JP5987444B2 - Thermoelectric conversion device and manufacturing method thereof - Google Patents

Thermoelectric conversion device and manufacturing method thereof Download PDF

Info

Publication number
JP5987444B2
JP5987444B2 JP2012096318A JP2012096318A JP5987444B2 JP 5987444 B2 JP5987444 B2 JP 5987444B2 JP 2012096318 A JP2012096318 A JP 2012096318A JP 2012096318 A JP2012096318 A JP 2012096318A JP 5987444 B2 JP5987444 B2 JP 5987444B2
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
conductive
conversion member
substrate
members
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012096318A
Other languages
Japanese (ja)
Other versions
JP2013225550A (en
Inventor
琢也 西野
琢也 西野
鈴木 貴志
貴志 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2012096318A priority Critical patent/JP5987444B2/en
Publication of JP2013225550A publication Critical patent/JP2013225550A/en
Application granted granted Critical
Publication of JP5987444B2 publication Critical patent/JP5987444B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、ゼーベック(Seebeck)効果を利用し、材料内の温度差を用いて熱を電気に変換する熱電変換デバイス及びその製造方法に関するものである。   The present invention relates to a thermoelectric conversion device that uses the Seebeck effect to convert heat into electricity using a temperature difference in a material, and a method for manufacturing the same.

熱電変換モジュールとは、熱電変換材料と呼ばれる材料の両端に温度差をつけることで起電力を生じさせ、その起電力から電気を取り出す機構を持ったモジュールである。市販されている熱電変換材料は材料に大きな温度差を設けるために材料自体が厚い必要があるため、通常バルク体を用いることが一般的である。   The thermoelectric conversion module is a module having a mechanism for generating an electromotive force by creating a temperature difference between both ends of a material called a thermoelectric conversion material and extracting electricity from the electromotive force. Since a commercially available thermoelectric conversion material needs to be thick in order to provide a large temperature difference between the materials, a bulk body is generally used.

図12は、従来の熱電変換デバイスの概念的斜視図であり、この構造は現在までに熱電変換デバイスとして市販されている唯一の形態であり、π型構造と呼ばれている。これはP型バルク半導体51とN型バルク半導体52の熱電変換材料をCu電極53,54で電気的に接続し片端を高温、もう一端を低温にすることで熱電変換材料内部に温度分布を設け、温度分布に応じた起電力を得ることで発電するものである。なお、図における符号55,56はセラミック基板であり、57,58は起電力を取り出すリード線である。   FIG. 12 is a conceptual perspective view of a conventional thermoelectric conversion device. This structure is the only form commercially available as a thermoelectric conversion device up to now, and is called a π-type structure. This is because the thermoelectric conversion materials of the P-type bulk semiconductor 51 and the N-type bulk semiconductor 52 are electrically connected by Cu electrodes 53 and 54, and one end is set to a high temperature and the other end is set to a low temperature to provide a temperature distribution inside the thermoelectric conversion material. Electric power is generated by obtaining an electromotive force according to the temperature distribution. In the figure, reference numerals 55 and 56 denote ceramic substrates, and 57 and 58 denote lead wires for taking out electromotive force.

しかし、この構造体ではバルク体を用いることから切削切断等がそのサイズに応じて困難になるため微細化に限界があること、及び、使用されている熱電変換材料がBiTe系の化合物であることから材料が高価な上、加工性が悪く脆い等の問題点があった。   However, since this structure uses a bulk body, cutting and cutting are difficult depending on its size, so there is a limit to miniaturization, and the thermoelectric conversion material used is a BiTe compound. As a result, the materials are expensive, and the workability is poor and the material is brittle.

それに対して、近年、薄層化することで材料特性を大きく向上させることが可能であるとの報告が多数なされている。例えば、柔軟性を持った基板上にバルク熱電変換材料を配置し、基板自体を折り曲げ積層していくことで、容易に製造する方法が提案されている(例えば、特許文献1参照)ので、図13及び図14を参照して説明する。   On the other hand, in recent years, there have been many reports that material properties can be greatly improved by thinning. For example, a method has been proposed in which a bulk thermoelectric conversion material is placed on a flexible substrate and the substrate itself is bent and laminated (for example, see Patent Document 1). This will be described with reference to FIG. 13 and FIG.

図13及び図14は従来の薄層化したバルク体を用いた熱電変換デバイスの製造工程の説明図である。まず、図13(a)に示すように、可撓性の絶縁フィルム61上の両側に導電体62を貼り付け、フレキシブル基板60を形成する。次いで、図13(b)に示すように、P型熱電変換材料63及びN型熱電変換材料64を交互に配置する。   FIG. 13 and FIG. 14 are explanatory diagrams of a manufacturing process of a conventional thermoelectric conversion device using a thinned bulk body. First, as shown in FIG. 13A, a conductor 62 is pasted on both sides of a flexible insulating film 61 to form a flexible substrate 60. Next, as shown in FIG. 13B, P-type thermoelectric conversion materials 63 and N-type thermoelectric conversion materials 64 are alternately arranged.

次いで、図13(c)に示すように、P型熱電変換材料63とN型熱電変換材料64との間に交互に逆方向からの切り込み65を設けることにより、P型熱電変換材料63及びN型熱電変換材料64を交互に直列接続する。   Next, as shown in FIG. 13C, by alternately providing incisions 65 from opposite directions between the P-type thermoelectric conversion material 63 and the N-type thermoelectric conversion material 64, the P-type thermoelectric conversion material 63 and N The type thermoelectric conversion materials 64 are alternately connected in series.

次いで、図14(d)及び図14(e)に示すように、所定の箇所の切り込み65において折り曲げるとともに、断熱シート66を挿入して積層構造を形成する。なお、図14(f)は熱電変換要素の電流方向と温度差の説明図である。   Next, as shown in FIG. 14D and FIG. 14E, the laminate structure is formed by bending at a notch 65 at a predetermined location and inserting a heat insulating sheet 66. In addition, FIG.14 (f) is explanatory drawing of the current direction and temperature difference of a thermoelectric conversion element.

この提案の場合には、基板自体が柔軟性を持つことで硬質基板を用いる従来のモジュール構造に比べ破損に強く、多層化構造を取ることで多数の熱電変換材料を集積できるという利点がある。   In the case of this proposal, since the substrate itself has flexibility, it is more resistant to breakage than a conventional module structure using a hard substrate, and there is an advantage that a large number of thermoelectric conversion materials can be integrated by taking a multilayer structure.

また、それらとは別個に近年薄膜熱電変換材料を用いた熱電変換デバイス構造も提案されている(例えば、特許文献2参照)。図15は、薄膜熱電変換材料を用いた熱電変換デバイスの概念的斜視図であり、フィルム基板71上に、P型熱電変換材料薄膜72とN型熱電変換材料薄膜73と交互に互いに接続するように成膜し、フィルム基板71の可撓性を利用して巻回したものである。   In addition, in recent years, a thermoelectric conversion device structure using a thin film thermoelectric conversion material has been proposed (see, for example, Patent Document 2). FIG. 15 is a conceptual perspective view of a thermoelectric conversion device using a thin film thermoelectric conversion material. P-type thermoelectric conversion material thin films 72 and N-type thermoelectric conversion material thin films 73 are alternately connected to each other on a film substrate 71. The film substrate 71 is formed and wound using the flexibility of the film substrate 71.

この場合には、トランジスタ等で実用化されている薄膜の成膜プロセスを利用することで大面積にわたって材料パターンを一括で形成でき、組み立て工程が必要なくなるため、製造コストを低減することができるという利点がある。   In this case, it is possible to form a material pattern over a large area at once by using a thin film deposition process that has been put to practical use in a transistor or the like, and an assembly process is not necessary, so that manufacturing costs can be reduced. There are advantages.

特開2006−269721号公報JP 2006-269721 A 特開2004−241657号公報JP 2004-241657 A

しかし、特許文献1の場合には、薄層化して用いているので、材料自体の厚みや加工幅に限界があるため、面積当たりの熱電変換素子の個数が減少してしまい、小規模デバイスでは高電圧が取りにくいという問題がある。そのうえ、P型、N型の熱電変換材料を交互に一つ一つ並べる必要があるため組み立て工程が必要となり、時間やコストが大きくなる課題があった。   However, in the case of Patent Document 1, since it is used in a thin layer, there is a limit to the thickness and processing width of the material itself, so the number of thermoelectric conversion elements per area decreases, and in a small-scale device, There is a problem that it is difficult to take high voltage. In addition, since it is necessary to alternately arrange P-type and N-type thermoelectric conversion materials one by one, an assembly process is required, and there is a problem that time and cost increase.

また、特許文献2の場合にも、一括形成可能な薄膜材料はバルク材料と比べて厚みが薄いため、電気抵抗が大きくなり、発電量が小さくなるという問題がある。この問題を解決するために高アスペクト比を持ち、厚い熱電変換材料膜を用いる方法も考えられるが、通常形成される薄膜では難しく、時間がかかるなどの問題点があった。薄膜の特性を維持したまま厚膜化することは難しく、現在のところバルク体を上回る特性を得た例はない。   In the case of Patent Document 2, the thin film material that can be collectively formed is thinner than the bulk material, so that there is a problem that the electric resistance increases and the amount of power generation decreases. In order to solve this problem, a method using a thick thermoelectric conversion material film having a high aspect ratio is also conceivable, but there is a problem that a thin film usually formed is difficult and takes time. It is difficult to increase the thickness while maintaining the characteristics of the thin film, and there is no example that has achieved characteristics exceeding that of the bulk body at present.

したがって、熱電変換デバイスにおいて、微細化による熱電変換材料の集積化を可能にし、且つ、使用する薄膜の制限を少なくすることを目的とする。   Accordingly, an object of the thermoelectric conversion device is to enable integration of thermoelectric conversion materials by miniaturization and reduce the limitation of thin films to be used.

開示する一観点からは、複数の導電性貫通ビアを備えた基板要素と、前記複数の導電性貫通ビアの一部の導電性貫通ビアの両側に電気的に接続された第1の熱電変換部材と、前記複数の導電性貫通ビアの残りの導電性貫通ビアの両側に電気的に接続された第2の熱電変換部材を備えた熱電変換要素を有し、前記第1の熱電変換部材と前記第2の熱電変換部材が同じ熱電変換部材であるか、或いは、前記第1の熱電変換部材が第1導電型の熱電変換部材であり且つ前記第2の熱電変換部材が前記第1導電型と反対導電型である第2導電型の熱電変換部材であるかのいずれかであり、前記第1の熱電変換部材同士、及び前記第2の熱電変換部材同士で当接し且つ電気的に接続し、前記基板要素同士が互いに当接しないように複数の前記熱電変換要素を積層し、前記基板要素が柔軟性を有し、前記各熱電変換要素にまたがって共通の1本の連続した基板を形成することを特徴とする熱電変換デバイスが提供される。 From one aspect to be disclosed, a first thermoelectric conversion member electrically connected to both sides of a substrate element having a plurality of conductive through vias and a part of the plurality of conductive through vias is provided. And a thermoelectric conversion element including a second thermoelectric conversion member electrically connected to both sides of the remaining conductive through vias of the plurality of conductive through vias, the first thermoelectric conversion member and the The second thermoelectric conversion member is the same thermoelectric conversion member, or the first thermoelectric conversion member is a first conductivity type thermoelectric conversion member and the second thermoelectric conversion member is the first conductivity type. It is either a thermoelectric conversion member of the second conductivity type that is the opposite conductivity type, abutting and electrically connecting the first thermoelectric conversion members and the second thermoelectric conversion members, A plurality of thermoelectric conversion elements are required so that the substrate elements do not contact each other. Was laminated, the substrate element has a flexible thermoelectric conversion device and forming a substrate on which the continuous common one across each of the thermoelectric conversion element is provided.

また、開示する別の観点からは、柔軟性を有する絶縁性のベース部材の表裏に導電性部材を形成した基板に、前記表裏の一方から他方の導電性部材に到達する複数のビアホールを形成する工程と、前記ビアホールを導電性貫通ビアで埋め込む工程と、前記表裏に形成した導電性部材を選択的に除去して前記基板の長軸方向の両端部を除く領域に前記導電性貫通ビアに接続するランドを形成すると同時に、前記基板の長軸方向の両端部に表裏の一方で前記導電性貫通ビアを露出させるとともに、表裏の他方に前記導電性貫通ビアに接続する配線を形成する工程と、複数の前記ランドの一部のランドに接続するように第1の熱電変換部材を成膜する工程と、複数の前記ランドの残りのランドに接続するように第2の熱電変換部材を成膜する工程と、前記基板を複数個の熱電変換材料を含む熱電変換要素単位で屈曲させて、前記第1の熱電変換部材同士、及び前記第2の熱電変換部材同士で当接し且つ電気的に接続する積層体を形成する工程とを有し、前記第1の熱電変換部材と前記第2の熱電変換部材が同じ熱電変換部材であるか、或いは、前記第1の熱電変換部材が第1導電型の熱電変換部材であり且つ前記第2の熱電変換部材が前記第1導電型と反対導電型である第2導電型の熱電変換部材であるかのいずれかであることを特徴とする熱電変換デバイスの製造方法が提供される。 From another viewpoint to be disclosed, a plurality of via holes that reach the other conductive member from one of the front and back sides are formed on a substrate in which a conductive member is formed on the front and back sides of a flexible insulating base member. A step of embedding the via hole with a conductive through via, and selectively removing the conductive member formed on the front and back surfaces to connect the conductive through via to a region excluding both ends in the major axis direction of the substrate Simultaneously forming the land to be formed, exposing the conductive through via on one side of the front and back at both ends in the major axis direction of the substrate, and forming a wiring connected to the conductive through via on the other side of the front and back; Forming a first thermoelectric conversion member so as to be connected to a part of the plurality of lands, and forming a second thermoelectric conversion member so as to be connected to the remaining lands of the plurality of lands. Process and It said substrate is bent in the thermoelectric conversion element unit comprising a plurality of thermoelectric conversion material, the first thermoelectric conversion members to each other, and the laminate is in contact with and electrically connected with the second thermoelectric conversion members to each other And the first thermoelectric conversion member and the second thermoelectric conversion member are the same thermoelectric conversion member, or the first thermoelectric conversion member is a first conductivity type thermoelectric conversion member. And the second thermoelectric conversion member is a thermoelectric conversion member of a second conductivity type opposite to the first conductivity type, and a method for manufacturing a thermoelectric conversion device, characterized in that Provided.

開示の熱電変換デバイス及びその製造方法によれば、微細化による熱電変換材料の集積化を可能にし、且つ、使用する薄膜の制限を少なくすることが可能になる。   According to the disclosed thermoelectric conversion device and the manufacturing method thereof, it is possible to integrate the thermoelectric conversion material by miniaturization and reduce the limitation of the thin film to be used.

本発明の実施の形態の熱電変換デバイスの説明図である。It is explanatory drawing of the thermoelectric conversion device of embodiment of this invention. 評価に用いた熱電変換デバイスの説明図である。It is explanatory drawing of the thermoelectric conversion device used for evaluation. 比較のために用いた従来の熱電変換デバイスの説明図である。It is explanatory drawing of the conventional thermoelectric conversion device used for the comparison. 本発明の実施例1の熱電変換デバイスの製造工程の途中までの説明図である。It is explanatory drawing to the middle of the manufacturing process of the thermoelectric conversion device of Example 1 of this invention. 本発明の実施例1の熱電変換デバイスの製造工程の図4以降の途中までの説明図である。It is explanatory drawing to the middle after FIG. 4 of the manufacturing process of the thermoelectric conversion device of Example 1 of this invention. 本発明の実施例1の熱電変換デバイスの製造工程の図5以降の途中までの説明図である。It is explanatory drawing to the middle after FIG. 5 of the manufacturing process of the thermoelectric conversion device of Example 1 of this invention. 本発明の実施例1の熱電変換デバイスの製造工程の図6以降の説明図である。It is explanatory drawing after FIG. 6 of the manufacturing process of the thermoelectric conversion device of Example 1 of this invention. 本発明の実施例1の熱電変換デバイスの説明図である。It is explanatory drawing of the thermoelectric conversion device of Example 1 of this invention. 本発明の実施例2の熱電変換デバイスの製造工程の途中までの説明図である。It is explanatory drawing to the middle of the manufacturing process of the thermoelectric conversion device of Example 2 of this invention. 本発明の実施例2の熱電変換デバイスの製造工程の図9以降の説明図である。It is explanatory drawing after FIG. 9 of the manufacturing process of the thermoelectric conversion device of Example 2 of this invention. 本発明の実施例3の熱電変換デバイスの製造工程の説明図である。It is explanatory drawing of the manufacturing process of the thermoelectric conversion device of Example 3 of this invention. 従来の熱電変換デバイスの概念的斜視図である。It is a notional perspective view of the conventional thermoelectric conversion device. 従来の薄層化したバルク体を用いた熱電変換デバイスの製造工程の途中までの説明図である。It is explanatory drawing to the middle of the manufacturing process of the thermoelectric conversion device using the conventional bulk body thinned. 従来の薄層化したバルク体を用いた熱電変換デバイスの製造工程の図13以降の説明図である。It is explanatory drawing after FIG. 13 of the manufacturing process of the thermoelectric conversion device using the conventional bulk body thinned. 薄膜熱電変換材料を用いた熱電変換デバイスの概念的斜視図である。It is a notional perspective view of a thermoelectric conversion device using a thin film thermoelectric conversion material.

ここで、図1乃至図3を参照して、本発明の実施の形態の熱電変換デバイスを説明する。図1は本発明の実施の形態の熱電変換デバイスの説明図であり、図1(a)は各熱電変換要素の平面図であり、図1(b)は熱電変換デバイスの断面図である。熱電変換要素1は、複数の導電性貫通ビア3を備えた基板要素2と、導電性貫通ビア3の両側に電気的に接続された熱電変換部材4,5とを備えている。なお、使用条件によってはこのデバイス自体を折り曲げ使用する可能性があるので、熱電変換デバイスの熱電変換要素間をエポキシ樹脂等の樹脂材料で埋め込んでも良い。   Here, with reference to FIG. 1 thru | or FIG. 3, the thermoelectric conversion device of embodiment of this invention is demonstrated. FIG. 1 is an explanatory diagram of a thermoelectric conversion device according to an embodiment of the present invention, FIG. 1 (a) is a plan view of each thermoelectric conversion element, and FIG. 1 (b) is a cross-sectional view of the thermoelectric conversion device. The thermoelectric conversion element 1 includes a substrate element 2 including a plurality of conductive through vias 3 and thermoelectric conversion members 4 and 5 electrically connected to both sides of the conductive through via 3. Since there is a possibility that the device itself is bent depending on use conditions, the thermoelectric conversion elements of the thermoelectric conversion device may be embedded with a resin material such as an epoxy resin.

基板要素2としては可撓性を有するフレキシブル基板を用いる。また、導電性貫通ビア3は、高熱伝導率、かつ高導電性を有したCu等で形成する。なお、貫通ビアホールを無電解Cuめっきで埋め込むことが困難な場合には、導電性銀ペースト、はんだペースト等の穴埋め材を用いても構わない。また、通常は導電性貫通ビア3と熱電変換部材4,5との間に導電性のランド6を設ける。 A flexible substrate having flexibility is used as the substrate element 2 . The conductive through via 3 is formed of Cu or the like having high thermal conductivity and high conductivity. If it is difficult to fill the through via hole with electroless Cu plating, a hole filling material such as conductive silver paste or solder paste may be used. Further, a conductive land 6 is usually provided between the conductive through via 3 and the thermoelectric conversion members 4 and 5.

熱電変換部材4,5は単一の種類の熱電変換材料でも良いし、二種類の熱電変換材料でも良い。単一の熱電変換材料の場合には、P型半導体、N型半導体或いは金属材料を用いる。また、二種類の熱電変換材料を用いる場合には、P型半導体とN型半導体を用いて互いに交互に配置する。   The thermoelectric conversion members 4 and 5 may be a single type of thermoelectric conversion material or two types of thermoelectric conversion materials. In the case of a single thermoelectric conversion material, a P-type semiconductor, an N-type semiconductor, or a metal material is used. When two types of thermoelectric conversion materials are used, they are alternately arranged using a P-type semiconductor and an N-type semiconductor.

半導体材料としては、BiTe、CoSb、SiGe、PbTe等の化合物半導体を用いて導電型決定不純物等によって導電型を決定すれば良い。例えば、BiTe組成のBiTeはP型半導体であり、Sbを添加したBiSbTeはN型半導体となる。また、金属材料としては、Bi、Pt、Au、Cu、Niなどの単体金属を用いれば良い。これらの熱電変換材料は、使用される温度によって熱電変換能を示す性能指数Zが異なることが知られており、熱電変換部材の耐熱性や熱電変換に利用する温度を考慮して選ぶ必要がある。 As the semiconductor material, a compound semiconductor such as BiTe, CoSb, SiGe, or PbTe may be used to determine the conductivity type by a conductivity type determining impurity or the like. For example, BiTe having a Bi 2 Te 3 composition is a P-type semiconductor, and BiSbTe doped with Sb is an N-type semiconductor. Further, as the metal material, a single metal such as Bi, Pt, Au, Cu, or Ni may be used. These thermoelectric conversion materials are known to have different figure of merit Z indicating thermoelectric conversion ability depending on the temperature used, and it is necessary to select them in consideration of the heat resistance of the thermoelectric conversion member and the temperature used for thermoelectric conversion. .

成膜方法も特に限定はなく、選択するフレキシブル基板に対して劣化しない温度条件を守れるのであれば、スパッタリング法、蒸着法、CVD法、イオンプレーティング法、レーザーアブレーション法、ゾルゲル法、溶射法、スクリーン印刷法、フラッシュ蒸着法等の多種類のプロセスを用いて良い   There is also no particular limitation on the film formation method, so long as the temperature conditions that do not deteriorate can be maintained for the flexible substrate to be selected, sputtering method, vapor deposition method, CVD method, ion plating method, laser ablation method, sol-gel method, thermal spraying method, Various types of processes such as screen printing and flash deposition may be used.

基板要素2は実際には連続した一枚のフレキシブル基板であり、熱電変換要素単位で折り畳むことによって図1(b)の構造が得られる。互いに当接する熱電変換部材同士は、導電体層或いは異方性導電膜で電気的に接続する。導電体層7としては、熱電変換材料より低融点で且つ基板材料に悪影響を与えない材料であればどのようなものでも良い。例えばBi以外にインジウム、はんだ等でも良い。   The substrate element 2 is actually a continuous flexible substrate, and the structure shown in FIG. 1B is obtained by folding the substrate element 2 in units of thermoelectric conversion elements. The thermoelectric conversion members in contact with each other are electrically connected by a conductor layer or an anisotropic conductive film. The conductor layer 7 may be any material as long as it has a lower melting point than the thermoelectric conversion material and does not adversely affect the substrate material. For example, indium, solder, etc. may be used in addition to Bi.

このように、基板を折り曲げ多層化し、各々の熱電変換部材同士を基板に対して垂直方向に電気、温度差両方を生じさせるようなデバイス構造となる。このように熱電変換デバイスを構成することで薄膜用の成膜プロセスの採用により基板上への一括加工を行うことが可能となる。また、薄膜の基板面と垂直方向への伝導を採用することで高アスペクト比の薄膜が必要無く、かつ基板を折り曲げ積層することで熱電変換部材のトータルの厚みを稼ぐことも可能で、簡便に作製可能になる。   In this way, the device structure is such that the substrate is bent to be multi-layered, and each thermoelectric conversion member generates an electrical and temperature difference in a direction perpendicular to the substrate. By configuring the thermoelectric conversion device in this way, it becomes possible to perform batch processing on the substrate by adopting a film forming process for a thin film. In addition, by adopting conduction in the direction perpendicular to the substrate surface of the thin film, it is not necessary to use a thin film with a high aspect ratio, and it is possible to increase the total thickness of the thermoelectric conversion member by bending and laminating the substrate. It becomes possible to produce.

次に、図2及び図3を参照して、本発明の実施の形態の熱電変換デバイスの作用効果を説明する。図2(a)は、評価に用いた熱電変換要素の平面図であり、1mm×1mmのサイズの基板要素2に100μm×100μmで厚さが10μmの熱電変換部材4,5を交互に配置する。   Next, with reference to FIG.2 and FIG.3, the effect of the thermoelectric conversion device of embodiment of this invention is demonstrated. FIG. 2A is a plan view of the thermoelectric conversion elements used for the evaluation, and the thermoelectric conversion members 4 and 5 having a thickness of 100 μm × 100 μm and a thickness of 10 μm are alternately arranged on the substrate element 2 having a size of 1 mm × 1 mm. .

この場合の基板要素2としては、基板厚を現在最も一般的に市販されている25μm厚とし、熱電変換部材にBiTe系を用い、熱電変換部材4,5の表面には厚さが5μmのBiからなる導電体層7を設けている。図2(b)は、熱電変換デバイスの断面図であり、図2(a)に示した熱電変換要素1を12層積層してデバイス寸法を1mm×1mm×0.5mmの微小なデバイスを仮定した。   In this case, the substrate element 2 has a substrate thickness of 25 μm, which is currently most generally commercially available, uses a BiTe system for the thermoelectric conversion member, and Bi has a thickness of 5 μm on the surface of the thermoelectric conversion members 4 and 5. A conductor layer 7 is provided. FIG. 2B is a cross-sectional view of the thermoelectric conversion device, assuming a micro device having a device size of 1 mm × 1 mm × 0.5 mm by laminating 12 layers of the thermoelectric conversion elements 1 shown in FIG. did.

図3は比較のために用いた従来の熱電変換デバイスの説明図であり、ここでは、上述の特許文献2に示したロール状の従来例を用いた。図3(a)は従来の熱電変換デバイスを構成する縦型熱電変換要素の側面図であり、図3(b)は図2(b)のサイズである1mm×1mmのサイズを実現するために15層の縦型熱電変換要素11を貼り合わせた状態を示した側面図である。なお、図における符号12,13,14は、それぞれ、P型熱電変換部材、N型熱電変換部材及びフィルム基板である。   FIG. 3 is an explanatory diagram of a conventional thermoelectric conversion device used for comparison, and here, a roll-shaped conventional example shown in Patent Document 2 described above was used. FIG. 3A is a side view of a vertical thermoelectric conversion element constituting a conventional thermoelectric conversion device, and FIG. 3B is a diagram for realizing a size of 1 mm × 1 mm which is the size of FIG. It is the side view which showed the state which bonded the 15-type vertical thermoelectric conversion element 11 together. In addition, the code | symbols 12, 13, and 14 in a figure are a P-type thermoelectric conversion member, an N-type thermoelectric conversion member, and a film board | substrate, respectively.

このような仮定の下で、表1に示す一般的な熱電変換材料の物性から発電量を計算した結果、本発明の実施の形態の熱電変換デバイスでは、10℃の温度差があれば、400μWとなり、従来例の場合には150μWとなった。このように、バルク材料と比して薄い材料を用いる場合には、従来例のように縦型に並べる構造に比べ、積層型の方が効果が高いことが分かった。

Figure 0005987444
Under such an assumption, as a result of calculating the amount of power generation from the physical properties of the general thermoelectric conversion materials shown in Table 1, in the thermoelectric conversion device according to the embodiment of the present invention, if there is a temperature difference of 10 ° C., 400 μW In the case of the conventional example, it was 150 μW. As described above, when using a material thinner than the bulk material, it was found that the laminated type is more effective than the vertical arrangement as in the conventional example.
Figure 0005987444

次に、図4乃至図8を参照して、本発明の実施例1の熱電変換デバイスを説明するが、まず、図4乃至図7を参照して、本発明の実施例1の熱電変換デバイスの製造工程を説明する。まず、図4(a)に示すようにポリイミドからなる幅が1μmで厚さが12.5μmのベース層21の表裏に厚さが18μmの銅箔22,23を張り付けた銅張積層板からなるフレキシブル基板20を準備する。   Next, the thermoelectric conversion device according to the first embodiment of the present invention will be described with reference to FIGS. 4 to 8. First, with reference to FIGS. 4 to 7, the thermoelectric conversion device according to the first embodiment of the present invention. The manufacturing process will be described. First, as shown in FIG. 4 (a), it is made of a copper-clad laminate in which polyimide foils 22 and 23 having a thickness of 18 μm are attached to the front and back of a base layer 21 having a width of 1 μm and a thickness of 12.5 μm. A flexible substrate 20 is prepared.

次いで、図4(b)に示すように、一方の銅箔23に穴が開かないように時間及び強度を調整したレーザ光24を照射して直径が50μmの貫通穴25を形成する。次いで、図4(c)に示すように、無電解銅めっきを行って貫通穴25を埋め込んで導電性ビア26を形成する。   Next, as shown in FIG. 4B, a through hole 25 having a diameter of 50 μm is formed by irradiating one of the copper foils 23 with a laser beam 24 adjusted in time and intensity so as not to open the hole. Next, as shown in FIG. 4C, electroless copper plating is performed to fill the through hole 25 and form a conductive via 26.

次いで、図5(d)に示すように、ドライフィルムをラミネートしたのち、フレキシブル基板20の長軸方向の両端部を除く領域に導電性ビア26を覆う100μm角のパターンからなるエッチングレジスト27を形成する。なお、フレキシブル基板20の長軸方向の両端部には熱電変換部材同士を直列或いは並列に接続する配線パターンを覆うパターンを形成する。   Next, as shown in FIG. 5D, after laminating the dry film, an etching resist 27 having a 100 μm square pattern covering the conductive via 26 is formed in a region excluding both ends in the major axis direction of the flexible substrate 20. To do. In addition, the pattern which covers the wiring pattern which connects thermoelectric conversion members in series or in parallel is formed in the both ends of the major axis direction of the flexible substrate 20. FIG.

次いで、図5(e)に示すように、エッチングレジスト27をマスクとして銅箔22,23の露出部をエッチングすることでランド28及び配線29を形成する。   Next, as shown in FIG. 5E, lands 28 and wirings 29 are formed by etching the exposed portions of the copper foils 22 and 23 using the etching resist 27 as a mask.

次いで、図5(f)に示すように、メタルマスク30を用いたマスクスパッタリング法によりランド28に接続するように、厚さが10μmのBiTe(組成BiTe)からなるP型熱電変換部材31を一つ置きに形成する。次いで、厚さが5μmのBiからなる低融点導電層32を形成する。 Next, as shown in FIG. 5 (f), a P-type thermoelectric conversion member made of BiTe (composition Bi 2 Te 3 ) having a thickness of 10 μm so as to be connected to the land 28 by a mask sputtering method using a metal mask 30. Every other 31 is formed. Next, a low melting point conductive layer 32 made of Bi having a thickness of 5 μm is formed.

次いで、図6(g)に示すように、メタルマスク30を1ピッチ分ずらして、厚さが10μmのBiSbTe(組成Bi0.3Sb1.7Te)からなるN型熱電変換部材33を形成する。次いで、厚さが5μmのBiからなる低融点導電層34を形成する。この工程を裏面にも行うことで、図6(h)に示す構造が得られる。 Next, as shown in FIG. 6G, the N-type thermoelectric conversion member 33 made of BiSbTe (composition Bi 0.3 Sb 1.7 Te 3 ) having a thickness of 10 μm is shifted by shifting the metal mask 30 by one pitch. Form. Next, a low melting point conductive layer 34 made of Bi having a thickness of 5 μm is formed. By performing this process also on the back surface, the structure shown in FIG.

次いで、図6(i)に示すように、予め定めた長さの1μmの熱電変換要素35を単位にしてフレキシブル基板20を折り畳む。この時、各熱電変換要素35に設けたP型熱電変換部材31同士が当接するとともに、N型熱電変換部材33同士が当接するように位置合わせする。   Next, as shown in FIG. 6 (i), the flexible substrate 20 is folded in units of 1 μm thermoelectric conversion elements 35 having a predetermined length. At this time, the P-type thermoelectric conversion members 31 provided in the thermoelectric conversion elements 35 are in contact with each other, and the N-type thermoelectric conversion members 33 are in contact with each other.

次いで、図7(j)に示すように、3層の熱電変換要素35を折り畳んだのち、配線29を形成した両端部を上部下部に配置し、導電性ビア26がP型熱電変換部材31及びN型熱電変換部材33に当接するように位置合わせして折り畳む。   Next, as shown in FIG. 7 (j), after the three-layer thermoelectric conversion element 35 is folded, both end portions where the wiring 29 is formed are arranged at the upper and lower portions, and the conductive via 26 is connected to the P-type thermoelectric conversion member 31 and It is aligned and folded so as to contact the N-type thermoelectric conversion member 33.

次いで、図7(k)に示すように、デバイス全体を重りで加圧しながらホットプレート上にて30分間Biの融点である271.3℃を超える300℃で加熱し、冷却することで、低融点導電層32,34の溶融接合を行い導電体層36とする。この導電体層36によって、各熱電変換要素35間は電気的に接合され、全熱電変換部材が電気的に直列に接合した熱電変換デバイスが得られる。   Next, as shown in FIG. 7 (k), the whole device is heated on a hot plate at 300.degree. C. exceeding 271.3.degree. C., which is the melting point of Bi, while being pressurized with a weight. The melting point conductive layers 32 and 34 are melt-bonded to form a conductor layer 36. By this conductor layer 36, each thermoelectric conversion element 35 is electrically joined, and a thermoelectric conversion device in which all thermoelectric conversion members are electrically joined in series is obtained.

図8は、本発明の実施例1の熱電変換デバイスの説明図であり、図8(a)は、熱電変換デバイスの透視平面図であり、図8(b)は断面図である。図8(b)に示すように、熱電変換部材はP型熱電変換部材31同士が積層方向に6個直列接続されており、N型熱電変換部材33同士が積層方向に6個直列接続されている。   FIG. 8 is an explanatory diagram of the thermoelectric conversion device according to the first embodiment of the present invention, FIG. 8A is a perspective plan view of the thermoelectric conversion device, and FIG. 8B is a cross-sectional view. As shown in FIG. 8B, six P-type thermoelectric conversion members 31 are connected in series in the stacking direction, and six N-type thermoelectric conversion members 33 are connected in series in the stacking direction. Yes.

また、図8(a)に示すように、6個づつ積層されP型熱電変換部材31とN型熱電変換部材33は配線29により交互に直列接続される。図8(b)に示すように、積層方向に温度差を形成すると、電流は直列接続された6個づつ積層されP型熱電変換部材31とN型熱電変換部材33を交互に上下に蛇行するように流れる。   Further, as shown in FIG. 8A, six P-type thermoelectric conversion members 31 and N-type thermoelectric conversion members 33 are alternately connected in series by wires 29. As shown in FIG. 8B, when a temperature difference is formed in the stacking direction, six currents are stacked in series, and the P-type thermoelectric conversion member 31 and the N-type thermoelectric conversion member 33 meander up and down alternately. It flows like.

このように、本発明の実施例1においては、薄膜用の成膜プロセスの採用により基板上への一括加工を行うことが可能となる。また、薄膜の基板面と垂直方向への伝導を採用することで高アスペクト比の薄膜が必要なく、且つ、基板を折り曲げ積層することで材料の厚みを稼ぐことも可能になるので、簡便に作製可能である。   As described above, in Example 1 of the present invention, it is possible to perform batch processing on a substrate by adopting a film forming process for a thin film. In addition, by adopting conduction in the direction perpendicular to the substrate surface of the thin film, a thin film with a high aspect ratio is not required, and it is possible to increase the thickness of the material by folding and laminating the substrate. Is possible.

次に、図9及び図10を参照して、本発明の実施例2の熱電変換デバイスの製造工程を説明するが、この実施例2は上記の実施例1に補強部材の充填工程を加えたものである。まず、図9(a)に示すように、実施例1と全く同様に熱電変換デバイス積層体40を形成する。   Next, the manufacturing process of the thermoelectric conversion device according to the second embodiment of the present invention will be described with reference to FIGS. 9 and 10. In the second embodiment, the reinforcing member filling process is added to the first embodiment. Is. First, as shown in FIG. 9A, a thermoelectric conversion device laminate 40 is formed in exactly the same manner as in the first embodiment.

次いで、図9(b)に示すように、上下にメタルマスク41を貼付する。次いで、図10(c)に示すように、エポキシ樹脂からなる補強部材42を注入する。次いで、図10(d)に示すように、補強部材42を熱硬化させた後、メタルマスク41を取り外す。   Next, as shown in FIG. 9B, metal masks 41 are pasted up and down. Next, as shown in FIG. 10C, a reinforcing member 42 made of an epoxy resin is injected. Next, as shown in FIG. 10D, after the reinforcing member 42 is thermally cured, the metal mask 41 is removed.

上記の実施例1の場合には、熱電変換要素間は熱伝導率を小さくするために空隙にしているが、使用条件によってはこのデバイス自体を折り曲げ使用する可能性がある。そこで、実施例2においては補強部材で充填することによって機械的強度を高めている。   In the case of Example 1 described above, gaps are made between the thermoelectric conversion elements in order to reduce the thermal conductivity, but there is a possibility that the device itself is bent depending on use conditions. Therefore, in Example 2, the mechanical strength is increased by filling with a reinforcing member.

次に、図11を参照して本発明の実施例3の熱電変換デバイスの製造工程を説明する。まず、図11(a)に示すように、実施例1と同様に、フレキシブル基板20の表裏にP型熱電変換部材31とN型熱電変換部材33を交互に形成する。但し、この実施例3においては、低融点導電層は形成しない。   Next, with reference to FIG. 11, the manufacturing process of the thermoelectric conversion device of Example 3 of this invention is demonstrated. First, as shown in FIG. 11A, similarly to Example 1, P-type thermoelectric conversion members 31 and N-type thermoelectric conversion members 33 are alternately formed on the front and back of the flexible substrate 20. However, in Example 3, the low melting point conductive layer is not formed.

次いで、図11(b)に示すように、予め定めた長さの1μmの熱電変換要素43の単位で、交互に山折り方向及び谷折り方向に折り曲げる。   Next, as shown in FIG. 11B, the thermoelectric conversion elements 43 having a predetermined length of 1 μm are alternately bent in a mountain fold direction and a valley fold direction.

次いで、図11(c)に示すように、折り曲げ工程中に厚さ100μmの異方性導電膜44を挿入しながら挟み込みを完了させ、全体を加圧し押し付けることで基板垂直方向に電気伝導性を持たせることで垂直に電気的に接合した熱電変換デバイスが得られる。   Next, as shown in FIG. 11C, the sandwiching is completed while inserting the anisotropic conductive film 44 having a thickness of 100 μm during the bending process, and the whole is pressed and pressed to make the electrical conductivity in the vertical direction of the substrate. By having it, a thermoelectric conversion device electrically joined vertically can be obtained.

このように、本発明の実施例3においては、異方性導電膜を用いているので、低融点導電層の形成工程が不要になり、それに伴って溶融接合工程も不要になる。なお、この実施例3においても、上記の実施例2と同様に、補強部材を充填しても良い。   Thus, in Example 3 of the present invention, since the anisotropic conductive film is used, the process of forming the low melting point conductive layer becomes unnecessary, and accordingly, the fusion bonding process becomes unnecessary. In the third embodiment, the reinforcing member may be filled as in the second embodiment.

1 熱電変換要素
2 基板要素
3 導電性貫通ビア
4,5 熱電変換部材
6 ランド
7 導電体層
11 縦型熱電変換要素
12 P型熱電変換部材
13 N型熱電変換部材
14 フィルム基板
20 フレキシブル基板
21 ベース層
22,23 銅箔
24 レーザ光
25 貫通穴
26 導電性ビア
27 エッチングレジスト
28 ランド
29 配線
30 メタルマスク
31 P型熱電変換部材
32 低融点導電層
33 N型熱電変換部材
34 低融点導電層
35 熱電変換要素
36 導電体層
40 熱電変換デバイス積層体
41 メタルマスク
42 補強部材
43 熱電変換要素
44 異方性導電膜
51 P型バルク半導体
52 N型バルク半導体
53,54 Cu電極
55,56 セラミック基板
57,58 リード線
60 フレキシブル基板
61 絶縁フィルム
62 導電体
63 P型熱電変換材料
64 N型熱電変換材料
65 切り込み
66 断熱シート
71 フィルム基板
72 P型熱電変換材料薄膜
73 N型熱電変換材料薄膜
DESCRIPTION OF SYMBOLS 1 Thermoelectric conversion element 2 Substrate element 3 Conductive penetration vias 4, 5 Thermoelectric conversion member 6 Land 7 Conductor layer 11 Vertical thermoelectric conversion element 12 P type thermoelectric conversion member 13 N type thermoelectric conversion member 14 Film substrate 20 Flexible substrate 21 Base Layers 22 and 23 Copper foil 24 Laser beam 25 Through hole 26 Conductive via 27 Etching resist 28 Land 29 Wiring 30 Metal mask 31 P-type thermoelectric conversion member 32 Low melting point conductive layer 33 N type thermoelectric conversion member 34 Low melting point conductive layer 35 Thermoelectric Conversion element 36 Conductor layer 40 Thermoelectric conversion device laminate 41 Metal mask 42 Reinforcing member 43 Thermoelectric conversion element 44 Anisotropic conductive film 51 P-type bulk semiconductor 52 N-type bulk semiconductor 53, 54 Cu electrodes 55, 56 Ceramic substrate 57, 58 Lead wire 60 Flexible substrate 61 Insulating film 62 Conductor 63 P-type thermoelectric conversion material Material 64 N-type thermoelectric conversion material 65 Notch 66 Heat insulation sheet 71 Film substrate 72 P-type thermoelectric conversion material thin film 73 N-type thermoelectric conversion material thin film

Claims (4)

複数の導電性貫通ビアを備えた基板要素と、
前記複数の導電性貫通ビアの一部の導電性貫通ビアの両側に電気的に接続された第1の熱電変換部材と、前記複数の導電性貫通ビアの残りの導電性貫通ビアの両側に電気的に接続された第2の熱電変換部材を備えた熱電変換要素を有し、
前記第1の熱電変換部材と前記第2の熱電変換部材が同じ熱電変換部材であるか、或いは、前記第1の熱電変換部材が第1導電型の熱電変換部材であり且つ前記第2の熱電変換部材が前記第1導電型と反対導電型である第2導電型の熱電変換部材であるかのいずれかであり、
前記第1の熱電変換部材同士、及び前記第2の熱電変換部材同士で当接し且つ電気的に接続し、前記基板要素同士が互いに当接しないように複数の前記熱電変換要素を積層し、
前記基板要素が柔軟性を有し、
前記各熱電変換要素にまたがって共通の1本の連続した基板を形成することを特徴とする熱電変換デバイス。
A substrate element with a plurality of conductive through vias;
A first thermoelectric conversion member electrically connected to both sides of a part of the plurality of conductive through vias, and an electric side of the remaining conductive through vias of the plurality of conductive through vias. A thermoelectric conversion element comprising a second thermoelectric conversion member connected in an electrically connected manner,
The first thermoelectric conversion member and the second thermoelectric conversion member are the same thermoelectric conversion member, or the first thermoelectric conversion member is a first conductivity type thermoelectric conversion member and the second thermoelectric conversion member. Either the conversion member is a thermoelectric conversion member of a second conductivity type that is opposite to the first conductivity type,
Abutting and electrically connecting the first thermoelectric conversion members and the second thermoelectric conversion members, laminating the plurality of thermoelectric conversion elements so that the substrate elements do not contact each other,
The substrate element has flexibility;
A thermoelectric conversion device, wherein one continuous substrate common to the thermoelectric conversion elements is formed .
互いに当接する前記第1の熱電変換部材同士、及び前記第2の熱電変換部材同士が、金属、異方性導電膜或いは導電性接着剤のいずれかで電気的に接合されていることを特徴とする請求項1に記載の熱電変換デバイス。 The first thermoelectric conversion members that are in contact with each other and the second thermoelectric conversion members are electrically joined to each other by any one of a metal, an anisotropic conductive film, and a conductive adhesive. The thermoelectric conversion device according to claim 1. 前記各熱電変換要素に設けた複数の前記熱電変換部材の間隙が、絶縁性の補強部材で充填されていることを特徴とする請求項1または請求項2に記載の熱電変換デバイス。 The thermoelectric conversion device according to claim 1 or 2, wherein a gap between the plurality of thermoelectric conversion members provided in each thermoelectric conversion element is filled with an insulating reinforcing member. 柔軟性を有する絶縁性のベース部材の表裏に導電性部材を形成した基板に、前記表裏の一方から他方の導電性部材に到達する複数のビアホールを形成する工程と、
前記ビアホールを導電性貫通ビアで埋め込む工程と、
前記表裏に形成した導電性部材を選択的に除去して前記基板の長軸方向の両端部を除く領域に前記導電性貫通ビアに接続するランドを形成すると同時に、前記基板の長軸方向の両端部に表裏の一方で前記導電性貫通ビアを露出させるとともに表裏の他方に前記導電性貫通ビアに接続する配線を形成する工程と、
複数の前記ランドの一部のランドに接続するように第1の熱電変換部材を成膜する工程と、
複数の前記ランドの残りのランドに接続するように第2の熱電変換部材を成膜する工程と、
前記基板を複数個の熱電変換材料を含む熱電変換要素単位で屈曲させて、前記第1の熱電変換部材同士、及び前記第2の熱電変換部材同士で当接し且つ電気的に接続する積層体を形成する工程と
を有し、
前記第1の熱電変換部材と前記第2の熱電変換部材が同じ熱電変換部材であるか、或いは、前記第1の熱電変換部材が第1導電型の熱電変換部材であり且つ前記第2の熱電変換部材が前記第1導電型と反対導電型である第2導電型の熱電変換部材であるかのいずれかであることを特徴とする熱電変換デバイスの製造方法。
Forming a plurality of via holes reaching the other conductive member from one of the front and back surfaces on the substrate on which the conductive member is formed on the front and back surfaces of the insulating base member having flexibility; and
Filling the via hole with a conductive through via;
The conductive members formed on the front and back surfaces are selectively removed to form lands that connect to the conductive through vias in a region excluding both ends in the major axis direction of the substrate, and at the same time, both ends in the major axis direction of the substrate. Forming a wiring connected to the conductive through via on the other side of the front and back and exposing the conductive through via on one side of the front and back;
Forming a film of the first thermoelectric conversion member so as to connect to a part of the plurality of lands;
Forming a second thermoelectric conversion member so as to connect to the remaining lands of the plurality of lands;
A laminate in which the substrate is bent in units of thermoelectric conversion elements including a plurality of thermoelectric conversion materials, and the first thermoelectric conversion members and the second thermoelectric conversion members are in contact with and electrically connected to each other. And forming a process,
The first thermoelectric conversion member and the second thermoelectric conversion member are the same thermoelectric conversion member, or the first thermoelectric conversion member is a first conductivity type thermoelectric conversion member and the second thermoelectric conversion member. The method of manufacturing a thermoelectric conversion device, wherein the conversion member is any one of a second conductivity type thermoelectric conversion member opposite to the first conductivity type .
JP2012096318A 2012-04-20 2012-04-20 Thermoelectric conversion device and manufacturing method thereof Active JP5987444B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012096318A JP5987444B2 (en) 2012-04-20 2012-04-20 Thermoelectric conversion device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012096318A JP5987444B2 (en) 2012-04-20 2012-04-20 Thermoelectric conversion device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2013225550A JP2013225550A (en) 2013-10-31
JP5987444B2 true JP5987444B2 (en) 2016-09-07

Family

ID=49595430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012096318A Active JP5987444B2 (en) 2012-04-20 2012-04-20 Thermoelectric conversion device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5987444B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101818343B1 (en) 2016-05-19 2018-02-21 울산과학기술원 PAINTS FOR THERMOELECTRIC MATTER OF Bi2Te3 SERIES, THERMOELECTRIC MATTER AND METHOD THEREOF

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11024789B2 (en) 2013-12-06 2021-06-01 Sridhar Kasichainula Flexible encapsulation of a flexible thin-film based thermoelectric device with sputter deposited layer of N-type and P-type thermoelectric legs
US20180090660A1 (en) 2013-12-06 2018-03-29 Sridhar Kasichainula Flexible thin-film based thermoelectric device with sputter deposited layer of n-type and p-type thermoelectric legs
US10141492B2 (en) 2015-05-14 2018-11-27 Nimbus Materials Inc. Energy harvesting for wearable technology through a thin flexible thermoelectric device
US10290794B2 (en) 2016-12-05 2019-05-14 Sridhar Kasichainula Pin coupling based thermoelectric device
US10367131B2 (en) 2013-12-06 2019-07-30 Sridhar Kasichainula Extended area of sputter deposited n-type and p-type thermoelectric legs in a flexible thin-film based thermoelectric device
US10566515B2 (en) 2013-12-06 2020-02-18 Sridhar Kasichainula Extended area of sputter deposited N-type and P-type thermoelectric legs in a flexible thin-film based thermoelectric device
ES2487590B1 (en) * 2014-05-22 2015-06-02 Universidad Politécnica De Valencia Thermoelectric micro-generator based on through electrical contacts
US11276810B2 (en) 2015-05-14 2022-03-15 Nimbus Materials Inc. Method of producing a flexible thermoelectric device to harvest energy for wearable applications
US11283000B2 (en) 2015-05-14 2022-03-22 Nimbus Materials Inc. Method of producing a flexible thermoelectric device to harvest energy for wearable applications
JP6659836B2 (en) * 2016-05-31 2020-03-04 富士フイルム株式会社 Thermoelectric conversion module
US20190181321A1 (en) * 2016-06-23 2019-06-13 3M Innovative Properties Company Flexible thermoelectric module
JP6411612B1 (en) * 2017-10-31 2018-10-24 株式会社Gceインスティチュート Thermoelectric element, power generation apparatus, and method of manufacturing thermoelectric element
JP6521400B1 (en) * 2017-10-31 2019-05-29 株式会社Gceインスティチュート Method of manufacturing thermoelectric element
JP6411613B1 (en) * 2017-10-31 2018-10-24 株式会社Gceインスティチュート Thermoelectric element, power generation apparatus, and method of manufacturing thermoelectric element
JP6521401B1 (en) * 2017-10-31 2019-05-29 株式会社Gceインスティチュート Thermoelectric element, power generation device, and method of manufacturing thermoelectric element
JP6524567B1 (en) * 2018-02-28 2019-06-05 株式会社Gceインスティチュート Thermoelectric element, thermoelectric device, and method of forming thermoelectric element
JP7055113B2 (en) * 2019-03-08 2022-04-15 三菱電機株式会社 Thermoelectric module and its manufacturing method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09162447A (en) * 1995-12-13 1997-06-20 Citizen Watch Co Ltd Production of thermoelectric generating device
JP2004253426A (en) * 2003-02-18 2004-09-09 Sony Corp Thermoelectric conversion device, its manufacturing method and energy conversion device
JP2008130813A (en) * 2006-11-21 2008-06-05 Tokai Rika Co Ltd Thermal power generating device
JP2008147323A (en) * 2006-12-08 2008-06-26 Murata Mfg Co Ltd Thermoelectric conversion module and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101818343B1 (en) 2016-05-19 2018-02-21 울산과학기술원 PAINTS FOR THERMOELECTRIC MATTER OF Bi2Te3 SERIES, THERMOELECTRIC MATTER AND METHOD THEREOF

Also Published As

Publication number Publication date
JP2013225550A (en) 2013-10-31

Similar Documents

Publication Publication Date Title
JP5987444B2 (en) Thermoelectric conversion device and manufacturing method thereof
JP5891584B2 (en) Thermoelectric generator
TWI569482B (en) Method for manufacturing thermoelectric conversion device
JP5493562B2 (en) Thermoelectric conversion module
WO2006019059A1 (en) Thermo-electric cooling device
JP6035970B2 (en) Thermoelectric conversion device and manufacturing method thereof
WO2004055891A9 (en) Semiconductor device and stacked semiconductor device
KR20120046106A (en) Microstructure for a seebeck effect thermoelectric generator, and method for making such a microstructure
JP2008277584A (en) Thermoelectric substrate member, thermoelectric module, and manufacturing method of them
JP2017050391A (en) Multilayer substrate and manufacturing method of the same
JP2017208478A (en) Thermoelectric conversion module and thermoelectric conversion device
CN103779290B (en) Connect substrate and package-on-package structure
JP6756134B2 (en) Manufacturing method for thin film component sheets, substrates with built-in electronic components, and thin film component sheets
WO2007141890A1 (en) Thermoelectric conversion module and method for manufacturing the same
JP7055113B2 (en) Thermoelectric module and its manufacturing method
JP6471241B2 (en) Thermoelectric module
JP5521529B2 (en) Thermoelectric conversion device and manufacturing method thereof
WO2016051982A1 (en) Method for manufacturing thermoelectric transducer device
JP2012114290A (en) Thermoelectric module and manufacturing method of the same
JP6781982B2 (en) Thermoelectric conversion module and its manufacturing method
JP2006108507A (en) Thermoelectric conversion apparatus
KR102276513B1 (en) Substrate having an embedded thermoelectric module, semiconductor package and method of manufacturing the same
KR102336649B1 (en) Thermoelectric module having single crystal thermoelectric material and fabrication method for thereof
JP5200884B2 (en) Thermoelectric power generation device
KR20240052822A (en) Energy harvesters and methods of manufacturing energy harvesters

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160725

R150 Certificate of patent or registration of utility model

Ref document number: 5987444

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150