JP5987449B2 - Thermoelectric conversion element and manufacturing method thereof - Google Patents

Thermoelectric conversion element and manufacturing method thereof Download PDF

Info

Publication number
JP5987449B2
JP5987449B2 JP2012099092A JP2012099092A JP5987449B2 JP 5987449 B2 JP5987449 B2 JP 5987449B2 JP 2012099092 A JP2012099092 A JP 2012099092A JP 2012099092 A JP2012099092 A JP 2012099092A JP 5987449 B2 JP5987449 B2 JP 5987449B2
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
substrate
insulating layer
insulating
conversion element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012099092A
Other languages
Japanese (ja)
Other versions
JP2013229398A (en
Inventor
石井 雅俊
雅俊 石井
ジョン ベネキ
ベネキ ジョン
栗原 和明
和明 栗原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2012099092A priority Critical patent/JP5987449B2/en
Publication of JP2013229398A publication Critical patent/JP2013229398A/en
Application granted granted Critical
Publication of JP5987449B2 publication Critical patent/JP5987449B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、電気エネルギーを熱エネルギーに変換する熱電変換素子及びその製造方法に関する。   The present invention relates to a thermoelectric conversion element that converts electrical energy into thermal energy and a method for manufacturing the same.

近年では、二酸化炭素(CO2)の削減及び環境保護の観点から、熱電変換素子が注目されている。熱電変換素子を使用することにより、今まで廃棄されていた熱エネルギーを電気エネルギーに変換して再利用することができる。また、コンピュータのCPU等において局所的に発生する熱を冷却するためのデバイスとしても熱電変換素子が注目されている。 In recent years, thermoelectric conversion elements have attracted attention from the viewpoint of reducing carbon dioxide (CO 2 ) and protecting the environment. By using the thermoelectric conversion element, it is possible to convert the thermal energy that has been discarded so far into electric energy and reuse it. In addition, thermoelectric conversion elements are attracting attention as devices for cooling heat generated locally in a CPU of a computer.

特開2005−223307号公報JP 2005-223307 A

熱電変換素子をコンピュータのCPU等の冷却に用いる場合には、高い熱伝導性を有することが望ましい。また、熱電変換薄膜を用いた熱電変換素子では、その高い電圧を得るために微細化した素子を直列接続することが望まれる。この熱電変換素子を製造するには、先ず基板上に熱電変換薄膜を形成し、その後、熱電変換薄膜をエッチング等で加工して非導電部を形成する。そのため、熱電変換薄膜は表面が凹凸状となり、熱伝導性を低下させる要因となっている。   When the thermoelectric conversion element is used for cooling a CPU of a computer or the like, it is desirable to have high thermal conductivity. Moreover, in the thermoelectric conversion element using the thermoelectric conversion thin film, in order to obtain the high voltage, it is desired to connect the elements miniaturized in series. In order to manufacture this thermoelectric conversion element, a thermoelectric conversion thin film is first formed on a substrate, and then the non-conductive portion is formed by processing the thermoelectric conversion thin film by etching or the like. For this reason, the surface of the thermoelectric conversion thin film becomes uneven, which is a factor of reducing thermal conductivity.

本発明は、上記の課題に鑑みてなされたものであり、導電部及び非導電部を共に表面平坦に(共に表面が略同一平面となるように)形成し、熱伝導性に優れた信頼性の高い熱電変換素子及びその製造方法を提供することを目的とする。   The present invention has been made in view of the above-described problems, and has a conductive portion and a non-conductive portion that are both flat on the surface (both have a substantially coplanar surface), and have excellent thermal conductivity. An object of the present invention is to provide a thermoelectric conversion element having a high temperature and a method for producing the same.

熱電変換素子の一態様は、基板と、前記基板上の所定領域に形成された絶縁層と、前記基板上の前記絶縁層の非形成部位に形成された熱電変換特性を有する導電部と、前記絶縁層上に形成された絶縁部とを含み、前記導電部及び前記絶縁部は、前記導電部が前記基板上で結晶化し、前記絶縁部が前記絶縁層上で結晶化しない同じ材料からなり、共に表面平坦に形成されるOne aspect of the thermoelectric conversion element is a substrate, an insulating layer formed in a predetermined region on the substrate, a conductive portion having a thermoelectric conversion characteristic formed in a non-formation portion of the insulating layer on the substrate, look including an insulating portion formed on the insulating layer, the conductive portion and the insulating portion, the conductive portion is crystallized on the substrate, the same material that the insulating portion does not crystallize on the insulating layer , Both are formed flat on the surface .

熱電変換素子の製造方法の一態様は、基板上の所定領域に絶縁層を形成する工程と、前記絶縁層上を含む基板上に、熱電変換特性を有する材料からなる膜を成膜する工程とを含み、前記膜は、前記基板上の前記絶縁層の非形成部位が結晶化して導電部となり、前記絶縁層上の部位が結晶化しない絶縁部となるものであるOne aspect of a method for manufacturing a thermoelectric conversion element includes a step of forming an insulating layer in a predetermined region on a substrate, and a step of forming a film made of a material having thermoelectric conversion characteristics on a substrate including the insulating layer. only containing the membrane is non-forming site of the insulating layer on the substrate is a conductive portion is crystallized, sites on the insulating layers are made an insulating portion which does not crystallize.

上記の諸態様によれば、導電部及び非導電部が共に表面平坦に(共に表面が略同一平面となるように)形成され、熱伝導性に優れた信頼性の高い熱電変換素子が実現する。   According to the above aspects, the conductive portion and the non-conductive portion are both formed to be flat on the surface (both surfaces are substantially in the same plane), thereby realizing a highly reliable thermoelectric conversion element with excellent thermal conductivity. .

本実施形態による熱電変換素子の概略構成を示す模式図である。It is a schematic diagram which shows schematic structure of the thermoelectric conversion element by this embodiment. 本実施形態による熱電変換素子の製造方法を工程順に示す概略断面図である。It is a schematic sectional drawing which shows the manufacturing method of the thermoelectric conversion element by this embodiment in process order. 熱電変換薄膜について、XRD法により測定した結果を示す特性図である。It is a characteristic view which shows the result measured by the XRD method about the thermoelectric conversion thin film.

以下、熱電変換素子及びその製造方法の具体的な実施形態について、図面を参照しながら詳細に説明する。
図1は、本実施形態による熱電変換素子の概略構成を示す模式図であり、(a)が平面図、(b)が(a)の破線I−I'に沿った断面図、(c)が(a)の破線II−II'に沿った断面図である。
Hereinafter, specific embodiments of the thermoelectric conversion element and the manufacturing method thereof will be described in detail with reference to the drawings.
1A and 1B are schematic views showing a schematic configuration of the thermoelectric conversion element according to the present embodiment, in which FIG. 1A is a plan view, FIG. 1B is a cross-sectional view taken along a broken line II ′ in FIG. FIG. 4 is a cross-sectional view taken along a broken line II-II ′ in FIG.

(熱電変換素子の構成)
この熱電変換素子は、基板1と、基板1上の所定領域に形成された絶縁層2と、基板1上で絶縁層2の非形成部位に形成された導電部3と、絶縁層2上に形成された非導電部(絶縁部)4と、導電部3及び絶縁部4上に形成された電極5と、ヒートシンク11,12とを備えて構成されている。
(Configuration of thermoelectric conversion element)
The thermoelectric conversion element includes a substrate 1, an insulating layer 2 formed in a predetermined region on the substrate 1, a conductive portion 3 formed on the substrate 1 at a portion where the insulating layer 2 is not formed, and an insulating layer 2. The non-conductive part (insulating part) 4 formed, an electrode 5 formed on the conductive part 3 and the insulating part 4, and heat sinks 11 and 12 are configured.

