JP5982290B2 - Dual refrigeration cycle equipment - Google Patents

Dual refrigeration cycle equipment Download PDF

Info

Publication number
JP5982290B2
JP5982290B2 JP2013013129A JP2013013129A JP5982290B2 JP 5982290 B2 JP5982290 B2 JP 5982290B2 JP 2013013129 A JP2013013129 A JP 2013013129A JP 2013013129 A JP2013013129 A JP 2013013129A JP 5982290 B2 JP5982290 B2 JP 5982290B2
Authority
JP
Japan
Prior art keywords
temperature side
refrigeration cycle
refrigerant
low
high temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013013129A
Other languages
Japanese (ja)
Other versions
JP2014145500A (en
Inventor
平山 卓也
卓也 平山
貴宏 図司
貴宏 図司
明貴範 池田
明貴範 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Carrier Corp
Original Assignee
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corp filed Critical Toshiba Carrier Corp
Priority to JP2013013129A priority Critical patent/JP5982290B2/en
Publication of JP2014145500A publication Critical patent/JP2014145500A/en
Application granted granted Critical
Publication of JP5982290B2 publication Critical patent/JP5982290B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

本発明の実施形態は、同一筐体内に、高温側冷凍サイクルと低温側冷凍サイクルを備えた二元冷凍サイクル装置に関する。   Embodiments of the present invention relate to a dual refrigeration cycle apparatus including a high temperature side refrigeration cycle and a low temperature side refrigeration cycle in the same housing.

同一筐体内に、高温側冷凍サイクルと低温側冷凍サイクルを備え、高温側冷凍サイクルに循環する高温側冷媒と、低温側冷凍サイクルに循環する低温側冷媒とを、カスケード熱交換器で熱交換させることによって、高圧縮比を得る二元冷凍サイクル装置が多用される傾向にある。   A high-temperature side refrigeration cycle and a low-temperature side refrigeration cycle are provided in the same casing, and the high-temperature side refrigerant circulating in the high-temperature side refrigeration cycle and the low-temperature side refrigerant circulating in the low-temperature side refrigeration cycle are heat-exchanged by a cascade heat exchanger. Therefore, there is a tendency that a binary refrigeration cycle apparatus that obtains a high compression ratio is frequently used.

この二元冷凍サイクル装置を給湯システムとして用いる場合は、高温側冷凍サイクルを構成する高温側凝縮器を水・冷媒熱交換器として、ここに導かれる高温側冷媒と、温水配管から導かれる水もしくは温水とを熱交換して、温水配管に導かれる水または温水を高温化して供給する。   When this dual refrigeration cycle apparatus is used as a hot water supply system, the high temperature side condenser constituting the high temperature side refrigeration cycle is used as a water / refrigerant heat exchanger, and the high temperature side refrigerant led here and water led from the hot water pipe or Heat is exchanged with hot water, and the water or hot water led to the hot water pipe is heated and supplied.

特開2010−196952号公報JP 2010-196952 A

ところで、高温側冷凍サイクルを構成する高温側圧縮機および低温側冷凍サイクルを構成する低温側圧縮機には、それぞれ潤滑油が集溜され圧縮機内部の各摺動部へ給油する。各圧縮機の停止中は低温となっており、潤滑油に冷媒が溶け込んだ状態でいる。そのため、潤滑油は冷媒によって希釈され、粘度が低くて潤滑性が悪い。   By the way, in the high temperature side compressor constituting the high temperature side refrigeration cycle and the low temperature side compressor constituting the low temperature side refrigeration cycle, lubricating oil is collected and supplied to each sliding portion inside the compressor. While each compressor is stopped, the temperature is low, and refrigerant is dissolved in the lubricating oil. Therefore, lubricating oil is diluted with a refrigerant | coolant, its viscosity is low and lubricity is bad.

給湯システムを構成する関係上、特に高温側冷凍サイクルは温水配管に導かれる水または温水の温度を早急に上昇させる必要がある。それには高温側圧縮機の起動時に、集溜する潤滑油の温度を速やかに上昇させ、ここに溶け込んでいる冷媒を分離して潤滑油の希釈を抑制し、粘度を高くして安定運転に移行することが望ましい。   In view of configuring the hot water supply system, in particular, in the high temperature side refrigeration cycle, it is necessary to quickly raise the temperature of water or hot water led to the hot water pipe. To that end, when the high temperature side compressor starts up, the temperature of the collected lubricating oil is quickly raised, the refrigerant dissolved in this is separated to suppress dilution of the lubricating oil, and the viscosity is increased to shift to stable operation. It is desirable to do.

また、長時間、安定運転状態を継続すると、高温側圧縮機の温度が必要以上に上昇して、摺動部が過熱し、モータ効率が低下する傾向にある。そこで、今度は高温側圧縮機を冷却して、モータ効率および信頼性の向上を図る必要がある。   Further, if the stable operation state is continued for a long time, the temperature of the high-temperature side compressor rises more than necessary, and the sliding portion is overheated, and the motor efficiency tends to decrease. Therefore, it is necessary to improve the motor efficiency and reliability by cooling the high temperature side compressor this time.

このような事情から、起動時は、高温側圧縮機に集溜する潤滑油の温度を速やかに上昇させて、冷媒による希釈を抑制し粘度を高くして信頼性の向上を図り、短時間で安定運転に移行でき、長時間安定運転が継続したら、高温側圧縮機を冷却して摺動部の過熱を抑制し、モータ効率の向上を図れる二元冷凍サイクル装置が求められている。   For this reason, at the time of start-up, the temperature of the lubricating oil collected in the high-temperature side compressor is quickly raised, the dilution with the refrigerant is suppressed, the viscosity is increased, and the reliability is improved. There is a need for a dual refrigeration cycle apparatus that can shift to stable operation and continue long-term stable operation to cool the high-temperature side compressor and suppress overheating of the sliding portion to improve motor efficiency.

本実施形態によれば、高温側圧縮機、高温側凝縮器、高温側膨張装置、カスケード熱交換器を、冷媒配管を介して連通する高温側冷凍サイクルと、低温側圧縮機、カスケード熱交換器、低温側膨張装置、低温側蒸発器を、冷媒配管を介して連通する低温側冷凍サイクルとを、同一筐体内に搭載するとともに、前記高温側冷凍サイクルに導かれる高温側冷媒と、前記低温側冷凍サイクルに導かれる低温側冷媒とを、前記カスケード熱交換器で熱交換させる二元冷凍サイクル装置であって、前記低温側冷凍サイクルの前記低温側圧縮機から前記カスケード熱交換器を介して前記低温側膨張装置に至る前記冷媒配管を低温側高圧部とし、前記低温側高圧部に、前記高温側冷凍サイクルを構成する前記高温側圧縮機へ延長して、低温側冷媒の熱と高温側圧縮機を熱交換させる熱交換手段を設けた。   According to the present embodiment, the high temperature side compressor, the high temperature side condenser, the high temperature side expansion device, and the cascade heat exchanger communicate with each other via the refrigerant pipe, the high temperature side refrigeration cycle, the low temperature side compressor, and the cascade heat exchanger. A low temperature side expansion device, a low temperature side evaporator, and a low temperature side refrigeration cycle communicating with each other via a refrigerant pipe in the same housing, and a high temperature side refrigerant guided to the high temperature side refrigeration cycle, and the low temperature side A low temperature side refrigerant led to a refrigeration cycle is a two-way refrigeration cycle device for exchanging heat with the cascade heat exchanger, wherein the low temperature side compressor of the low temperature side refrigeration cycle passes through the cascade heat exchanger The refrigerant pipe leading to the low temperature side expansion device is a low temperature side high pressure portion, and the low temperature side high pressure portion is extended to the high temperature side compressor constituting the high temperature side refrigeration cycle, so that the heat and high temperature of the low temperature side refrigerant are increased. The compressor is provided with heat exchange means for heat exchange.

第1の実施形態に係る、二元冷凍サイクル装置の冷凍サイクル構成図。The refrigeration cycle block diagram of the two-way refrigeration cycle apparatus based on 1st Embodiment. 同実施形態に係る、高温側圧縮機の正面図。The front view of the high temperature side compressor based on the embodiment. 同実施形態に係る、変形例の高温側圧縮機の縦断面図。The longitudinal cross-sectional view of the high temperature side compressor of the modification based on the embodiment. 第2の実施形態に係る、二元冷凍サイクル装置の冷凍サイクル構成図。The refrigeration cycle block diagram of the binary refrigeration cycle apparatus based on 2nd Embodiment. 第3の実施形態に係る、二元冷凍サイクル装置の冷凍サイクル構成図。The refrigeration cycle block diagram of the binary refrigeration cycle apparatus based on 3rd Embodiment.

以下、本実施の形態を図面にもとづいて説明する。
図1は、第1の実施形態における、たとえば給湯システムとして用いられる二元冷凍サイクル装置Nの冷凍サイクル構成図である。
Hereinafter, the present embodiment will be described with reference to the drawings.
FIG. 1 is a configuration diagram of a refrigeration cycle of a binary refrigeration cycle apparatus N used as, for example, a hot water supply system in the first embodiment.

二元冷凍サイクル装置Nは、同一の筐体Kに搭載される高温側冷凍サイクルRaと、低温側冷凍サイクルRbと、温水配管Hおよび制御部Sとから構成される。
前記高温側冷凍サイクルRaにおいて、高温側圧縮機1の吐出部aと高温側凝縮器である水・冷媒熱交換器2の1次側流路2aが高温側冷媒配管Paを介して接続され、水・冷媒熱交換器2の1次側流路2aと高温側膨張装置3が高温側冷媒配管Paを介して接続される。
The dual refrigeration cycle apparatus N includes a high temperature side refrigeration cycle Ra, a low temperature side refrigeration cycle Rb, a hot water pipe H, and a control unit S mounted in the same housing K.
In the high temperature side refrigeration cycle Ra, the discharge section a of the high temperature side compressor 1 and the primary side flow path 2a of the water / refrigerant heat exchanger 2 which is a high temperature side condenser are connected via a high temperature side refrigerant pipe Pa, The primary side flow path 2a of the water / refrigerant heat exchanger 2 and the high temperature side expansion device 3 are connected via a high temperature side refrigerant pipe Pa.

高温側膨張装置3とカスケード熱交換器4の1次側流路4aが高温側冷媒配管Paを介して接続され、カスケード熱交換器4の1次側流路4aと高温側圧縮機1の吸込み部bとが高温側冷媒配管Paを介して接続されてなる。   The primary side flow path 4a of the high temperature side expansion device 3 and the cascade heat exchanger 4 is connected via the high temperature side refrigerant pipe Pa, and the primary side flow path 4a of the cascade heat exchanger 4 and the suction of the high temperature side compressor 1 are connected. The part b is connected via the high temperature side refrigerant | coolant piping Pa.

低温側冷凍サイクルRbは、低温側圧縮機5の吐出部aとカスケード熱交換器4の2次側流路4bが、後述するように構成される低温側冷媒配管Pbを介して接続され、カスケード熱交換器4の2次側流路4bと低温側膨張装置6が低温側冷媒配管Pbを介して接続される。   In the low temperature side refrigeration cycle Rb, the discharge part a of the low temperature side compressor 5 and the secondary side flow path 4b of the cascade heat exchanger 4 are connected via a low temperature side refrigerant pipe Pb configured as will be described later. The secondary side flow path 4b of the heat exchanger 4 and the low temperature side expansion device 6 are connected via a low temperature side refrigerant pipe Pb.

低温側膨張装置6と低温側蒸発器である空気熱交換器7が低温側冷媒配管Pbを介して接続され、空気熱交換器7と低温側圧縮機5の吸込み部bとが低温側冷媒配管Pbを介して接続されてなる。なお、空気熱交換器7と対向して送風機が配置され、熱交換用の空気を送風できるようになっている。   The low temperature side expansion device 6 and the air heat exchanger 7 which is a low temperature side evaporator are connected via a low temperature side refrigerant pipe Pb, and the air heat exchanger 7 and the suction part b of the low temperature side compressor 5 are connected to the low temperature side refrigerant pipe. It is connected via Pb. A blower is disposed opposite the air heat exchanger 7 so as to blow air for heat exchange.

ここで、低温側冷凍サイクルRbの低温側圧縮機5の吐出部aからカスケード熱交換器4の2次側流路4bを介して低温側膨張装置6に至る低温側冷媒配管Pbの系路(図に太線で示す)を、低温側高圧部8と呼ぶ。   Here, the system path of the low-temperature side refrigerant pipe Pb from the discharge part a of the low-temperature side compressor 5 of the low-temperature side refrigeration cycle Rb to the low-temperature side expansion device 6 via the secondary-side flow path 4b of the cascade heat exchanger 4 ( (Shown by a thick line in the figure) is referred to as a low temperature side high pressure section 8.

さらに、低温側高圧部8のうちの、特に、低温側圧縮機5の吐出部aからカスケード熱交換器4に至る低温側冷媒配管Pbの一部は、高温側冷凍サイクルRaを構成する高温側圧縮機1へ延長され、低温側高圧部8の冷媒と高温側圧縮機1を熱交換させる熱交換部(熱交換手段)8aを構成する。   Furthermore, a part of the low-temperature side refrigerant pipe Pb from the discharge part a of the low-temperature side compressor 5 to the cascade heat exchanger 4 in the low-temperature side high-pressure part 8 is particularly high-temperature side constituting the high-temperature side refrigeration cycle Ra. A heat exchanging portion (heat exchanging means) 8a is formed that extends to the compressor 1 and exchanges heat between the refrigerant of the low temperature side high pressure portion 8 and the high temperature side compressor 1.

熱交換部8aの具体的な形状は、図2もしくは図3に示すようになる。
図2に示すように、高温側圧縮機1を構成する密閉ケース10の外面下部に低温側冷媒配管が巻装され、熱交換部8aとする。
The specific shape of the heat exchange part 8a is as shown in FIG.
As shown in FIG. 2, the low temperature side refrigerant | coolant piping is wound by the outer surface lower part of the airtight case 10 which comprises the high temperature side compressor 1, and it is set as the heat exchange part 8a.

したがって、低温側圧縮機5の吐出部aから導かれる高圧高温の低温側冷媒が低温側高圧部8の熱交換部8aにおいて高温側圧縮機1と熱交換して放熱し、低温側冷媒の熱を密閉ケース10へ伝達するようになっている。
結果的には、低温側冷媒の熱を高温側圧縮機1の密閉ケース10を介して、内部に集溜する潤滑油へ伝達することができる。
Therefore, the high-pressure and high-temperature low-temperature refrigerant guided from the discharge part a of the low-temperature side compressor 5 exchanges heat with the high-temperature side compressor 1 in the heat exchange part 8a of the low-temperature side high-pressure part 8 to dissipate heat. Is transmitted to the sealed case 10.
As a result, the heat of the low-temperature side refrigerant can be transmitted to the lubricating oil collected inside through the sealed case 10 of the high-temperature side compressor 1.

図3に示すように、高温側圧縮機1を構成する密閉ケース10底部から内部に挿入される環状の低温側冷媒配管を、熱交換部8aとする。密閉ケース10内部には、電動機部11と圧縮機構部12からなる電動圧縮機本体13が収容されるとともに、圧縮機構部12は密閉ケース10内底部に集溜する潤滑油に浸漬状態にある。   As shown in FIG. 3, an annular low temperature side refrigerant pipe inserted into the inside from the bottom of the sealed case 10 constituting the high temperature side compressor 1 is defined as a heat exchanging portion 8 a. An electric compressor main body 13 including an electric motor unit 11 and a compression mechanism unit 12 is accommodated in the sealed case 10, and the compression mechanism unit 12 is immersed in lubricating oil collected at the inner bottom of the sealed case 10.

この場合、熱交換部8aは圧縮機構部12には接触することなく、潤滑油に浸漬される。したがって、低温側冷媒の熱と高温側圧縮機1に集溜する潤滑油とを熱交換して、低温側冷媒の熱を潤滑油へ直接、伝達するようになっている。   In this case, the heat exchange unit 8a is immersed in the lubricating oil without contacting the compression mechanism unit 12. Accordingly, the heat of the low-temperature side refrigerant is directly exchanged with the lubricating oil collected in the high-temperature side compressor 1 to directly transfer the heat of the low-temperature side refrigerant to the lubricating oil.

再び図1に示すように、前記温水配管Hは、一端部が給水源、貯湯タンクまたは復水側(戻り側)バッファタンクの吸込み部に接続され、他端部が貯湯タンク、給湯栓または往水側(利用側)バッファタンク(以上、いずれも図示しない)に接続される。   As shown in FIG. 1 again, one end of the hot water pipe H is connected to a water supply source, a hot water storage tank or a suction side of a condensate side (return side) buffer tank, and the other end is connected to a hot water storage tank, a hot water tap or an outlet. It is connected to a water side (use side) buffer tank (all not shown).

温水配管Hの中途部には、水搬送用のポンプ15と、前記水・冷媒熱交換器2内に配管される2次側流路2bが設けられる。したがって、前記温水配管Hに導かれる水もしくは温水は、水・冷媒熱交換器の2次側流路2bにおいて1次側流路2aに導かれる冷媒と熱交換することとなる。   In the middle part of the hot water pipe H, a pump 15 for transporting water and a secondary flow path 2b piped in the water / refrigerant heat exchanger 2 are provided. Therefore, the water or hot water led to the hot water pipe H exchanges heat with the refrigerant led to the primary channel 2a in the secondary channel 2b of the water / refrigerant heat exchanger.

前記制御部Sは、高温側圧縮機1および低温側圧縮機5の吐出部a側に設けられる温度センサおよび圧力センサ(図示しない。以下、同)と、吸込み部b側に設けられる温度センサおよび圧力センサからの検知信号を所定時間毎に受ける。   The control unit S includes a temperature sensor and a pressure sensor (not shown, the same applies hereinafter) provided on the discharge part a side of the high temperature side compressor 1 and the low temperature side compressor 5, a temperature sensor provided on the suction part b side, and A detection signal from the pressure sensor is received every predetermined time.

さらに、温水配管Hにおける水・冷媒熱交換器2の2次側流路2b入口側および出口側に設けられる水温センサおよび流量センサからの検知信号を所定時間毎に受ける。カスケード熱交換器4に設けられる温度センサと、空気熱交換器7に設けられる温度センサからも検知信号を受ける。   Further, the water / refrigerant heat exchanger 2 in the hot water pipe H receives detection signals from a water temperature sensor and a flow rate sensor provided on the inlet side and outlet side of the secondary channel 2b every predetermined time. Detection signals are also received from a temperature sensor provided in the cascade heat exchanger 4 and a temperature sensor provided in the air heat exchanger 7.

さらに、リモートコントローラ(リモコン)からの運転/停止の指示信号を受け、高温側圧縮機1および低温側圧縮機5の運転周波数を設定制御する。前記センサ類とリモコンから受けた検知信号を演算し、記憶する基準値と比較するとともに、高温側膨張装置3および低温側膨張装置6の開閉と絞り量を制御する。そして、後述する制御をなす。   Further, upon receiving an operation / stop instruction signal from a remote controller (remote controller), the operating frequencies of the high temperature side compressor 1 and the low temperature side compressor 5 are set and controlled. The detection signals received from the sensors and the remote controller are calculated and compared with a stored reference value, and the opening / closing and the throttle amount of the high temperature side expansion device 3 and the low temperature side expansion device 6 are controlled. And the control mentioned later is made.

このようにして構成される二元冷凍サイクル装置Rであり、冷凍サイクル運転(加熱運転モード)開始の指示を受けた制御部Sは、高温側冷凍サイクルRaの高温側圧縮機1と、低温側冷凍サイクルRbの低温側圧縮機5を駆動制御して、後述するように冷媒を循環させる。   The control unit S, which is the dual refrigeration cycle apparatus R configured as described above and receives an instruction to start the refrigeration cycle operation (heating operation mode), includes the high temperature side compressor 1 of the high temperature side refrigeration cycle Ra and the low temperature side. The low temperature side compressor 5 of the refrigeration cycle Rb is driven and controlled to circulate the refrigerant as will be described later.

前記高温側冷凍サイクルRaにおいては、高温側圧縮機1で圧縮され吐出される冷媒を、 −水・冷媒熱交換器2の1次側流路2a−高温側膨張装置3−カスケード熱交換器4の1次側流路4a−高温側圧縮機1− の順に導き、循環させる。
したがって、水・冷媒熱交換器2の1次側流路2aが高温側凝縮器として作用し、カスケード熱交換器4の1次側流路4aが高温側蒸発器として作用する。
In the high temperature side refrigeration cycle Ra, the refrigerant compressed and discharged by the high temperature side compressor 1 is used as follows:-primary side flow path 2a of water / refrigerant heat exchanger 2-high temperature side expansion device 3-cascade heat exchanger 4 Primary side flow path 4a-high temperature side compressor 1- in this order and circulated.
Therefore, the primary side flow path 2a of the water / refrigerant heat exchanger 2 acts as a high temperature side condenser, and the primary side flow path 4a of the cascade heat exchanger 4 acts as a high temperature side evaporator.

前記低温側冷凍サイクルRbにおいては、低温側圧縮機5で圧縮され吐出される冷媒を、 −カスケード熱交換器4の2次側流路4b−低温側膨張装置6−空気熱交換器7−低温側圧縮機5− の順に導き循環させる。   In the low-temperature side refrigeration cycle Rb, the refrigerant compressed and discharged by the low-temperature side compressor 5 is divided into: a secondary side flow path 4b of the cascade heat exchanger 4, a low-temperature side expansion device 6 and an air heat exchanger 7 It is guided in the order of the side compressor 5- and circulated.

したがって、カスケード熱交換器4の2次側流路4bが低温側凝縮器として作用し、空気熱交換器7が低温側蒸発器として作用する。前記カスケード熱交換器4では、低温側冷凍サイクルRb側の2次側流路4bで冷媒が凝縮して凝縮熱を放出し、高温側冷凍サイクルRa側の1次側流路4aで冷媒が凝縮熱を吸熱しながら蒸発する。   Therefore, the secondary side flow path 4b of the cascade heat exchanger 4 acts as a low temperature side condenser, and the air heat exchanger 7 acts as a low temperature side evaporator. In the cascade heat exchanger 4, the refrigerant condenses in the secondary flow path 4b on the low temperature side refrigeration cycle Rb side to release the condensation heat, and the refrigerant condenses in the primary flow path 4a on the high temperature side refrigeration cycle Ra side. Evaporates while absorbing heat.

二元冷凍サイクル装置R全体として空気熱交換器7での冷媒蒸発温度と、水・冷媒熱交換器2での冷媒凝縮温度との差が大となり、高圧縮比を得る。温水配管Hに導かれる水もしくは温水は、水・冷媒熱交換器2の2次側流路2bにおいて高温側冷凍サイクルRaで凝縮作用をなす水・冷媒熱交換器2の1次側流路2aから高温の凝縮熱を吸熱し、効率良く温度上昇する。   The difference between the refrigerant evaporating temperature in the air heat exchanger 7 and the refrigerant condensing temperature in the water / refrigerant heat exchanger 2 is large in the two-way refrigeration cycle apparatus R, and a high compression ratio is obtained. The water or hot water led to the hot water pipe H is condensed in the high temperature side refrigeration cycle Ra in the secondary side flow path 2b of the water / refrigerant heat exchanger 2, and the primary side flow path 2a of the water / refrigerant heat exchanger 2. It absorbs the high-temperature condensation heat and efficiently raises the temperature.

水・冷媒熱交換器2の2次側流路2bにおいて、給水源、貯湯タンクまたは復水側(戻り側)バッファタンクから導かれた水もしくは温水は高温化した温水に変り、水・冷媒熱交換器2から貯湯タンクまたは往水側(利用側)のバッファタンクに導かれ循環する。もしくは、水・冷媒熱交換器2から給湯栓に直接給湯される。   In the secondary side flow path 2b of the water / refrigerant heat exchanger 2, the water or hot water led from the water supply source, the hot water storage tank or the condensate side (return side) buffer tank is changed to hot water, and the water / refrigerant heat It is led from the exchanger 2 to the hot water storage tank or the buffer tank on the outgoing side (use side) and circulates. Alternatively, the hot water is directly supplied from the water / refrigerant heat exchanger 2 to the hot water tap.

つぎに、起動時の状態を、さらに詳細に説明する。
起動時において、低温側圧縮機5が駆動制御され、ここで圧縮され加熱された低温側冷媒が低温側高圧部8へ吐出されて、高温側圧縮機1に延長される熱交換部8aに導かれる。
Next, the state at the time of activation will be described in more detail.
At the time of start-up, the low temperature side compressor 5 is driven and controlled, and the low temperature side refrigerant compressed and heated here is discharged to the low temperature side high pressure portion 8 and led to the heat exchange portion 8 a extended to the high temperature side compressor 1. It is burned.

図2に示す熱交換部8aでは、高温側圧縮機1を構成する密閉ケース10の外面下部に巻装されるところから、低温側冷媒の熱を密閉ケース10に伝達する。この熱は密閉ケース10内底部に集溜される潤滑油に伝わり、潤滑油温度を上昇させる。   In the heat exchange unit 8 a shown in FIG. 2, the heat of the low-temperature side refrigerant is transmitted to the sealed case 10 from being wound around the lower part of the outer surface of the sealed case 10 constituting the high-temperature side compressor 1. This heat is transferred to the lubricating oil collected at the bottom of the sealed case 10 and raises the lubricating oil temperature.

図3に示す熱交換部8aは、高温側圧縮機1の密閉ケース10内底部に置かれ、ここに集溜する潤滑油中に浸漬されるところから、低温側冷媒の熱が潤滑油に直接伝達され、潤滑油温度を上昇させる。   The heat exchanging portion 8a shown in FIG. 3 is placed on the bottom of the hermetically sealed case 10 of the high temperature side compressor 1 and immersed in the lubricating oil collected here, so that the heat of the low temperature side refrigerant is directly applied to the lubricating oil. Is transmitted to increase the lubricant temperature.

図2および図3のいずれの構成にしても、熱交換部8aに導かれる低温側冷媒の熱によって、高温側圧縮機1の密閉ケース10内底部に集溜する潤滑油の温度が速やかに上昇する。   2 and 3, the temperature of the lubricating oil collected at the bottom of the sealed case 10 of the high-temperature side compressor 1 rises rapidly due to the heat of the low-temperature side refrigerant guided to the heat exchange unit 8a. To do.

高温側圧縮機1の起動前の潤滑油温度が低い状態では、潤滑油に高温側冷媒が溶け込んで、潤滑油が希釈状態となり、粘度が低い。そのままでは、高温側圧縮機1の回転数を上げることができず、モータ効率の悪い状態が長く続く。水・冷媒熱交換器2で温水配管Hを導かれる水または温水の温度を、早急に所定温度まで上昇させることができず、効率の悪い状態となる。   In a state where the temperature of the lubricating oil before starting the high temperature side compressor 1 is low, the high temperature side refrigerant is dissolved in the lubricating oil, the lubricating oil is diluted, and the viscosity is low. As it is, the rotation speed of the high-temperature side compressor 1 cannot be increased, and the state where the motor efficiency is poor continues for a long time. The temperature of the water or the hot water led through the hot water pipe H by the water / refrigerant heat exchanger 2 cannot be quickly raised to a predetermined temperature, resulting in an inefficient state.

ところが、上述のように低温側圧縮機5から低温側高圧部8に導かれた低温側冷媒を、熱交換部8aに導く構成を採用することによって、起動時において圧縮・加熱された低温側冷媒の熱が熱交換部8aを介して高温側圧縮機1の潤滑油に伝達され、潤滑油温度を速やかに上昇させる。   However, as described above, the low temperature side refrigerant compressed and heated at the time of start-up is adopted by adopting the configuration in which the low temperature side refrigerant guided from the low temperature side compressor 5 to the low temperature side high pressure section 8 is guided to the heat exchange section 8a. Is transferred to the lubricating oil of the high-temperature compressor 1 through the heat exchanging portion 8a, and the lubricating oil temperature is quickly raised.

潤滑油は、高温側冷媒による希釈が早く解消して、粘度が高くなる。十分な粘度になった潤滑油が高温側圧縮機1の各摺動部に供給され、速やかに回転数を上昇させることができ、信頼性を確保しながら短時間で安定運転に移行できる。   The lubricating oil is quickly diluted with the high-temperature side refrigerant and has a high viscosity. Lubricating oil having a sufficient viscosity is supplied to each sliding portion of the high-temperature side compressor 1, the rotational speed can be quickly increased, and stable operation can be made in a short time while ensuring reliability.

特に、高温側圧縮機1を加熱するための専用部品を備えることなく、低温側高圧部8の一部を高温側圧縮機1まで延長しただけの簡素な構成の熱交換部8aを採用することで、所期の効果が得られ、コストに与える影響も極く僅かですむ。   In particular, the heat exchanging portion 8a having a simple configuration in which only a part of the low temperature side high pressure portion 8 is extended to the high temperature side compressor 1 is provided without providing a dedicated component for heating the high temperature side compressor 1. Therefore, the desired effect can be obtained and the influence on the cost is negligible.

また、安定運転状態を長時間継続すると、高温側圧縮機1の圧縮機構部12を構成する各摺動部品が過熱状態となり、モータ効率および信頼性が低下する傾向にある。一般に、安定運転時は、低温側高圧部8に導かれる低温側冷媒の温度が、高温側圧縮機1の潤滑油温度よりも低いことが知られている。   Further, if the stable operation state is continued for a long time, each sliding component constituting the compression mechanism unit 12 of the high temperature side compressor 1 is overheated, and the motor efficiency and reliability tend to be lowered. Generally, during stable operation, it is known that the temperature of the low-temperature side refrigerant led to the low-temperature side high-pressure unit 8 is lower than the lubricating oil temperature of the high-temperature side compressor 1.

そこで、上述のように構成することにより、熱交換部8aは高温側圧縮機1を冷却することとなり、モータ効率の向上を図り、摺動部の過熱を抑制して、モータ効率および信頼性の向上を図れる。   Therefore, by configuring as described above, the heat exchanging portion 8a cools the high temperature side compressor 1, thereby improving the motor efficiency and suppressing the overheating of the sliding portion, thereby improving the motor efficiency and reliability. Improvements can be made.

なお、上述のように構成する二元冷凍サイクル装置Nにおいて、高温側圧縮機1と低温側圧縮機5を同時に起動しても良いが、ここでは、はじめに低温側圧縮機5を起動したあと、条件に応じて高温側圧縮機1の起動をするよう制御される。   In the two-stage refrigeration cycle apparatus N configured as described above, the high temperature side compressor 1 and the low temperature side compressor 5 may be started simultaneously, but here, after starting the low temperature side compressor 5, first, The high temperature side compressor 1 is controlled to start according to the conditions.

実際には、低温側圧縮機5を起動し、この内部温度を計測する。高温側圧縮機1は、停止したまま内部温度を計測する。低温側高圧部8の熱交換部8aを備えたことで、所定時間が経過すれば高温側圧縮機1の内部温度が所定温度を越える。このことを検知したら、始めて高温側圧縮機1を起動するよう、制御部Sは制御する。   Actually, the low temperature side compressor 5 is started and the internal temperature is measured. The high temperature side compressor 1 measures the internal temperature while stopped. By providing the heat exchanging portion 8a of the low temperature side high pressure portion 8, the internal temperature of the high temperature side compressor 1 exceeds the predetermined temperature when a predetermined time elapses. If this is detected, the control part S will control to start the high temperature side compressor 1 for the first time.

低温側高圧部8に熱交換部8aを持たない通常構成の二元冷凍サイクル装置においては、低温側冷凍サイクルを構成する低温側圧縮機を先に起動した場合、カスケード熱交換器の1次側流路を導かれる高温側冷媒は、2次側流路を導かれる低温側冷媒の凝縮熱を吸収して蒸発する。   In the dual refrigeration cycle apparatus having a normal configuration in which the low temperature side high pressure unit 8 does not have the heat exchange unit 8a, when the low temperature side compressor constituting the low temperature side refrigeration cycle is started first, the primary side of the cascade heat exchanger The high temperature side refrigerant guided through the flow path absorbs the condensation heat of the low temperature side refrigerant guided through the secondary side flow path and evaporates.

したがって、高温側冷凍サイクルを構成する高温側圧縮機を起動した状態で、液バック量は低減できる。ただし、高温側冷凍サイクルにおける起動時は、高温側冷媒の温度が上がらず、圧力のみ上昇することとなるので、高温側冷媒の潤滑油に溶け込む量が増加し、潤滑油粘度がより低下して希釈状態となる。   Therefore, the liquid back amount can be reduced in a state where the high temperature side compressor constituting the high temperature side refrigeration cycle is started. However, at the time of start-up in the high temperature side refrigeration cycle, the temperature of the high temperature side refrigerant does not rise and only the pressure rises, so the amount of the high temperature side refrigerant dissolved in the lubricating oil increases, and the lubricating oil viscosity decreases further. Diluted.

これに対して上述のように構成する二元冷凍サイクル装置Nにおいては、低温側冷凍サイクルRbを構成する低温側圧縮機5を先に起動することで、低温側高圧部8に導かれる低温側冷媒が熱交換部8aで高温側圧縮機1の潤滑油に熱を伝達して、この温度を上昇させる。潤滑油の希釈が早く解消して粘度を高く保持できる一方で、液バック低減は支障なく行われる。   On the other hand, in the dual refrigeration cycle apparatus N configured as described above, the low temperature side led to the low temperature side high pressure unit 8 by starting the low temperature side compressor 5 constituting the low temperature side refrigeration cycle Rb first. The refrigerant transfers heat to the lubricating oil of the high temperature side compressor 1 in the heat exchange section 8a, and raises this temperature. While the dilution of the lubricating oil can be eliminated quickly and the viscosity can be kept high, the liquid back can be reduced without any trouble.

なお、このときの高温側圧縮機1の起動タイミングとしては、内部に集溜する潤滑油の油面が、電動機部11より低下したことを、たとえばイメージセンサ等で確認してからとする。
すなわち、高温側圧縮機1に集溜する潤滑油に高温側冷媒が溶け込むので、潤滑油油面が、ステータとロータからなる電動機部11まで上昇することがある。
It should be noted that the start timing of the high temperature side compressor 1 at this time is, for example, after confirming with an image sensor or the like that the oil level of the lubricating oil collected inside has decreased from the motor unit 11.
That is, since the high-temperature side refrigerant is dissolved in the lubricating oil collected in the high-temperature side compressor 1, the lubricating oil surface may rise to the electric motor unit 11 including the stator and the rotor.

上述のように低温側高圧部8の熱交換部8aが高温側圧縮機1を加熱し、潤滑油の冷媒溶け込み量を低減する。潤滑油油面が低下し、電動機部11下端部より低下して、これを浸漬しない状態を確認してから高温側圧縮機1を起動する。そのため、体積抵抗率が低い潤滑油を使用した場合においても、電動機部11の電機絶縁性を確保できる。   As described above, the heat exchanging portion 8a of the low temperature side high pressure portion 8 heats the high temperature side compressor 1 to reduce the amount of refrigerant melted in the lubricating oil. The high temperature side compressor 1 is started after confirming the state in which the lubricating oil level is lowered and lower than the lower end of the motor unit 11 and is not immersed. Therefore, even when lubricating oil having a low volume resistivity is used, the electric insulation of the electric motor unit 11 can be ensured.

なお、上述のように構成する二元冷凍サイクル装置Nにおいては、高温側冷凍サイクルRaを構成する高温側圧縮機1に封入される潤滑油を、高温側冷媒に対して非相溶性もしくは難相溶性のものを採用するとよい。そして、高温側圧縮機1内の高温側冷媒を熱交換部8aで蒸発させてから、高温側圧縮機1を起動する。   In the two-stage refrigeration cycle apparatus N configured as described above, the lubricating oil sealed in the high temperature side compressor 1 constituting the high temperature side refrigeration cycle Ra is incompatible with or difficult to phase with respect to the high temperature side refrigerant. It is recommended to use a soluble material. And after evaporating the high temperature side refrigerant | coolant in the high temperature side compressor 1 in the heat exchange part 8a, the high temperature side compressor 1 is started.

すなわち、高温側冷凍サイクルRaでは、凝縮圧力が高いことに加え、凝縮温度と潤滑油温度との差が小さくなる傾向にある。高温側冷媒と相溶性のある潤滑油を用いた場合は、潤滑油の希釈による粘度低下が生じて信頼性を悪化させる。   That is, in the high temperature side refrigeration cycle Ra, in addition to the high condensation pressure, the difference between the condensation temperature and the lubricating oil temperature tends to be small. When a lubricating oil that is compatible with the high-temperature side refrigerant is used, the viscosity is lowered due to dilution of the lubricating oil, and the reliability is deteriorated.

この対策として、非相溶性もしくは難相溶性の潤滑油を用いると良いが、この場合、寝込み起動時等においては液冷媒と潤滑油とが二相分離し、比重の重い液冷媒が密閉ケース10下部に溜まってしまう。この状態のまま高温側圧縮機1を起動すると、圧縮機構部12の下端部に設けられた給油ポンプによって摺動部に液冷媒が供給されてしまい、潤滑性が欠如して破損を招く虞れがある。   As a countermeasure, it is preferable to use an incompatible or hardly compatible lubricating oil. In this case, the liquid refrigerant and the lubricating oil are separated into two phases at the time of stagnation start-up, and the liquid refrigerant having a high specific gravity is sealed in the sealed case 10. It accumulates at the bottom. If the high temperature side compressor 1 is started in this state, the liquid refrigerant is supplied to the sliding portion by the oil pump provided at the lower end portion of the compression mechanism portion 12, and there is a risk that the lubricity is lacking and damage is caused. There is.

上述のように構成する二元冷凍サイクル装置Nであれば、低温側高圧部8の熱交換部8aによって、高温側圧縮機1に溜まっている液冷媒を加熱し蒸発させていから、高温側圧縮機1を起動する。摺動部に液冷媒が供給されるのを防ぎ、潤滑油の粘度が高く保持されているので、信頼性の向上を図れる。   In the case of the two-stage refrigeration cycle apparatus N configured as described above, the liquid refrigerant accumulated in the high-temperature side compressor 1 is heated and evaporated by the heat exchange unit 8a of the low-temperature side high-pressure unit 8, and then the high-temperature side compression is performed. The machine 1 is started. Since the liquid refrigerant is prevented from being supplied to the sliding portion and the viscosity of the lubricating oil is kept high, the reliability can be improved.

なお、上述のように構成する二元冷凍サイクル装置Nにおいて熱交換部8aは、低温側圧縮機5とカスケード熱交換器4との間の、低温側冷媒配管Pbに設けられる。換言すれば、カスケード熱交換器4と低温側膨張装置6との間の低温側高圧部8を構成する低温側冷媒配管Pbには、熱交換部8aを設けない。   In the two-stage refrigeration cycle apparatus N configured as described above, the heat exchange unit 8a is provided in the low temperature side refrigerant pipe Pb between the low temperature side compressor 5 and the cascade heat exchanger 4. In other words, the low-temperature side refrigerant pipe Pb constituting the low-temperature side high-pressure part 8 between the cascade heat exchanger 4 and the low-temperature side expansion device 6 is not provided with the heat exchange part 8a.

すなわち、低温側圧縮機5で圧縮され吐出される高温の低温側冷媒を直接熱交換部8aに導いて、起動前の高温側圧縮機1に熱交換する。そのあと、低温側冷媒をカスケード熱交換器4に導いて熱交換する。カスケード熱交換器4で熱交換される前の、より高温の低温側冷媒で高温側圧縮機1の潤滑油を加熱するので、より加熱効果が高くなる。   That is, the high-temperature low-temperature side refrigerant compressed and discharged by the low-temperature side compressor 5 is directly guided to the heat exchanging portion 8a, and heat exchange is performed with the high-temperature side compressor 1 before starting. Thereafter, the low-temperature side refrigerant is guided to the cascade heat exchanger 4 for heat exchange. Since the lubricating oil of the high temperature side compressor 1 is heated with the higher temperature low temperature side refrigerant before heat exchange in the cascade heat exchanger 4, the heating effect is further enhanced.

また、安定運転が長時間継続すれば、熱交換部8aにおいて低温側冷媒が高温側圧縮機1から熱を貰う。この状態でカスケード熱交換器4の2次側流路4bで熱交換するので、熱量が増大し能力の拡大を図れる。   Further, if the stable operation continues for a long time, the low-temperature side refrigerant draws heat from the high-temperature side compressor 1 in the heat exchanging portion 8a. In this state, heat is exchanged in the secondary flow path 4b of the cascade heat exchanger 4, so that the amount of heat increases and the capacity can be expanded.

図4は、第2の実施形態に係る二元冷凍サイクル装置Naの冷凍サイクル構成図である。後述する低温側高圧部80を除いて、他の構成部品は先に図1で説明したものと同一であるので、同図を適用して新たな説明は省略する。   FIG. 4 is a configuration diagram of the refrigeration cycle of the binary refrigeration cycle apparatus Na according to the second embodiment. Except for a low-temperature side high-pressure unit 80 described later, the other components are the same as those described above with reference to FIG.

低温側冷凍サイクルRbにおいて、低温側高圧部80は、一部が前記高温側圧縮機1へ延長して前記熱交換部8aとなる第1の配管路8Paと、高温側圧縮機1へ延長せず低温側圧縮機5からカスケード熱交換器4の2次側流路4bに直接連通する第2の配管路8Pbとを有する。   In the low temperature side refrigeration cycle Rb, the low temperature side high pressure section 80 is partially extended to the high temperature side compressor 1 to extend to the first piping 8Pa that becomes the heat exchange section 8a and the high temperature side compressor 1. And a second pipe line 8Pb that directly communicates from the low temperature side compressor 5 to the secondary side flow path 4b of the cascade heat exchanger 4.

なお、第1の配管路8Paにおいて、熱交換部8aの入口側に切換え手段としての開閉弁20を備え、熱交換部8aの出口側に逆止弁21を備える。開閉弁20を閉成すれば、図に一点鎖線矢印に示すように、低温側圧縮機5から吐出される低温側冷媒は第1の配管路8Paには浸入せず、第2の配管路8Pbのみに導かれる。   In addition, in the 1st piping path 8Pa, the opening-closing valve 20 as a switching means is provided in the inlet side of the heat exchange part 8a, and the non-return valve 21 is provided in the exit side of the heat exchange part 8a. If the on-off valve 20 is closed, as indicated by a one-dot chain line arrow in the figure, the low-temperature side refrigerant discharged from the low-temperature side compressor 5 does not enter the first pipe line 8Pa, and the second pipe line 8Pb. Only guided by.

また、開閉弁20を開放すれば、低温側冷媒のほとんどが、図に点線矢印で示すように、第1の配管路8Paに導かれて熱交換部8aで高温側圧縮機1へ熱交換し、一部の低温側冷媒は第2の配管路8Pbに導かれる。   If the on-off valve 20 is opened, most of the low-temperature side refrigerant is guided to the first pipe line 8Pa and exchanges heat with the high-temperature side compressor 1 at the heat exchanging portion 8a as shown by the dotted arrow in the figure. A part of the low-temperature side refrigerant is guided to the second pipe line 8Pb.

制御部Sは、起動時に開閉弁20を開放制御して、第1の配管路8Paに低温側冷媒のほとんど大部分を導く。熱交換部8aにおいて高温側圧縮機1に熱伝達し、ここに集溜する潤滑油の粘度を上昇させ冷媒による希釈を防止する。このことから、早期に安定運転に移行できる。   The controller S controls the opening of the on-off valve 20 at the time of start-up and guides most of the low-temperature side refrigerant to the first piping line 8Pa. Heat is transferred to the high temperature side compressor 1 in the heat exchanging portion 8a, and the viscosity of the lubricating oil collected here is increased to prevent dilution by the refrigerant. From this, it can shift to stable operation at an early stage.

安定運転が継続した状態では、高温側冷凍サイクルRaの高温側圧縮機1の温度よりも低温側冷凍サイクルRbの低温側高圧部80の温度が低くなり、高温側圧縮機1は冷却される。   In the state where the stable operation is continued, the temperature of the low-temperature side high-pressure portion 80 of the low-temperature side refrigeration cycle Rb becomes lower than the temperature of the high-temperature side compressor 1 of the high-temperature side refrigeration cycle Ra, and the high-temperature side compressor 1 is cooled.

また、安定運転時に、高温側圧縮機1に集溜する潤滑油の温度が、高温側凝縮器を構成する水・冷媒熱交換器2の温度と一致し、もしくは潤滑油温度が凝縮温度よりも低くなる場合がある。この状態では、高温側圧縮機1の密閉ケース10内の冷媒が凝縮液化して潤滑油に溶け込み、潤滑油が希釈されて粘度が低下し潤滑性が悪化してしまい、信頼性に欠ける。   Further, during stable operation, the temperature of the lubricating oil collected in the high temperature side compressor 1 matches the temperature of the water / refrigerant heat exchanger 2 constituting the high temperature side condenser, or the lubricating oil temperature is higher than the condensation temperature. May be lower. In this state, the refrigerant in the sealed case 10 of the high-temperature side compressor 1 condenses and dissolves in the lubricating oil, and the lubricating oil is diluted to lower the viscosity and deteriorate the lubricity, resulting in poor reliability.

そこで、このことを検知した場合は、制御部Sは開閉弁20を閉成して第2の配管路8Pbに低温側冷媒を導く。低温側冷媒は熱交換部8aに導かれず、全て第2の配管路8Pbに導かれる。すなわち、低温側冷媒は低温側圧縮機5から第2の配管路8Pbを介して直接、カスケード熱交換器4に導かれる。   Therefore, when this is detected, the controller S closes the on-off valve 20 and guides the low-temperature side refrigerant to the second pipe line 8Pb. The low temperature side refrigerant is not led to the heat exchanging portion 8a, but is all led to the second pipe line 8Pb. That is, the low-temperature side refrigerant is led directly from the low-temperature side compressor 5 to the cascade heat exchanger 4 through the second piping line 8Pb.

低温側高圧部80と高温側圧縮機1との熱交換がなくなり、高温側圧縮機1における潤滑油の温度低下を回避できる。そのため、安定運転時の潤滑油の希釈を抑制することが可能となり、潤滑油粘度を高く保持して信頼性の向上に繋げられる。
さらに、低温側冷凍サイクルRbにおいても、熱交換部8aにおける熱損失がないから、冷凍サイクルの性能の向上が得られることとなる。
Heat exchange between the low-temperature side high-pressure unit 80 and the high-temperature side compressor 1 is eliminated, and the temperature drop of the lubricating oil in the high-temperature side compressor 1 can be avoided. Therefore, it becomes possible to suppress the dilution of the lubricating oil during stable operation, and it is possible to keep the lubricating oil viscosity high and improve the reliability.
Furthermore, in the low temperature side refrigeration cycle Rb, since there is no heat loss in the heat exchanging portion 8a, the performance of the refrigeration cycle can be improved.

図5は、第3の実施形態を説明する二元冷凍サイクル装置Nbの冷凍サイクル構成図である。ここで図4の二元冷凍サイクル装置Naと相違するのは、第1の配管路8Paと第2の配管路8Pbの分岐位置に切換え手段としての三方弁22を設けたことである。   FIG. 5 is a configuration diagram of the refrigeration cycle of the binary refrigeration cycle apparatus Nb for explaining the third embodiment. Here, the difference from the two-way refrigeration cycle apparatus Na of FIG. 4 is that a three-way valve 22 is provided as a switching means at the branch position of the first piping path 8Pa and the second piping path 8Pb.

このような構成であれば、低温側高圧部80を流れる低温側冷媒は、三方弁22の切換えによって、完全に、図に破線矢印で示すように第1の配管路8Paに導かれ、もしくは図に一点鎖線矢印で示すように第2の配管路8Pbのいずれかに導かれる。   With such a configuration, the low-temperature side refrigerant flowing through the low-temperature side high-pressure unit 80 is completely guided to the first piping line 8Pa as indicated by a broken line arrow in the figure by switching the three-way valve 22, or Is guided to one of the second piping lines 8Pb as indicated by a one-dot chain arrow.

そして、この二元冷凍サイクル装置Nbでは、高温側冷凍サイクルRaを構成する水・冷媒熱交換器(高温側凝縮器)2の温度t1を検知する第1の温度センサ(第1の温度検知手段)25を備えるとともに、高温側圧縮機1の内部に集溜する潤滑油の温度t2を検知する第2の温度センサ(第2の温度検知手段)26を備えている。   In this binary refrigeration cycle apparatus Nb, a first temperature sensor (first temperature detection means) that detects the temperature t1 of the water / refrigerant heat exchanger (high temperature side condenser) 2 constituting the high temperature side refrigeration cycle Ra. ) 25 and a second temperature sensor (second temperature detecting means) 26 for detecting the temperature t2 of the lubricating oil collected in the high temperature side compressor 1.

運転中に、それぞれの温度センサ25,26の検知温度信号は制御部Sに送られ、検知温度として比較演算される。
第1の温度センサ25がt1を検知するとともに、第2の温度センサ26がt2を検知し、制御部Sで比較演算した状態で、 t1+α< t2 のとき、低温側冷凍サイクルRbに循環する低温側冷媒を第1の配管路8Paに導くよう三方弁22を切換え制御する。
During operation, the detected temperature signals of the temperature sensors 25 and 26 are sent to the control unit S, and are compared and calculated as detected temperatures.
The first temperature sensor 25 detects t1 and the second temperature sensor 26 detects t2 and is compared and calculated by the control unit S. When t1 + α <t2, the low temperature circulating to the low temperature side refrigeration cycle Rb The three-way valve 22 is switched and controlled so as to guide the side refrigerant to the first pipe line 8Pa.

ここで、αは、高温側凝縮器2の温度t1に対し高温側圧縮機1内の冷媒が凝縮液化しない余裕度であり、0〜10℃から選択される。
したがって、高温側圧縮機1に集溜する潤滑油が冷却され、摺動部の過熱による信頼性低下、モータ効率の低下等を防ぐことができる。
Here, α is a margin that the refrigerant in the high temperature side compressor 1 does not condense and liquefy with respect to the temperature t1 of the high temperature side condenser 2, and is selected from 0 to 10 ° C.
Therefore, the lubricating oil collected in the high temperature side compressor 1 is cooled, and it is possible to prevent a decrease in reliability due to overheating of the sliding portion, a decrease in motor efficiency, and the like.

また、安定運転中に、 t1+α(α:0〜10℃)> t2 になったとき、低温側冷凍サイクルRbに循環する冷媒を第2の配管路8Pbに導くよう三方弁22を切換え制御する。したがって、高温側圧縮機1に集溜する潤滑油と、熱交換部8aとの熱交換がなくなって、潤滑油の冷媒による希釈が抑制される。   Further, during the stable operation, when t1 + α (α: 0 to 10 ° C.)> T2, the three-way valve 22 is switched and controlled so that the refrigerant circulating in the low temperature side refrigeration cycle Rb is guided to the second pipe line 8Pb. Therefore, heat exchange between the lubricating oil collected in the high temperature side compressor 1 and the heat exchanging portion 8a is eliminated, and dilution of the lubricating oil with the refrigerant is suppressed.

いずれも、第1、第2の温度センサ16,17の温度検知によって、制御部Sは第1、第2の配管路8Pa,8Pbの切換えタイミングを制御するため、上述の効果を安定して得られることとなる。   In either case, the control unit S controls the switching timing of the first and second piping paths 8Pa and 8Pb by detecting the temperature of the first and second temperature sensors 16 and 17, so that the above-described effects can be stably obtained. Will be.

なお、先に述べた第2の温度センサ26は、図2に示すように、高温側圧縮機1を構成する密閉ケース10外面下部に巻装する熱交換部(冷媒配管)8aの出口部外面に取付けてもよい。   As shown in FIG. 2, the second temperature sensor 26 described above has an outer surface of the outlet portion of the heat exchanging portion (refrigerant pipe) 8a wound around the lower portion of the outer surface of the sealed case 10 constituting the high temperature side compressor 1. You may attach to.

たとえば、高温側圧縮機1の内部に第2の温度センサを取付けることと比較して、温度センサから信号線を取り出すための工数と、部品コストを削減できるとともに、リーク個所が減少して、安価で、信頼性の高い冷凍サイクルを提供できる。   For example, compared with mounting the second temperature sensor inside the high temperature side compressor 1, the man-hour for taking out the signal line from the temperature sensor and the cost of parts can be reduced, and the number of leak points is reduced and the cost is low. Therefore, a highly reliable refrigeration cycle can be provided.

以上のように構成される二元冷凍サイクル装置N、Na、Nbにおいて、高温側冷凍サイクルRaに用いられる高温側冷媒は、C(ただし、mおよびnは1以上5以下の整数で、m+n=6の関係が成立する)で示され、かつ分子構造中に二重結合を1個有する冷媒からなる単一冷媒または該冷媒を含む混合冷媒を用いる。 In the binary refrigeration cycle apparatuses N, Na, and Nb configured as described above, the high temperature side refrigerant used in the high temperature side refrigeration cycle Ra is C 3 H m F n (where m and n are 1 or more and 5 or less. A single refrigerant composed of a refrigerant having an integer and a relationship of m + n = 6) and having one double bond in the molecular structure, or a mixed refrigerant containing the refrigerant is used.

該冷媒は、GWP(地球温暖化係数)が低く、冷凍サイクルの冷媒として優れた特性を有するが、高温で分解し易い特性を有している。起動時から安定運転状態に移行し長時間継続しても、上述の構成を採用することにより高温側圧縮機1が冷却されるので、ここに用いられる高温側冷媒の高温分解を防止できる。   The refrigerant has a low GWP (global warming potential) and has excellent characteristics as a refrigerant for a refrigeration cycle, but has a characteristic of being easily decomposed at high temperatures. Even if it shifts to the stable operation state from the time of startup and continues for a long time, the high temperature side compressor 1 is cooled by adopting the above-described configuration, and therefore, high temperature decomposition of the high temperature side refrigerant used here can be prevented.

単一冷媒の例としては、以下のものがある。
(1) HFO−1234yf冷媒 (化学式は、CF−CF=CH
(2) HFO−1234ze冷媒 (化学式は、CF−CH=CHF)
また、混合冷媒の例としては、以下のものがある。
上記(1)または(2)と、下記冷媒とのいずれかの混合冷媒。
HFC冷媒(たとえば、HFC−32、HFC−134a)、メタン、エタン、プロパン、プロペン、ブタン、イソブタン、ペンタン、2−メチルブタン、シクロペンタン、ジメチルエーテル、二酸化炭素、ヘリウム。
Examples of single refrigerants include:
(1) HFO-1234yf refrigerant (chemical formula, CF 3 -CF = CH 2)
(2) HFO-1234ze refrigerant (chemical formula is CF 3 —CH═CHF)
Examples of the mixed refrigerant include the following.
A mixed refrigerant of any one of the above (1) or (2) and the following refrigerant.
HFC refrigerant (for example, HFC-32, HFC-134a), methane, ethane, propane, propene, butane, isobutane, pentane, 2-methylbutane, cyclopentane, dimethyl ether, carbon dioxide, helium.

また低温側冷媒の例としては、以下のものがある。
(1) 高温側冷媒と同一
(2) HFC系冷媒(HFC−410A等)
(3) CO
(4) HC系冷媒
なお、高温側冷媒は、上記Cで示される冷媒に限定されるものではなない。例えば高温側冷媒にHFC系冷媒であるHFC−134a等を用い、低温側冷媒として、HFC−410A等を用いても良い。
Examples of the low-temperature side refrigerant include the following.
(1) Same as high temperature side refrigerant
(2) HFC refrigerant (HFC-410A etc.)
(3) CO 2
(4) HC refrigerant
Incidentally, the high-temperature side refrigerant, the C 3 H m F without such limited to the refrigerant represented by n. For example, HFC-134a, which is an HFC refrigerant, may be used as the high temperature side refrigerant, and HFC-410A, etc. may be used as the low temperature side refrigerant.

なお、図1および図4、図5の冷凍サイクル構成図は、必要最低限の部品しか示していないが、これに限る必要はなく、たとえば冷媒レシーバ、アキュームレータ、気液分離器、その他の配管等を追加しても良い。また除霜逆サイクルで運転する場合は、一次的に熱交換手段が低温側冷媒低圧部となるが、何らの支障も無い。   Note that the refrigeration cycle configuration diagrams of FIGS. 1, 4, and 5 show only the minimum necessary parts, but it is not necessary to be limited to this, for example, a refrigerant receiver, an accumulator, a gas-liquid separator, other piping, etc. May be added. Moreover, when operating by a defrost reverse cycle, although a heat exchange means becomes a low temperature side refrigerant | coolant low pressure part temporarily, there is no trouble.

以上、本実施形態を説明したが、上述の実施形態は、例として提示したものであり、実施形態の範囲を限定することは意図していない。この新規な実施形態は、その他の様々な形態で実施されることが可能であり、要旨を逸脱しない範囲で、種々の省略、置換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   As mentioned above, although this embodiment was described, the above-mentioned embodiment is shown as an example and does not intend limiting the range of embodiment. The novel embodiment can be implemented in various other forms, and various omissions, substitutions, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

1…高温側圧縮機、2…水・冷媒熱交換器(高温側凝縮器)、3…高温側膨張装置、4…カスケード熱交換器、Pa…高温側冷媒配管、Ra…高温側冷凍サイクル、5…低温側圧縮機、6…低温側膨張装置、7…空気熱交換器(低温側蒸発器)、Pb…低温側冷媒配管、Rb…低温側冷凍サイクル、K…筐体、N,Na,Nb…二元冷凍サイクル装置、8,80…低温側高圧部、8a…熱交換部(熱交換手段)、S…制御部、8Pa…第1の配管路、8Pb…第2の配管路、25…第1の温度センサ(第1の温度検知手段)、26…第2の温度検知センサ(第2の温度検知手段)、20…開閉弁(切換え手段)、22…三方弁(切換え手段)。   DESCRIPTION OF SYMBOLS 1 ... High temperature side compressor, 2 ... Water / refrigerant heat exchanger (high temperature side condenser), 3 ... High temperature side expansion apparatus, 4 ... Cascade heat exchanger, Pa ... High temperature side refrigerant | coolant piping, Ra ... High temperature side refrigerating cycle, DESCRIPTION OF SYMBOLS 5 ... Low temperature side compressor, 6 ... Low temperature side expansion apparatus, 7 ... Air heat exchanger (low temperature side evaporator), Pb ... Low temperature side refrigerant | coolant piping, Rb ... Low temperature side refrigerating cycle, K ... Housing | casing, N, Na, Nb: binary refrigeration cycle apparatus, 8, 80: low temperature side high pressure section, 8a: heat exchange section (heat exchange means), S: control section, 8Pa: first piping path, 8Pb: second piping path, 25 ... 1st temperature sensor (1st temperature detection means), 26 ... 2nd temperature detection sensor (2nd temperature detection means), 20 ... On-off valve (switching means), 22 ... Three-way valve (switching means).

Claims (6)

高温側圧縮機、高温側凝縮器、高温側膨張装置、カスケード熱交換器を、冷媒配管を介して連通する高温側冷凍サイクルと、低温側圧縮機、カスケード熱交換器、低温側膨張装置、低温側蒸発器を、冷媒配管を介して連通する低温側冷凍サイクルとを、同一筐体内に搭載するとともに、前記高温側冷凍サイクルに導かれる高温側冷媒と、前記低温側冷凍サイクルに導かれる低温側冷媒とを、前記カスケード熱交換器で熱交換させる二元冷凍サイクル装置であって、
前記低温側冷凍サイクルの前記低温側圧縮機から前記カスケード熱交換器を介して前記低温側膨張装置に至る前記冷媒配管を低温側高圧部とし、
前記低温側高圧部に、前記高温側冷凍サイクルを構成する前記高温側圧縮機へ延長して、低温側高圧部の冷媒と高温側圧縮機を熱交換させる熱交換手段を設けた
ことを特徴とする二元冷凍サイクル装置。
High temperature side compressor, high temperature side condenser, high temperature side expansion device, cascade heat exchanger, high temperature side refrigeration cycle communicating with refrigerant piping, low temperature side compressor, cascade heat exchanger, low temperature side expansion device, low temperature A low-temperature side refrigeration cycle communicating with the side evaporator via a refrigerant pipe is mounted in the same housing, and the high-temperature side refrigerant led to the high-temperature side refrigeration cycle and the low-temperature side led to the low-temperature side refrigeration cycle A dual refrigeration cycle apparatus for exchanging heat with a refrigerant in the cascade heat exchanger,
The refrigerant pipe from the low temperature side compressor of the low temperature side refrigeration cycle to the low temperature side expansion device via the cascade heat exchanger is a low temperature side high pressure section,
The low temperature side high pressure part is provided with heat exchange means for extending heat to the high temperature side compressor extending to the high temperature side compressor constituting the high temperature side refrigeration cycle. Dual refrigeration cycle equipment.
前記高温側冷凍サイクルの前記高温側圧縮機は、前記低温側冷凍サイクルの前記低温側圧縮機が起動した後、起動するよう制御される
ことを特徴とする請求項1記載の二元冷凍サイクル装置。
The dual refrigeration cycle apparatus according to claim 1, wherein the high temperature side compressor of the high temperature side refrigeration cycle is controlled to start after the low temperature side compressor of the low temperature side refrigeration cycle is started. .
前記低温側高圧部の前記熱交換手段は、前記低温側圧縮機と前記カスケード熱交換器とを連通する前記冷媒配管に設けられる
ことを特徴とする請求項1記載の二元冷凍サイクル装置。
The dual refrigeration cycle apparatus according to claim 1, wherein the heat exchanging means of the low temperature side high pressure section is provided in the refrigerant pipe communicating the low temperature side compressor and the cascade heat exchanger.
前記低温側高圧部は、前記高温側圧縮機へ延長して前記熱交換手段となる第1の配管路と、前記高温側圧縮機へ延長せず前記低温側圧縮機から前記カスケード熱交換器に直接連通する第2の配管路とを有する
ことを特徴とする請求項1記載の二元冷凍サイクル装置。
The low temperature side high pressure section extends from the low temperature side compressor to the cascade heat exchanger without extending to the first high temperature side compressor and the first piping line that becomes the heat exchange means and extends to the high temperature side compressor. The dual refrigeration cycle apparatus according to claim 1, further comprising a second pipe line that communicates directly.
前記高温側冷凍サイクルを構成する前記高温側凝縮器の温度t1を検知する第1の温度検知手段および、前記高温側圧縮機内部に集溜する潤滑油の温度t2を検知する第2の温度検知手段とを備え、前記第1の温度検知手段による検知温度および前記第2の温度検知手段による検知温度に基づいて、前記低温側冷凍サイクルに循環する冷媒を前記第1の配管路または前記第2の配管路に導くよう切換える切換え手段を備えた
ことを特徴とする請求項4記載の二元冷凍サイクル装置。
First temperature detection means for detecting the temperature t1 of the high temperature side condenser constituting the high temperature side refrigeration cycle, and second temperature detection for detecting the temperature t2 of the lubricating oil collected in the high temperature side compressor. And a refrigerant circulating in the low temperature side refrigeration cycle based on the temperature detected by the first temperature detecting means and the temperature detected by the second temperature detecting means. 5. The dual refrigeration cycle apparatus according to claim 4, further comprising switching means for switching so as to guide to the pipe line.
前記高温側冷凍サイクルに用いられる冷媒は、C(ただし、mおよびnは、1以下5の整数で、m+n=6の関係が成立する)で示され、かつ分子構造中に二重結合を1個有する冷媒からなる単一冷媒または混合冷媒であることを
ことを特徴とする請求項1ないし請求項5記載の二元冷凍サイクル装置。
The refrigerant used in the high temperature side refrigeration cycle is represented by C 3 H m F n (where m and n are integers of 1 or less and 5 and the relationship of m + n = 6 is established), and in the molecular structure 6. The dual refrigeration cycle apparatus according to claim 1, wherein the dual refrigeration cycle apparatus is a single refrigerant or a mixed refrigerant composed of a refrigerant having one double bond.
JP2013013129A 2013-01-28 2013-01-28 Dual refrigeration cycle equipment Expired - Fee Related JP5982290B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013013129A JP5982290B2 (en) 2013-01-28 2013-01-28 Dual refrigeration cycle equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013013129A JP5982290B2 (en) 2013-01-28 2013-01-28 Dual refrigeration cycle equipment

Publications (2)

Publication Number Publication Date
JP2014145500A JP2014145500A (en) 2014-08-14
JP5982290B2 true JP5982290B2 (en) 2016-08-31

Family

ID=51425890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013013129A Expired - Fee Related JP5982290B2 (en) 2013-01-28 2013-01-28 Dual refrigeration cycle equipment

Country Status (1)

Country Link
JP (1) JP5982290B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015183929A (en) * 2014-03-24 2015-10-22 サンデンホールディングス株式会社 Heat pump type heating device
CN114353360B (en) * 2022-01-06 2024-02-23 青岛海尔空调电子有限公司 Dual compressor refrigerant cycle system and control method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5713420Y2 (en) * 1977-03-25 1982-03-17
JPH0432662A (en) * 1990-05-28 1992-02-04 Tabai Espec Corp Binary refrigeration arrangement
JP2012215353A (en) * 2011-04-01 2012-11-08 Toshiba Carrier Corp Dual refrigeration cycle device
JP5430604B2 (en) * 2011-04-08 2014-03-05 三菱電機株式会社 Dual refrigeration equipment

Also Published As

Publication number Publication date
JP2014145500A (en) 2014-08-14

Similar Documents

Publication Publication Date Title
US9593869B2 (en) Cascade refrigeration cycle apparatus
JP4592617B2 (en) Cooling and heating device
KR101935116B1 (en) Refrigeration cycle apparatus
JP5632973B2 (en) Combined dual refrigeration cycle equipment
JP5094942B2 (en) Heat pump equipment
JP2011052884A (en) Refrigerating air conditioner
JP2007218459A (en) Refrigerating cycle device and cool box
JP6774769B2 (en) Refrigeration cycle equipment
JP2000234811A (en) Refrigerating cycle device
JP5982290B2 (en) Dual refrigeration cycle equipment
JP5279105B1 (en) Start-up control method for dual refrigeration system
JP2020525745A (en) Refrigeration system and method
JP5836844B2 (en) Refrigeration equipment
JP2010139098A (en) Refrigerating cycle device and water heater having the same
JP2011027358A (en) Heater
JP2018136057A (en) Refrigerant system including direct contact heat exchanger and control method of refrigerant system
JP2017161164A (en) Air-conditioning hot water supply system
JP6150906B2 (en) Refrigeration cycle equipment
JP2012102895A (en) Refrigerating cycle device and water heating/cooling device
JP5982292B2 (en) Dual refrigeration cycle equipment
JP6150907B2 (en) Refrigeration cycle equipment
JP6469489B2 (en) Refrigeration cycle equipment
JP5228661B2 (en) Refrigeration equipment
JP6643753B2 (en) Heat transport system and heat transport method
JP2010096486A (en) Refrigerating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160801

R150 Certificate of patent or registration of utility model

Ref document number: 5982290

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees