JP2000234811A - Refrigerating cycle device - Google Patents

Refrigerating cycle device

Info

Publication number
JP2000234811A
JP2000234811A JP3927899A JP3927899A JP2000234811A JP 2000234811 A JP2000234811 A JP 2000234811A JP 3927899 A JP3927899 A JP 3927899A JP 3927899 A JP3927899 A JP 3927899A JP 2000234811 A JP2000234811 A JP 2000234811A
Authority
JP
Japan
Prior art keywords
compressor
pressure
discharge
auxiliary
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3927899A
Other languages
Japanese (ja)
Inventor
Shozo Funakura
正三 船倉
Noriho Okaza
典穂 岡座
Mitsuharu Matsuo
光晴 松尾
Yuji Yoshida
雄二 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3927899A priority Critical patent/JP2000234811A/en
Publication of JP2000234811A publication Critical patent/JP2000234811A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/17Control issues by controlling the pressure of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2501Bypass valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2509Economiser valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21151Temperatures of a compressor or the drive means therefor at the suction side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a refrigerating cycle device, in which an insulating material is not deteriorated and which is safe, by a method wherein a refrigerant, capable of being the critical state at heat radiating side, is sealed and a discharging temperature controller is provided. SOLUTION: Carbon dioxide refrigerant, compressed in a compressor 1, is provided with high-temperature and high-pressure state and, thereafter, is introduced into a heat radiator 2. In the heat radiator 2, the heat of the refrigerant is dissipated under a condition that is not provided with gas/liquid two-phase condition and the pressure of the same is reduced in a pressure reducer 3 so as to be provided with the gas/liquid two-phase condition, then, is introduced into a heat absorber 4. The refrigerant is sucked into the compressor 1 again from the heat absorber 4. In this case, carbon dioxide, becoming a super critical state at the heat radiation side, is employed as the refrigerant whereby a discharging pressure, whereat a COP (coefficient of performance = capacity/input) becomes a peak, exists. On the other hand, a discharging temperature is raised and a problem that the deterioration of insulating material and the like sealed in the compressor 1 is promoted is generated and, further, a problem that the compressor 1 is broken when the discharging temperature is low is generated. However, the pressure reducer 3 is operated optimally by a pressure reducer opening degree operating device 11.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、冷媒として二酸化
炭素やエタン等の冷凍サイクルの放熱側で超臨界状態と
なりうる冷媒を用いた冷凍サイクル装置に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigeration cycle apparatus using a refrigerant, such as carbon dioxide or ethane, which can enter a supercritical state on the heat radiation side of a refrigeration cycle.

【0002】[0002]

【従来の技術】従来、電気(冷凍)冷蔵庫、空調機、カ
ーエアコン、冷蔵または冷凍倉庫、ショーケース等に
は、圧縮機、放熱器、減圧器、吸熱器等を接続してなる
冷凍サイクル装置が応用され、封入される冷媒としては
フッ素原子を含有する炭化水素類が用いられてきた。
2. Description of the Related Art Conventionally, a refrigerating cycle device comprising a compressor, a radiator, a decompressor, a heat absorber, and the like connected to an electric (refrigeration) refrigerator, an air conditioner, a car air conditioner, a refrigerated or frozen warehouse, a showcase, and the like. Has been applied, and hydrocarbons containing a fluorine atom have been used as a refrigerant to be enclosed.

【0003】特にフッ素原子と塩素原子をともに含有す
る炭化水素(HCFC、ハイドロクロロフルオロカーボ
ン)類は性能がよく、かつ不燃性、人体に対して無毒で
あることから、万一、閉空間に漏洩した場合にも爆発や
急性中毒等の危険性がないため、圧縮機や放熱器を経た
冷媒が、吸熱器(電気(冷凍)冷蔵庫の蒸発器や空調機
の室内熱交換器に相当する)内にも直接導入される直膨
システム方式の冷凍サイクル装置が広く用いられてき
た。
In particular, hydrocarbons (HCFCs, hydrochlorofluorocarbons) containing both fluorine and chlorine atoms have good performance, are nonflammable, and are nontoxic to the human body. In this case, there is no danger of explosion or acute poisoning, so the refrigerant that has passed through the compressor or radiator enters the heat absorber (equivalent to the evaporator of an electric (refrigeration) refrigerator or the indoor heat exchanger of an air conditioner). Refrigeration cycle devices of the direct expansion system type, which is also directly introduced, have been widely used.

【0004】これらの冷媒は、放熱器、吸熱器ともに臨
界点以下の状態で気液二相状態での潜熱を有効利用する
ことにより放熱作用や吸熱作用を行っていた。また、気
液二相状態では温度と圧力が互いに独立して変化するこ
とはなく、すなわち気液二相状態の温度を検知すること
により、そのときの圧力が特定できるため、冷凍サイク
ル装置の制御に圧力情報を必要とするときには高価な圧
力検知器の代わりに安価な温度検知器を気液二相状態と
なる放熱器あるいは吸熱器に設置して、検知される温度
から圧力を一意的に特定していた。
In these refrigerants, both the radiator and the heat absorber perform a heat radiating function and a heat absorbing function by effectively utilizing latent heat in a gas-liquid two-phase state in a state below a critical point. In the gas-liquid two-phase state, the temperature and the pressure do not change independently of each other. That is, by detecting the temperature in the gas-liquid two-phase state, the pressure at that time can be specified. When pressure information is needed, an inexpensive temperature sensor is installed instead of an expensive pressure sensor on a radiator or heat absorber that is in a gas-liquid two-phase state, and the pressure is uniquely identified from the detected temperature Was.

【0005】[0005]

【発明が解決しようとする課題】しかし、HCFC(ハ
イドロクロロフルオロカーボン)類は塩素原子を有して
いるがために、大気に放出されて成層圏に達してしまっ
た場合にオゾン層を破壊してしまうことが明らかにな
り、これらに代わって塩素原子を含まないHFC(ハイ
ドロフルオロカーボン)が使用されつつあるが、オゾン
層を破壊する性質は有しないものの大気中での寿命が長
いために温室効果が大きく、近年問題になっている地球
温暖化を防止する上では必ずしも満足な冷媒とはいえな
い。
However, since HCFCs (hydrochlorofluorocarbons) have chlorine atoms, when they are released into the atmosphere and reach the stratosphere, the ozone layer is destroyed. It is clear that HFCs (hydrofluorocarbons) containing no chlorine atom are being used in place of these, but they do not have the property of destroying the ozone layer, but have a long greenhouse effect due to their long life in the atmosphere. However, it is not always a satisfactory refrigerant for preventing global warming, which has recently become a problem.

【0006】上記ハロゲン原子を含有するHCFC類や
HFC類の代わりに、オゾン破壊係数がゼロでありかつ
地球温暖化係数もハロゲン原子を含有する炭化水素類に
比べれば格段に小さい、二酸化炭素やエタンなどを冷媒
として用いる冷凍サイクル装置の可能性が検討されつつ
ある。ここで二酸化炭素の臨界温度は31.1℃、臨界
圧力は7372kPa、エタンの臨界温度は32.2
℃、臨界圧力は4891kPaであり、これらを用いた
冷凍サイクル装置の放熱器では冷媒は超臨界状態となり
うる。
In place of the above-mentioned HCFCs and HFCs containing a halogen atom, carbon dioxide and ethane, which have an ozone depletion potential of zero and a significantly lower global warming potential than hydrocarbons containing a halogen atom, are used. The possibility of a refrigeration cycle device using such as a refrigerant is being studied. Here, the critical temperature of carbon dioxide is 31.1 ° C., the critical pressure is 7372 kPa, and the critical temperature of ethane is 32.2.
° C and the critical pressure are 4891 kPa, and the refrigerant can be in a supercritical state in a radiator of a refrigeration cycle device using these.

【0007】そこで、冷媒として二酸化炭素やエタンが
封入された冷凍サイクル装置の評価を行った。評価の条
件は、吸熱器蒸発温度0℃、放熱器出口温度35℃、吸
熱器出口過熱度0℃として、比較ベースにはHCFC2
2を用いて、吸熱器蒸発温度0℃、放熱器出口温度35
℃、放熱器凝縮温度45℃、吸熱器出口過熱度0℃とし
た。その結果、表1に示すようなサイクル状態となり、
吐出温度が従来冷媒であるHCFC22のときよりも大
幅に上昇することが判明した。
[0007] Therefore, a refrigeration cycle apparatus in which carbon dioxide or ethane was sealed as a refrigerant was evaluated. The evaluation conditions were as follows: the heat sink evaporating temperature was 0 ° C., the heat radiator outlet temperature was 35 ° C., and the heat absorber outlet superheat degree was 0 ° C.
2, the evaporator evaporation temperature was 0 ° C. and the radiator outlet temperature was 35.
° C, the radiator condensation temperature was 45 ° C, and the superheat degree at the heat absorber outlet was 0 ° C. As a result, a cycle state as shown in Table 1 is obtained,
It has been found that the discharge temperature is significantly higher than that of the conventional refrigerant HCFC22.

【0008】[0008]

【表1】 冷凍サイクル装置においては、吐出温度が高くなると、
圧縮機内に封入された潤滑油やモーター巻き線の絶縁材
料等の劣化が促進される可能性が高くなり、信頼性を損
なうという課題が生じる。
[Table 1] In the refrigeration cycle device, when the discharge temperature increases,
There is a high possibility that the deterioration of the lubricating oil sealed in the compressor and the insulating material of the motor windings is promoted, and the problem of impairing reliability arises.

【0009】また、二酸化炭素は臨界温度が約31℃で
あり、従来のCFC冷媒(例えばCFC12の臨界温度
は約112℃)やHCFC冷媒(例えばHCFC22の
臨界温度は約96℃)、HFC冷媒(例えばHFC13
4aの臨界温度は約101℃)よりもかなり低く、特に
放熱器として作用する熱交換器においては超臨界状態と
なって気液二相状態が存在しない(すなわち飽和温度や
飽和圧力が存在しない)ため、従来のように熱交換器の
温度から圧力を求めることが不可能であり高価な圧力セ
ンサーを備えなければならず、コストアップとなる課題
が生じる。
Carbon dioxide has a critical temperature of about 31 ° C., and conventional CFC refrigerants (eg, the critical temperature of CFC 12 is about 112 ° C.), HCFC refrigerants (eg, the critical temperature of HCFC 22 is about 96 ° C.), HFC refrigerant ( For example, HFC13
The critical temperature of 4a is considerably lower than about 101 ° C.), and particularly in a heat exchanger acting as a radiator, it is in a supercritical state and there is no gas-liquid two-phase state (that is, there is no saturation temperature or saturation pressure). Therefore, it is impossible to obtain the pressure from the temperature of the heat exchanger as in the related art, and an expensive pressure sensor must be provided, which causes a problem that the cost increases.

【0010】また、放熱器で超臨界状態となりうる冷媒
を用いていることから、放熱器で気液二相状態となる従
来の冷媒と比較して、圧力変動幅が大きく、かつ圧力変
動速度も速くなる。したがって万一異常状態での運転時
に圧力の上昇が早いため、冷凍サイクル装置を構成する
機器に及ぼす影響が従来よりも大きいという課題があ
る。
[0010] Further, since a refrigerant which can be brought into a supercritical state in the radiator is used, the pressure fluctuation width and the pressure fluctuation speed are larger than those of the conventional refrigerant which is in a gas-liquid two-phase state in the radiator. Be faster. Therefore, there is a problem that the pressure on the components constituting the refrigeration cycle device is greater than before because the pressure rises quickly during operation in an abnormal state.

【0011】本発明は、このような二酸化炭素やエタン
などを利用する場合の課題を考慮し、そのような絶縁材
料の劣化がなく、また、安全である冷凍サイクル装置を
提供することを目的とするものである。
An object of the present invention is to provide a refrigeration cycle apparatus which does not deteriorate such an insulating material and is safe in consideration of such a problem when utilizing carbon dioxide or ethane. Is what you do.

【0012】[0012]

【課題を解決するための手段】本発明は上記課題を解決
するためになされたものであり、圧縮機、放熱器、減圧
器、吸熱器等からなる冷凍サイクルにおいて、放熱側で
超臨界状態となりうる冷媒を封入し、吐出温度制御器を
備えたことを特徴とするものである。
DISCLOSURE OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and in a refrigeration cycle including a compressor, a radiator, a decompressor, and a heat absorber, a supercritical state is established on the radiating side. And a discharge temperature controller.

【0013】また、前記吐出温度制御器は、吐出温度が
設定温度以上のときに減圧器開度を開くことを特徴とす
るものである。
Further, the discharge temperature controller opens the decompressor when the discharge temperature is equal to or higher than a set temperature.

【0014】また 前記吐出温度制御器は、吐出温度が
設定温度以上のときに圧縮機運転能力を減少させること
を特徴とするものである。
Further, the discharge temperature controller reduces the compressor operating capacity when the discharge temperature is equal to or higher than a set temperature.

【0015】また、前記吐出温度制御器は、吐出温度が
設定温度以上のときに減圧器開度を開き、かつ圧縮機運
転能力を減少させることを特徴とするものである。
Further, the discharge temperature controller is characterized in that when the discharge temperature is equal to or higher than a set temperature, the decompressor is opened and the compressor operating capacity is reduced.

【0016】また、放熱側で超臨界状態となりうる冷媒
を封入し、吐出圧力に応じて減圧器開度を操作する吐出
圧力制御器と、吐出温度に応じて減圧器開度を操作する
吐出温度制御器と、吐出温度に応じて吐出圧力制御器と
吐出温度制御器とを切り替えて減圧器開度を操作する減
圧器開度操作器を備えたことを特徴とするものである。
Further, a discharge pressure controller for charging a refrigerant which can be brought into a supercritical state on the heat radiation side and controlling the pressure reducing device opening in accordance with the discharge pressure, and a discharge temperature controlling the pressure reducing device opening in accordance with the discharge temperature It is characterized by comprising a controller and a decompressor opening operation device for operating the decompressor opening by switching between the discharge pressure controller and the discharge temperature controller according to the discharge temperature.

【0017】また、放熱側で超臨界状態となりうる冷媒
を封入し、吐出温度に応じて圧縮機運転能力を操作する
吐出温度制御器と、負荷状態に応じて圧縮機運転能力を
操作する運転能力制御器と、吐出温度に応じて吐出温度
制御器と運転能力制御器とを切り替えて圧縮機運転能力
を操作する圧縮機運転能力操作器を備えたことを特徴と
するものである。
Also, a discharge temperature controller for charging a refrigerant which can be brought into a supercritical state on the heat radiation side and operating the compressor operation capacity according to the discharge temperature, and an operation capacity for operating the compressor operation capacity according to the load state A compressor, and a compressor operation capability operation device for operating the compressor operation capability by switching between the discharge temperature controller and the operation capability controller in accordance with the discharge temperature.

【0018】また、放熱側で超臨界状態となりうる冷媒
を封入し、圧縮機の吸入温度と吸入圧力と吐出温度から
吐出圧力を推定する吐出圧力検知器を備えたことを特徴
とするものである。
[0018] Further, a discharge pressure detector for filling a refrigerant which can be in a supercritical state on the heat radiation side and estimating a discharge pressure from a suction temperature, a suction pressure and a discharge temperature of the compressor is provided. .

【0019】また、前記吐出圧力検知器は圧縮機運転能
力に応じて吐出圧力推定値を補正することを特徴とする
ものである。
Further, the discharge pressure detector corrects the discharge pressure estimated value in accordance with the compressor operating capacity.

【0020】また、放熱側で超臨界状態となりうる冷媒
を封入し、放熱器出口から減圧器入口までと吸熱器出口
から圧縮機吸入部までとで熱交換を行う補助熱交換器
と、放熱器出口と減圧器とを補助熱交換器をバイパスし
て接続する補助熱交換器バイパス回路、あるいは吸熱器
出口と圧縮機吸入部とを補助熱交換器をバイパスして接
続する補助熱交換器バイパス回路と、補助熱交換器バイ
パス回路に補助減圧器を備え、吐出温度に応じて補助減
圧器開度を操作する補助減圧器操作器を備えたことを特
徴とするものである。
An auxiliary heat exchanger for enclosing a refrigerant which can be in a supercritical state on the heat radiation side and exchanging heat from the outlet of the radiator to the inlet of the pressure reducer and from the outlet of the heat absorber to the suction part of the compressor; An auxiliary heat exchanger bypass circuit that connects the outlet and the pressure reducer by bypassing the auxiliary heat exchanger, or an auxiliary heat exchanger bypass circuit that connects the heat absorber outlet and the compressor suction unit by bypassing the auxiliary heat exchanger And an auxiliary pressure reducer in the bypass circuit of the auxiliary heat exchanger, and an auxiliary pressure reducer operating device for controlling the opening degree of the auxiliary pressure reducer according to the discharge temperature.

【0021】また、放熱側で超臨界状態となりうる冷媒
を封入し、放熱器出口冷媒を分岐して一部を補助減圧器
を介して減圧し、減圧器上流側の補助熱交換器で残りの
冷媒を冷却させたのち圧縮機吸入もしくは中間圧部に導
き、吐出温度に応じて補助減圧器の開度を操作する補助
減圧器操作器を備えたことを特徴とするものである。
In addition, a refrigerant which can be brought into a supercritical state on the heat radiation side is sealed, the refrigerant at the radiator outlet is branched, and a part of the refrigerant is depressurized through the auxiliary pressure reducer, and the remaining heat is passed through the auxiliary heat exchanger upstream of the pressure reducer. After the refrigerant is cooled, the compressor is guided to the suction or intermediate pressure section, and an auxiliary decompressor operating device for controlling the opening degree of the auxiliary decompressor according to the discharge temperature is provided.