基板1は、LaAlO3[LAO]、(LaAlO3)0.3−(SrAl0.5Ta0.53)0.7[LSAT]、SrTiO3[STO]、NaGaO3、及びDyScO3から選ばれた1種からなる基板である。本実施形態では、基板1は例えばLSAT基板である。 Substrate made of (SrAl 0.5 Ta 0.5 O 3) 0.7 [LSAT], SrTiO 3 [STO], NaGaO 3, and one selected from DyScO 3 - substrate 1, LaAlO 3 [LAO], ( LaAlO 3) 0.3 It is. In the present embodiment, the substrate 1 is, for example, an LSAT substrate.

絶縁層2は、基板1上で絶縁部4の形成予定領域に形成されるものであり、酸化マグネシウム酸化物(MgO)、シリコン酸化物(SiO2)、シリコン窒化物(SiN)及びシリコン酸窒化物(SiON)等から選ばれた1種から形成されている。本実施形態では、絶縁層2は例えばMgOを材料として形成される。 The insulating layer 2 is formed in a region where the insulating portion 4 is to be formed on the substrate 1, and includes magnesium oxide oxide (MgO), silicon oxide (SiO 2 ), silicon nitride (SiN), and silicon oxynitride. It is formed from one kind selected from a material (SiON) or the like. In the present embodiment, the insulating layer 2 is formed using, for example, MgO.

導電部3及び絶縁部4は、絶縁層2上を含む基板1上に成膜された熱電変換薄膜を構成する。熱電変換薄膜は、絶縁層2上を含む基板1上に、スパッタ法又はパルスレーザーデポジション(Pulsed Laser Deposition:PLD)法により、例えばLa又はNbを導入したSTOから形成された薄膜である。熱電変換薄膜は、基板1上で絶縁層2の非形成部位では熱電変換特性を有する結晶部分である導電部3が、絶縁層2上では非結晶部分である絶縁部4が形成されてなる薄膜である。導電部3及び絶縁部4は、1層の熱電変換薄膜で形成されるため、共に表面平坦に(共に表面が略同一平面となるように)形成される。   The conductive portion 3 and the insulating portion 4 constitute a thermoelectric conversion thin film formed on the substrate 1 including the insulating layer 2. The thermoelectric conversion thin film is a thin film formed of, for example, STO into which La or Nb is introduced on the substrate 1 including the insulating layer 2 by a sputtering method or a pulsed laser deposition (PLD) method. The thermoelectric conversion thin film is a thin film in which a conductive portion 3 which is a crystalline portion having thermoelectric conversion characteristics is formed on a portion of the substrate 1 where the insulating layer 2 is not formed, and an insulating portion 4 which is an amorphous portion is formed on the insulating layer 2. It is. Since the conductive portion 3 and the insulating portion 4 are formed of a single layer of thermoelectric conversion thin film, both are formed to have a flat surface (both have a substantially flush surface).

電極5は、導電部3と電気的に接続されるように、導電部3及び絶縁部4に導電材料、例えばクロム(Cr)と金(Au)の積層膜として形成されている。
ヒートシンク11,12は、基板1の上面の両側にCu又はAl等を材料として形成されている。本実施形態では、ヒートシンク11が高温側、ヒートシンク12が低温側とされており、ヒートシンク11に接続された電極5が正極、ヒートシンク12に接続された電極5が負極となる。
The electrode 5 is formed as a laminated film of a conductive material such as chromium (Cr) and gold (Au) on the conductive portion 3 and the insulating portion 4 so as to be electrically connected to the conductive portion 3.
The heat sinks 11 and 12 are formed of Cu or Al or the like on both sides of the upper surface of the substrate 1. In this embodiment, the heat sink 11 is on the high temperature side and the heat sink 12 is on the low temperature side, the electrode 5 connected to the heat sink 11 is the positive electrode, and the electrode 5 connected to the heat sink 12 is the negative electrode.

(熱電変換素子の製造方法)
図2は、本実施形態による熱電変換素子の製造方法を工程順に示す概略断面図である。図2の各図は、図1(c)と同様に、図1の破線II−II'に沿った断面に対応している。
(Method for manufacturing thermoelectric conversion element)
FIG. 2 is a schematic cross-sectional view illustrating the manufacturing method of the thermoelectric conversion element according to the present embodiment in the order of steps. Each figure in FIG. 2 corresponds to a cross section taken along the broken line II-II ′ in FIG. 1, as in FIG.

先ず、図2(a)に示すように、基板1上における絶縁部の形成予定領域に絶縁層2を形成する。
例えば、基板1としてLSAT基板を用意する。
基板1の例えば(100)面上に、基板1の表面で絶縁部の形成予定領域を露出する開口21aを有するメタルマスク21を配置する。
メタルマスク21を用いて、絶縁材料として例えばMgOを、スパッタ法により開口21a内に選択的に成膜する。以上により、基板1上における絶縁部の形成予定領域にMgOからなる絶縁層2が形成される。その後、メタルマスク21は除去される。
First, as shown in FIG. 2A, the insulating layer 2 is formed in the region where the insulating portion is to be formed on the substrate 1.
For example, an LSAT substrate is prepared as the substrate 1.
For example, on the (100) plane of the substrate 1, a metal mask 21 having an opening 21 a that exposes a region where an insulating portion is to be formed on the surface of the substrate 1 is disposed.
Using the metal mask 21, for example, MgO as an insulating material is selectively formed in the opening 21a by sputtering. Thus, the insulating layer 2 made of MgO is formed in the region where the insulating portion is to be formed on the substrate 1. Thereafter, the metal mask 21 is removed.

続いて、図2(b)に示すように、熱電変換薄膜を成膜して導電部3及び絶縁部4を形成する。
成膜チャンバー内で基板1を600℃程度まで加熱し、例えばArガスを成膜チャンバー内に導入する。熱電変換薄膜のターゲットとして、Laを例えば2at%含有するSTO((La0.02,Sr0.98)TiO3)の多結晶体ターゲットを用いる。スパッタ法により、絶縁層2上を含む基板1上に熱電変換薄膜を、例えば100nm〜1m程度の厚みに成膜する。このとき、熱電変換薄膜の基板1上(即ち絶縁層2の非形成部位)の部分は結晶化し、導電部3が形成される。導電部3は、導電性と共に熱電変換特性を有する。熱電変換薄膜の絶縁層2上の部分は結晶化せずに絶縁部4が形成される。このように、導電部3及び絶縁部4は、1層の熱電変換薄膜で形成されるため、共に表面平坦に(共に表面が略同一平面となるように)形成される。
Subsequently, as shown in FIG. 2B, a conductive part 3 and an insulating part 4 are formed by forming a thermoelectric conversion thin film.
The substrate 1 is heated to about 600 ° C. in the film formation chamber, and Ar gas, for example, is introduced into the film formation chamber. As a target of the thermoelectric conversion thin film, a polycrystalline target of STO ((La 0.02 , Sr 0.98 ) TiO 3 ) containing 2 at% La, for example, is used. A thermoelectric conversion thin film is formed to a thickness of, for example, about 100 nm to 1 m on the substrate 1 including the insulating layer 2 by sputtering. At this time, the portion of the thermoelectric conversion thin film on the substrate 1 (that is, the portion where the insulating layer 2 is not formed) is crystallized to form the conductive portion 3. The conductive part 3 has thermoelectric conversion characteristics as well as conductivity. The insulating portion 4 is formed without crystallizing the portion of the thermoelectric conversion thin film on the insulating layer 2. As described above, since the conductive portion 3 and the insulating portion 4 are formed of a single layer of thermoelectric conversion thin film, both are formed to have a flat surface (both have a substantially flat surface).

なお、熱電変換薄膜は、スパッタ法の代わりにPLD法で形成しても良い。この場合、成膜チャンバー内に上記の多結晶体ターゲットを設置し、この多結晶体ターゲットにレーザ光を照射することで多結晶体ターゲットから分子を引き剥がし(アブレーション)、上記と同様に導電部3及び絶縁部4からなる熱電変換薄膜を形成する。
また、熱電変換薄膜のターゲットとしては、STOの代わりに、La又はNb等を導入した、例えば(LaxSr1-x)TiO3-δ,Sr(NbxTi1-x)O3-δ等を用いても良い。
The thermoelectric conversion thin film may be formed by the PLD method instead of the sputtering method. In this case, the polycrystalline target is placed in the film forming chamber, and the polycrystalline target is irradiated with laser light to peel off molecules from the polycrystalline target (ablation). 3 and the thermoelectric conversion thin film which consists of the insulation part 4 are formed.
Further, as a target of the thermoelectric conversion thin film, La or Nb or the like is introduced instead of STO, for example, (La x Sr 1-x ) TiO 3-δ , Sr (Nb x Ti 1-x ) O 3-δ Etc. may be used.

続いて、図2(c)に示すように、電極5を形成する。
熱電変換薄膜上に、電極の形成予定領域を露出する開口22aを有するメタルマスク22を配置する。
メタルマスク21を用いて、導電材料としてCr及びAuを、スパッタ法又は蒸着法により、開口22a内に選択的に成膜する。以上により、導電部3及び絶縁部4上における電極の形成予定領域にCr/Auの積層構成の電極5が形成される。その後、メタルマスク22は除去される。
Subsequently, as shown in FIG. 2C, the electrode 5 is formed.
On the thermoelectric conversion thin film, a metal mask 22 having an opening 22a that exposes a region where an electrode is to be formed is disposed.
Using the metal mask 21, Cr and Au are selectively formed in the openings 22a by sputtering or vapor deposition as conductive materials. Thus, the electrode 5 having a Cr / Au laminated structure is formed in the electrode formation scheduled region on the conductive portion 3 and the insulating portion 4. Thereafter, the metal mask 22 is removed.

しかる後、Cu又はAlからなるヒートシンク11,12をそれぞれ電極5と電気的に接続されるように配置する。
以上により、図1(a)〜(c)に示す熱電変換素子が形成される。
Thereafter, the heat sinks 11 and 12 made of Cu or Al are arranged so as to be electrically connected to the electrode 5, respectively.
Thus, the thermoelectric conversion elements shown in FIGS. 1A to 1C are formed.

ここで、上記の熱電変換薄膜を構成する導電部及び絶縁部について、X線回折(X‐Ray Diffraction:XRD)法により測定した。測定結果を図3に示す。ここでは、STO基板及びMgO基板を用い、STO基板上に形成した、LaをドーピングしたSTO膜と、MgO基板上に形成した、LaをドーピングしたSTO膜とについて測定した。図示のように、前者のSTO膜については強度ピークが確認され、結晶化されていることが判る。これに対して後者のSTO膜については強度ピークが確認されず、結晶化していない(非結晶状態である)ことが判る。   Here, the conductive part and the insulating part constituting the thermoelectric conversion thin film were measured by an X-ray diffraction (XRD) method. The measurement results are shown in FIG. Here, an STO substrate and an MgO substrate were used, and an STO film doped with La formed on the STO substrate and an STO film doped with La formed on the MgO substrate were measured. As shown in the figure, the former STO film has an intensity peak, which indicates that it is crystallized. On the other hand, in the latter STO film, no intensity peak is confirmed, and it can be seen that the latter is not crystallized (non-crystalline state).

以上説明したように、本実施形態によれば、導電部3及び絶縁部4が共に表面平坦に(共に表面が略同一平面となるように)形成され、熱伝導性に優れた信頼性の高い熱電変換素子が実現する。   As described above, according to the present embodiment, both the conductive portion 3 and the insulating portion 4 are formed to be flat on the surface (both have a substantially coplanar surface), and have excellent thermal conductivity and high reliability. A thermoelectric conversion element is realized.

以下、熱電変換素子及びその製造方法の諸態様を付記としてまとめて記載する。   Hereinafter, various aspects of the thermoelectric conversion element and the manufacturing method thereof are collectively described as supplementary notes.

(付記1)基板と、
前記基板上の所定領域に形成された絶縁層と、
前記基板上の前記絶縁層の非形成部位に形成された熱電変換特性を有する導電部と、
前記絶縁層上に形成された絶縁部と
を含むことを特徴とする熱電変換素子。
(Appendix 1) a substrate;
An insulating layer formed in a predetermined region on the substrate;
A conductive part having thermoelectric conversion characteristics formed in a non-formation portion of the insulating layer on the substrate;
A thermoelectric conversion element comprising: an insulating portion formed on the insulating layer.

(付記2)前記絶縁層は、酸化マグネシウム酸化物、シリコン酸化物、シリコン窒化物、及びシリコン酸窒化物から選ばれた1種からなることを特徴とする付記1に記載の熱電変換素子。   (Supplementary note 2) The thermoelectric conversion element according to supplementary note 1, wherein the insulating layer is made of one selected from magnesium oxide oxide, silicon oxide, silicon nitride, and silicon oxynitride.

(付記3)前記基板は、LaAlO3、(LaAlO3)0.3−(SrAl0.5Ta0.53)0.7、SrTiO3、NaGaO3、及びDyScO3から選ばれた1種からなることを特徴とする付記1又は2に記載の熱電変換素子。 Appendix, characterized in that it consists of (SrAl 0.5 Ta 0.5 O 3) 0.7, SrTiO 3, NaGaO 3, and one selected from DyScO 3 - (Supplementary Note 3) The substrate, LaAlO 3, (LaAlO 3) 0.3 The thermoelectric conversion element according to 1 or 2.

(付記4)前記導電部及び前記絶縁部は、同一の材料から形成されることを特徴とする付記1〜3のいずれか1項に記載の熱電変換素子。   (Additional remark 4) The said electroconductive part and the said insulating part are formed from the same material, The thermoelectric conversion element of any one of Additional remarks 1-3 characterized by the above-mentioned.

(付記5)前記導電部及び前記絶縁部は、La又はNbが導入されていることを特徴とする付記1〜4のいずれか1項に記載の熱電変換素子。   (Additional remark 5) La or Nb is introduce | transduced into the said electroconductive part and the said insulating part, The thermoelectric conversion element of any one of Additional remark 1-4 characterized by the above-mentioned.

(付記6)基板上の所定領域に絶縁層を形成する工程と、
前記絶縁層上を含む基板上に、熱電変換特性を有する材料を成膜し、前記基板上の前記絶縁層の非形成部位には導電部を、前記絶縁層上には絶縁部をそれぞれ形成する工程と
を含むことを特徴とする熱電変換素子の製造方法。
(Appendix 6) A step of forming an insulating layer in a predetermined region on the substrate;
A material having thermoelectric conversion characteristics is formed on a substrate including the insulating layer, and a conductive portion is formed on a portion of the substrate where the insulating layer is not formed, and an insulating portion is formed on the insulating layer. The process of manufacturing a thermoelectric conversion element characterized by including these processes.

(付記7)前記絶縁層は、酸化マグネシウム酸化物、シリコン酸化物、シリコン窒化物、及びシリコン酸窒化物から選ばれた1種からなることを特徴とする付記6に記載の熱電変換素子の製造方法。   (Additional remark 7) The said insulating layer consists of 1 type chosen from magnesium oxide oxide, silicon oxide, silicon nitride, and silicon oxynitride, The manufacture of the thermoelectric conversion element of Additional remark 6 characterized by the above-mentioned. Method.

(付記8)前記基板は、LaAlO3、(LaAlO3)0.3−(SrAl0.5Ta0.53)0.7、SrTiO3、NaGaO3、及びDyScO3から選ばれた1種からなることを特徴とする付記6又は7に記載の熱電変換素子の製造方法。 (Supplementary Note 8) The substrate, LaAlO 3, (LaAlO 3) 0.3 - characterized in that it consists of (SrAl 0.5 Ta 0.5 O 3) 0.7, SrTiO 3, NaGaO 3, and one selected from DyScO 3 Appendix A method for producing a thermoelectric conversion element according to 6 or 7.

(付記9)前記導電部及び前記絶縁部は、同一の材料から形成されることを特徴とする付記6〜8のいずれか1項に記載の熱電変換素子の製造方法。   (Additional remark 9) The said electroconductive part and the said insulating part are formed from the same material, The manufacturing method of the thermoelectric conversion element of any one of Additional remarks 6-8 characterized by the above-mentioned.

(付記10)前記導電部及び前記絶縁部は、La又はNbが導入されることを特徴とする付記6〜9のいずれか1項に記載の熱電変換素子の製造方法。   (Additional remark 10) La or Nb is introduce | transduced into the said electroconductive part and the said insulating part, The manufacturing method of the thermoelectric conversion element of any one of Additional remark 6-9 characterized by the above-mentioned.

1 基板
2 絶縁層
3 導電部
4 絶縁部
5 電極
11,12 ヒートシンク
21,22 メタルマスク
21a,22a 開口
DESCRIPTION OF SYMBOLS 1 Substrate 2 Insulating layer 3 Conducting part 4 Insulating part 5 Electrodes 11 and 12 Heat sinks 21 and 22 Metal masks 21a and 22a Opening

Claims (5)

基板と、
前記基板上の所定領域に形成された絶縁層と、
前記基板上の前記絶縁層の非形成部位に形成された熱電変換特性を有する導電部と、
前記絶縁層上に形成された絶縁部と
を含み、
前記導電部及び前記絶縁部は、前記導電部が前記基板上で結晶化し、前記絶縁部が前記絶縁層上で結晶化しない同じ材料からなり、共に表面平坦に形成されることを特徴とする熱電変換素子。
A substrate,
An insulating layer formed in a predetermined region on the substrate;
A conductive part having thermoelectric conversion characteristics formed in a non-formation portion of the insulating layer on the substrate;
Look containing a formed on the insulating layer the insulating portion,
The conductive portion and the insulating portion are formed of the same material that the conductive portion is crystallized on the substrate and the insulating portion is not crystallized on the insulating layer, and both are formed to have a flat surface. Conversion element.
前記絶縁層は、酸化マグネシウム酸化物、シリコン酸化物、シリコン窒化物、及びシリコン酸窒化物から選ばれた1種からなることを特徴とする請求項1に記載の熱電変換素子。   The thermoelectric conversion element according to claim 1, wherein the insulating layer is made of one selected from magnesium oxide oxide, silicon oxide, silicon nitride, and silicon oxynitride. 前記基板は、LaAlO3、(LaAlO3)0.3−(SrAl0.5Ta0.53)0.7、SrTiO3、NaGaO3、及びDyScO3から選ばれた1種からなることを特徴とする請求項1又は2に記載の熱電変換素子。 The substrate, LaAlO 3, (LaAlO 3) 0.3 - (SrAl 0.5 Ta 0.5 O 3) 0.7, SrTiO 3, NaGaO 3, and claim 1 or 2, characterized in that it consists of one selected from DyScO 3 The thermoelectric conversion element according to 1. 前記導電部及び前記絶縁部は、La又はNbが導入されていることを特徴とする請求項1〜のいずれか1項に記載の熱電変換素子。 The thermoelectric conversion element according to any one of claims 1 to 3 , wherein La or Nb is introduced into the conductive portion and the insulating portion. 基板上の所定領域に絶縁層を形成する工程と、
前記絶縁層上を含む基板上に、熱電変換特性を有する材料からなる膜を成膜する工程と
を含み、
前記膜は、前記基板上の前記絶縁層の非形成部位が結晶化して導電部となり、前記絶縁層上の部位が結晶化しない絶縁部となるものであることを特徴とする熱電変換素子の製造方法。
Forming an insulating layer in a predetermined region on the substrate;
Wherein the substrate including on the insulating layer, seen including a step of forming a film made of a material having thermoelectric conversion properties,
A non-crystallized portion of the insulating layer on the substrate is crystallized to become a conductive portion, and a portion on the insulating layer is an insulating portion that is not crystallized. Method.
JP2012099092A 2012-04-24 2012-04-24 Thermoelectric conversion element and manufacturing method thereof Expired - Fee Related JP5987449B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012099092A JP5987449B2 (en) 2012-04-24 2012-04-24 Thermoelectric conversion element and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012099092A JP5987449B2 (en) 2012-04-24 2012-04-24 Thermoelectric conversion element and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2013229398A JP2013229398A (en) 2013-11-07
JP5987449B2 true JP5987449B2 (en) 2016-09-07

Family

ID=49676761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012099092A Expired - Fee Related JP5987449B2 (en) 2012-04-24 2012-04-24 Thermoelectric conversion element and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5987449B2 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0680686B2 (en) * 1986-01-22 1994-10-12 沖電気工業株式会社 Method for manufacturing semiconductor device
DE10305411B4 (en) * 2003-02-06 2011-09-15 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Microelectromechanical device and method for its production
KR20080062045A (en) * 2006-12-29 2008-07-03 동부일렉트로닉스 주식회사 Cmos device and method for manufacturing the same
WO2011065185A1 (en) * 2009-11-27 2011-06-03 富士通株式会社 Thermoelectric conversion module and method for manufacturing same
JP2011171595A (en) * 2010-02-19 2011-09-01 Fujitsu Ltd Method of manufacturing compound semiconductor device, and compound semiconductor device
FR2959876B1 (en) * 2010-05-05 2013-04-26 Commissariat Energie Atomique THERMOELECTRIC DEVICE HAVING A VARIATION IN THE EFFECTIVE HEIGHT OF THE PLOTS OF A THERMOCOUPLE AND METHOD FOR MANUFACTURING THE DEVICE.
US20120049314A1 (en) * 2010-08-27 2012-03-01 Samsung Electro-Mechanics Co., Ltd. Thermoelectric module and method for fabricating the same
KR101075772B1 (en) * 2010-08-30 2011-10-26 삼성전기주식회사 Thermoelectric module and method for fabricating the same

Also Published As

Publication number Publication date
JP2013229398A (en) 2013-11-07

Similar Documents

Publication Publication Date Title
TWI527231B (en) Electronic device, laminated structure and manufacturing method thereof
JP2006344618A (en) Structure containing functional film, and manufacturing method of functional film
TWI427796B (en) Thin-film transistor and process for its fabrication
JP5244295B2 (en) TFT substrate and manufacturing method of TFT substrate
JP6354947B2 (en) Metal nitride material for thermistor, manufacturing method thereof, and film type thermistor sensor
TWI651848B (en) Crystallization method of metal oxide semiconductor layer, semiconductor structure, active array substrate, and indium gallium zinc oxide crystal
JP6318915B2 (en) Metal nitride material for thermistor, manufacturing method thereof, and film type thermistor sensor
US7049556B2 (en) Heating device
TW201505225A (en) Conducting substrate and method for preparing the same
CN103904186A (en) Semiconductor device based on graphene electrode and manufacturing method thereof
CN103688320A (en) Thin-film thermistor element and method for manufacturing same
TW201034204A (en) Thin film transistor and method for manufacturing same
JP2009049130A (en) Silicon carbide semiconductor device, method of manufacturing the same, and silicon carbide device
TW201944134A (en) Active device substrate and manufacturing method thereof
CN108766972B (en) Thin film transistor, manufacturing method thereof and display substrate
JP5987449B2 (en) Thermoelectric conversion element and manufacturing method thereof
JP6580077B2 (en) Power storage system having plate-like discrete elements, plate-like discrete elements, method for producing the same, and use thereof
JP2009272530A (en) Semiconductor device and method for manufacturing same
JP2004079606A5 (en)
TWI496220B (en) Thin film transistor and fabricating method thereof
TW201246518A (en) Method for manufacturing semiconductor device
CN106469757A (en) Semiconductor device and the manufacture method of semiconductor device
JP6845568B2 (en) Graphene substrate and its manufacturing method
JPH029450B2 (en)
JPS59114853A (en) Laminated integrated circuit element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160725

R150 Certificate of patent or registration of utility model

Ref document number: 5987449

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees