JP5984192B2 - Natural gas liquefaction process - Google Patents

Natural gas liquefaction process Download PDF

Info

Publication number
JP5984192B2
JP5984192B2 JP2014515273A JP2014515273A JP5984192B2 JP 5984192 B2 JP5984192 B2 JP 5984192B2 JP 2014515273 A JP2014515273 A JP 2014515273A JP 2014515273 A JP2014515273 A JP 2014515273A JP 5984192 B2 JP5984192 B2 JP 5984192B2
Authority
JP
Japan
Prior art keywords
stream
heat exchanger
gas
expander
natural gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014515273A
Other languages
Japanese (ja)
Other versions
JP2014522477A (en
Inventor
マウンダー,アンソニー,ドゥワイト
スキナー,ジェフリー,フレデリック
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gasconsult Ltd
Original Assignee
Gasconsult Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gasconsult Ltd filed Critical Gasconsult Ltd
Publication of JP2014522477A publication Critical patent/JP2014522477A/en
Application granted granted Critical
Publication of JP5984192B2 publication Critical patent/JP5984192B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J5/00Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0035Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0035Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work
    • F25J1/0037Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work of a return stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/004Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by flash gas recovery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0201Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using only internal refrigeration means, i.e. without external refrigeration
    • F25J1/0202Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using only internal refrigeration means, i.e. without external refrigeration in a quasi-closed internal refrigeration loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0225Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using other external refrigeration means not provided before, e.g. heat driven absorption chillers
    • F25J1/0227Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using other external refrigeration means not provided before, e.g. heat driven absorption chillers within a refrigeration cascade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • F25J1/0229Integration with a unit for using hydrocarbons, e.g. consuming hydrocarbons as feed stock
    • F25J1/023Integration with a unit for using hydrocarbons, e.g. consuming hydrocarbons as feed stock for the combustion as fuels, i.e. integration with the fuel gas system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • F25J1/0235Heat exchange integration
    • F25J1/0242Waste heat recovery, e.g. from heat of compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0244Operation; Control and regulation; Instrumentation
    • F25J1/0254Operation; Control and regulation; Instrumentation controlling particular process parameter, e.g. pressure, temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0281Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc. characterised by the type of prime driver, e.g. hot gas expander
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0281Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc. characterised by the type of prime driver, e.g. hot gas expander
    • F25J1/0283Gas turbine as the prime mechanical driver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/60Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
    • F25J2220/62Separating low boiling components, e.g. He, H2, N2, Air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/60Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
    • F25J2220/64Separating heavy hydrocarbons, e.g. NGL, LPG, C4+ hydrocarbons or heavy condensates in general
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/80Hot exhaust gas turbine combustion engine
    • F25J2240/82Hot exhaust gas turbine combustion engine with waste heat recovery, e.g. in a combined cycle, i.e. for generating steam used in a Rankine cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/04Internal refrigeration with work-producing gas expansion loop
    • F25J2270/06Internal refrigeration with work-producing gas expansion loop with multiple gas expansion loops
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/90External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
    • F25J2270/906External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration by heat driven absorption chillers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Combustion & Propulsion (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Description

本発明はメタンリッチガスの液化方法に関し、更に具体的には、但し排他的にではなく、液化天然ガス(liquefied natural gas:LNG)の製造方法に関する。   The present invention relates to a method for liquefying methane-rich gas, and more specifically, but not exclusively, to a method for producing liquefied natural gas (LNG).

天然ガスの液化は、実際には、
−液体冷媒の蒸発
−膨張機(エキスパンダー)におけるガスの仕事膨張
によって行うことができる。
The liquefaction of natural gas is actually
-Evaporation of liquid refrigerant-Can be performed by work expansion of gas in an expander.

液体冷媒の蒸発はその動力要求量が最低であるので、広く用いられているカスケードLNGプロセス及び混合冷媒LNGプロセスの基礎になっている。   Since the evaporation of liquid refrigerant has the lowest power requirement, it is the basis for the widely used cascade LNG process and mixed refrigerant LNG process.

エキスパンダーに基づくLNG設備は、簡素であり、コンパクトであり、軽量であり、かつ、液体冷媒の購入/予備処理/貯蔵を避けることができる。これらの特性は、安全上の観点から炭化水素の在庫量を少なくしたい特にオフショアの小型の施設にとって魅力的である。しかし、エキスパンダープロセスはいくつかの欠点を有する。すなわち、
−近年までエキスパンダーの容量に制限があり、かつ経験が限られていること、
−動力要求量が高いこと、
−内部のガス流量が高いので、ラインの必要直径が大きくなること、
などである。
The expander-based LNG facility is simple, compact, lightweight, and avoids liquid refrigerant purchase / pretreatment / storage. These properties are particularly attractive for small offshore facilities that want to reduce hydrocarbon inventory from a safety standpoint. However, the expander process has several drawbacks. That is,
-Expander capacity is limited and experience is limited until recently,
-High power requirements,
-Because the internal gas flow rate is high, the required diameter of the line is increased,
Etc.

エキスパンダーに基づく殆どのプロセスについて、作業流体(通常窒素)はエキスパンダー出口において気相のままである。   For most processes based on expanders, the working fluid (usually nitrogen) remains in the gas phase at the expander outlet.

エキスパンダー内において原料ガスそのものが部分的に液化されて、2相の排出流れになると、その液化によって内部の(リサイクル)ガス流量が減少し、動力要求量が低減される。   When the raw material gas itself is partially liquefied in the expander to form a two-phase exhaust flow, the liquefaction reduces the internal (recycled) gas flow rate and reduces the power requirement.

液化エキスパンダーによるLNG製造は新規のアイディアではない(Bocquetに付与された米国特許第2,903,858号明細書)。   LNG production with a liquefied expander is not a novel idea (US Pat. No. 2,903,858 to Bocquet).

本出願の発明者は、動力要求量を低くし得るプロセスを先に開示した(英国特許第2393504B号明細書及び米国特許第7,234,321号明細書)。このプロセスにおいては、液化エキスパンダーが、原料天然ガスから生成される単一の混合冷媒を含む予備冷却回路に接続される   The inventor of the present application has previously disclosed a process that can reduce power requirements (UK Patent 2393504B and US Pat. No. 7,234,321). In this process, a liquefied expander is connected to a precooling circuit containing a single mixed refrigerant generated from raw natural gas.

最近の他の文献は、並列/リサイクルガスエキスパンダーによって予備冷却し、これに液化エキスパンダーが後続する方式を開示している。例えば、
−国際公開第01/44735号パンフレット(Mintaその他)は、「1600psiaより高い」圧力に圧縮された原料ガスからの−112℃の加圧液化天然ガス(PLNG)の製造を記載しており、
−米国特許出願公開第2006/0213222号明細書(Whitesell)は、「約1500psig〜約3500psig」の圧力でプロセスに流入するか、あるいはプロセス内でその圧力に圧縮される原料ガスからのLNGの製造を記載している。
Other recent publications disclose a method of pre-cooling with a parallel / recycle gas expander followed by a liquefied expander. For example,
-WO 01/44735 (Minta et al.) Describes the production of pressurized liquefied natural gas (PLNG) at -112 ° C from a source gas compressed to a pressure "higher than 1600 psia"
US 2006/0213222 (Whitesell) describes the production of LNG from a feed gas that flows into a process at a pressure of "about 1500 psig to about 3500 psig" or is compressed to that pressure within the process. Is described.

上記の2件の特許文献の内容に対して、本出願の進歩性は、約−161℃の大気圧LNGの実際の製造を可能にする2つのエキスパンダー(予備冷却エキスパンダー及び液化エキスパンダー)に対する運転条件を特定する点にある。更に、上記の特許文献における特徴である非常に高圧の原料ガスはもはや必要でない。   In contrast to the contents of the above two patent documents, the inventive step of the present application is based on operating conditions for two expanders (precooled expander and liquefied expander) that allow the actual production of atmospheric LNG at about -161 ° C. The point is to identify. Furthermore, the very high pressure source gas that is characteristic in the above-mentioned patent document is no longer necessary.

この結果、プロセスが簡素化され、熱効率が改善され、更に、原料ガスが40bar(4MPa)程度の低い圧力であっても適用可能な広範囲の適用可能性が実現される。   As a result, the process is simplified, the thermal efficiency is improved, and furthermore, a wide range of applicability that can be applied even when the source gas is at a low pressure of about 40 bar (4 MPa) is realized.

本発明は、そのフローの構成が簡単であること、動力消費が低いこと、及び、液体冷媒の貯蔵と使用とに依拠していないことのために、比較的小さいガス田、特にオフショアのガス田からのLNGの製造を容易にする。液化プロセスそのものは、全体的に、例えば冷媒の予備処理用としてのプロセス処理塔を必要としない。プロセス処理塔は、このような運転条件の下では、運転を容易ならざるものにする可能性が高いのである。   The present invention has a relatively small gas field, particularly an offshore gas field, due to its simple flow configuration, low power consumption, and no reliance on storage and use of liquid refrigerant. Facilitates the production of LNG from The liquefaction process itself does not require a process tower, for example, for pretreatment of the refrigerant. The process tower is likely to make it difficult to operate under these operating conditions.

本発明によれば、天然ガスまたは他のメタンリッチガスの液化プロセスが提供される。一般的に40bar(4MPa)〜100bar(10MPa)の圧力の原料ガスが、前記のエキスパンダーに基づくプラントの構成によって液化され、約1bar(0.1MPa)/−161℃のLNG製品が生成される。このプロセスは次の工程、すなわち、
−最初のステップにおいて、第1熱交換器によって、かつ第1仕事エキスパンダー内において、原料ガス及びリサイクルガス(以下に述べる)を冷却する工程であって、その熱交換器は、−50℃〜−80℃、好ましくは−60℃〜−70℃の流出温度を有し、そのエキスパンダーは、前記熱交換器の流出温度より低い流出温度を有し、かつ、そのエキスパンダーの流出ストリームは、前記熱交換器の低温側流路において再加熱され、続いて、上記のリサイクルガスの一部を形成するために再圧縮される、工程と、
−前記第1熱交換器からの前記冷却された流出ストリームを、部分的に、その流出ストリームが本質的に凝縮される第2熱交換器の高温側流路内に通し、かつ部分的に、第2仕事エキスパンダー内に通す工程であって、その第2エキスパンダーは第2熱交換器の低温流出流体より低い流出温度を有し、その第2エキスパンダーの流出ストリームはかなりの量の液体(通常10〜15重量%)を含み、そのエキスパンダーの流出流体は蒸気留分と液体留分とに分離され、蒸気留分は前記第2及び第1熱交換器の低温側流路において再加熱され、続いて、再圧縮され、上記のリサイクルガスの一部としてプロセスの流入側に戻される、工程と、
−上記の分離された液体及び第2熱交換器の高温側流路から凝縮された液体(両者共通常約−120℃)の圧力をほぼ大気圧に低下させ、放出されたフラッシュガスを上記の熱交換器における別の低温側流路内において再加熱し、かつ、液体をLNG製品として使用するために取り出す工程と、
を含む。
In accordance with the present invention, a natural gas or other methane rich gas liquefaction process is provided. In general, a feed gas at a pressure of 40 bar (4 MPa) to 100 bar (10 MPa) is liquefied by a plant configuration based on the expander to produce an LNG product of about 1 bar (0.1 MPa) /-161 ° C. This process involves the following steps:
-In the first step, the raw material gas and the recycle gas (described below) are cooled by the first heat exchanger and in the first work expander, the heat exchanger being An effluent temperature of 80 ° C, preferably -60 ° C to -70 ° C, the expander has an effluent temperature lower than the effluent temperature of the heat exchanger, and the effluent stream of the expander Reheated in the cold side flow path of the vessel and subsequently recompressed to form part of the recycled gas,
Passing the cooled effluent stream from the first heat exchanger partly into the hot side flow path of the second heat exchanger in which the effluent stream is essentially condensed, and partly, Passing through a second work expander, the second expander having an effluent temperature lower than the cold effluent of the second heat exchanger, the effluent stream of the second expander being a substantial amount of liquid (usually 10 The expander effluent is separated into a vapor fraction and a liquid fraction, and the vapor fraction is reheated in the low temperature side channels of the second and first heat exchangers, followed by Re-compressed and returned to the inflow side of the process as part of the recycle gas,
-Reducing the pressure of the separated liquid and the liquid condensed from the high-temperature side passage of the second heat exchanger (both usually -120 ° C) to approximately atmospheric pressure, Reheating in another cold side flow path in the heat exchanger and removing the liquid for use as an LNG product;
including.

リサイクルガスの圧縮動力に対する最低の要求量が、機械的仕事の抜き取りを、第2エキスパンダーのほぼ出口において10bar(1MPa)を超える圧力範囲に集中させることから得られることが見出された。この利点は、2つのエキスパンダーからの流出圧力を約10bar(1MPa)に均等化できる点にあり、第1熱交換器を3流路構成に縮減できる。   It has been found that the minimum requirement for recycle gas compression power is obtained by concentrating the extraction of mechanical work at a pressure range in excess of 10 bar (1 MPa) at approximately the outlet of the second expander. This advantage is that the outflow pressure from the two expanders can be equalized to about 10 bar (1 MPa), and the first heat exchanger can be reduced to a three-channel configuration.

殆どの既存のLNG製造は、熱交換器内においてLNG製品を形成するように天然ガスを冷却しかつ凝縮させるために、液体の冷媒の蒸発に依拠しているが、本発明は、適度な動力要求量を備えた液化プロセスであって、必要な冷却の大部分が、原料ガスそのものの仕事膨張によって供給されるプロセスを含んでいる。従って、極低温用の液体冷媒、あるいは窒素のような他の二次作業流体は必要でない。この方法で、低い温度レベルにおいてエネルギーが抜き取られ、これによって、結果的に熱力学的な効率が改善される。その結果、前記仕事エキスパンダーからの低温ガスの再加熱によって冷却される熱交換器内の凝縮によって形成されるLNGに加えて、LNGのかなりの部分が、直接、仕事抜き取りエキスパンダーにおいて形成される。   Although most existing LNG production relies on the evaporation of a liquid refrigerant to cool and condense natural gas to form an LNG product in a heat exchanger, the present invention provides a modest power A liquefaction process with the required amount, which includes a process in which most of the cooling required is supplied by work expansion of the raw material gas itself. Therefore, no cryogenic liquid refrigerant or other secondary working fluid such as nitrogen is required. In this way, energy is extracted at low temperature levels, thereby improving the thermodynamic efficiency. As a result, in addition to the LNG formed by condensation in the heat exchanger that is cooled by reheating the cold gas from the work expander, a significant portion of the LNG is formed directly in the work extraction expander.

次に、本発明を添付の図面を参照して説明する。   The present invention will now be described with reference to the attached figures.

図1は、本発明の一実施形態によるプロセスを示すフローシートである。FIG. 1 is a flow sheet illustrating a process according to one embodiment of the present invention. 図2は、本発明の別の実施形態によるプロセスを示すフローシートである。FIG. 2 is a flow sheet illustrating a process according to another embodiment of the present invention.

図1は本発明の基本的な運転上の特徴を示す。正確なフローシートは原料ガスの仕様に応じて変化するであろうが、一般的にこのフローシートの基本要素を含むであろう。圧力に言及する場合は、本明細書においては単位として「bar」を用いるが、この「bar」は絶対圧力である。   FIG. 1 illustrates the basic operational features of the present invention. The exact flow sheet will vary depending on the specifications of the feed gas, but will generally include the basic elements of this flow sheet. When referring to pressure, the term “bar” is used herein as a unit, but this “bar” is absolute pressure.

原料天然ガス(ストリーム1)は予備処理段階Aを通して供給される。予備処理段階Aにおいては、CO、HS、水蒸気及び水銀蒸気のような、固結するか、あるいは他の態様で下流側の液化プロセスと干渉する成分が、予備処理ガス(ストリーム2)における適切なかつ従来の最大の濃度になるのに必要な程度まで除去される。 Raw natural gas (stream 1) is fed through pretreatment stage A. In pretreatment stage A, components that consolidate or otherwise interfere with the downstream liquefaction process, such as CO 2 , H 2 S, water vapor and mercury vapor, are pretreated gas (stream 2). To the extent necessary to achieve a suitable and conventional maximum concentration.

ストリーム2はリサイクルガス(ストリーム3)の一部(ストリーム4)と混合され、ストリーム6を形成する。ストリーム6は、熱交換器Bの流路を通過し、通常−20℃〜−60℃の範囲、好ましくは−30℃〜−50℃の範囲の温度でストリーム7として流出する。この温度は、通常、最終のLNG製品用の仕様に適合するために、必要かつ十分なNGLを凝縮するのに十分な程度に低い。セパレータCにおいて凝縮されるあらゆる炭化水素がストリーム8として取り出される。Cからの流出蒸気(ストリーム9)は熱交換器D内の流路において更に冷却され、−50℃〜−80℃、好ましくは−60℃〜−70℃の範囲の温度においてストリーム10として流出する。リサイクルガスの残余の部分(ストリーム5)はガスエキスパンダーEにおいて冷却され、ストリーム10の温度より低い温度の流出ストリーム11として流出する。   Stream 2 is mixed with a portion of the recycled gas (stream 3) (stream 4) to form stream 6. The stream 6 passes through the flow path of the heat exchanger B, and flows out as the stream 7 at a temperature in the range of -20 ° C to -60 ° C, preferably in the range of -30 ° C to -50 ° C. This temperature is usually low enough to condense the necessary and sufficient NGL to meet the specifications for the final LNG product. Any hydrocarbons condensed in separator C are removed as stream 8. Outflow vapor from C (stream 9) is further cooled in the flow path in heat exchanger D and exits as stream 10 at a temperature in the range of -50 ° C to -80 ° C, preferably -60 ° C to -70 ° C. . The remaining portion of the recycle gas (stream 5) is cooled in the gas expander E and flows out as an effluent stream 11 having a temperature lower than that of the stream 10.

場合によっては、予備処理された原料ガスの一部またはすべてを、予備処理段階Aからストリーム2aを経由して流出させ、リサイクルガスのストリーム3がストリーム4及び5に分割される点の上流側でリサイクルガスのストリーム3に合流させることができる。この方式は、天然ガスの原料ストリーム1が僅少量の重質炭化水素しか含まない場合に有用であり得る。このような場合は、予備処理された原料ガスを全リサイクルガスと混合することができ、その結果得られた混合物を、続いて、ストリーム6としての熱交換器Bへの供給用と、ストリーム5としてのガスエキスパンダーEへの供給用とに分割することができる。   In some cases, some or all of the pretreated source gas is discharged from pretreatment stage A via stream 2a upstream of the point where the recycled gas stream 3 is split into streams 4 and 5. Recycled gas stream 3 can be merged. This scheme may be useful when the natural gas feed stream 1 contains only a small amount of heavy hydrocarbons. In such a case, the pretreated source gas can be mixed with the total recycle gas, and the resulting mixture is subsequently fed to heat exchanger B as stream 6 and stream 5 The gas expander E can be divided into those for supply to the gas expander E.

ストリーム11の圧力は、通常、約15bar(1.5MPa)となるであろう。ストリーム11は熱交換器Dにおける第1低温側流路に流入し、ストリーム12として流出する。ストリーム12は、続いて熱交換器Bにおける第1低温側流路を通過し、ストリーム6の温度のすぐ下の温度で流出する(ストリーム13)。ストリーム4の流量とストリーム5の流量との比率は、熱交換器B及びDの合成した高温側及び低温側の間の温度の接近がそれらの全長にわたって一様になるように制御される。   The pressure in stream 11 will typically be about 15 bar (1.5 MPa). The stream 11 flows into the first low temperature side flow path in the heat exchanger D and flows out as the stream 12. The stream 12 subsequently passes through the first low temperature side flow path in the heat exchanger B and flows out at a temperature just below the temperature of the stream 6 (stream 13). The ratio of the flow rate of stream 4 to the flow rate of stream 5 is controlled so that the temperature approach between the combined hot and cold sides of heat exchangers B and D is uniform over their entire length.

ストリーム10の大部分は、引き続いて、第2ガスエキスパンダーFを通過し(ストリーム14)、そのエキスパンダーFから、3bar(0.3MPa)〜20bar(2MPa)、好ましくは5bar(0.5MPa)〜15bar(1.5MPa)の圧力で、かつ、部分的に液化された状態でストリーム15として流出する。ストリーム15は、続いて気液セパレータGに流入する。セパレータGからの液相部分(ストリーム16)は、続いて、通常弁またはタービンのような減圧装置Hにおいて減圧される。Hからの流出分(ストリーム17)は、通常大気圧かまたはそれに近い圧力であり、LNGタンクIに送られる。製品LNGの窒素含有量を低減したい場合には、従来型の窒素ストリッピング塔(図示なし)を用いることができるが、この場合、通常、再沸用としてはストリーム16の顕熱を利用する。   The majority of the stream 10 subsequently passes through the second gas expander F (stream 14) and from that expander F 3 bar (0.3 MPa) to 20 bar (2 MPa), preferably 5 bar (0.5 MPa) to 15 bar. It flows out as a stream 15 at a pressure of (1.5 MPa) and in a partially liquefied state. The stream 15 then flows into the gas / liquid separator G. The liquid phase portion (stream 16) from the separator G is subsequently depressurized in a decompressor H such as a normal valve or turbine. The outflow from H (stream 17) is usually at or near atmospheric pressure and is sent to LNG tank I. If it is desired to reduce the nitrogen content of the product LNG, a conventional nitrogen stripping tower (not shown) can be used. In this case, the sensible heat of the stream 16 is usually used for reboiling.

任意選択的なかつ好ましい方式として、ストリーム10の一部が、ストリーム23として熱交換器Jの高温側流路を通過し、その熱交換器Jにおいて、セパレータGからの蒸気(ストリーム18)との間接熱交換によって液化され、ストリーム24として流出する。ストリーム24は、続いて、通常弁またはタービンのような減圧装置Kによって減圧される。Kからの流出分は、ストリーム25aとして破線で示されるように気液セパレータGに導かれるか、あるいは、好ましくは、ストリーム25bとしてLNGタンクIに導かれる。この第2の選択方式は、リサイクルガス中の窒素の蓄積を低減するのに役立つ。ストリーム18は、熱交換器Jの第1低温側流路において加熱されてストリーム19として流出する。ストリーム19は、続いて、熱交換器Dの第2低温側流路において更に加熱され、ストリーム20として流出する。ストリーム20は、続いて、熱交換器Bの第2低温側流路において更に加熱され、ストリーム6の温度より僅かに低い温度で、ストリーム21として流出する。   As an optional and preferred scheme, a portion of stream 10 passes through the hot side flow path of heat exchanger J as stream 23 where indirect communication with steam from separator G (stream 18). It is liquefied by heat exchange and flows out as a stream 24. The stream 24 is subsequently depressurized by a decompressor K such as a normal valve or turbine. The outflow from K is led to the gas-liquid separator G as shown by the broken line as the stream 25a, or preferably, led to the LNG tank I as the stream 25b. This second selection scheme helps reduce the accumulation of nitrogen in the recycle gas. The stream 18 is heated in the first low temperature side flow path of the heat exchanger J and flows out as a stream 19. Subsequently, the stream 19 is further heated in the second low temperature side flow path of the heat exchanger D and flows out as a stream 20. Subsequently, the stream 20 is further heated in the second low temperature side flow path of the heat exchanger B, and flows out as a stream 21 at a temperature slightly lower than the temperature of the stream 6.

ストリーム13及び21はリサイクル圧縮機Nにおいて圧縮され、その圧縮機Nからの流出ストリーム34は、通常、冷却器Oにおいて冷却水によって冷却される。圧縮機Nはインタクーラを備えた多段構成とすることができる。ストリーム13及び21は、同じ圧力ではないので、異なる圧縮機段に流入させることになるであろう。Oからの流出ストリームが、上記のリサイクルガスのストリーム3を形成する。   Streams 13 and 21 are compressed in recycle compressor N, and the effluent stream 34 from compressor N is typically cooled by cooling water in cooler O. The compressor N may have a multistage configuration including an intercooler. Streams 13 and 21 will not be at the same pressure and will therefore flow into different compressor stages. The effluent stream from O forms the recycle gas stream 3 described above.

Hを通してのストリーム16のフラッシング及びKを通してのストリーム24のフラッシングによって、原料ガスの窒素含有量の殆どと共に主としてメタンを含む蒸気が発生するであろう。通常、この蒸気(ストリーム26)は、任意選択的に、タンクI内への熱の漏入によって生じる蒸発蒸気と組み合わされて、熱交換器Jの第2低温側流路内で加熱され、ストリーム27を形成する。ストリーム27は、続いて、熱交換器Dの第3低温側流路内で加熱されてストリーム28になり、最後に、熱交換器Bの第3低温側流路内で加熱されて、ストリーム6の温度より僅かに低い温度でストリーム29として流出する。ストリーム29の圧力が確実に大気圧以下に低下しないようにするため、ストリーム26に、従来型のブースタブロワ(これも図示なし)を設けることができる。ストリーム29は、通常燃料ガスとして用いることができる。   The flushing of stream 16 through H and the flushing of stream 24 through K will produce a vapor containing mainly methane with most of the nitrogen content of the feed gas. Typically, this steam (stream 26) is heated in the second cold side flow path of heat exchanger J, optionally in combination with the evaporating steam generated by the heat leak into tank I, and the stream 27 is formed. The stream 27 is subsequently heated in the third low temperature side flow path of the heat exchanger D to become a stream 28 and finally heated in the third low temperature side flow path of the heat exchanger B to be stream 6. It exits as stream 29 at a temperature slightly below the temperature of. In order to ensure that the pressure in stream 29 does not drop below atmospheric pressure, stream 26 can be provided with a conventional booster blower (also not shown). The stream 29 can be used as a normal fuel gas.

ストリーム29の一部またはすべて(ストリーム30)は、任意選択的に、リサイクルガスに戻すために低圧圧縮機Lにおいて圧縮することができる。これはストリーム31として流出する。このストリーム31は冷却器Mにおいて冷却され、その冷却器Mからの流出分(ストリーム32)がストリーム21に合流してストリーム22を形成する。ストリーム22は、続いて、この任意選択が用いられない場合の単独のストリーム21の代わりに、リサイクル圧縮機Nの吸い込み側に流入する。別の任意選択として、リサイクルガス(ストリーム33)を、通常ガスタービンの燃料用として、好適な点において圧縮機Nから引き抜く方式がある。ストリーム29またはストリーム33は、最終的に燃料として燃焼するのに先立って、予備処理段階Aにおける吸着剤の再生用としてのストリッピングガスとして利用することが好都合である場合がある。   Part or all of stream 29 (stream 30) can optionally be compressed in low pressure compressor L for return to recycle gas. This flows out as stream 31. The stream 31 is cooled in the cooler M, and an outflow (stream 32) from the cooler M joins the stream 21 to form a stream 22. Stream 22 then flows into the suction side of recycle compressor N instead of a single stream 21 when this option is not used. Another option is to draw the recycle gas (stream 33) from the compressor N at a suitable point, usually for fuel in a gas turbine. Stream 29 or stream 33 may be advantageously used as a stripping gas for regeneration of the adsorbent in pretreatment stage A prior to final combustion as fuel.

図2は、本発明の別の好ましい実施形態を示すが、この実施形態においては、エキスパンダーE及びFが、基本的に、3bar(0.3MPa)〜20bar(2MPa)、好ましくは5bar(0.5MPa)〜15bar(1.5MPa)の同じ流出圧力を有する。エキスパンダーEからの流出ストリーム(ストリーム11)は、続いて、ストリーム19と結合され、ストリーム19aを形成する。ストリーム19aは図1のストリーム19の位置で熱交換器Dに流入する。この場合、熱交換器B及びDはただ3つの流路のみを有し、これによって、熱交換器の構造と、プラントの運転とが簡素化される。   FIG. 2 shows another preferred embodiment of the invention, in which the expanders E and F are basically from 3 bar (0.3 MPa) to 20 bar (2 MPa), preferably 5 bar (0. Having the same outflow pressure of 5 MPa) to 15 bar (1.5 MPa). The effluent stream (stream 11) from expander E is subsequently combined with stream 19 to form stream 19a. Stream 19a flows into heat exchanger D at the position of stream 19 in FIG. In this case, the heat exchangers B and D have only three flow paths, which simplifies the structure of the heat exchanger and the operation of the plant.

殆どの用途において、ストリーム2及び3は大気温度に近い温度を有するであろうことが予期されるが、この温度レベル以下に冷却することが有利である場合がある。これらのストリーム、及び、任意選択的に圧縮機のインタクーラ及びアフタクーラからの流出ストリームを、機械的な冷凍サイクルによって、あるいは、通常、臭化リチウム(LiBr)を用いる吸収式冷凍システムによって冷却することが可能である。臭化リチウムは、ガスタービン、ガスエンジンまたはコンバインドサイクル、あるいは他の何らかの適切な設備の排気ガスからの熱供給を受け取ることができる。   In most applications, it is expected that streams 2 and 3 will have a temperature close to ambient temperature, but it may be advantageous to cool below this temperature level. These streams, and optionally the effluent streams from the compressor intercoolers and aftercoolers, may be cooled by a mechanical refrigeration cycle or by an absorption refrigeration system, usually using lithium bromide (LiBr). Is possible. The lithium bromide can receive heat supply from the exhaust gas of a gas turbine, gas engine or combined cycle, or some other suitable facility.

Claims (8)

天然ガスまたは他のメタンリッチガスの液化プロセスであって、
−原料天然ガス(9)を、熱交換器(D)及び第1ガスエキスパンダー(E)によって、40〜100bar(4〜10MPa)の圧力において、−50℃〜−80℃の温度に冷却する工程であり、前記熱交換器は、前記原料天然ガス(9)を受け入れると共に、前記エキスパンダーの流出温度より高い流出温度を有する、工程と、
−前記エキスパンダーの流出ストリーム(11)を、前記熱交換器(D)の第1低温側流路において、前記原料天然ガス(9)の前記熱交換器への流入温度のすぐ下の温度に再加熱し、圧縮し、かつリサイクルする工程と、
−前記熱交換器(D)からの低温流出ストリーム(14)の一部またはすべてを、それが部分的に液化される第2エキスパンダー(F)内に通す工程と、
−前記第2エキスパンダー(F)の流出ストリーム(15)を蒸気留分及び液体留分に分離する工程と、
−前記液体留分(16)をLNG製品として使用するために捕集する工程と、
−前記蒸気留分(19)を、前記熱交換器(D)の第2低温側流路において、前記原料天然ガス(9)の前記熱交換器への流入温度のすぐ下の温度に再加熱する工程と、
−前記再加熱された蒸気留分を、圧縮後、一部(5)は前記第1エキスパンダーに、一部(4)は前記熱交換器にリサイクルする工程と、
を含むプロセスにおいて、
前記第2エキスパンダー(F)の流出ストリーム(15)の圧力が5〜15bar(0.5〜1.5MPa)である、
ことを特徴とするプロセス。
A liquefaction process of natural gas or other methane rich gas,
-The process of cooling raw material natural gas (9) to the temperature of -50 degreeC to -80 degreeC in the pressure of 40-100 bar (4-10 MPa) with a heat exchanger (D) and a 1st gas expander (E). The heat exchanger receives the raw natural gas (9) and has an outflow temperature higher than the outflow temperature of the expander;
The expander effluent stream (11) is re-introduced to a temperature just below the inflow temperature of the raw natural gas (9) into the heat exchanger in the first low temperature side flow path of the heat exchanger (D). Heating, compressing and recycling the process;
Passing part or all of the cold effluent stream (14) from the heat exchanger (D) into a second expander (F) where it is partially liquefied;
Separating the effluent stream (15) of the second expander (F) into a vapor fraction and a liquid fraction;
-Collecting said liquid fraction (16) for use as an LNG product;
-Reheating the steam fraction (19) to a temperature just below the inflow temperature of the raw material natural gas (9) into the heat exchanger in the second low temperature side channel of the heat exchanger (D); And a process of
-Recycling the reheated steam fraction after compression, part (5) into the first expander and part (4) into the heat exchanger;
In a process that includes
The pressure of the effluent stream (15) of the second expander (F) is 5 to 15 bar (0.5 to 1.5 MPa).
Process characterized by that.
請求項1に記載のプロセスにおいて、前記熱交換器が前記原料天然ガスのすべてを受け入れる、ことを特徴とするプロセス。   The process of claim 1, wherein the heat exchanger receives all of the raw natural gas. 請求項1に記載のプロセスにおいて、前記熱交換器が、前記原料天然ガスの少なくとも30%を受け入れる、ことを特徴とするプロセス。 The process of claim 1, the process of the heat exchanger, accepting 30% even without less of the raw natural gas, characterized in that. 請求項1乃至3の何れか一項に記載のプロセスにおいて、前記原料天然ガスが−60℃〜−70℃の温度に冷却される、ことを特徴とするプロセス。   The process according to any one of claims 1 to 3, wherein the raw natural gas is cooled to a temperature of -60 ° C to -70 ° C. 請求項1乃至4の何れか一項に記載のプロセスの変形において、前記第1及び第2ガスエキスパンダー(E,F)が、5bar(0.5MPa)〜15bar(1.5MPa)の基本的に同じ流出圧力を有し、その両エキスパンダーからの流出ストリーム(19a)が、最終的な再加熱、圧縮及びリサイクルに先立って結合される、ことを特徴とするプロセス。   5. The process variant according to claim 1, wherein the first and second gas expanders (E, F) are basically between 5 bar (0.5 MPa) and 15 bar (1.5 MPa). Process characterized in that the effluent streams (19a) from both expanders having the same effluent pressure are combined prior to final reheating, compression and recycling. 請求項1乃至5の何れか一項に記載のプロセスにおいて、前記原料ストリーム及び/または圧縮機排出ストリーム及び/またはリサイクルストリームの任意の一部分またはすべてが、例えば臭化リチウム(LiBr)のような吸収式冷凍サイクルを用いて冷却される、ことを特徴とするプロセス。 Process according to any one of claims 1 to 5, wherein the feed stream and / or any portion or all of the compressor discharge stream and / or recycle streams, such as example if lithium bromide (LiBr) A process characterized by being cooled using an absorption refrigeration cycle. 請求項1乃至6の何れか一項に記載のプロセスにおいて、吸収式冷凍システムに必要な熱が、プロセスの圧縮機への動力供給用として用いることができるガスエンジンまたはタービンの排熱によって供給される、ことを特徴とするプロセス。   7. Process according to any one of the preceding claims, wherein the heat required for the absorption refrigeration system is supplied by exhaust heat from a gas engine or turbine that can be used to power the compressor of the process. A process characterized by that. 請求項1乃至7の何れか一項に記載のプロセスにおいて、原料ストリーム及び/またはリサイクルストリームの何れかの前記のような冷却が、原料ガスからの二酸化炭素及び/または他の不純物の除去と組み合わされる、ことを特徴とするプロセス。   8. Process according to any one of the preceding claims, wherein such cooling of any of the feed streams and / or recycle streams is combined with the removal of carbon dioxide and / or other impurities from the feed gas. A process characterized by
JP2014515273A 2011-06-15 2012-06-11 Natural gas liquefaction process Active JP5984192B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB1110096.3A GB2486036B (en) 2011-06-15 2011-06-15 Process for liquefaction of natural gas
GB1110096.3 2011-06-15
PCT/GB2012/000502 WO2012172281A2 (en) 2011-06-15 2012-06-11 Process for liquefaction of natural gas

Publications (2)

Publication Number Publication Date
JP2014522477A JP2014522477A (en) 2014-09-04
JP5984192B2 true JP5984192B2 (en) 2016-09-06

Family

ID=44357822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014515273A Active JP5984192B2 (en) 2011-06-15 2012-06-11 Natural gas liquefaction process

Country Status (11)

Country Link
US (1) US20140083132A1 (en)
EP (1) EP2721358A2 (en)
JP (1) JP5984192B2 (en)
KR (1) KR101820560B1 (en)
CN (1) CN103582792B (en)
AU (1) AU2012270148B2 (en)
CA (1) CA2836628C (en)
GB (1) GB2486036B (en)
MX (1) MX346703B (en)
MY (1) MY172653A (en)
WO (1) WO2012172281A2 (en)

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2713127A1 (en) * 2012-09-28 2014-04-02 Siemens Aktiengesellschaft Method for liquefaction of natural gas
GB2522421B (en) * 2014-01-22 2016-10-19 Dwight Maunder Anthony LNG production process
US9696086B2 (en) * 2014-01-28 2017-07-04 Dresser-Rand Company System and method for the production of liquefied natural gas
EP3043133A1 (en) * 2015-01-12 2016-07-13 Shell Internationale Research Maatschappij B.V. Method of removing nitrogen from a nitrogen containing stream
US9863697B2 (en) 2015-04-24 2018-01-09 Air Products And Chemicals, Inc. Integrated methane refrigeration system for liquefying natural gas
TWI603044B (en) 2015-07-10 2017-10-21 艾克頌美孚上游研究公司 System and methods for the production of liquefied nitrogen gas using liquefied natural gas
TWI608206B (en) 2015-07-15 2017-12-11 艾克頌美孚上游研究公司 Increasing efficiency in an lng production system by pre-cooling a natural gas feed stream
TWI606221B (en) 2015-07-15 2017-11-21 艾克頌美孚上游研究公司 Liquefied natural gas production system and method with greenhouse gas removal
GB2541464A (en) * 2015-08-21 2017-02-22 Frederick Skinner Geoffrey Process for producing Liquefied natural gas
US20170131027A1 (en) * 2015-11-06 2017-05-11 Fluor Technologies Corporation Systems and Methods for LNG Refrigeration and Liquefaction
AU2016372717A1 (en) 2015-12-14 2018-05-24 Exxonmobil Upstream Research Company Pre-cooling of natural gas by high pressure compression and expansion
CA3007052C (en) 2015-12-14 2020-10-20 Exxonmobil Upstream Research Company Method and system for separating nitrogen from liquefied natural gas using liquefied nitrogen
US20170167785A1 (en) * 2015-12-14 2017-06-15 Fritz Pierre, JR. Expander-Based LNG Production Processes Enhanced With Liquid Nitrogen
AU2016372711B2 (en) 2015-12-14 2019-05-02 Exxonmobil Upstream Research Company Method of natural gas liquefaction on LNG carriers storing liquid nitrogen
CN105674686B (en) * 2016-01-15 2018-09-14 成都赛普瑞兴科技有限公司 A kind of liquefied method and device of swell refrigeration high methane gas
CN108779953A (en) 2016-03-21 2018-11-09 国际壳牌研究有限公司 method and system for liquefied natural gas feed stream
CN105823304B (en) * 2016-03-23 2019-02-19 成都赛普瑞兴科技有限公司 A kind of liquefied method and device of twin-stage swell refrigeration high methane gas
US20190112008A1 (en) * 2016-03-31 2019-04-18 Daewoo Shipbuilding & Marine Engineering Co., Ltd. Boil-off gas re-liquefying device and method for ship
CN106052303A (en) * 2016-06-07 2016-10-26 成都赛普瑞兴科技有限公司 Efficient expansion refrigeration methane-rich gas liquefaction method and device
CN107560316A (en) * 2016-06-30 2018-01-09 通用电气公司 natural gas liquefaction system and method
FR3053771B1 (en) 2016-07-06 2019-07-19 Saipem S.P.A. METHOD FOR LIQUEFACTING NATURAL GAS AND RECOVERING LIQUID EVENTS OF NATURAL GAS COMPRISING TWO NATURAL GAS SEMI-OPENING REFRIGERANT CYCLES AND A REFRIGERANT GAS REFRIGERANT CYCLE
JP7022140B2 (en) * 2017-02-13 2022-02-17 エクソンモービル アップストリーム リサーチ カンパニー Precooling of natural gas by high pressure compression and expansion
JP6858267B2 (en) 2017-02-24 2021-04-14 エクソンモービル アップストリーム リサーチ カンパニー Dual purpose LNG / LIN storage tank purging method
CN106907273A (en) * 2017-03-15 2017-06-30 广西利维船舶制造有限公司 A kind of ship LNG vaporization system of utilization river heat supply
KR102387172B1 (en) * 2017-12-29 2022-04-15 대우조선해양 주식회사 Boil-Off Gas Treating Apparatus and Method of Liquefied Gas Regasification System
US10866022B2 (en) 2018-04-27 2020-12-15 Air Products And Chemicals, Inc. Method and system for cooling a hydrocarbon stream using a gas phase refrigerant
US10788261B2 (en) * 2018-04-27 2020-09-29 Air Products And Chemicals, Inc. Method and system for cooling a hydrocarbon stream using a gas phase refrigerant
CA3101931C (en) 2018-06-07 2023-04-04 Exxonmobil Upstream Research Company Pretreatment and pre-cooling of natural gas by high pressure compression and expansion
SG11202100389RA (en) 2018-08-14 2021-02-25 Exxonmobil Upstream Res Co Conserving mixed refrigerant in natural gas liquefaction facilities
AU2019326291B9 (en) * 2018-08-22 2023-04-13 ExxonMobil Technology and Engineering Company Managing make-up gas composition variation for a high pressure expander process
EP3841343A2 (en) 2018-08-22 2021-06-30 ExxonMobil Upstream Research Company Heat exchanger configuration for a high pressure expander process and a method of natural gas liquefaction using the same
AU2019325914B2 (en) 2018-08-22 2023-01-19 ExxonMobil Technology and Engineering Company Primary loop start-up method for a high pressure expander process
US11578545B2 (en) 2018-11-20 2023-02-14 Exxonmobil Upstream Research Company Poly refrigerated integrated cycle operation using solid-tolerant heat exchangers
WO2020106397A1 (en) 2018-11-20 2020-05-28 Exxonmobil Upstream Research Company Methods and apparatus for improving multi-plate scraped heat exchangers
TWI746977B (en) * 2019-01-22 2021-11-21 法商液態空氣喬治斯克勞帝方法研究開發股份有限公司 Gas liquefaction method and gas liquefaction device
CA3123235A1 (en) 2019-01-30 2020-08-06 Exxonmobil Upstream Research Company Methods for removal of moisture from lng refrigerant
US11668524B2 (en) 2019-01-30 2023-06-06 Exxonmobil Upstream Research Company Methods for removal of moisture from LNG refrigerant
GB2582815A (en) * 2019-04-05 2020-10-07 Frederick Skinner Geoffrey Process for producing liquefied natural gas
US11465093B2 (en) 2019-08-19 2022-10-11 Exxonmobil Upstream Research Company Compliant composite heat exchangers
US20210063083A1 (en) 2019-08-29 2021-03-04 Exxonmobil Upstream Research Company Liquefaction of Production Gas
US11806639B2 (en) 2019-09-19 2023-11-07 ExxonMobil Technology and Engineering Company Pretreatment and pre-cooling of natural gas by high pressure compression and expansion
EP4031820A1 (en) 2019-09-19 2022-07-27 Exxonmobil Upstream Research Company (EMHC-N1-4A-607) Pretreatment, pre-cooling, and condensate recovery of natural gas by high pressure compression and expansion
EP4031821A1 (en) 2019-09-19 2022-07-27 ExxonMobil Upstream Research Company Pretreatment and pre-cooling of natural gas by high pressure compression and expansion
WO2021055074A1 (en) 2019-09-20 2021-03-25 Exxonmobil Upstream Research Company Removal of acid gases from a gas stream, with o2 enrichment for acid gas capture and sequestration
US11808411B2 (en) 2019-09-24 2023-11-07 ExxonMobil Technology and Engineering Company Cargo stripping features for dual-purpose cryogenic tanks on ships or floating storage units for LNG and liquid nitrogen
US20210088273A1 (en) * 2019-09-24 2021-03-25 High Roller E & C, LLC System and process for natural gas liquefaction
US11911732B2 (en) 2020-04-03 2024-02-27 Nublu Innovations, Llc Oilfield deep well processing and injection facility and methods
US11499775B2 (en) 2020-06-30 2022-11-15 Air Products And Chemicals, Inc. Liquefaction system
GB2601173B (en) 2020-11-21 2022-11-16 Frederick Skinner Geoffrey Process for producing liquefied Hydrogen

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2900796A (en) * 1954-08-16 1959-08-25 Constock Liquid Methane Corp Method of liquefying natural gas
US2903858A (en) 1955-10-06 1959-09-15 Constock Liquid Methane Corp Process of liquefying gases
US3433026A (en) * 1966-11-07 1969-03-18 Judson S Swearingen Staged isenthalpic-isentropic expansion of gas from a pressurized liquefied state to a terminal storage state
US3581511A (en) * 1969-07-15 1971-06-01 Inst Gas Technology Liquefaction of natural gas using separated pure components as refrigerants
US3677019A (en) * 1969-08-01 1972-07-18 Union Carbide Corp Gas liquefaction process and apparatus
GB8610855D0 (en) * 1986-05-02 1986-06-11 Boc Group Plc Gas liquefaction
FR2714722B1 (en) * 1993-12-30 1997-11-21 Inst Francais Du Petrole Method and apparatus for liquefying a natural gas.
MY122625A (en) * 1999-12-17 2006-04-29 Exxonmobil Upstream Res Co Process for making pressurized liquefied natural gas from pressured natural gas using expansion cooling
GB0120272D0 (en) * 2001-08-21 2001-10-10 Gasconsult Ltd Improved process for liquefaction of natural gases
AU2003900327A0 (en) * 2003-01-22 2003-02-06 Paul William Bridgwood Process for the production of liquefied natural gas
EA010538B1 (en) * 2004-04-26 2008-10-30 Ортлофф Инджинирс, Лтд. Natural gas liquefaction
US7673476B2 (en) 2005-03-28 2010-03-09 Cambridge Cryogenics Technologies Compact, modular method and apparatus for liquefying natural gas
CN101228405B (en) * 2005-08-09 2010-12-08 埃克森美孚上游研究公司 Natural gas liquefaction process for producing LNG
US20090217701A1 (en) * 2005-08-09 2009-09-03 Moses Minta Natural Gas Liquefaction Process for Ling
JP2007051788A (en) * 2005-08-15 2007-03-01 Daikin Ind Ltd Refrigerating device
EP1939564A1 (en) * 2006-12-26 2008-07-02 Repsol Ypf S.A. Process to obtain liquefied natural gas
US9140490B2 (en) * 2007-08-24 2015-09-22 Exxonmobil Upstream Research Company Natural gas liquefaction processes with feed gas refrigerant cooling loops
US20120036888A1 (en) * 2007-11-05 2012-02-16 David Vandor Method and system for the small-scale production of liquified natural gas (lng) and cold compressed gas (ccng) from low-pressure natural gas
CN101871703A (en) * 2009-04-21 2010-10-27 刘甄 Lithium bromide absorbing type refrigeration and heat supply device
CA2827247A1 (en) * 2011-02-16 2012-08-23 Conocophillips Company Integrated waste heat recovery in liquefied natural gas facility

Also Published As

Publication number Publication date
US20140083132A1 (en) 2014-03-27
CA2836628A1 (en) 2012-12-20
WO2012172281A3 (en) 2013-12-05
AU2012270148B2 (en) 2017-12-07
AU2012270148A1 (en) 2013-11-28
JP2014522477A (en) 2014-09-04
MX2013014870A (en) 2015-06-15
KR20140043745A (en) 2014-04-10
GB2486036B (en) 2012-11-07
WO2012172281A2 (en) 2012-12-20
KR101820560B1 (en) 2018-01-19
WO2012172281A4 (en) 2014-01-09
CN103582792B (en) 2016-06-22
GB201110096D0 (en) 2011-07-27
CN103582792A (en) 2014-02-12
EP2721358A2 (en) 2014-04-23
GB2486036A (en) 2012-06-06
CA2836628C (en) 2019-06-25
MY172653A (en) 2019-12-09
MX346703B (en) 2017-03-28

Similar Documents

Publication Publication Date Title
JP5984192B2 (en) Natural gas liquefaction process
US6378330B1 (en) Process for making pressurized liquefied natural gas from pressured natural gas using expansion cooling
US6751985B2 (en) Process for producing a pressurized liquefied gas product by cooling and expansion of a gas stream in the supercritical state
JP5725856B2 (en) Natural gas liquefaction process
JP4669473B2 (en) Method and equipment for liquefaction of natural gas and production of liquid by-products from natural gas
JP5730302B2 (en) Process for treating a multiphase hydrocarbon stream and apparatus therefor
US7628035B2 (en) Method for processing a stream of LNG obtained by means of cooling using a first refrigeration cycle and associated installation
US8250883B2 (en) Process to obtain liquefied natural gas
JP6629843B2 (en) Production of low pressure liquid carbon dioxide from power generation systems and methods
JP2019526770A (en) Process for liquefying natural gas and recovering any liquid from natural gas, comprising two semi-open refrigerant cycles using natural gas and one closed refrigerant cycle using gas refrigerant
JP2009504838A (en) Natural gas liquefaction method for LNG
JP2009041017A (en) Method for removing nitrogen from condensed natural gas
US20100071409A1 (en) Method and apparatus for liquefying a hydrocarbon stream
EP2379967A2 (en) Method and system for producing liquified natural gas
JP7326484B2 (en) Pretreatment and precooling of natural gas by high pressure compression and expansion
JP7326483B2 (en) Pretreatment and precooling of natural gas by high pressure compression and expansion
CN108474613B (en) Method for liquefying natural gas and nitrogen
JP2023550397A (en) Method for producing liquefied natural gas from natural gas and corresponding plant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160727

R150 Certificate of patent or registration of utility model

Ref document number: 5984192

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250