【0022】また、放熱側で超臨界状態となりうる冷媒
を封入し、放熱器出口冷媒を分岐して一部を補助減圧器
を介して減圧し、減圧器上流側の補助熱交換器で残りの
冷媒を冷却させたのち圧縮機吸入もしくは中間圧部に導
き、吐出温度に応じて補助減圧器開度を操作する吐出温
度制御器と、補助減圧器を介した補助熱交換器出口の過
熱度に応じて補助減圧器開度を操作する補助熱交換器過
熱度制御器と、吐出温度に応じて吐出温度制御器と補助
熱交換器過熱度制御器を切り替えて補助減圧器開度を操
作する補助減圧器操作器を備えたことを特徴とするもの
である。
In addition, a refrigerant which can be brought into a supercritical state on the heat radiation side is sealed, the refrigerant at the radiator outlet is branched, and a part thereof is depressurized through an auxiliary pressure reducer. After cooling the refrigerant, it is guided to the compressor suction or intermediate pressure section, and the discharge temperature controller that operates the auxiliary decompressor opening degree according to the discharge temperature, and the superheat degree at the auxiliary heat exchanger outlet through the auxiliary decompressor Auxiliary heat exchanger superheat degree controller that controls the degree of opening of the auxiliary decompressor according to the discharge temperature controller and auxiliary heat exchanger superheat degree controller that switches the degree of the auxiliary pressure reducer according to the discharge temperature A decompressor operating device is provided.

【0023】また、放熱側で超臨界状態となりうる冷媒
は二酸化炭素であり、圧力異常上昇時の圧力保護装置と
して圧力逃がし弁を備えたことを特徴とするものであ
る。
The refrigerant which can be brought into a supercritical state on the heat radiation side is carbon dioxide, and is characterized in that a pressure relief valve is provided as a pressure protection device at the time of abnormal pressure rise.

【0024】[0024]

【発明の実施の形態】以下、本発明の実施の形態につい
て、図1から図12を用いて説明する。 (実施の形態1)本発明の実施の形態1における冷凍サ
イクル装置の概略構成を図1に示す。図1において、1
は圧縮機、2は放熱器、3は減圧器、4は吸熱器であ
り、これらを配管接続することにより冷凍サイクルを構
成し、冷媒として放熱側(圧縮機1吐出部〜放熱器2〜
減圧器3入口部)で超臨界状態となりうる冷媒、例えば
二酸化炭素が封入されている。また、5は圧縮機1から
吐出された冷媒温度あるいは吐出された冷媒が流れる配
管温度を検知する吐出温度検知器、6は吐出温度検知器
5で検知された吐出温度が設定温度以上のときに減圧器
3の開度を開方向に操作する減圧器吐出温度制御器、7
は吐出温度検知器5で検知された吐出温度が設定温度以
上のときに圧縮機1の運転能力を減少方向に操作する圧
縮機吐出温度制御器である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to FIGS. Embodiment 1 FIG. 1 shows a schematic configuration of a refrigeration cycle apparatus according to Embodiment 1 of the present invention. In FIG. 1, 1
Is a compressor, 2 is a radiator, 3 is a decompressor, and 4 is a heat absorber. These are connected to form a refrigeration cycle, and a refrigerant is radiated on the heat radiating side (compressor 1 discharge section to radiator 2 to radiator 2).
A refrigerant, for example, carbon dioxide, which can be in a supercritical state at the pressure reducer 3 inlet) is sealed. 5 is a discharge temperature detector for detecting the temperature of the refrigerant discharged from the compressor 1 or the temperature of the pipe through which the discharged refrigerant flows, and 6 is when the discharge temperature detected by the discharge temperature detector 5 is equal to or higher than a set temperature. Decompressor discharge temperature controller for controlling the opening of decompressor 3 in the opening direction;
Reference numeral denotes a compressor discharge temperature controller for operating the compressor 1 in a decreasing direction when the discharge temperature detected by the discharge temperature detector 5 is equal to or higher than a set temperature.

【0025】本冷凍サイクル装置の動作について説明す
る。圧縮機1で圧縮された二酸化炭素冷媒は高温高圧状
態となり、放熱器2へ導入される。放熱器2では、二酸
化炭素冷媒は超臨界状態であるので気液2相状態とはな
らずに放熱して、減圧器3で減圧されて気液二相状態と
なり吸熱器4へ導入される。吸熱器4では、外気や河川
水などから吸熱してガス状態となり、再び圧縮機1に吸
入される。このようなサイクルを繰り返すことにより、
放熱器2で放熱による加熱作用、吸熱器4で吸熱による
冷却作用を行う。
The operation of the refrigeration cycle apparatus will be described. The carbon dioxide refrigerant compressed by the compressor 1 enters a high-temperature and high-pressure state and is introduced into the radiator 2. In the radiator 2, since the carbon dioxide refrigerant is in a supercritical state, it radiates heat without being in a gas-liquid two-phase state, is decompressed by the decompressor 3, enters a gas-liquid two-phase state, and is introduced into the heat absorber 4. The heat absorber 4 absorbs heat from the outside air, river water, or the like, becomes a gas state, and is sucked into the compressor 1 again. By repeating such a cycle,
The radiator 2 performs a heating action by heat radiation, and the heat absorber 4 performs a cooling action by heat absorption.

【0026】しかし、冷媒として放熱側で超臨界状態と
なる冷媒である二酸化炭素を用いているので、吐出温度
が従来冷媒である例えばHCFC22よりも上昇して、
圧縮機1内に封入された潤滑油(図示せず)やモーター
巻き線(図示せず)の絶縁材料等の劣化が促進され、信
頼性を損なうという事態が生じうるが、吐出温度検知器
5で吐出温度を検知し、検知された吐出温度が設定温度
T01(使用されている潤滑油や絶縁材料等の劣化する温
度を考慮して予め設定されている)以上となると、減圧
器吐出温度制御器6によって減圧器3の開度を開方向に
操作して冷媒の循環量を増大させることにより、吐出温
度を低下させる。したがって、信頼性を損なうことなく
安定して運転を継続できる。
However, since carbon dioxide, which is a supercritical refrigerant on the heat radiation side, is used as the refrigerant, the discharge temperature is higher than that of the conventional refrigerant, for example, HCFC22.
Although the deterioration of the lubricating oil (not shown) sealed in the compressor 1 and the insulating material of the motor windings (not shown) may be promoted and reliability may be impaired, the discharge temperature detector 5 may be used. When the detected discharge temperature becomes equal to or higher than a set temperature T01 (preliminarily set in consideration of the temperature at which the used lubricating oil, insulating material, and the like deteriorates), the discharge temperature control of the pressure reducer is performed. The discharge temperature is lowered by operating the opening degree of the pressure reducing device 3 in the opening direction by the device 6 to increase the circulation amount of the refrigerant. Therefore, stable operation can be continued without impairing reliability.

【0027】あるいは、吐出温度検知器5で吐出温度を
検知し、検知された吐出温度が設定温度T02(使用され
ている潤滑油や絶縁材料等の劣化する温度を考慮して予
め設定されている)以上となると、圧縮機吐出温度制御
器7によって圧縮機1の運転能力を減少方向に操作して
圧縮機1の負荷を軽減させることにより、吐出温度を低
下させる。したがって、信頼性を損なうことなく安定し
て運転を継続できる。
Alternatively, the discharge temperature is detected by the discharge temperature detector 5, and the detected discharge temperature is set in advance to a set temperature T02 (in consideration of the temperature at which the used lubricating oil, insulating material and the like deteriorates). When the above is reached, the discharge temperature is reduced by reducing the load on the compressor 1 by operating the operation capacity of the compressor 1 in the decreasing direction by the compressor discharge temperature controller 7. Therefore, stable operation can be continued without impairing reliability.

【0028】あるいは、吐出温度検知器5で吐出温度を
検知し、検知された吐出温度が設定温度T03(使用され
ている潤滑油や絶縁材料等の劣化する温度を考慮して予
め設定されている)以上となると、減圧器吐出温度制御
器6によって減圧器3の開度を開方向に操作して冷媒の
循環量を増大させると同時に、圧縮機吐出温度制御器7
によって圧縮機1の運転能力を減少方向に操作して圧縮
機1の負荷を軽減させることにより、吐出温度をより確
実に低下させる。したがって、信頼性を損なうことなく
安定して運転を継続できる。
Alternatively, the discharge temperature is detected by the discharge temperature detector 5, and the detected discharge temperature is set in advance to a set temperature T03 (in consideration of the temperature at which the used lubricating oil, insulating material, and the like deteriorates). When the above is reached, the opening degree of the decompressor 3 is operated in the opening direction by the decompressor discharge temperature controller 6 to increase the circulation amount of the refrigerant, and at the same time, the compressor discharge temperature controller 7
By operating the compressor 1 in the decreasing direction to reduce the load on the compressor 1, the discharge temperature is reduced more reliably. Therefore, stable operation can be continued without impairing reliability.

【0029】なお、減圧器吐出温度制御器6が動作をは
じめる設定温度T01は、圧縮機吐出温度制御器7が動作
をはじめる設定温度T02よりも高く設定されていても、
低く設定されていてもかまわないが、減圧器吐出温度制
御器6と圧縮機吐出温度制御器7が同時に動作をはじめ
る設定温度T03は、設定温度T01あるいは設定温度T02
のどちらかよりも高い温度で設定されているほうが、冷
凍サイクル装置の運転状態の変化をできるだけ小さく維
持した上で吐出温度を制御できるので望ましい。 (実施の形態2)本発明の実施の形態2における冷凍サ
イクル装置の概略構成を図2に示す。図2においては、
図1と同じ構成要素については同一の符号を付し、説明
を省略する。図2において、8は吐出温度検知器5で検
知された吐出温度が設定温度となるように減圧器3の開
度を制御する減圧器吐出温度制御器、9は圧縮機1から
吐出された冷媒圧力(吐出圧力)を検知する吐出圧力検
知器、10は吐出圧力検知器9で検知された吐出圧力が
設定圧力となるように減圧器3の開度を制御する減圧器
吐出圧力制御器、11は減圧器吐出温度制御器8と減圧
器吐出圧力制御器10の出力を吐出温度検知器5で検知
された吐出温度に応じて切り替えあるいは融合して減圧
器3の開度を操作する減圧器開度操作器である。
The set temperature T01 at which the decompressor discharge temperature controller 6 starts operating is set higher than the set temperature T02 at which the compressor discharge temperature controller 7 starts operating.
The set temperature T03 at which the decompressor discharge temperature controller 6 and the compressor discharge temperature controller 7 start operating simultaneously may be set at the set temperature T01 or the set temperature T02.
It is desirable to set the temperature higher than either of the above because the discharge temperature can be controlled while keeping the change in the operating state of the refrigeration cycle apparatus as small as possible. Embodiment 2 FIG. 2 shows a schematic configuration of a refrigeration cycle apparatus according to Embodiment 2 of the present invention. In FIG.
The same components as those in FIG. 1 are denoted by the same reference numerals, and description thereof will be omitted. In FIG. 2, reference numeral 8 denotes a decompressor discharge temperature controller for controlling the opening degree of the decompressor 3 so that the discharge temperature detected by the discharge temperature detector 5 becomes a set temperature, and 9 denotes a refrigerant discharged from the compressor 1. A discharge pressure detector 10 for detecting pressure (discharge pressure); a pressure reducer discharge pressure controller 10 for controlling the opening degree of the pressure reducer 3 so that the discharge pressure detected by the discharge pressure detector 9 becomes a set pressure; Depressurizer opening, which switches or merges the output of the decompressor discharge temperature controller 8 and the output of the decompressor discharge pressure controller 10 according to the discharge temperature detected by the discharge temperature detector 5 to operate the opening of the decompressor 3 It is a degree manipulator.

【0030】本冷凍サイクル装置の動作について説明す
る。圧縮機1で圧縮された二酸化炭素冷媒は高温高圧状
態となり、放熱器2へ導入される。放熱器2では、二酸
化炭素冷媒は超臨界状態であるので気液2相状態とはな
らずに放熱して、減圧器3で減圧されて気液二相状態と
なり吸熱器4へ導入される。吸熱器4では、外気や河川
水などから吸熱してガス状態となり、再び圧縮機1に吸
入される。このようなサイクルを繰り返すことにより、
放熱器2で放熱による加熱作用、吸熱器4で吸熱による
冷却作用を行う。
The operation of the refrigeration cycle apparatus will be described. The carbon dioxide refrigerant compressed by the compressor 1 enters a high-temperature and high-pressure state and is introduced into the radiator 2. In the radiator 2, since the carbon dioxide refrigerant is in a supercritical state, it radiates heat without being in a gas-liquid two-phase state, is decompressed by the decompressor 3, enters a gas-liquid two-phase state, and is introduced into the heat absorber 4. The heat absorber 4 absorbs heat from the outside air, river water, or the like, becomes a gas state, and is sucked into the compressor 1 again. By repeating such a cycle,
The radiator 2 performs a heating action by heat radiation, and the heat absorber 4 performs a cooling action by heat absorption.

【0031】ここで、冷媒として放熱側で超臨界状態と
なる冷媒である二酸化炭素を用いているので、COP
(成績係数=能力/入力)がピークとなる吐出圧力が存
在する。また(実施の形態1)で述べたように、吐出温
度が従来冷媒である例えばHCFC22よりも上昇し
て、圧縮機1内に封入された潤滑油(図示せず)やモー
ター巻き線(図示せず)の絶縁材料等の劣化が促進さ
れ、信頼性を損なうという課題が生じ、さらに吐出温度
が低い場合には圧縮機1に吸入される冷媒が液冷媒を含
んだ湿り状態であることが多く、液圧縮等によって圧縮
機1が破損するという課題も生じる。
Here, since carbon dioxide, which is a supercritical refrigerant on the heat radiation side, is used as the refrigerant, COP
There is a discharge pressure at which (coefficient of performance = capability / input) reaches a peak. As described in (Embodiment 1), the discharge temperature is higher than that of the conventional refrigerant, for example, HCFC22, and the lubricating oil (not shown) sealed in the compressor 1 and the motor winding (not shown) Deterioration of the insulating material and the like is accelerated and reliability is impaired. Further, when the discharge temperature is low, the refrigerant sucked into the compressor 1 is often in a wet state containing a liquid refrigerant. Also, there is a problem that the compressor 1 is damaged by liquid compression or the like.

【0032】しかし、本実施の形態においては、減圧器
開度操作器11によって減圧器3が適切に操作される。
However, in the present embodiment, the pressure reducer 3 is appropriately operated by the pressure reducer opening degree operating device 11.

【0033】図3は本発明による減圧器開度操作器11
の動作を示すフローチャートである。まず吐出温度検知
器5で検知された温度と第1吐出温度閾値(例えば圧縮
機1の許容使用範囲上限をもとに設定)との比較を行い
(ステップ101)、温度が第1吐出温度閾値よりも大
きい場合には吐出温度メンバシップ値を0に設定し(ス
テップ102)、温度が第1吐出温度閾値より小さい場
合には第1吐出温度閾値より小さい第2吐出温度閾値
(例えば圧縮機1の常用使用範囲上限をもとに設定)と
吐出温度検知器5で検知された温度との比較を行い(ス
テップ103)、温度が第2吐出温度閾値よりも大きい
場合には温度に応じて0から1までの範囲で単調で連続
した変化をする吐出温度メンバシップ値を設定し(ステ
ップ104)、温度が第2吐出温度閾値より小さい場合
には第2吐出温度閾値より小さい第3吐出温度閾値(例
えば圧縮機1の吸入側で僅かに過熱ガスとなるときの吐
出温度をもとに設定)と吐出温度検知器5で検知された
温度との比較を行い(ステップ105)、温度が第3吐
出温度閾値よりも大きい場合には吐出温度メンバシップ
値を1に設定し(ステップ106)、温度が第3吐出温
度閾値より小さい場合には第3吐出温度閾値より小さい
第4吐出温度閾値(例えば圧縮機1の吸入側で湿り状態
となるときの吐出温度をもとに設定)と吐出温度検知器
5で検知された温度との比較を行い(ステップ10
7)、温度が第4吐出温度閾値よりも大きい場合には温
度に応じて1から0までの範囲で単調で連続した変化を
する吐出温度メンバシップ値を設定し(ステップ10
8)、温度が第4吐出温度閾値より小さい場合には吐出
温度メンバシップ値を0に設定する(ステップ10
2)。
FIG. 3 shows a pressure reducing device opening operation device 11 according to the present invention.
6 is a flowchart showing the operation of the first embodiment. First, the temperature detected by the discharge temperature detector 5 is compared with a first discharge temperature threshold (for example, set based on the upper limit of the allowable use range of the compressor 1) (step 101), and the temperature is determined to be the first discharge temperature threshold. If the temperature is larger than the first discharge temperature threshold, the discharge temperature membership value is set to 0 (Step 102). If the temperature is smaller than the first discharge temperature threshold, the second discharge temperature threshold (for example, the compressor 1) is smaller than the first discharge temperature threshold. Is set based on the upper limit of the normal use range) and the temperature detected by the discharge temperature detector 5 (step 103). If the temperature is larger than the second discharge temperature threshold, 0 is set according to the temperature. A discharge temperature membership value that changes monotonously and continuously from 1 to 1 is set (step 104). If the temperature is lower than the second discharge temperature threshold, the third discharge temperature threshold is lower than the second discharge temperature threshold. (example A comparison is made between the temperature detected by the discharge temperature detector 5 and the temperature detected by the discharge temperature detector 5 (step 105). If the temperature is larger than the threshold, the discharge temperature membership value is set to 1 (step 106). If the temperature is smaller than the third discharge temperature threshold, the fourth discharge temperature threshold smaller than the third discharge temperature threshold (for example, the compressor). Then, a comparison is made between the temperature detected by the discharge temperature detector 5 and the temperature detected by the discharge temperature detector 5 (step 10).
7) If the temperature is higher than the fourth discharge temperature threshold, a discharge temperature membership value that changes monotonously and continuously in a range from 1 to 0 according to the temperature is set (step 10).
8) If the temperature is smaller than the fourth discharge temperature threshold, the discharge temperature membership value is set to 0 (step 10).
2).

【0034】それから、減圧器吐出圧力制御器10によ
る減圧器開度と吐出温度メンバシップ値との積量と、吐
出温度制御器8による減圧器開度と1から吐出温度メン
バシップ値を減じた値との積量の和として減圧器開度を
決定して減圧器3を操作する(ステップ109)もので
一定時間間隔で実行される。
Then, the discharge temperature membership value is subtracted from the product of the pressure reducer opening degree by the pressure reducer discharge pressure controller 10 and the discharge temperature membership value and the pressure reducer opening degree by the discharge temperature controller 8 and 1. The decompressor opening is determined as the sum of the product of the pressure and the value to operate the decompressor 3 (step 109), which is executed at regular time intervals.

【0035】すなわち、吐出温度検知器5で検知される
温度がステップ101で第1吐出温度閾値より大きいと
判断されたときは、吐出温度が圧縮機1の許容使用範囲
をはずれており圧縮機1の信頼性を著しく損なう状態で
あることから、ステップ109では減圧器吐出温度制御
器8による減圧器開度を最優先にして、減圧器3の開度
を増加させて吐出温度を低下させる。あるいは吐出温度
検知器5で検知される温度がステップ107で第4吐出
温度閾値より小さいと判断されたときには、圧縮機1の
吸入部で湿り状態となっており圧縮機1の信頼性を著し
く損なう状態であることから、ステップ109では減圧
器吐出温度制御器8による減圧器開度を最優先にして、
減圧器3の開度を減少させて圧縮機1吸入部で適度の過
熱ガスとなるように、すなわち吐出温度を適度に上昇さ
せる。
That is, when the temperature detected by the discharge temperature detector 5 is determined to be higher than the first discharge temperature threshold value in step 101, the discharge temperature is out of the allowable use range of the compressor 1, and In step 109, the opening degree of the pressure reducing device by the pressure reducing device discharge temperature controller 8 is given top priority, and the opening degree of the pressure reducing device 3 is increased to lower the discharge temperature in step 109. Alternatively, when the temperature detected by the discharge temperature detector 5 is determined to be smaller than the fourth discharge temperature threshold value in step 107, the suction portion of the compressor 1 is in a wet state, and the reliability of the compressor 1 is significantly impaired. Since the state is the state, in Step 109, the opening degree of the pressure reducing device by the pressure reducing device discharge temperature controller 8 is given the highest priority,
The degree of opening of the decompressor 3 is reduced so that an appropriate superheated gas is obtained at the suction section of the compressor 1, that is, the discharge temperature is appropriately increased.

【0036】また吐出温度検知器5で検知される温度が
ステップ103で第2吐出温度閾値より小さいと判断さ
れ、かつステップ105で第3吐出温度閾値より大きい
と判断されたときには、温度は圧縮機1の常用使用範囲
内であり圧縮機1の信頼性には問題ない状態であること
から、ステップ109では減圧器吐出圧力制御器10に
よる減圧器開度を最優先にして、吐出圧力検知器9で検
知された吐出圧力が設定圧力よりも高いときには減圧器
吐出圧力制御器10により減圧器3の開度を増加方向に
決定する。この結果、放熱器2側の冷媒が吸熱器4側へ
移動して吐出圧力が低下するので、吐出圧力を設定圧力
に一致させることができ、成績係数の高い状態での運転
が実現できる。あるいは吐出圧力検知器9で検知された
圧力が設定圧力よりも低いときには、減圧器吐出圧力制
御器10により減圧器3の開度を減少方向に決定する。
この結果、吸熱器4側の冷媒が圧縮機1を介して放熱器
2側へ移動して吐出圧力が上昇するので、吐出圧力を設
定圧力に一致させることができ、成績係数の高い状態で
の運転が実現できる。
If the temperature detected by the discharge temperature detector 5 is determined in step 103 to be lower than the second discharge temperature threshold, and if it is determined in step 105 to be higher than the third discharge temperature threshold, the temperature is determined by the compressor. 1 is in a normal use range and there is no problem in the reliability of the compressor 1, and in step 109, the pressure reducing device opening degree by the pressure reducing device discharge pressure controller 10 is given top priority, and the discharge pressure detector 9 When the discharge pressure detected in step (1) is higher than the set pressure, the opening of the pressure reducer 3 is determined by the pressure reducer discharge pressure controller 10 in the increasing direction. As a result, the refrigerant on the side of the radiator 2 moves to the side of the heat absorber 4 and the discharge pressure decreases, so that the discharge pressure can be made to match the set pressure, and operation with a high coefficient of performance can be realized. Alternatively, when the pressure detected by the discharge pressure detector 9 is lower than the set pressure, the opening degree of the pressure reducer 3 is determined by the pressure reducer discharge pressure controller 10 in the decreasing direction.
As a result, the refrigerant on the side of the heat absorber 4 moves to the side of the radiator 2 via the compressor 1 and the discharge pressure rises, so that the discharge pressure can be made to coincide with the set pressure, and the performance coefficient is high. Driving can be realized.

【0037】また吐出温度検知器5で検知される温度が
ステップ103で第2吐出温度閾値より大きいと判断さ
れ、あるいはステップ107で第4吐出温度閾値より大
きいと判断されたときには、吐出温度は圧縮機1の使用
許容範囲内ではあるが常用使用範囲外であり圧縮機1の
信頼性の面からはあまり好ましくない状態であることか
ら、ステップ109では減圧器吐出圧力制御器10によ
る減圧器3の開度と吐出温度制御器8による減圧器3の
開度とを混合して減圧器3を操作することから、吐出温
度を圧縮機1の常用使用範囲内に収めつつ、吐出圧力を
設定圧力に一致させることができ、成績係数の高い状態
での運転が実現できる。
If the temperature detected by the discharge temperature detector 5 is determined in step 103 to be higher than the second discharge temperature threshold, or if it is determined in step 107 to be higher than the fourth discharge temperature threshold, the discharge temperature is set to the compression level. Since it is within the allowable use range of the compressor 1 but outside the normal use range and is not very desirable from the viewpoint of the reliability of the compressor 1, in step 109, the pressure reducing device 3 is controlled by the pressure reducing device discharge pressure controller 10. Since the opening degree and the opening degree of the pressure reducing device 3 by the discharge temperature controller 8 are mixed to operate the pressure reducing device 3, the discharge pressure is set to the set pressure while keeping the discharge temperature within the normal use range of the compressor 1. They can be made to match, and operation in a state of high performance coefficient can be realized.

【0038】以上のように、減圧器吐出温度制御器8、
減圧器吐出圧力制御器10、減圧器開度操作器11によ
って、圧縮機1の信頼性を維持しながら、効率の高い状
態で冷凍サイクル装置を運転することができるものであ
る。 (実施の形態3)本発明の実施の形態3における冷凍サ
イクル装置の概略構成を図4に示す。図4においては、
図1、図2と同じ構成要素については同一の符号を付
し、説明を省略する。図4において、12は吐出温度検
知器5で検知された吐出温度が設定温度となるように圧
縮機1の運転能力を制御する圧縮機吐出温度制御器、1
3は吐出圧力検知器9で検知された吐出圧力が設定圧力
となるように圧縮機1の運転能力を制御する圧縮機吐出
圧力制御器、14は圧縮機吐出温度制御器12と圧縮機
吐出圧力制御器13の出力を吐出温度検知器5で検知さ
れた吐出温度に応じて切り替えあるいは融合して圧縮機
1の運転能力を操作する圧縮機運転能力操作器である。
As described above, the depressurizer discharge temperature controller 8,
The refrigerating cycle device can be operated in a highly efficient state while maintaining the reliability of the compressor 1 by the pressure reducing device discharge pressure controller 10 and the pressure reducing device opening degree operating device 11. (Embodiment 3) FIG. 4 shows a schematic configuration of a refrigeration cycle apparatus according to Embodiment 3 of the present invention. In FIG.
1 and 2 are denoted by the same reference numerals, and description thereof will be omitted. In FIG. 4, reference numeral 12 denotes a compressor discharge temperature controller for controlling the operation capability of the compressor 1 so that the discharge temperature detected by the discharge temperature detector 5 becomes a set temperature.
Reference numeral 3 denotes a compressor discharge pressure controller for controlling the operation capability of the compressor 1 so that the discharge pressure detected by the discharge pressure detector 9 becomes a set pressure. Reference numeral 14 denotes a compressor discharge temperature controller 12 and a compressor discharge pressure. This is a compressor operation capability operation device that switches or merges the output of the controller 13 according to the discharge temperature detected by the discharge temperature detector 5 to operate the compressor 1.

【0039】ここで、冷媒として放熱側で超臨界状態と
なる冷媒である二酸化炭素を用いているので、COP
(成績係数=能力/入力)がピークとなる吐出圧力が存
在する。また実施の形態1で述べたように、吐出温度が
従来冷媒である例えばHCFC22よりも上昇して、圧
縮機1内に封入された潤滑油(図示せず)やモーター巻
き線(図示せず)の絶縁材料等の劣化が促進され、信頼
性を損なうという課題が生じ、さらに吐出温度が低い場
合には圧縮機1に吸入される冷媒が液冷媒を含んだ湿り
状態であることが多く、液圧縮等によって圧縮機1が破
損するという課題も生じる。
Here, since carbon dioxide which is a supercritical refrigerant on the heat radiation side is used as the refrigerant, COP
There is a discharge pressure at which (coefficient of performance = capability / input) reaches a peak. Further, as described in the first embodiment, the discharge temperature is higher than that of the conventional refrigerant, for example, HCFC22, and the lubricating oil (not shown) sealed in the compressor 1 or the motor winding (not shown) Deterioration of the insulating material and the like is promoted, and a problem of impairing reliability occurs. Further, when the discharge temperature is low, the refrigerant sucked into the compressor 1 is often in a wet state containing a liquid refrigerant, There is also a problem that the compressor 1 is damaged by compression or the like.

【0040】しかし、本実施の形態においては、圧縮機
運転能力操作器14によって圧縮機1が適切に操作され
る。
However, in the present embodiment, the compressor 1 is appropriately operated by the compressor operation capacity operation device 14.

【0041】図5は本発明による圧縮機運転能力操作器
14の動作を示すフローチャートである。まず吐出温度
検知器5で検知された温度と第1吐出温度閾値(例えば
圧縮機1の許容使用範囲上限をもとに設定)との比較を
行い(ステップ201)、温度が第1吐出温度閾値より
も大きい場合には吐出温度メンバシップ値を0に設定し
(ステップ202)、温度が第1吐出温度閾値より小さ
い場合には第1吐出温度閾値より小さい第2吐出温度閾
値(例えば圧縮機1の常用使用範囲上限をもとに設定)
と吐出温度検知器5で検知された温度との比較を行い
(ステップ203)、温度が第2吐出温度閾値よりも大
きい場合には温度に応じて0から1までの範囲で単調で
連続した変化をする吐出温度メンバシップ値を設定し
(ステップ204)、温度が第2吐出温度閾値より小さ
い場合には第2吐出温度閾値より小さい第3吐出温度閾
値(例えば圧縮機1の吸入側で僅かに過熱ガスとなると
きの吐出温度をもとに設定)と吐出温度検知器5で検知
された温度との比較を行い(ステップ205)、温度が
第3吐出温度閾値よりも大きい場合には吐出温度メンバ
シップ値を1に設定し(ステップ206)、温度が第3
吐出温度閾値より小さい場合には第3吐出温度閾値より
小さい第4吐出温度閾値(例えば圧縮機1の吸入側で湿
り状態となるときの吐出温度をもとに設定)と吐出温度
検知器5で検知された温度との比較を行い(ステップ2
07)、温度が第4吐出温度閾値よりも大きい場合には
温度に応じて1から0までの範囲で単調で連続した変化
をする吐出温度メンバシップ値を設定し(ステップ20
8)、温度が第4吐出温度閾値より小さい場合には吐出
温度メンバシップ値を0に設定する(ステップ20
2)。それから、圧縮機吐出圧力制御器13による圧縮
機運転能力と吐出温度メンバシップ値との積量と、圧縮
機吐出温度制御器12による圧縮機運転能力と1から吐
出温度メンバシップ値を減じた値との積量の和として圧
縮機運転能力を決定して圧縮機3を操作する(ステップ
209)もので一定時間間隔で実行される。
FIG. 5 is a flowchart showing the operation of the compressor operating capacity controller 14 according to the present invention. First, the temperature detected by the discharge temperature detector 5 is compared with a first discharge temperature threshold (for example, set based on the upper limit of the allowable use range of the compressor 1) (Step 201), and the temperature is set to the first discharge temperature threshold. If the temperature is larger than the first discharge temperature threshold, the discharge temperature membership value is set to 0 (Step 202). If the temperature is smaller than the first discharge temperature threshold, the second discharge temperature threshold (for example, the compressor 1) is smaller than the first discharge temperature threshold. Set based on the upper limit of the normal use range of
Is compared with the temperature detected by the discharge temperature detector 5 (step 203). If the temperature is larger than the second discharge temperature threshold, the change is monotonically continuous in a range from 0 to 1 according to the temperature. (Step 204), and when the temperature is smaller than the second discharge temperature threshold, a third discharge temperature threshold smaller than the second discharge temperature threshold (for example, slightly on the suction side of the compressor 1). A comparison is made between the temperature detected by the discharge temperature detector 5 and the temperature detected by the discharge temperature detector 5 (step 205). If the temperature is higher than the third discharge temperature threshold, the discharge temperature is determined. The membership value is set to 1 (step 206), and the temperature is set to the third
When the discharge temperature is smaller than the discharge temperature threshold, the fourth discharge temperature threshold smaller than the third discharge temperature threshold (for example, set based on the discharge temperature when the suction side of the compressor 1 becomes wet) and the discharge temperature detector 5 Compare with the detected temperature (Step 2
07) If the temperature is higher than the fourth discharge temperature threshold, a discharge temperature membership value that changes monotonously and continuously in a range from 1 to 0 according to the temperature is set (step 20).
8) If the temperature is smaller than the fourth discharge temperature threshold, the discharge temperature membership value is set to 0 (step 20).
2). Then, the product of the compressor operating capacity of the compressor discharge pressure controller 13 and the discharge temperature membership value, the compressor operating capacity of the compressor discharge temperature controller 12 and a value obtained by subtracting the discharge temperature membership value from 1 The operation of the compressor 3 is determined by determining the compressor operation capacity as the sum of the product amount of the compressor (step 209), and is executed at regular time intervals.

【0042】すなわち、吐出温度検知器5で検知される
温度がステップ201で第1吐出温度閾値より大きいと
判断されたときは、吐出温度が圧縮機1の許容使用範囲
をはずれており圧縮機1の信頼性を著しく損なう状態で
あることから、ステップ209では圧縮機吐出温度制御
器12による圧縮機運転能力を最優先にして、圧縮機1
の運転能力を減少させて吐出温度を低下させる。あるい
は吐出温度検知器5で検知される温度がステップ207
で第4吐出温度閾値より小さいと判断されたときには、
圧縮機1の吸入部で湿り状態となっており圧縮機1の信
頼性を著しく損なう状態であることから、ステップ20
9では圧縮機吐出温度制御器12による圧縮機運転能力
を最優先にして、圧縮機1の運転能力を増加させて吸熱
器圧力を低下させて吸熱器4での吸熱を促進して圧縮機
1吸入部で適度の過熱ガスとなるように、すなわち吐出
温度を適度に上昇させる。
That is, when the temperature detected by the discharge temperature detector 5 is determined to be higher than the first discharge temperature threshold value in step 201, the discharge temperature is out of the allowable use range of the compressor 1 and the In step 209, the compressor operation temperature of the compressor discharge temperature controller 12 is given the highest priority, and the compressor 1
And the discharge temperature is lowered by reducing the operating capacity of the. Alternatively, the temperature detected by the discharge temperature detector 5 is determined in step 207.
When it is determined that is smaller than the fourth discharge temperature threshold,
Since the suction portion of the compressor 1 is in a wet state and the reliability of the compressor 1 is significantly impaired, step 20 is executed.
In 9, the compressor operation capability of the compressor discharge temperature controller 12 is given top priority, the operation capability of the compressor 1 is increased, the heat absorber pressure is reduced, and the heat absorption in the heat absorber 4 is promoted, and the compressor 1 An appropriate amount of superheated gas is obtained at the suction portion, that is, the discharge temperature is appropriately increased.

【0043】また吐出温度検知器5で検知される温度が
ステップ203で第2吐出温度閾値より小さいと判断さ
れ、かつステップ205で第3吐出温度閾値より大きい
と判断されたときには、温度は圧縮機1の常用使用範囲
内であり圧縮機1の信頼性には問題ない状態であること
から、ステップ209では圧縮機吐出圧力制御器13に
よる圧縮機運転能力を最優先にして、吐出圧力検知器9
で検知された吐出圧力が設定圧力よりも高いときには圧
縮機吐出圧力制御器13により圧縮機1の運転能力を減
少方向に決定する。この結果、放熱器2側の冷媒が吸熱
器4側へ移動して吐出圧力が低下するので、吐出圧力を
設定圧力に一致させることができ、成績係数の高い状態
での運転が実現できる。あるいは吐出圧力検知器9で検
知された圧力が設定圧力よりも低いときには、圧縮機吐
出圧力制御器13により圧縮機1の運転能力を増加方向
に決定する。この結果、吸熱器4側の冷媒が圧縮機1を
介して放熱器2側へ移動して吐出圧力が上昇するので、
吐出圧力を設定圧力に一致させることができ、成績係数
の高い状態での運転が実現できる。
If the temperature detected by the discharge temperature detector 5 is determined in step 203 to be lower than the second discharge temperature threshold, and if it is determined in step 205 to be higher than the third discharge temperature threshold, the temperature is determined by the compressor. In the step 209, the compressor operation capability of the compressor discharge pressure controller 13 is given the highest priority, and the discharge pressure detector 9
When the discharge pressure detected in step (1) is higher than the set pressure, the compressor discharge pressure controller 13 determines the operating capacity of the compressor 1 in a decreasing direction. As a result, the refrigerant on the side of the radiator 2 moves to the side of the heat absorber 4 and the discharge pressure decreases, so that the discharge pressure can be made to match the set pressure, and operation with a high coefficient of performance can be realized. Alternatively, when the pressure detected by the discharge pressure detector 9 is lower than the set pressure, the operating capacity of the compressor 1 is determined by the compressor discharge pressure controller 13 in the increasing direction. As a result, the refrigerant on the side of the heat absorber 4 moves to the side of the radiator 2 via the compressor 1 to increase the discharge pressure.
The discharge pressure can be made to match the set pressure, and operation with a high coefficient of performance can be realized.

【0044】また吐出温度検知器5で検知される温度が
ステップ203で第2吐出温度閾値より大きいと判断さ
れ、あるいはステップ207で第4吐出温度閾値より大
きいと判断されたときには、吐出温度は圧縮機1の使用
許容範囲内ではあるが常用使用範囲外であり圧縮機1の
信頼性の面からはあまり好ましくない状態であることか
ら、ステップ209では圧縮機吐出圧力制御器13によ
る圧縮機1の運転能力と圧縮機吐出温度制御器12によ
る圧縮機1の運転能力とを混合して圧縮機1を操作する
ことから、吐出温度を圧縮機1の常用使用範囲内に収め
つつ、吐出圧力を設定圧力に一致させることができ、成
績係数の高い状態での運転が実現できる。
When the temperature detected by the discharge temperature detector 5 is determined in step 203 to be higher than the second discharge temperature threshold, or when it is determined in step 207 to be higher than the fourth discharge temperature threshold, the discharge temperature is compressed. In the step 209, the compressor 1 is controlled by the compressor discharge pressure controller 13 because it is within the allowable use range of the compressor 1 but outside the normal use range and is not very desirable from the viewpoint of the reliability of the compressor 1. Since the compressor 1 is operated by mixing the operating capacity and the operating capacity of the compressor 1 by the compressor discharge temperature controller 12, the discharge pressure is set while keeping the discharge temperature within the normal use range of the compressor 1. Pressure can be made to match, and operation with a high coefficient of performance can be realized.

【0045】以上のように、圧縮機吐出温度制御器1
2、圧縮機吐出圧力制御器13、圧縮機運転能力操作器
14によって、圧縮機1の信頼性を維持しながら、効率
の高い状態で冷凍サイクル装置を運転することができる
ものである。 (実施の形態4)本発明の実施の形態4における冷凍サ
イクル装置の概略構成を図6に示す。図6においては、
図1〜図5と同じ構成要素については同一の符号を付
し、説明を省略する。図6において、15は圧縮機1の
吸入部での冷媒温度を検知する吸入温度検知器、16は
圧縮機1の吸入圧力を検知する吸入圧力検知器である。
また17は、吸入温度検知器15と吸入圧力検知器16
とで検知された吸入温度および吸入圧力と、吐出温度検
知器5で検知された吐出温度をもとに吐出圧力を推定す
る吐出圧力推定器である。
As described above, the compressor discharge temperature controller 1
2. By using the compressor discharge pressure controller 13 and the compressor operation capacity operation unit 14, the refrigeration cycle apparatus can be operated in a highly efficient state while maintaining the reliability of the compressor 1. (Embodiment 4) FIG. 6 shows a schematic configuration of a refrigeration cycle apparatus according to Embodiment 4 of the present invention. In FIG.
The same components as those in FIGS. 1 to 5 are denoted by the same reference numerals, and description thereof will be omitted. In FIG. 6, reference numeral 15 denotes a suction temperature detector for detecting a refrigerant temperature at a suction portion of the compressor 1, and reference numeral 16 denotes a suction pressure detector for detecting a suction pressure of the compressor 1.
17 is a suction temperature detector 15 and a suction pressure detector 16
And a discharge pressure estimator for estimating the discharge pressure based on the suction temperature and the suction pressure detected by the above and the discharge temperature detected by the discharge temperature detector 5.

【0046】本(実施の形態4)と(実施の形態2)と
の相違点は、吐出圧力の検知方法が異なる点である。す
なわち、(実施の形態2)では圧縮機1の吐出側に吐出
圧力検知器9を設けたが、本(実施の形態4)では、圧
縮機1の吸入側に吸入温度検知器15と吸入圧力検知器
16と吐出圧力推定器17により吐出圧力を求める。以
下にその詳細について模式的な圧力−エンタルピ線図で
ある図7を用いて説明する。図7中の点線は等温線、一
点鎖線は等エントロピ線あるいは等エントロピ線と圧縮
機1の特性を考慮して求めた圧縮特性線、二点鎖線は飽
和線を表す。
The difference between the present embodiment (Embodiment 4) and (Embodiment 2) is that the method of detecting the discharge pressure is different. That is, the discharge pressure detector 9 is provided on the discharge side of the compressor 1 in (Embodiment 2), but the suction temperature detector 15 and the suction pressure detector 15 are provided on the suction side of the compressor 1 in Embodiment (4). The discharge pressure is determined by the detector 16 and the discharge pressure estimator 17. The details will be described below with reference to FIG. 7 which is a schematic pressure-enthalpy diagram. In FIG. 7, a dotted line is an isotherm line, an alternate long and short dash line is an isentropic line or a compression characteristic line obtained by considering the isentropic line and the characteristics of the compressor 1, and a two-dot chain line is a saturation line.

【0047】まず、吸入温度検知器15が吸入温度Ta
を、吸入圧力検知器16が吸入圧力Paを検知すると、
吐出圧力推定器17では点A(T=Ta、P=Pa)を通
る等エントロピ線あるいは圧縮特性線を選択する。そし
て吐出温度検知器5が検知した吐出温度Tcにより選択
した等エントロピ線あるいは圧縮特性線上の点Dを特定
することにより、このときの吐出圧力Pdが推定でき
る。この吐出圧力Pdが設定圧力となるように減圧器吐
出圧力制御器10で減圧器3の開度を求め、(実施の形
態2)で説明したように減圧器開度操作器11で減圧器
吐出温度制御器8による減圧器3の開度と減圧器吐出圧
力制御器10による減圧器3の開度を吐出温度によって
適切に切り替えあるいは融合して減圧器3を操作する。
First, the suction temperature detector 15 detects the suction temperature Ta.
When the suction pressure detector 16 detects the suction pressure Pa,
The discharge pressure estimator 17 selects an isentropic line or a compression characteristic line passing through the point A (T = Ta, P = Pa). By specifying a point D on the isentropic line or the compression characteristic line selected based on the discharge temperature Tc detected by the discharge temperature detector 5, the discharge pressure Pd at this time can be estimated. The opening of the pressure reducer 3 is determined by the pressure reducer discharge pressure controller 10 so that the discharge pressure Pd becomes the set pressure, and the pressure reducer discharge is controlled by the pressure reducer opening degree controller 11 as described in (Embodiment 2). The pressure reducer 3 is operated by appropriately switching or merging the opening degree of the pressure reducer 3 by the temperature controller 8 and the opening degree of the pressure reducer 3 by the pressure reducer discharge pressure controller 10 depending on the discharge temperature.

【0048】また、吸入温度検知器15が吸入温度T
a、吸入圧力検知器16が吸入圧力Pb(Pa≠Pb)を検
知すると、吐出圧力推定器17では点B(T=Ta、P
=Pb)を通る等エントロピ線あるいは圧縮特性線を選
択する。そして吐出温度検知器5が検知した吐出温度T
bにより選択した等エントロピ線あるいは圧縮特性線上
の点Cを特定することにより、このときの吐出圧力Pc
が推定できる。
The suction temperature detector 15 detects the suction temperature T
a, When the suction pressure detector 16 detects the suction pressure Pb (Pa ≠ Pb), the discharge pressure estimator 17 calculates the point B (T = Ta, P
= Pb) or an isentropic line or a compression characteristic line is selected. The discharge temperature T detected by the discharge temperature detector 5
By specifying the point C on the isentropic line or the compression characteristic line selected by b, the discharge pressure Pc at this time is determined.
Can be estimated.

【0049】以上のように、吸入圧力に比べて広い圧力
範囲が必要であり高価となる吐出圧力検知器9を備える
ことなく、吐出圧力を推定することにより、効率よく冷
凍サイクル装置が運転できる。
As described above, the refrigeration cycle apparatus can be operated efficiently by estimating the discharge pressure without providing the expensive discharge pressure detector 9, which requires a wider pressure range than the suction pressure.

【0050】なお、従来のHCFC22を冷媒として用
いる冷凍サイクル装置と同様に吸熱器4では気液二相状
態が存在するので、蒸発飽和温度を温度検知器により検
知して蒸発圧力(=吸入圧力)を求めることにより、吸
入圧力検知器16を代用させることも可能であり、さら
にコストダウンが可能となる。
Since the heat absorber 4 has a gas-liquid two-phase state similarly to the conventional refrigeration cycle apparatus using the HCFC 22 as a refrigerant, the evaporation saturation temperature is detected by a temperature detector and the evaporation pressure (= suction pressure) is detected. , The suction pressure detector 16 can be substituted, and the cost can be further reduced.

【0051】また、圧縮機特性線を予め複数種類を用意
しておいて圧縮機1の運転能力(例えば回転数)に応じ
て選択することにより、吐出圧力推定器17で推定され
る吐出圧力がより正確になるものである。 (実施の形態5)本発明の実施の形態5における冷凍サ
イクル装置の概略構成を図8に示す。図8においては、
図1〜7と同じ構成要素については同一の符号を付し、
説明を省略する。図8において、18は放熱器2出口〜
減圧器3入口の間の冷媒と吸熱器4出口〜圧縮機1吸入
部の間の冷媒を熱交換させる補助熱交換器、19は補助
熱交換器18をバイパスするように接続された補助熱交
換器バイパス管20に設けられた補助減圧器、21は吐
出温度検知器5に検知される吐出温度に応じて補助減圧
器19の開度を制御する補助減圧器吐出温度制御器であ
る。
Also, by preparing a plurality of types of compressor characteristic lines in advance and selecting them in accordance with the operating capacity (for example, the number of revolutions) of the compressor 1, the discharge pressure estimated by the discharge pressure estimator 17 can be reduced. It will be more accurate. (Embodiment 5) FIG. 8 shows a schematic configuration of a refrigeration cycle apparatus according to Embodiment 5 of the present invention. In FIG. 8,
The same components as those in FIGS. 1 to 7 are denoted by the same reference numerals,
Description is omitted. In FIG. 8, reference numeral 18 denotes the radiator 2 outlet
An auxiliary heat exchanger for exchanging heat between the refrigerant between the inlet of the pressure reducer 3 and the refrigerant between the outlet of the heat absorber 4 and the suction part of the compressor 1; 19 is an auxiliary heat exchanger connected so as to bypass the auxiliary heat exchanger 18 An auxiliary decompressor 21 provided in the device bypass pipe 20 is an auxiliary decompressor discharge temperature controller that controls the opening degree of the auxiliary decompressor 19 according to the discharge temperature detected by the discharge temperature detector 5.

【0052】本冷凍サイクル装置の動作について説明す
る。圧縮機1で圧縮された二酸化炭素冷媒は高温高圧状
態となり、放熱器2へ導入される。放熱器2では、二酸
化炭素冷媒は超臨界状態であるので気液2相状態とはな
らずに放熱して、補助熱交換器18を経て、減圧器3で
減圧されて気液二相状態となり吸熱器4へ導入される。
吸熱器4では、外気や河川水などから吸熱してガス状態
となり、補助熱交換器18を経て、再び圧縮機1に吸入
される。このようなサイクルを繰り返すことにより、放
熱器2で放熱による加熱作用、吸熱器4で吸熱による冷
却作用を行う。ここで、補助熱交換器18では、放熱器
2を出て減圧器3に向かう比較的高温の冷媒と、吸熱器
4を出て圧縮機1に向かう比較的低温の冷媒とで熱交換
が行われる。このため、放熱器2を出た冷媒が冷却され
て減圧器3で減圧されるため、吸熱器4入口でのエンタ
ルピが減少して、吸熱器4の入口と出口でのエンタルピ
差が大きくなり、吸熱能力(冷却能力)が増大する。し
かし、吸熱器4を出た冷媒は補助熱交換器18で加熱さ
れることとなり、圧縮機1に吸入される冷媒の温度が上
昇し、圧縮機1の吐出温度が上昇する。二酸化炭素やエ
タン等の放熱側で超臨界状態となりうる冷媒は、従来冷
媒より吐出温度が高くなるため、より一層吐出温度が高
くなり、圧縮機1の信頼性を損なう危険性が高まるもの
である。
The operation of the present refrigeration cycle apparatus will be described. The carbon dioxide refrigerant compressed by the compressor 1 enters a high-temperature and high-pressure state and is introduced into the radiator 2. In the radiator 2, since the carbon dioxide refrigerant is in a supercritical state, it radiates heat without being in a gas-liquid two-phase state, passes through the auxiliary heat exchanger 18, is depressurized by the decompressor 3, and becomes a gas-liquid two-phase state. The heat is introduced into the heat absorber 4.
The heat absorber 4 absorbs heat from outside air, river water, or the like to be in a gas state, and is sucked into the compressor 1 again through the auxiliary heat exchanger 18. By repeating such a cycle, the radiator 2 performs a heating action by heat radiation, and the heat absorber 4 performs a cooling action by heat absorption. Here, in the auxiliary heat exchanger 18, heat exchange is performed between a relatively high-temperature refrigerant that exits the radiator 2 and goes to the pressure reducer 3 and a relatively low-temperature refrigerant that exits the heat absorber 4 and goes to the compressor 1. Will be Therefore, the refrigerant that has exited the radiator 2 is cooled and decompressed by the decompressor 3, so that the enthalpy at the inlet of the heat absorber 4 decreases, and the enthalpy difference between the inlet and the outlet of the heat absorber 4 increases, Heat absorption capacity (cooling capacity) increases. However, the refrigerant that has exited the heat absorber 4 is heated by the auxiliary heat exchanger 18, so that the temperature of the refrigerant sucked into the compressor 1 increases, and the discharge temperature of the compressor 1 increases. Refrigerant that can be in a supercritical state on the heat radiation side such as carbon dioxide and ethane has a higher discharge temperature than the conventional refrigerant, so the discharge temperature is further increased, and the risk of impairing the reliability of the compressor 1 is increased. .

【0053】そこで、本実施の形態5では、吐出温度検
知器5で吐出温度を検知し、吐出温度が圧縮機1の信頼
性に悪影響を与えないように設定された設定温度以下で
あれば、補助減圧器吐出温度制御器21によって補助減
圧器19を閉方向に操作して、補助熱交換器18を流れ
る冷媒量を多くすることにより、補助熱交換器18での
熱交換量を増大させ、減圧器3入口の冷媒温度を低下さ
せ、吸熱器4入口の冷媒エンタルピを減少させて、吸熱
能力が増大して結果的に効率の高い状態で冷凍サイクル
装置を運転することができる。
Therefore, in the fifth embodiment, the discharge temperature is detected by the discharge temperature detector 5, and if the discharge temperature is equal to or lower than the set temperature set so as not to adversely affect the reliability of the compressor 1, By operating the auxiliary pressure reducer 19 in the closing direction by the auxiliary pressure reducer discharge temperature controller 21 to increase the amount of refrigerant flowing through the auxiliary heat exchanger 18, the amount of heat exchange in the auxiliary heat exchanger 18 is increased, The temperature of the refrigerant at the inlet of the pressure reducer 3 is reduced, and the enthalpy of the refrigerant at the inlet of the heat absorber 4 is reduced, so that the heat absorption capacity is increased, so that the refrigeration cycle apparatus can be operated in a highly efficient state.

【0054】また、吐出温度が設定温度以上となると、
補助減圧器吐出温度制御器21によって補助減圧器19
を開方向に操作して、補助熱交換器18を流れる冷媒量
を少なくすることにより、補助熱交換器18での熱交換
量を減少させ、吸熱器4を出た冷媒の補助熱交換器18
での加熱量を減少させ、圧縮機1に吸入される冷媒温度
を低下させるので、圧縮機1の吐出温度も低下して、結
果的に冷凍サイクル装置を圧縮機1の信頼性を維持でき
る運転状態を実現できる。
When the discharge temperature becomes higher than the set temperature,
The auxiliary pressure reducer 19 is controlled by the auxiliary pressure reducer discharge temperature controller 21.
Is operated in the opening direction to reduce the amount of refrigerant flowing through the auxiliary heat exchanger 18, thereby reducing the amount of heat exchange in the auxiliary heat exchanger 18 and allowing the auxiliary heat exchanger 18 of the refrigerant exiting the heat absorber 4.
In this operation, the amount of heating in the compressor 1 is reduced, and the temperature of the refrigerant drawn into the compressor 1 is reduced, so that the discharge temperature of the compressor 1 is also reduced. The state can be realized.

【0055】以上のように、補助熱交換器18、補助減
圧器19、補助熱交換器バイパス管20、補助減圧器吐
出温度制御器21によって、圧縮機1の信頼性を維持し
ながら、効率の高い状態で冷凍サイクル装置を運転する
ことができるものである。
As described above, the auxiliary heat exchanger 18, the auxiliary pressure reducer 19, the auxiliary heat exchanger bypass pipe 20, and the auxiliary pressure reducer discharge temperature controller 21 maintain the reliability of the compressor 1 while improving the efficiency. The refrigeration cycle apparatus can be operated in a high state.

【0056】なお、図8においては、補助熱交換器バイ
パス管20を吸熱器4出口〜圧縮機1吸入部の側で補助
熱交換器18をバイパスする構成とし、また補助減圧器
19を補助熱交換器バイパス管20に設ける構成として
説明したが、これにこだわるものではなく、補助熱交換
器バイパス管20は放熱器2出口〜減圧器3入口の側で
補助熱交換器18をバイパスする構成や補助減圧器19
を補助熱交換器18の入口側あるいは出口側に設置して
もよく、吐出温度に応じて補助熱交換器18での熱交換
量が調整できればよい。また、補助減圧器19および補
助熱交換器バイパス管20を吸熱器4出口〜圧縮機1吸
入部の側に設けたときには、放熱器2出口〜減圧器3入
口の側よりも圧力が低いので、補助減圧器19の設計圧
力が低くできるのでコストアップを抑制できるというメ
リットや、吐出温度が高いときに補助熱交換器バイパス
管を流れる冷媒流量を増加させるので吸熱器4出口〜圧
縮機1吸入部間での流路抵抗が減少して圧力損失による
吸入圧力低下も抑制でき、圧縮比減少による吐出温度低
下の効果も得られるというメリットがある。 (実施の形態6)本発明の実施の形態6における冷凍サ
イクル装置の概略構成を図9に示す。図9においては、
図1〜8と同じ構成要素については同一の符号を付し、
説明を省略する。図9において、22は放熱器2出口〜
減圧器3入口の間に設けられた補助熱交換器であり、放
熱器2出口〜減圧器3入口の間で一部の冷媒を補助減圧
器23で減圧して、補助熱交換器22を経て圧縮機1の
吸入部あるいは中間圧部へ導くように構成される。ま
た、24は吐出温度検知器5に検知される吐出温度に応
じて補助減圧器23の開度を操作する補助減圧器吐出温
度制御器である。
In FIG. 8, the auxiliary heat exchanger bypass pipe 20 is configured to bypass the auxiliary heat exchanger 18 from the outlet of the heat absorber 4 to the suction section of the compressor 1, and the auxiliary pressure reducer 19 is connected to the auxiliary heat exchanger 19. Although described as the configuration provided in the exchanger bypass pipe 20, the auxiliary heat exchanger bypass pipe 20 is not limited to this, and the auxiliary heat exchanger bypass pipe 20 bypasses the auxiliary heat exchanger 18 from the outlet of the radiator 2 to the inlet of the pressure reducer 3. Auxiliary pressure reducer 19
May be installed on the inlet side or the outlet side of the auxiliary heat exchanger 18 as long as the amount of heat exchange in the auxiliary heat exchanger 18 can be adjusted according to the discharge temperature. Further, when the auxiliary pressure reducer 19 and the auxiliary heat exchanger bypass pipe 20 are provided on the side from the outlet of the heat absorber 4 to the side of the suction part of the compressor 1, the pressure is lower than that on the side of the outlet of the radiator 2 to the inlet of the pressure reducer 3. The design pressure of the auxiliary decompressor 19 can be reduced, so that an increase in cost can be suppressed. Also, when the discharge temperature is high, the flow rate of refrigerant flowing through the bypass pipe of the auxiliary heat exchanger is increased, so that the heat absorber 4 outlet to the compressor 1 suction section There is an advantage in that the flow path resistance between the channels is reduced, so that a reduction in suction pressure due to pressure loss can be suppressed, and an effect of lowering the discharge temperature due to a reduction in compression ratio can also be obtained. (Embodiment 6) FIG. 9 shows a schematic configuration of a refrigeration cycle apparatus according to Embodiment 6 of the present invention. In FIG.
The same components as those in FIGS. 1 to 8 are denoted by the same reference numerals,
Description is omitted. In FIG. 9, reference numeral 22 denotes the radiator 2 outlet
This is an auxiliary heat exchanger provided between the inlets of the pressure reducers 3, and a part of the refrigerant is depressurized by the auxiliary pressure reducers 23 between the outlet of the radiator 2 and the inlets of the pressure reducers 3, and passes through the auxiliary heat exchangers 22. The compressor 1 is configured to be guided to a suction portion or an intermediate pressure portion. Reference numeral 24 denotes an auxiliary pressure reducer discharge temperature controller that controls the opening degree of the auxiliary pressure reducer 23 in accordance with the discharge temperature detected by the discharge temperature detector 5.

【0057】本冷凍サイクル装置の動作について説明す
る。圧縮機1で圧縮された二酸化炭素冷媒は高温高圧状
態となり、放熱器2へ導入される。放熱器2では、二酸
化炭素冷媒は超臨界状態であるので気液2相状態とはな
らずに放熱して、補助熱交換器22を経て、減圧器3で
減圧されて気液二相状態となり吸熱器4へ導入される。
吸熱器4では、外気や河川水などから吸熱してガス状態
となり、再び圧縮機1に吸入される。また、放熱器2出
口〜減圧器3入口の間の冷媒の一部は補助減圧器23で
減圧されて低温となり、補助熱交換器22で放熱器2を
出て減圧器3に向かう比較的高温の冷媒と熱交換して加
熱され、圧縮機1の吸入部あるいは中間圧部へ導入され
る。一方、放熱器2を出た冷媒は補助熱交換器22で冷
却されて減圧器3で減圧されるため、吸熱器4入口での
エンタルピが減少して、吸熱器4の入口と出口でのエン
タルピ差が大きくなり、一部の冷媒が補助減圧器23の
側に流れるため吸熱器4の冷媒流量が減少しても同等の
吸熱能力(冷却能力)を維持しながら、吸熱器4の冷媒
流量減少により、吸熱器4出口〜圧縮機1吸入部の間の
圧力損失が低減して吸入圧力が上昇し、効率の高い運転
ができる。
The operation of the present refrigeration cycle apparatus will be described. The carbon dioxide refrigerant compressed by the compressor 1 enters a high-temperature and high-pressure state and is introduced into the radiator 2. In the radiator 2, since the carbon dioxide refrigerant is in a supercritical state, it radiates heat without being in a gas-liquid two-phase state, passes through the auxiliary heat exchanger 22, is depressurized by the pressure reducer 3, and becomes a gas-liquid two-phase state. The heat is introduced into the heat absorber 4.
The heat absorber 4 absorbs heat from the outside air, river water, or the like, becomes a gas state, and is sucked into the compressor 1 again. Part of the refrigerant between the outlet of the radiator 2 and the inlet of the decompressor 3 is decompressed by the auxiliary decompressor 23 to a low temperature, and exits the radiator 2 at the auxiliary heat exchanger 22 and moves toward the decompressor 3 at a relatively high temperature. The refrigerant is heated by exchanging heat with the refrigerant, and is introduced into the suction portion or the intermediate pressure portion of the compressor 1. On the other hand, the refrigerant that has exited the radiator 2 is cooled by the auxiliary heat exchanger 22 and decompressed by the decompressor 3, so that the enthalpy at the inlet of the heat absorber 4 decreases and the enthalpy at the inlet and the outlet of the heat absorber 4. Since the difference increases and a part of the refrigerant flows to the auxiliary decompressor 23 side, even if the refrigerant flow rate of the heat absorber 4 decreases, the refrigerant flow rate of the heat absorber 4 decreases while maintaining the same heat absorbing capacity (cooling capacity). Accordingly, the pressure loss between the outlet of the heat absorber 4 and the suction section of the compressor 1 is reduced, the suction pressure is increased, and highly efficient operation can be performed.

【0058】しかし、補助減圧器23を出た冷媒は補助
熱交換器22で加熱されることとなり、圧縮機1に吸入
される冷媒の温度が上昇し、圧縮機1の吐出温度が上昇
する。二酸化炭素やエタン等の放熱側で超臨界状態とな
りうる冷媒は、従来冷媒より吐出温度が高くなるため、
より一層吐出温度が高くなり、圧縮機1の信頼性を損な
う危険性が高まるものである。
However, the refrigerant that has exited the auxiliary pressure reducer 23 is heated by the auxiliary heat exchanger 22, so that the temperature of the refrigerant sucked into the compressor 1 rises, and the discharge temperature of the compressor 1 rises. Refrigerant that can be in a supercritical state on the heat radiation side such as carbon dioxide and ethane has a higher discharge temperature than conventional refrigerants,
The discharge temperature is further increased, and the risk of impairing the reliability of the compressor 1 is increased.

【0059】そこで、本実施の形態6では、吐出温度検
知器5で吐出温度を検知し、吐出温度が圧縮機1の信頼
性に悪影響を与えないように設定された設定温度以下で
あれば、補助減圧器吐出温度制御器24によって補助減
圧器23はあらかじめ設定された開度に操作され、補助
減圧器23を経て補助熱交換器22を流れる冷媒量を適
切に維持して、補助熱交換器22で減圧器3入口の冷媒
温度を低下させ、吸熱器4入口の冷媒エンタルピを減少
させて、吸熱器4を流れる冷媒流量が減少しても吸熱能
力を維持しながら、吸熱器4出口〜圧縮機1吸入部の間
の圧力損失の低減により効率の高い状態で冷凍サイクル
装置を運転することができる。
Therefore, in the sixth embodiment, the discharge temperature is detected by the discharge temperature detector 5, and if the discharge temperature is equal to or lower than a set temperature set so as not to adversely affect the reliability of the compressor 1, The auxiliary pressure reducer 23 is operated to a preset opening degree by the auxiliary pressure reducer discharge temperature controller 24, and the amount of the refrigerant flowing through the auxiliary heat exchanger 22 via the auxiliary pressure reducer 23 is appropriately maintained. At 22, the temperature of the refrigerant at the inlet of the pressure reducer 3 is decreased, the enthalpy of the refrigerant at the inlet of the heat absorber 4 is reduced, and the heat absorption capability is maintained even if the flow rate of the refrigerant flowing through the heat absorber 4 is reduced. The refrigeration cycle apparatus can be operated in a highly efficient state by reducing the pressure loss between the suction portions of the machine 1.

【0060】また、吐出温度が設定温度以上となると、
補助減圧器吐出温度制御器24によって補助減圧器23
を開方向に操作して、補助減圧器23を経て補助熱交換
器22を流れる冷媒量を多くすることにより、補助熱交
換器22での補助減圧器23を経た冷媒の温度上昇を減
少させ、圧縮機1に吸入される冷媒温度を低下させるの
で、圧縮機1の吐出温度も低下して、結果的に冷凍サイ
クル装置を圧縮機1の信頼性を維持できる運転状態を実
現できる。
When the discharge temperature becomes higher than the set temperature,
The auxiliary pressure reducer 23 is controlled by the auxiliary pressure reducer discharge temperature controller 24.
Is operated in the opening direction to increase the amount of refrigerant flowing through the auxiliary heat exchanger 22 via the auxiliary pressure reducer 23, thereby reducing the temperature rise of the refrigerant passing through the auxiliary pressure reducer 23 in the auxiliary heat exchanger 22, Since the temperature of the refrigerant sucked into the compressor 1 is reduced, the discharge temperature of the compressor 1 is also reduced, and as a result, the refrigeration cycle apparatus can be operated in a state where the reliability of the compressor 1 can be maintained.

【0061】以上のように、補助熱交換器22、補助減
圧器23、補助減圧器吐出温度制御器24によって、圧
縮機1の信頼性を維持しながら、効率の高い状態で冷凍
サイクル装置を運転することができるものである。
As described above, the refrigeration cycle apparatus is operated with high efficiency while maintaining the reliability of the compressor 1 by the auxiliary heat exchanger 22, the auxiliary pressure reducer 23, and the auxiliary pressure reducer discharge temperature controller 24. Is what you can do.

【0062】なお、図9においては、補助熱交換器22
の下流側で冷媒を分岐した構成としたが、これにこだわ
るものではなく、放熱器2出口〜補助熱交換器22入口
の間で分岐して一部の冷媒を補助減圧器23で減圧した
後補助熱交換器22に導入して残りの冷媒と熱交換させ
る構成でも同様の効果が得られる。 (実施の形態7)本発明の実施の形態7における冷凍サ
イクル装置の概略構成を図10に示す。図10において
は、図1〜9と同じ構成要素については同一の符号を付
し、説明を省略する。図10において、24は吐出温度
検知器5で検知された吐出温度が設定温度となるように
補助減圧器23の開度を操作する補助減圧器吐出温度制
御器、25は補助減圧器23を経た冷媒の補助熱交換器
22出口側での過熱度を検知する過熱度検知器、26は
過熱度検知器25で検知された過熱度が設定過熱度とな
るように補助減圧器23の開度を操作する補助減圧器過
熱度制御器、27は補助減圧器吐出温度制御器24と補
助減圧器過熱度制御器26の出力を吐出温度検知器5で
検知された吐出温度に応じて切り替えあるいは融合して
補助減圧器23の開度を操作する補助減圧器開度操作器
である。また、28は、圧力の異常上昇時に動作する圧
力逃がし弁である。
In FIG. 9, the auxiliary heat exchanger 22
The refrigerant is branched on the downstream side of the above. However, the present invention is not limited to this. After branching between the radiator 2 outlet and the auxiliary heat exchanger 22 inlet, a part of the refrigerant is depressurized by the auxiliary decompressor 23. The same effect can be obtained by a configuration in which the refrigerant is introduced into the auxiliary heat exchanger 22 to exchange heat with the remaining refrigerant. Embodiment 7 FIG. 10 shows a schematic configuration of a refrigeration cycle apparatus according to Embodiment 7 of the present invention. 10, the same components as those in FIGS. 1 to 9 are denoted by the same reference numerals, and description thereof will be omitted. In FIG. 10, reference numeral 24 denotes an auxiliary decompressor discharge temperature controller for controlling the opening degree of the auxiliary decompressor 23 so that the discharge temperature detected by the discharge temperature detector 5 becomes the set temperature, and reference numeral 25 denotes an output through the auxiliary depressurizer 23. The superheat degree detector 26 detects the degree of superheat of the refrigerant at the outlet side of the auxiliary heat exchanger 22. The superheat degree detector 26 adjusts the opening degree of the auxiliary pressure reducer 23 so that the superheat degree detected by the superheat degree detector 25 becomes the set superheat degree. The auxiliary pressure reducer superheat degree controller 27 to be operated switches or fuses the outputs of the auxiliary pressure reducer discharge temperature controller 24 and the auxiliary pressure reducer superheat degree controller 26 in accordance with the discharge temperature detected by the discharge temperature detector 5. This is an auxiliary pressure reducer opening degree operation device that operates the opening degree of the auxiliary pressure reducer 23. Reference numeral 28 denotes a pressure relief valve that operates when the pressure rises abnormally.

【0063】本冷凍サイクル装置の動作について説明す
る。圧縮機1で圧縮された二酸化炭素冷媒は高温高圧状
態となり、放熱器2へ導入される。放熱器2では、二酸
化炭素冷媒は超臨界状態であるので気液2相状態とはな
らずに放熱して、補助熱交換器22を経て、減圧器3で
減圧されて気液二相状態となり吸熱器4へ導入される。
吸熱器4では、外気や河川水などから吸熱してガス状態
となり、再び圧縮機1に吸入される。また、放熱器2出
口〜減圧器3入口の間の冷媒の一部は補助減圧器23で
減圧されて低温となり、補助熱交換器22で放熱器2を
出て減圧器3に向かう比較的高温の冷媒と熱交換して加
熱され、圧縮機1の吸入部あるいは中間圧部へ導入され
る。一方、放熱器2を出た冷媒は補助熱交換器22で冷
却されて減圧器3で減圧されるため、吸熱器4入口での
エンタルピが減少して、吸熱器4の入口と出口でのエン
タルピ差が大きくなり、一部の冷媒が補助減圧器23の
側に流れるため吸熱器4の冷媒流量が減少しても同等の
吸熱能力(冷却能力)を維持しながら、吸熱器4の冷媒
流量減少により、吸熱器4出口〜圧縮機1吸入部の間の
圧力損失が低減して吸入圧力が上昇し、効率の高い運転
ができる。
The operation of the present refrigeration cycle apparatus will be described. The carbon dioxide refrigerant compressed by the compressor 1 enters a high-temperature and high-pressure state and is introduced into the radiator 2. In the radiator 2, since the carbon dioxide refrigerant is in a supercritical state, it radiates heat without being in a gas-liquid two-phase state, passes through the auxiliary heat exchanger 22, is depressurized by the pressure reducer 3, and becomes a gas-liquid two-phase state. The heat is introduced into the heat absorber 4.
The heat absorber 4 absorbs heat from the outside air, river water, or the like, becomes a gas state, and is sucked into the compressor 1 again. Part of the refrigerant between the outlet of the radiator 2 and the inlet of the decompressor 3 is decompressed by the auxiliary decompressor 23 to a low temperature, and exits the radiator 2 at the auxiliary heat exchanger 22 and moves toward the decompressor 3 at a relatively high temperature. The refrigerant is heated by exchanging heat with the refrigerant, and is introduced into the suction portion or the intermediate pressure portion of the compressor 1. On the other hand, the refrigerant that has exited the radiator 2 is cooled by the auxiliary heat exchanger 22 and decompressed by the decompressor 3, so that the enthalpy at the inlet of the heat absorber 4 decreases and the enthalpy at the inlet and the outlet of the heat absorber 4. Since the difference increases and a part of the refrigerant flows to the auxiliary decompressor 23 side, even if the refrigerant flow rate of the heat absorber 4 decreases, the refrigerant flow rate of the heat absorber 4 decreases while maintaining the same heat absorbing capacity (cooling capacity). Accordingly, the pressure loss between the outlet of the heat absorber 4 and the suction section of the compressor 1 is reduced, the suction pressure is increased, and highly efficient operation can be performed.

【0064】しかし、補助減圧器23を出た冷媒は補助
熱交換器22で加熱されることとなり、圧縮機1に吸入
される冷媒の温度が上昇し、圧縮機1の吐出温度が上昇
する。二酸化炭素やエタン等の放熱側で超臨界状態とな
りうる冷媒は、従来冷媒より吐出温度が高くなるため、
より一層吐出温度が高くなり、圧縮機1の信頼性を損な
う危険性が高まるものである。
However, the refrigerant having flowed out of the auxiliary pressure reducer 23 is heated by the auxiliary heat exchanger 22, so that the temperature of the refrigerant sucked into the compressor 1 rises and the discharge temperature of the compressor 1 rises. Refrigerant that can be in a supercritical state on the heat radiation side such as carbon dioxide and ethane has a higher discharge temperature than conventional refrigerants,
The discharge temperature is further increased, and the risk of impairing the reliability of the compressor 1 is increased.

【0065】しかし、本実施の形態においては、補助減
圧器開度操作器27によって補助減圧器23が適切に操
作される。
However, in the present embodiment, the auxiliary pressure reducer 23 is appropriately operated by the auxiliary pressure reducer opening degree operation device 27.

【0066】図11は本発明による補助減圧器開度操作
器27の動作を示すフローチャートである。まず吐出温
度検知器5で検知された温度と第1吐出温度閾値(例え
ば圧縮機1の許容使用範囲上限をもとに設定)との比較
を行い(ステップ301)、温度が第1吐出温度閾値よ
りも大きい場合には吐出温度メンバシップ値を0に設定
し(ステップ302)、温度が第1吐出温度閾値より小
さい場合には第1吐出温度閾値より小さい第2吐出温度
閾値(例えば圧縮機1の常用使用範囲上限をもとに設
定)と吐出温度検知器5で検知された温度との比較を行
い(ステップ303)、温度が第2吐出温度閾値よりも
大きい場合には温度に応じて0から1までの範囲で単調
で連続した変化をする吐出温度メンバシップ値を設定し
(ステップ304)、温度が第2吐出温度閾値より小さ
い場合には第2吐出温度閾値より小さい第3吐出温度閾
値(例えば圧縮機1の吸入側で僅かに過熱ガスとなると
きの吐出温度をもとに設定)と吐出温度検知器5で検知
された温度との比較を行い(ステップ305)、温度が
第3吐出温度閾値よりも大きい場合には吐出温度メンバ
シップ値を1に設定し(ステップ306)、温度が第3
吐出温度閾値より小さい場合には第3吐出温度閾値より
小さい第4吐出温度閾値(例えば圧縮機1の吸入側で湿
り状態となるときの吐出温度をもとに設定)と吐出温度
検知器5で検知された温度との比較を行い(ステップ3
07)、温度が第4吐出温度閾値よりも大きい場合には
温度に応じて1から0までの範囲で単調で連続した変化
をする吐出温度メンバシップ値を設定し(ステップ30
8)、温度が第4吐出温度閾値より小さい場合には吐出
温度メンバシップ値を0に設定する(ステップ30
2)。それから、補助減圧器過熱度制御器26による補
助減圧器開度と吐出温度メンバシップ値との積量と、補
助減圧器吐出温度制御器24による補助減圧器開度と1
から吐出温度メンバシップ値を減じた値との積量の和と
して補助減圧器開度を決定して補助減圧器23を操作す
る(ステップ309)もので一定時間間隔で実行され
る。
FIG. 11 is a flowchart showing the operation of the auxiliary pressure reducer opening degree operation device 27 according to the present invention. First, the temperature detected by the discharge temperature detector 5 is compared with a first discharge temperature threshold (for example, set based on the upper limit of the allowable use range of the compressor 1) (step 301), and the temperature is determined to be the first discharge temperature threshold. If it is higher than the first discharge temperature threshold, the discharge temperature membership value is set to 0 (step 302). If the temperature is lower than the first discharge temperature threshold, the second discharge temperature threshold (for example, compressor 1) Is set based on the upper limit of the normal use range) and the temperature detected by the discharge temperature detector 5 (step 303). If the temperature is larger than the second discharge temperature threshold, 0 is set according to the temperature. A discharge temperature membership value that changes monotonically and continuously from 1 to 1 is set (step 304). If the temperature is lower than the second discharge temperature threshold, the third discharge temperature threshold is lower than the second discharge temperature threshold. (example A comparison is made between the temperature detected by the discharge temperature detector 5 and the temperature detected by the discharge temperature detector 5 (step 305). If the temperature is larger than the threshold value, the discharge temperature membership value is set to 1 (step 306), and the temperature is set to the third temperature.
When the discharge temperature is smaller than the discharge temperature threshold, the fourth discharge temperature threshold smaller than the third discharge temperature threshold (for example, set based on the discharge temperature when the suction side of the compressor 1 becomes wet) and the discharge temperature detector 5 Compare with the detected temperature (Step 3
07) If the temperature is higher than the fourth discharge temperature threshold, a discharge temperature membership value that changes monotonously and continuously in a range from 1 to 0 according to the temperature is set (step 30).
8) If the temperature is smaller than the fourth discharge temperature threshold, the discharge temperature membership value is set to 0 (step 30).
2). Then, the product of the auxiliary pressure reducer opening degree by the auxiliary pressure reducer superheat degree controller 26 and the discharge temperature membership value, and the auxiliary pressure reducer opening degree by the auxiliary pressure reducer discharge temperature controller 24 and 1
The auxiliary pressure reducer opening is determined as the sum of the product of the discharge temperature membership value and the value obtained by subtracting the discharge temperature membership value, and the auxiliary pressure reducer 23 is operated (step 309).

【0067】すなわち、吐出温度検知器5で検知される
温度がステップ301で第1吐出温度閾値より大きいと
判断されたときは、吐出温度が圧縮機1の許容使用範囲
をはずれており圧縮機1の信頼性を著しく損なう状態で
あることから、ステップ309では補助減圧器吐出温度
制御器24による補助減圧器開度を最優先にして、補助
減圧器23の開度を開方向に操作して補助熱交換器22
を経て圧縮機1の吸入部あるいは中間圧部に合流する冷
媒温度を低下させて、吐出温度を低下させる。あるいは
吐出温度検知器5で検知される温度がステップ307で
第4吐出温度閾値より小さいと判断されたときには、圧
縮機1の吸入部で湿り状態となっており圧縮機1の信頼
性を著しく損なう状態であることから、ステップ309
では補助減圧器吐出温度制御器24による補助減圧器開
度を最優先にして、補助減圧器23の開度を閉方向に操
作して補助熱交換器22を経て圧縮機1の吸入部あるい
は中間圧部に合流する冷媒温度を上昇させて、湿り状態
の冷媒が圧縮されるのを防止する。すなわち吐出温度を
適度に上昇させる。
That is, when it is determined in step 301 that the temperature detected by the discharge temperature detector 5 is higher than the first discharge temperature threshold, the discharge temperature is out of the allowable use range of the compressor 1, and In step 309, the auxiliary pressure reducer opening degree by the auxiliary pressure reducer discharge temperature controller 24 is given the highest priority, and the opening degree of the auxiliary pressure reducer 23 is operated in the opening direction in step 309. Heat exchanger 22
Then, the temperature of the refrigerant that joins the suction portion or the intermediate pressure portion of the compressor 1 via the compressor is reduced, and the discharge temperature is reduced. Alternatively, when the temperature detected by the discharge temperature detector 5 is determined to be smaller than the fourth discharge temperature threshold value in step 307, the suction portion of the compressor 1 is in a wet state, and the reliability of the compressor 1 is significantly impaired. Step 309
In the above description, the opening degree of the auxiliary decompressor by the auxiliary decompressor discharge temperature controller 24 is given the highest priority, and the opening degree of the auxiliary decompressor 23 is operated in the closing direction to pass through the auxiliary heat exchanger 22 to the suction portion or the intermediate portion The temperature of the refrigerant joining the pressure section is raised to prevent the refrigerant in the wet state from being compressed. That is, the discharge temperature is appropriately increased.

【0068】また吐出温度検知器5で検知される温度が
ステップ303で第2吐出温度閾値より小さいと判断さ
れ、かつステップ305で第3吐出温度閾値より大きい
と判断されたときには、温度は圧縮機1の常用使用範囲
内であり圧縮機1の信頼性には問題ない状態であること
から、ステップ309では補助減圧器過熱度制御器26
による補助減圧器開度を最優先にする。例えば、過熱度
検知器25で検知された過熱度が設定過熱度よりも高い
ときには補助減圧器過熱度制御器26により補助減圧器
23の開度を開方向に決定する。この結果、補助減圧器
23を経た冷媒の補助熱交換器22出口での過熱度が低
下するので、補助熱交換器22で効率よく熱交換が行わ
れ、補助減圧器23を流れる冷媒量と減圧器3を経て吸
熱器4を流れる冷媒量が適切に調整され、成績係数の高
い状態での運転が実現できる。あるいは過熱度検知器2
5で検知された過熱度が設定過熱度よりも低いときには
補助減圧器過熱度制御器26により補助減圧器23の開
度を閉方向に決定する。この結果、補助減圧器23を経
た冷媒の補助熱交換器22出口での過熱度が適切となる
ので、補助熱交換器22で効率よく熱交換が行われ、補
助減圧器23を流れる冷媒量と減圧器3を経て吸熱器4
を流れる冷媒量が適切に調整され、成績係数の高い状態
での運転が実現できる。
If it is determined in step 303 that the temperature detected by the discharge temperature detector 5 is smaller than the second discharge temperature threshold, and if it is determined in step 305 that the temperature is higher than the third discharge temperature threshold, the temperature is determined by the compressor. Therefore, in Step 309, the auxiliary decompressor superheat degree controller 26
Priority is given to the auxiliary pressure reducer opening degree. For example, when the degree of superheat detected by the superheat degree detector 25 is higher than the set degree of superheat, the degree of opening of the auxiliary pressure reducer 23 is determined by the auxiliary pressure reducer superheat degree controller 26 in the opening direction. As a result, the degree of superheat of the refrigerant passing through the auxiliary pressure reducer 23 at the outlet of the auxiliary heat exchanger 22 is reduced, so that heat is efficiently exchanged in the auxiliary heat exchanger 22 and the amount of refrigerant flowing through the auxiliary pressure reducer 23 and the pressure reduction The amount of refrigerant flowing through the heat absorber 4 via the heat sink 3 is appropriately adjusted, and operation with a high coefficient of performance can be realized. Or superheat detector 2
When the degree of superheat detected in step 5 is lower than the set degree of superheat, the degree of opening of the auxiliary pressure reducer 23 is determined by the auxiliary pressure reducer superheat degree controller 26 in the closing direction. As a result, the degree of superheating of the refrigerant passing through the auxiliary pressure reducer 23 at the outlet of the auxiliary heat exchanger 22 becomes appropriate, so that heat is efficiently exchanged in the auxiliary heat exchanger 22 and the amount of refrigerant flowing through the auxiliary pressure reducer 23 is reduced. Heat sink 4 through pressure reducer 3
The amount of refrigerant flowing through is adjusted appropriately, and operation with a high coefficient of performance can be realized.

【0069】また吐出温度検知器5で検知される温度が
ステップ303で第2吐出温度閾値より大きいと判断さ
れ、あるいはステップ307で第4吐出温度閾値より大
きいと判断されたときには、吐出温度は圧縮機1の使用
許容範囲内ではあるが常用使用範囲外であり圧縮機1の
信頼性の面からはあまり好ましくない状態であることか
ら、ステップ309では補助減圧器過熱度制御器26に
よる補助減圧器開度と補助減圧器吐出温度制御器24に
よる補助減圧器開度とを混合して補助減圧器23を操作
することから、吐出温度を圧縮機1の常用使用範囲内に
収めつつ、補助減圧器23を経た冷媒の補助熱交換器2
2出口での過熱度が適切となるので、圧縮機1の信頼性
を維持しながら成績係数の高い状態での運転が実現でき
る。
When the temperature detected by the discharge temperature detector 5 is determined in step 303 to be higher than the second discharge temperature threshold, or when it is determined in step 307 to be higher than the fourth discharge temperature threshold, the discharge temperature is reduced Since it is within the allowable use range of the compressor 1 but outside the normal use range and is not very desirable from the viewpoint of the reliability of the compressor 1, in step 309, the auxiliary pressure reducer by the auxiliary pressure reducer superheat degree controller 26 is used. Since the opening degree and the opening degree of the auxiliary decompressor by the auxiliary decompressor discharge temperature controller 24 are operated to operate the auxiliary decompressor 23, the auxiliary decompressor is controlled while keeping the discharge temperature within the normal use range of the compressor 1. Auxiliary heat exchanger 2 for refrigerant passing through 23
Since the degree of superheat at the two outlets is appropriate, operation in a state of high coefficient of performance can be realized while maintaining the reliability of the compressor 1.

【0070】以上のように、補助減圧器吐出温度制御器
24、補助減圧器過熱度制御器26、補助減圧器開度操
作器27によって、圧縮機1の信頼性を維持しながら、
効率の高い状態で冷凍サイクル装置を運転することがで
きるものである。
As described above, the auxiliary pressure reducer discharge temperature controller 24, the auxiliary pressure reducer superheat degree controller 26, and the auxiliary pressure reducer opening degree operation device 27 maintain the reliability of the compressor 1 while maintaining the reliability.
The refrigeration cycle apparatus can be operated with high efficiency.

【0071】また、放熱器2で超臨界状態となりうる冷
媒を用いていることから、放熱器2で気液二相状態とな
る従来の冷媒と比較して、圧力変動幅が大きく、かつ圧
力変動速度も早くなる。したがって万一冷媒過充填など
の異常状態での運転時に圧力の上昇が早いため、冷凍サ
イクル装置を構成する機器に及ぼす影響が従来よりも大
きいという課題がある。しかし、二酸化炭素を冷媒とし
て、図10のように圧力逃がし弁28を設けることによ
り、圧力異常上昇時には無害である二酸化炭素を冷凍サ
イクル装置外に適量放出することにより、圧力を低下さ
せることができる。また、冷凍サイクル装置内の圧力の
高い状態から大気圧下に放出された二酸化炭素は膨張し
て低温となるため、冷凍サイクル装置内の放熱側(圧縮
機1吐出部〜減圧器3入口あるいは補助減圧器23入
口)の冷媒配管や放熱器2や補助熱交換器22などに向
けて放出することにより、放熱側での放熱が促進され、
圧力を低下できるという効果も得られる。あるいは、冷
凍サイクル装置内の吸熱側(減圧器3出口あるいは補助
減圧器23出口〜圧縮機1吸入部)の冷媒配管や吸熱器
4や補助熱交換器22などに向けて放出することによ
り、吸熱側での吸熱が妨げられ、吸熱能力が低下するた
め、吸熱側の気液二相状態での蒸発が抑制されて液の割
合が増加するため、放熱側の冷媒量が減少して放熱側圧
力が低下するという効果も得られる。さらに吸熱能力が
減少することにより、図12に示す様に吸熱器4入口と
出口でのエンタルピ差が小さくなるため、放熱器2では
放熱器出口温度がほぼ一定のまま放熱側圧力が低下する
という効果も併せて得られる。
Further, since the radiator 2 uses a refrigerant that can be in a supercritical state, the pressure fluctuation width is larger and the pressure fluctuation is larger than that of a conventional refrigerant that is in a gas-liquid two-phase state in the radiator 2. Speed is also faster. Therefore, there is a problem that the pressure on the components of the refrigeration cycle device is greater than before because the pressure rises rapidly during operation in an abnormal state such as refrigerant overfilling. However, by providing the pressure relief valve 28 as shown in FIG. 10 using carbon dioxide as a refrigerant, the pressure can be reduced by discharging an appropriate amount of harmless carbon dioxide out of the refrigeration cycle apparatus when the pressure is abnormally increased. . Further, since the carbon dioxide released from the high pressure state in the refrigeration cycle apparatus under the atmospheric pressure expands to a low temperature, the carbon dioxide on the radiating side in the refrigeration cycle apparatus (compressor 1 discharge section to decompressor 3 inlet or auxiliary By discharging the refrigerant toward the refrigerant pipe at the inlet of the pressure reducer 23), the radiator 2, the auxiliary heat exchanger 22, and the like, heat radiation on the heat radiation side is promoted,
The effect that the pressure can be reduced is also obtained. Alternatively, heat is released toward a refrigerant pipe on the heat absorbing side (exit from the decompressor 3 or the auxiliary decompressor 23 to the compressor 1 suction part) in the refrigerating cycle device, the heat absorber 4, the auxiliary heat exchanger 22, and the like. Since the heat absorption on the heat absorption side is hindered and the heat absorption capacity is reduced, evaporation in the gas-liquid two-phase state on the heat absorption side is suppressed and the proportion of liquid increases, so the amount of refrigerant on the heat radiation side decreases and the pressure on the heat radiation side decreases. Is also reduced. Further, as the heat absorbing ability is reduced, the enthalpy difference between the inlet and the outlet of the heat absorber 4 is reduced as shown in FIG. 12, so that the heat radiation side pressure of the radiator 2 decreases while the radiator outlet temperature is almost constant. The effect is also obtained.

【0072】すなわち、二酸化炭素を用いた場合には無
害であるので、圧力逃がし弁を介して適量を冷凍サイク
ル装置外に放出して圧力の異常上昇を抑えることができ
る。
That is, since carbon dioxide is harmless when used, an appropriate amount can be discharged to the outside of the refrigeration cycle device through a pressure relief valve, and abnormal rise in pressure can be suppressed.

【0073】なお、図10においては、補助熱交換器2
2の下流側で冷媒を分岐した構成としたが、これにこだ
わるものではなく、放熱器2出口〜補助熱交換器22入
口の間で分岐して一部の冷媒を補助減圧器23で減圧し
た後補助熱交換器22に導入して残りの冷媒と熱交換さ
せる構成でも同様の効果が得られる。
In FIG. 10, the auxiliary heat exchanger 2
Although the refrigerant was branched on the downstream side of 2, the present invention is not limited to this. The refrigerant is branched between the outlet of the radiator 2 and the inlet of the auxiliary heat exchanger 22, and a part of the refrigerant is depressurized by the auxiliary decompressor 23. The same effect can be obtained by a configuration in which the refrigerant is introduced into the rear auxiliary heat exchanger 22 and exchanges heat with the remaining refrigerant.

【0074】[0074]

【発明の効果】以上述べたことから明らかなように、本
発明は、圧縮機、放熱器、減圧器、吸熱器等からなる冷
凍サイクルにおいて、放熱側で超臨界状態となりうる冷
媒を封入し、吐出温度制御器を備え、前記吐出温度制御
器は、吐出温度が設定温度以上のときに減圧器開度を開
く、あるいは前記吐出温度制御器は、吐出温度が設定温
度以上のときに圧縮機運転能力を減少させることによ
り、あるいは前記吐出温度制御器は、吐出温度が設定温
度以上のときに減圧器開度を開き、かつ圧縮機運転能力
を減少させることにより、吐出温度をより確実に低下さ
せて、圧縮機などの信頼性を損なうことなく安定して運
転を継続できる。
As is apparent from the above description, the present invention encloses a refrigerant which can be brought into a supercritical state on the heat radiation side in a refrigeration cycle including a compressor, a radiator, a decompressor, and a heat sink. A discharge temperature controller, wherein the discharge temperature controller opens the decompressor when the discharge temperature is equal to or higher than the set temperature, or the discharge temperature controller operates the compressor when the discharge temperature is equal to or higher than the set temperature. By reducing the capacity, or the discharge temperature controller opens the decompressor opening when the discharge temperature is equal to or higher than the set temperature, and reduces the compressor operating capacity to more reliably lower the discharge temperature. Therefore, stable operation can be continued without impairing the reliability of the compressor and the like.

【0075】また、放熱側で超臨界状態となりうる冷媒
を封入し、吐出圧力に応じて減圧器開度を操作する吐出
圧力制御器と、吐出温度に応じて減圧器開度を操作する
吐出温度制御器と、吐出温度に応じて吐出圧力制御器と
吐出温度制御器とを切り替えて減圧器開度を操作する減
圧器開度操作器を備えたことにより、圧縮機の信頼性を
維持しながら、効率の高い状態で冷凍サイクル装置を運
転することができるものである。
Further, a discharge pressure controller for enclosing a refrigerant which can be brought into a supercritical state on the heat radiation side and operating the decompressor opening according to the discharge pressure, and a discharge temperature for operating the depressurizer opening according to the discharge temperature A controller and a decompressor opening operation device that operates the decompressor opening by switching between the discharge pressure controller and the discharge temperature controller according to the discharge temperature, while maintaining the reliability of the compressor. The refrigeration cycle apparatus can be operated with high efficiency.

【0076】また、放熱側で超臨界状態となりうる冷媒
を封入し、吐出温度に応じて圧縮機運転能力を操作する
吐出温度制御器と、負荷状態に応じて圧縮機運転能力を
操作する運転能力制御器と、吐出温度に応じて吐出温度
制御器と運転能力制御器とを切り替えて圧縮機運転能力
を操作する圧縮機運転能力操作器を備えたことにより、
圧縮機の信頼性を維持しながら、効率の高い状態で冷凍
サイクル装置を運転することができるものである。
Further, a discharge temperature controller for charging a refrigerant which can be in a supercritical state on the heat radiation side and operating the compressor operating capacity according to the discharge temperature, and an operating capacity for operating the compressor operating capacity according to the load state By providing a controller, a compressor operating capacity operation unit that switches the discharge temperature controller and the operating capacity controller according to the discharge temperature to operate the compressor operating capacity,
It is possible to operate the refrigeration cycle apparatus with high efficiency while maintaining the reliability of the compressor.

【0077】また、放熱側で超臨界状態となりうる冷媒
を封入し、圧縮機の吸入温度と吸入圧力と吐出温度から
吐出圧力を推定する吐出圧力検知器を備えたことによ
り、高価となる吐出圧力検知器を備えることなく、吐出
圧力を推定することにより、効率よく冷凍サイクル装置
が運転できる。
Further, a refrigerant which can be in a supercritical state on the heat radiation side is sealed therein, and a discharge pressure detector for estimating the discharge pressure from the suction temperature, the suction pressure and the discharge temperature of the compressor is provided. By estimating the discharge pressure without providing a detector, the refrigeration cycle apparatus can be operated efficiently.

【0078】また、前記吐出圧力検知器は圧縮機運転能
力に応じて吐出圧力推定値を補正することにより、吐出
圧力推定器で推定される吐出圧力がより正確になるもの
である。
Further, the discharge pressure detector corrects the discharge pressure estimated value according to the compressor operating capability, so that the discharge pressure estimated by the discharge pressure estimator becomes more accurate.

【0079】また、放熱側で超臨界状態となりうる冷媒
を封入し、放熱器出口から減圧器入口までと吸熱器出口
から圧縮機吸入部までとで熱交換を行う補助熱交換器
と、放熱器出口と減圧器とを補助熱交換器をバイパスし
て接続する補助熱交換器バイパス回路、あるいは吸熱器
出口と圧縮機吸入部とを補助熱交換器をバイパスして接
続する補助熱交換器バイパス回路と、補助熱交換器バイ
パス回路に補助減圧器を備え、吐出温度に応じて補助減
圧器開度を操作する補助減圧器操作器を備えたことによ
り、圧縮機の信頼性を維持しながら、効率の高い状態で
冷凍サイクル装置を運転することができるものである。
Further, an auxiliary heat exchanger for enclosing a refrigerant which can be brought into a supercritical state on the heat radiation side and exchanging heat from the radiator outlet to the pressure reducer inlet and from the heat absorber outlet to the compressor suction part; An auxiliary heat exchanger bypass circuit that connects the outlet and the pressure reducer by bypassing the auxiliary heat exchanger, or an auxiliary heat exchanger bypass circuit that connects the heat absorber outlet and the compressor suction unit by bypassing the auxiliary heat exchanger The auxiliary heat exchanger has an auxiliary pressure reducer in the bypass circuit and an auxiliary pressure reducer operating device that controls the opening degree of the auxiliary pressure reducer according to the discharge temperature. The refrigeration cycle device can be operated in a high state.

【0080】また、放熱側で超臨界状態となりうる冷媒
を封入し、放熱器出口冷媒を分岐して一部を補助減圧器
を介して減圧し、減圧器上流側の補助熱交換器で残りの
冷媒を冷却させたのち圧縮機吸入もしくは中間圧部に導
き、吐出温度に応じて補助減圧器の開度を操作する補助
減圧器操作器を備えたことにより、圧縮機の信頼性を維
持しながら、効率の高い状態で冷凍サイクル装置を運転
することができるものである。
Further, a refrigerant which can be brought into a supercritical state on the heat radiating side is sealed, the refrigerant at the radiator outlet is branched, and a part thereof is depressurized through the auxiliary decompressor. After cooling the refrigerant, it is guided to the compressor suction or intermediate pressure section, and the auxiliary pressure reducer operation device that operates the opening degree of the auxiliary pressure reducer according to the discharge temperature is provided, while maintaining the reliability of the compressor The refrigeration cycle apparatus can be operated with high efficiency.

【0081】また、放熱側で超臨界状態となりうる冷媒
を封入し、放熱器出口冷媒を分岐して一部を補助減圧器
を介して減圧し、減圧器上流側の補助熱交換器で残りの
冷媒を冷却させたのち圧縮機吸入もしくは中間圧部に導
き、吐出温度に応じて補助減圧器開度を操作する吐出温
度制御器と、補助減圧器を介した補助熱交換器出口の過
熱度に応じて補助減圧器開度を操作する補助熱交換器過
熱度制御器と、吐出温度に応じて吐出温度制御器と補助
熱交換器過熱度制御器を切り替えて補助減圧器開度を操
作する補助減圧器操作器を備えたことにより、圧縮機の
信頼性を維持しながら、効率の高い状態で冷凍サイクル
装置を運転することができるものである。
Further, a refrigerant which can be brought into a supercritical state on the heat radiation side is sealed, the refrigerant at the radiator outlet is branched, and a part of the refrigerant is depressurized through the auxiliary decompressor. After cooling the refrigerant, it is guided to the compressor suction or intermediate pressure section, and the discharge temperature controller that operates the auxiliary decompressor opening degree according to the discharge temperature, and the superheat degree at the auxiliary heat exchanger outlet through the auxiliary decompressor Auxiliary heat exchanger superheat degree controller that controls the degree of opening of the auxiliary decompressor according to the discharge temperature controller and auxiliary heat exchanger superheat degree controller that switches the degree of the auxiliary pressure reducer according to the discharge temperature With the provision of the decompressor operation device, the refrigeration cycle apparatus can be operated in a highly efficient state while maintaining the reliability of the compressor.

【0082】また、放熱側で超臨界状態となりうる冷媒
は二酸化炭素であり、圧力異常上昇時の圧力保護装置と
して圧力逃がし弁を備えたことにより、圧力逃がし弁を
介して適量を冷凍サイクル装置外に放出して圧力の異常
上昇を抑えることができる。
The refrigerant which can be brought into a supercritical state on the heat radiation side is carbon dioxide. Since a pressure relief valve is provided as a pressure protection device when the pressure is abnormally increased, an appropriate amount of the refrigerant is supplied to the outside of the refrigeration cycle device through the pressure relief valve. To suppress an abnormal rise in pressure.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態における冷凍サイクル装
置の概略構成図
FIG. 1 is a schematic configuration diagram of a refrigeration cycle device according to an embodiment of the present invention.

【図2】本発明の一実施の形態における冷凍サイクル装
置の概略構成図
FIG. 2 is a schematic configuration diagram of a refrigeration cycle device according to one embodiment of the present invention.

【図3】本発明による減圧器開度操作器11の動作を示
すフローチャート
FIG. 3 is a flowchart showing the operation of the pressure reducer opening degree operating device 11 according to the present invention.

【図4】本発明の一実施の形態における冷凍サイクル装
置の概略構成図
FIG. 4 is a schematic configuration diagram of a refrigeration cycle device according to one embodiment of the present invention.

【図5】本発明による圧縮機運転能力操作器14の動作
を示すフローチャート
FIG. 5 is a flowchart showing the operation of the compressor operating capacity controller 14 according to the present invention.

【図6】本発明の一実施の形態における冷凍サイクル装
置の概略構成図
FIG. 6 is a schematic configuration diagram of a refrigeration cycle device according to one embodiment of the present invention.

【図7】模式的な圧力−エンタルピ線図FIG. 7 is a schematic pressure-enthalpy diagram.

【図8】本発明の一実施の形態における冷凍サイクル装
置の概略構成図
FIG. 8 is a schematic configuration diagram of a refrigeration cycle device according to one embodiment of the present invention.

【図9】本発明の一実施の形態における冷凍サイクル装
置の概略構成図
FIG. 9 is a schematic configuration diagram of a refrigeration cycle device according to an embodiment of the present invention.

【図10】本発明の一実施の形態における冷凍サイクル
装置の概略構成図
FIG. 10 is a schematic configuration diagram of a refrigeration cycle device according to an embodiment of the present invention.

【図11】本発明による補助減圧器開度操作器27の動
作を示すフローチャート
FIG. 11 is a flowchart showing the operation of the auxiliary pressure reducer opening degree operation device 27 according to the present invention.

【図12】模式的な圧力−エンタルピ線図FIG. 12 is a schematic pressure-enthalpy diagram.

【符号の説明】[Explanation of symbols]

1:圧縮機 2:放熱器 3:減圧器 4:吸熱器 5:吐出温度検知器 6:減圧器吐出温度制御器 7:圧縮機吐出温度制御器 8:減圧器吐出温度制御器 9:吐出圧力検知器 10:減圧器吐出圧力制御器 11:減圧器開度操作器 12:圧縮機吐出温度制御器 13:圧縮機吐出圧力制御器 14:圧縮機運転能力操作器 15:吸入温度検知器 16:吸入圧力検知器 17:吐出圧力推定器 18:補助熱交換器 19:補助減圧器 20:補助熱交換器バイパス管 21:補助減圧器吐出温度制御器 22:補助熱交換器 23:補助減圧器 24:補助減圧器吐出温度制御器 25:過熱度検知器 26:補助減圧器過熱度制御器 27:補助減圧器開度操作器 28:圧力逃がし弁 1: compressor 2: radiator 3: pressure reducer 4: heat sink 5: discharge temperature detector 6: pressure reducer discharge temperature controller 7: compressor discharge temperature controller 8: pressure reducer discharge temperature controller 9: discharge pressure Detector 10: Decompressor discharge pressure controller 11: Decompressor opening degree controller 12: Compressor discharge temperature controller 13: Compressor discharge pressure controller 14: Compressor operation capability controller 15: Suction temperature detector 16: Suction pressure detector 17: Discharge pressure estimator 18: Auxiliary heat exchanger 19: Auxiliary pressure reducer 20: Auxiliary heat exchanger bypass pipe 21: Auxiliary pressure reducer discharge temperature controller 22: Auxiliary heat exchanger 23: Auxiliary pressure reducer 24 : Auxiliary pressure reducer discharge temperature controller 25: Superheat degree detector 26: Auxiliary pressure reducer superheat degree controller 27: Auxiliary pressure reducer opening degree controller 28: Pressure relief valve

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松尾 光晴 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 吉田 雄二 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Mitsuharu Matsuo 1006 Kadoma Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも圧縮機、放熱器、減圧器、吸
熱器を有する冷凍サイクルにおいて、放熱側で超臨界状
態となりうる冷媒が封入され、前記圧縮機の吐出側温度
を制御する吐出温度制御器を備えた冷凍サイクル装置。
In a refrigeration cycle having at least a compressor, a radiator, a decompressor, and a heat absorber, a refrigerant that can be brought into a supercritical state on a radiating side is enclosed, and a discharge temperature controller for controlling a discharge side temperature of the compressor. Refrigeration cycle device equipped with.
【請求項2】 前記吐出温度制御器は、前記吐出温度が
設定温度以上のときに前記減圧器開度を開くことを特徴
とする請求項1記載の冷凍サイクル装置。
2. The refrigeration cycle apparatus according to claim 1, wherein the discharge temperature controller opens the pressure reducer opening when the discharge temperature is equal to or higher than a set temperature.
【請求項3】 前記吐出温度制御器は、前記吐出温度が
設定温度以上のときに前記圧縮機運転能力を減少させる
ことを特徴とする請求項1記載の冷凍サイクル装置。
3. The refrigeration cycle apparatus according to claim 1, wherein the discharge temperature controller decreases the compressor operating capacity when the discharge temperature is equal to or higher than a set temperature.
【請求項4】 前記吐出温度制御器は、前記吐出温度が
設定温度以上のときに前記減圧器開度を開き、かつ前記
圧縮機運転能力を減少させることを特徴とする請求項1
記載の冷凍サイクル装置。
4. The discharge temperature controller according to claim 1, wherein when the discharge temperature is equal to or higher than a set temperature, the decompressor is opened and the compressor operating capacity is reduced.
A refrigeration cycle apparatus as described in the above.
【請求項5】 少なくとも圧縮機、放熱器、減圧器、吸
熱器を有する冷凍サイクルにおいて、放熱側で超臨界状
態となりうる冷媒が封入され、前記圧縮機の吐出側圧力
に応じて前記減圧器開度を操作する減圧器吐出圧力制御
器と、前記圧縮機の吐出側温度に応じて前記減圧器開度
を操作する減圧器吐出温度制御器と、前記吐出温度に応
じて前記減圧器吐出圧力制御器と前記減圧器吐出温度制
御器とを切り替えて前記減圧器開度を操作する減圧器開
度操作器とを備えたことを特徴とする冷凍サイクル装
置。
5. In a refrigeration cycle having at least a compressor, a radiator, a decompressor, and a heat sink, a refrigerant that can be brought into a supercritical state on the radiating side is sealed therein, and the decompressor is opened in accordance with a discharge-side pressure of the compressor. A decompressor discharge pressure controller for controlling the pressure, a decompressor discharge temperature controller for controlling the decompressor opening according to the discharge side temperature of the compressor, and the decompressor discharge pressure control according to the discharge temperature. A refrigerating cycle device comprising: a decompressor opening operation device that switches the decompression device and the decompression device discharge temperature controller to operate the decompression device opening.
【請求項6】 少なくとも圧縮機、放熱器、減圧器、吸
熱器を有する冷凍サイクルにおいて、放熱側で超臨界状
態となりうる冷媒が封入され、前記圧縮機の吐出側温度
に応じて前記圧縮機運転能力を操作する圧縮機吐出温度
制御器と、負荷状態に応じて前記圧縮機運転能力を操作
する圧縮機運転能力制御器と、前記吐出温度に応じて前
記圧縮機吐出温度制御器と前記圧縮機運転能力制御器と
を切り替えて前記圧縮機運転能力を操作する圧縮機運転
能力操作器とを備えたことを特徴とする冷凍サイクル装
置。
6. In a refrigeration cycle having at least a compressor, a radiator, a decompressor, and a heat sink, a refrigerant that can be in a supercritical state on the heat radiation side is sealed therein, and the compressor operation is performed according to the discharge side temperature of the compressor. A compressor discharge temperature controller for controlling the capacity, a compressor operation capacity controller for controlling the compressor operation capacity according to the load state, the compressor discharge temperature controller according to the discharge temperature, and the compressor A refrigeration cycle apparatus comprising: a compressor operation capacity operation unit that switches the operation capacity controller to operate the compressor operation capacity.
【請求項7】 少なくとも圧縮機、放熱器、減圧器、吸
熱器を有する冷凍サイクルにおいて、放熱側で超臨界状
態となりうる冷媒が封入され、前記圧縮機の吸入温度と
吸入圧力と吐出温度に基づいて、前記圧縮機の吐出側圧
力を推定する吐出圧力検知を備えた冷凍サイクル装置。
7. A refrigeration cycle having at least a compressor, a radiator, a decompressor, and a heat sink, in which a refrigerant that can be in a supercritical state on the heat radiating side is sealed, based on a suction temperature, a suction pressure, and a discharge temperature of the compressor. A refrigeration cycle apparatus including discharge pressure detection for estimating a discharge side pressure of the compressor.
【請求項8】 前記吐出圧力検知器は前記圧縮機運転能
力に応じて前記吐出圧力推定値を補正することを特徴と
する請求項7記載の冷凍サイクル装置。
8. The refrigeration cycle apparatus according to claim 7, wherein said discharge pressure detector corrects said discharge pressure estimated value in accordance with said compressor operating capacity.
【請求項9】 少なくとも圧縮機、放熱器、減圧器、吸
熱器を有する冷凍サイクルにおいて、放熱側で超臨界状
態となりうる冷媒が封入され、前記放熱器出口から前記
減圧器入口までと前記吸熱器出口から前記圧縮機吸入部
までとで熱交換を行う補助熱交換器と、前記放熱器出口
と前記減圧器入口とを前記補助熱交換器をバイパスして
接続する補助熱交換器バイパス回路、あるいは前記吸熱
器出口と前記圧縮機吸入部とを前記補助熱交換器をバイ
パスして接続する補助熱交換器バイパス回路と、前記補
助熱交換器バイパス回路に設けられた補助減圧器と、前
記圧縮機の吐出側温度に応じて前記補助減圧器開度を操
作する補助減圧器吐出温度制御器とを備えたことを特徴
とする冷凍サイクル装置。
9. In a refrigeration cycle having at least a compressor, a radiator, a decompressor, and a heat absorber, a refrigerant that can be in a supercritical state on the heat release side is sealed, and the heat absorber is provided from the radiator outlet to the pressure reducer inlet. An auxiliary heat exchanger that performs heat exchange from an outlet to the compressor suction unit, an auxiliary heat exchanger bypass circuit that connects the radiator outlet and the pressure reducer inlet by bypassing the auxiliary heat exchanger, or An auxiliary heat exchanger bypass circuit that connects the heat absorber outlet and the compressor suction portion by bypassing the auxiliary heat exchanger; an auxiliary pressure reducer provided in the auxiliary heat exchanger bypass circuit; A refrigerating cycle device comprising: an auxiliary decompressor discharge temperature controller that operates the auxiliary decompressor opening degree according to the discharge side temperature of the refrigerating cycle.
【請求項10】 少なくとも圧縮機、放熱器、減圧器、
吸熱器を有する冷凍サイクルにおいて、 放熱側で超臨界状態となりうる冷媒が封入され、前記放
熱器出口冷媒を分岐して一部を補助減圧器を介して減圧
し、前記減圧器上流側の補助熱交換器で残りの冷媒を冷
却させたのち前記圧縮機吸入部もしくは中間圧部に導く
構成を有し、 前記圧縮機の吐出側温度に応じて前記補助減圧器の開度
を操作する補助減圧器吐出温度制御器を備えたことを特
徴とする冷凍サイクル装置。
10. At least a compressor, a radiator, a pressure reducer,
In a refrigeration cycle having a heat absorber, a refrigerant that can be in a supercritical state on the heat release side is filled therein, the refrigerant at the radiator outlet is branched, and a part of the refrigerant is depressurized through an auxiliary pressure reducer. An auxiliary pressure reducer that cools the remaining refrigerant with an exchanger and then guides the remaining refrigerant to the compressor suction portion or the intermediate pressure portion, and controls an opening degree of the auxiliary pressure reducer according to a discharge side temperature of the compressor. A refrigeration cycle device comprising a discharge temperature controller.
【請求項11】 少なくとも圧縮機、放熱器、減圧器、
吸熱器を有する冷凍サイクルにおいて、 放熱側で超臨界状態となりうる冷媒が封入され、前記放
熱器出口冷媒を分岐して一部を補助減圧器を介して減圧
し、前記減圧器上流側の補助熱交換器で残りの冷媒を冷
却させたのち前記圧縮機吸入もしくは中間圧部に導く構
成を有し、 前記圧縮機の吐出側温度に応じて前記補助減圧器開度を
操作する補助減圧器吐出温度制御器と、前記補助減圧器
を介した前記補助熱交換器出口の過熱度に応じて前記補
助減圧器開度を操作する補助減圧器過熱度制御器と、前
記圧縮機の吐出側温度に応じて前記補助減圧器吐出温度
制御器と前記補助減圧器過熱度制御器を切り替えて補助
減圧器開度を操作する補助減圧器操作器とを備えたこと
を特徴とする冷凍サイクル装置。
11. At least a compressor, a radiator, a pressure reducer,
In a refrigeration cycle having a heat absorber, a refrigerant that can be in a supercritical state on the heat release side is filled therein, the refrigerant at the radiator outlet is branched, and a part of the refrigerant is depressurized through an auxiliary pressure reducer. An auxiliary decompressor discharge temperature for operating the auxiliary decompressor opening degree in accordance with a discharge side temperature of the compressor, after cooling the remaining refrigerant in the exchanger and guiding the remaining refrigerant to the compressor suction or intermediate pressure section. A controller, an auxiliary pressure reducer superheat degree controller that operates the auxiliary pressure reducer opening degree according to the degree of superheat at the auxiliary heat exchanger outlet via the auxiliary pressure reducer, and according to a discharge side temperature of the compressor. A refrigerating cycle device comprising: an auxiliary decompressor operating device that switches the auxiliary decompressor discharge temperature controller and the auxiliary depressurizer superheat degree controller to operate the auxiliary decompressor opening.
【請求項12】 前記冷媒は二酸化炭素であり、圧力異
常上昇時の圧力保護装置として圧力逃がし弁を備えたこ
とを特徴とする請求項1〜11のいずれかに記載の冷凍
サイクル装置。
12. The refrigeration cycle apparatus according to claim 1, wherein the refrigerant is carbon dioxide, and a pressure relief valve is provided as a pressure protection device when the pressure rises abnormally.
JP3927899A 1999-02-17 1999-02-17 Refrigerating cycle device Pending JP2000234811A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3927899A JP2000234811A (en) 1999-02-17 1999-02-17 Refrigerating cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3927899A JP2000234811A (en) 1999-02-17 1999-02-17 Refrigerating cycle device

Publications (1)

Publication Number Publication Date
JP2000234811A true JP2000234811A (en) 2000-08-29

Family

ID=12548714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3927899A Pending JP2000234811A (en) 1999-02-17 1999-02-17 Refrigerating cycle device

Country Status (1)

Country Link
JP (1) JP2000234811A (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002081766A (en) * 2000-09-06 2002-03-22 Matsushita Electric Ind Co Ltd Refrigerating cycle device
JP2002156161A (en) * 2000-11-16 2002-05-31 Mitsubishi Heavy Ind Ltd Air conditioner
JP2002156146A (en) * 2000-11-17 2002-05-31 Mitsubishi Heavy Ind Ltd Air conditioning apparatus
US6484523B2 (en) 2000-08-28 2002-11-26 Denso Corporation Vehicle air conditioner with refrigerant flow-amount control of compressor
EP1367344A2 (en) * 2002-05-30 2003-12-03 Praxair Technology, Inc. Method for operating a transcritical refrigeration system
EP1452810A1 (en) * 2003-02-28 2004-09-01 Delphi Technologies, Inc. Method for controlling the head pressure in a transcritical refrigeration system
WO2005022051A1 (en) * 2003-08-21 2005-03-10 Daimlerchrysler Ag Method for regulating an air conditioning system
JP2005164103A (en) * 2003-12-01 2005-06-23 Matsushita Electric Ind Co Ltd Refrigerating cycle device and its control method
FR2900222A1 (en) * 2006-04-25 2007-10-26 Valeo Systemes Thermiques Air conditioning system for motor vehicle, has fluid flow regulation device that adjusts proportion of coolant to be sent in fluid derivation branch based on discharge temperature of coolant at outlet of compressor
WO2008032633A1 (en) * 2006-09-11 2008-03-20 Daikin Industries, Ltd. Refrigeration device
JP2009052880A (en) * 2004-03-29 2009-03-12 Mitsubishi Electric Corp Heat pump water heater
JP2010008042A (en) * 2009-10-14 2010-01-14 Panasonic Corp Refrigerating cycle device and control method
JP2010101621A (en) * 2010-02-12 2010-05-06 Panasonic Corp Refrigerating cycle device and method of controlling the same
EP2224191A2 (en) 2009-02-25 2010-09-01 LG Electronics Inc. Air conditioner and method of controlling the same
JP2011099571A (en) * 2009-11-04 2011-05-19 Panasonic Corp Refrigerating cycle device and hot-water heating device using the same
EP2224187A3 (en) * 2004-10-18 2012-05-23 Mitsubishi Denki Kabushiki Kaisha Refrigeration/air conditioning equipment
CN102518584A (en) * 2011-12-15 2012-06-27 上海维尔泰克螺杆机械有限公司 Refrigerating compressor test bench system for transcritical or supercritical system
CN103363749A (en) * 2013-08-05 2013-10-23 上海理工大学 Method for controlling refrigerant mass flow rate through saturated isentropic compression exhaust temperature difference
US8899058B2 (en) 2006-03-27 2014-12-02 Mitsubishi Electric Corporation Air conditioner heat pump with injection circuit and automatic control thereof
KR20160014033A (en) * 2013-05-31 2016-02-05 지멘스 악티엔게젤샤프트 Heat pump for using environmentally compatible coolants
EP2924372A4 (en) * 2012-11-20 2016-09-28 Mitsubishi Electric Corp Refrigeration device
JPWO2014106895A1 (en) * 2013-01-07 2017-01-19 三菱電機株式会社 Heat pump system
EP3859246A1 (en) * 2020-01-31 2021-08-04 Carrier Corporation Refrigeration system

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6484523B2 (en) 2000-08-28 2002-11-26 Denso Corporation Vehicle air conditioner with refrigerant flow-amount control of compressor
JP2002081766A (en) * 2000-09-06 2002-03-22 Matsushita Electric Ind Co Ltd Refrigerating cycle device
JP2002156161A (en) * 2000-11-16 2002-05-31 Mitsubishi Heavy Ind Ltd Air conditioner
JP2002156146A (en) * 2000-11-17 2002-05-31 Mitsubishi Heavy Ind Ltd Air conditioning apparatus
JP4616461B2 (en) * 2000-11-17 2011-01-19 三菱重工業株式会社 Air conditioner
EP1367344A2 (en) * 2002-05-30 2003-12-03 Praxair Technology, Inc. Method for operating a transcritical refrigeration system
EP1367344A3 (en) * 2002-05-30 2004-01-02 Praxair Technology, Inc. Method for operating a transcritical refrigeration system
EP1452810A1 (en) * 2003-02-28 2004-09-01 Delphi Technologies, Inc. Method for controlling the head pressure in a transcritical refrigeration system
WO2005022051A1 (en) * 2003-08-21 2005-03-10 Daimlerchrysler Ag Method for regulating an air conditioning system
JP2005164103A (en) * 2003-12-01 2005-06-23 Matsushita Electric Ind Co Ltd Refrigerating cycle device and its control method
EP1538405A3 (en) * 2003-12-01 2005-07-13 Matsushita Electric Industrial Co., Ltd. Refrigeration cycle apparatus
JP2009052880A (en) * 2004-03-29 2009-03-12 Mitsubishi Electric Corp Heat pump water heater
USRE43998E1 (en) 2004-10-18 2013-02-19 Mitsubishi Electric Corporation Refrigeration/air conditioning equipment
EP2224187A3 (en) * 2004-10-18 2012-05-23 Mitsubishi Denki Kabushiki Kaisha Refrigeration/air conditioning equipment
USRE43805E1 (en) 2004-10-18 2012-11-20 Mitsubishi Electric Corporation Refrigeration/air conditioning equipment
US8899058B2 (en) 2006-03-27 2014-12-02 Mitsubishi Electric Corporation Air conditioner heat pump with injection circuit and automatic control thereof
FR2900222A1 (en) * 2006-04-25 2007-10-26 Valeo Systemes Thermiques Air conditioning system for motor vehicle, has fluid flow regulation device that adjusts proportion of coolant to be sent in fluid derivation branch based on discharge temperature of coolant at outlet of compressor
EP1850075A1 (en) * 2006-04-25 2007-10-31 Valeo Systèmes Thermiques Air-conditioning circuit with supercritical cycle
WO2008032633A1 (en) * 2006-09-11 2008-03-20 Daikin Industries, Ltd. Refrigeration device
EP2224191A2 (en) 2009-02-25 2010-09-01 LG Electronics Inc. Air conditioner and method of controlling the same
EP2224191A3 (en) * 2009-02-25 2012-01-11 LG Electronics Inc. Air conditioner and method of controlling the same
US8459051B2 (en) 2009-02-25 2013-06-11 Lg Electronics Inc. Air conditioner and method of controlling the same
JP2010008042A (en) * 2009-10-14 2010-01-14 Panasonic Corp Refrigerating cycle device and control method
JP2011099571A (en) * 2009-11-04 2011-05-19 Panasonic Corp Refrigerating cycle device and hot-water heating device using the same
JP2010101621A (en) * 2010-02-12 2010-05-06 Panasonic Corp Refrigerating cycle device and method of controlling the same
CN102518584A (en) * 2011-12-15 2012-06-27 上海维尔泰克螺杆机械有限公司 Refrigerating compressor test bench system for transcritical or supercritical system
EP2924372A4 (en) * 2012-11-20 2016-09-28 Mitsubishi Electric Corp Refrigeration device
JPWO2014106895A1 (en) * 2013-01-07 2017-01-19 三菱電機株式会社 Heat pump system
US9797605B2 (en) 2013-01-07 2017-10-24 Mitsubishi Electric Corporation Heat pump system
KR20160014033A (en) * 2013-05-31 2016-02-05 지멘스 악티엔게젤샤프트 Heat pump for using environmentally compatible coolants
CN103363749A (en) * 2013-08-05 2013-10-23 上海理工大学 Method for controlling refrigerant mass flow rate through saturated isentropic compression exhaust temperature difference
EP3859246A1 (en) * 2020-01-31 2021-08-04 Carrier Corporation Refrigeration system

Similar Documents

Publication Publication Date Title
JP2000234811A (en) Refrigerating cycle device
JP5984914B2 (en) Air conditioner
US9593869B2 (en) Cascade refrigeration cycle apparatus
EP2545331B1 (en) Defrost operations and apparatus for a transport refrigeration system
JP6847299B2 (en) Refrigeration cycle equipment
JP5040256B2 (en) Refrigeration cycle apparatus and control method thereof
JP3838008B2 (en) Refrigeration cycle equipment
JP2001133058A (en) Refrigeration cycle
US10018389B2 (en) Air-conditioning apparatus
JP4167196B2 (en) Natural circulation combined use air conditioner and natural circulation combined use air conditioner control method
JP5409715B2 (en) Air conditioner
WO2003083381A1 (en) Refrigerating cycle device
JP2015218909A (en) Refrigeration cycle device and hot water generation device including the same
JP6328270B2 (en) Air conditioner
JP2007218459A (en) Refrigerating cycle device and cool box
JP6774769B2 (en) Refrigeration cycle equipment
JP3719159B2 (en) Refrigeration equipment
JP2000346466A (en) Vapor compression type refrigerating cycle
US11796212B2 (en) Air-conditioning apparatus
JP2010060181A (en) Refrigeration system
WO2013088734A1 (en) Air conditioner
JP7022772B2 (en) Refrigerating equipment and how to use the refrigerating equipment
JP6797262B2 (en) Refrigeration cycle equipment
JPH08226716A (en) Refrigerating plant
JP2012076589A (en) Air conditioner for vehicle