B2 (ja) 2016-09-21

Family

ID=49392124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012057989A Expired - Fee Related JP5995470B2 (ja) 2012-03-14 2012-03-14 電気車用電源システム及び電力供給制御方法

Country Status (1)

Country Link
JP (1) JP5995470B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2919376A1 (en) * 2014-03-11 2015-09-16 Bombardier Transportation GmbH Tranformer parameter estimation in control of 4-quadrant rail infeed converter
JP6736369B2 (ja) * 2016-06-16 2020-08-05 東海旅客鉄道株式会社 電力変換システム
JP6736370B2 (ja) * 2016-06-16 2020-08-05 東海旅客鉄道株式会社 電力変換システム

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0866041A (ja) * 1994-08-26 1996-03-08 Hitachi Ltd 電力変換装置
JP5161816B2 (ja) * 2009-03-13 2013-03-13 株式会社東芝 鉄道車両システム
JP5558022B2 (ja) * 2009-04-15 2014-07-23 株式会社東芝 電気車の蓄電制御装置及び蓄電制御方法
JP2011004566A (ja) * 2009-06-22 2011-01-06 Toshiba Corp 電気車補助電源装置
JP5031020B2 (ja) * 2009-12-28 2012-09-19 本田技研工業株式会社 充電カプラおよび充電制御装置
JP5398634B2 (ja) * 2010-05-12 2014-01-29 株式会社東芝 交流電気車
JP5578972B2 (ja) * 2010-07-15 2014-08-27 株式会社東芝 交流電車のコンバータ制御装置

Also Published As

Publication number Publication date
JP2013192409A (ja) 2013-09-26

Similar Documents

Publication Publication Date Title
JP5947176B2 (ja) 電気車用電源システム及び電力供給制御方法
JP5931669B2 (ja) 電気車用電源システム及び電力供給制御方法
JP5014518B2 (ja) 電気車の推進制御装置、および鉄道車両システム
JP5914068B2 (ja) 電気車用電源システム及び電力供給制御方法
JP5558022B2 (ja) 電気車の蓄電制御装置及び蓄電制御方法
KR101628592B1 (ko) 전기차의 추진 제어 장치 및 그 제어 방법
US8924051B2 (en) Drive device for railway vehicle
KR101508104B1 (ko) 전기차의 추진 제어 장치
JP7290965B2 (ja) 電動車両の電源システム
JP5902534B2 (ja) 鉄道車両の駆動装置
JP5425849B2 (ja) 鉄道車両の駆動制御装置
JP2015208076A (ja) 電気車用電源システム及び電力供給制御方法
JP5350843B2 (ja) 電源制御装置及び電源制御方法
WO2011004588A1 (ja) 電気車制御装置
JP2004056934A (ja) 補助電源装置
JP5995470B2 (ja) 電気車用電源システム及び電力供給制御方法
CN109982888B (zh) 铁路车辆用电路***
JP5777669B2 (ja) 電気車用制御装置
JP4200512B2 (ja) 電動車両の動力装置
JP6563264B2 (ja) ハイブリッドシステム
JP5570839B2 (ja) 電気車の主回路
JP2011050196A (ja) 制御方法及び制御装置
JP2024099375A (ja) 鉄道車両用の駆動システムおよび駆動方法
JP2010041817A (ja) 車両用電源装置
JP2010220455A (ja) 車両用充電装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160823

R150 Certificate of patent or registration of utility model

Ref document number: 5995470

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees