JP5975382B2 - Gas dissolution tank and gas dissolution apparatus equipped with the same - Google Patents

Gas dissolution tank and gas dissolution apparatus equipped with the same Download PDF

Info

Publication number
JP5975382B2
JP5975382B2 JP2012108916A JP2012108916A JP5975382B2 JP 5975382 B2 JP5975382 B2 JP 5975382B2 JP 2012108916 A JP2012108916 A JP 2012108916A JP 2012108916 A JP2012108916 A JP 2012108916A JP 5975382 B2 JP5975382 B2 JP 5975382B2
Authority
JP
Japan
Prior art keywords
gas
dissolution tank
gas dissolution
liquid
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012108916A
Other languages
Japanese (ja)
Other versions
JP2013233524A (en
Inventor
前田 康成
康成 前田
伊藤 良泰
良泰 伊藤
仁史 北村
仁史 北村
恭子 堤
恭子 堤
尚紀 柴田
尚紀 柴田
朋弘 穐田
朋弘 穐田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2012108916A priority Critical patent/JP5975382B2/en
Publication of JP2013233524A publication Critical patent/JP2013233524A/en
Application granted granted Critical
Publication of JP5975382B2 publication Critical patent/JP5975382B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、気体溶解タンクおよびこれを備えた気体溶解装置に関する。   The present invention relates to a gas dissolution tank and a gas dissolution apparatus including the same.

特許文献1には、外周側面に螺旋状エアー案内部が形成され、流体引き込み口を備えた内筒と、内周側面に複数の突起部が配設されている外筒とを有するとともに、内筒と外筒の間の間隙が気体誘導部とされている気液混合循環装置が記載されている。   Patent Document 1 includes an inner cylinder having a spiral air guide portion formed on the outer peripheral side surface and provided with a fluid inlet, and an outer cylinder having a plurality of protrusions disposed on the inner peripheral side surface. A gas-liquid mixing and circulation device is described in which the gap between the cylinder and the outer cylinder is a gas guiding section.

特許文献1の気液混合循環装置(気体溶解装置)では、気体は、内筒の螺旋状エアー案内部によって、外筒の内周側面を旋回するように誘導され、上昇し、この際の浮力により、内筒の流体引き込み口から流体(液体)が引き込まれる。外筒の内周側面を気体の塊として旋回するように上昇した気体は、複数の突起部にあたり、さらに外筒の内周側面を旋回するように上昇する。そして、流体は、このような気体の上昇に伴い、混合部で気体と混合、攪拌されて、旋回して上昇していき、気体と流体の混合液(気液混合流体)が生成される。このため、特許文献1の気液混合循環装置は、気体と流体(液体)の混合、撹拌を効率的に行うことができるとされている。   In the gas-liquid mixing and circulation device (gas dissolving device) of Patent Document 1, the gas is guided by the spiral air guide portion of the inner cylinder so as to turn on the inner peripheral side surface of the outer cylinder, and rises. Thus, the fluid (liquid) is drawn from the fluid drawing port of the inner cylinder. The gas that has risen so as to swirl the inner peripheral side surface of the outer cylinder as a lump of gas hits the plurality of protrusions, and further rises to swirl the inner peripheral side surface of the outer cylinder. Then, as the gas rises, the fluid is mixed and stirred with the gas in the mixing unit, and swirled to rise, and a mixed liquid of gas and fluid (gas-liquid mixed fluid) is generated. For this reason, it is supposed that the gas-liquid mixing and circulation apparatus of Patent Document 1 can efficiently mix and stir gas and fluid (liquid).

WO2008/139728号公報WO2008 / 139728

しかしながら、特許文献1の気液混合循環装置の場合、外筒の内周壁面に設けられた突起部によっては、気体は、その流れが分岐する程度であり、流体(液体)との混合、撹拌効率を高めるための方法として十分なものとは言えない。   However, in the case of the gas-liquid mixing / circulating device of Patent Document 1, depending on the protrusions provided on the inner peripheral wall surface of the outer cylinder, the flow of gas is such that the flow branches, and mixing and stirring with fluid (liquid) It is not enough as a method to increase efficiency.

さらに、特許文献1の気液混合循環装置の場合、上昇する気体の浮力によって大量の流体を引き込んでいる。このため、強力に送風して気体を導入する必要があり、混合された気液混合流体には、大きな気泡が混入する恐れがあるとともに、流体(液体)の流量を調整することは難しい。   Furthermore, in the case of the gas-liquid mixing and circulation device of Patent Document 1, a large amount of fluid is drawn by the buoyancy of the rising gas. For this reason, it is necessary to introduce gas by blowing strongly, and there is a possibility that large bubbles may be mixed in the mixed gas-liquid mixed fluid, and it is difficult to adjust the flow rate of the fluid (liquid).

また、一般的には、気体溶解装置において、気体に対する流体(液体)の導入量を増やすことで、大きな気泡の混入を抑制することはできると考えられる。しかしながら、この場合には、特許文献1の気液混合循環装置を含め、気液混合流体に所望量の微細気泡を包含させることは難しく、また、低流量の用途への適用を困難にしてしまうという問題がある。   In general, in a gas dissolving apparatus, it is considered that mixing of large bubbles can be suppressed by increasing the amount of fluid (liquid) introduced into the gas. However, in this case, it is difficult to include a desired amount of fine bubbles in the gas-liquid mixed fluid, including the gas-liquid mixing and circulation device of Patent Document 1, and it is difficult to apply to a low flow rate application. There is a problem.

本発明は、以上のとおりの事情に鑑みてなされたものであり、気液混合流体に大きな気泡が混入するのを抑制しつつ、低流量の場合でも気体と液相流体(液体)を効率的に混合することができる気体溶解タンクおよび気体溶解装置を提供することを課題としている。   The present invention has been made in view of the circumstances as described above, and efficiently suppresses gas and liquid phase fluid (liquid) even in the case of a low flow rate while suppressing large bubbles from being mixed into the gas-liquid mixed fluid. It is an object of the present invention to provide a gas dissolution tank and a gas dissolution apparatus that can be mixed together.

上記の課題を解決するために、本発明の気体溶解タンクは、底面付近に液相流体の流入口を備えた略円筒状の気体溶解槽と、気液混合流体の排出口および気体の排気部を備えた気液分離槽とが、気体溶解槽の上端付近に設けられた連通部を介して連通しており、前記流入口から導入された液相流体が前記気体溶解槽内を上昇することで気液混合流体が生成され、この気液混合流体が、前記連通部を通じて前記気液分離槽へと流れ、前記排出口から排出される気体溶解タンクであって、前記流入口からは前記気体溶解槽内に液相流体の旋回流を導入可能であるとともに、前記気体溶解槽の内周壁面には、内方に突出する縮流段部が全周に亘って設けられており、前記気体溶解槽内を旋回して上昇する液相流体の流れが、前記縮流段部によって、前記気体溶解槽の円筒中心方向へ誘導されることを特徴としている。  In order to solve the above-described problems, a gas dissolution tank of the present invention includes a substantially cylindrical gas dissolution tank having a liquid-phase fluid inlet near the bottom surface, a gas-liquid mixed fluid discharge port, and a gas exhaust unit. A gas-liquid separation tank provided with a gas-liquid separation tank is communicated via a communication portion provided in the vicinity of the upper end of the gas dissolution tank, and the liquid phase fluid introduced from the inlet rises in the gas dissolution tank. A gas-liquid mixed fluid is generated, and the gas-liquid mixed fluid flows to the gas-liquid separation tank through the communication portion and is discharged from the discharge port, and the gas is discharged from the inflow port. A swirling flow of a liquid phase fluid can be introduced into the dissolution tank, and an inner circumferential wall surface of the gas dissolution tank is provided with a contracted step portion projecting inward over the entire circumference. The flow of the liquid phase fluid that swirls and rises in the dissolution tank is caused by the contraction step part. It is characterized by being induced to the cylinder center direction of the serial gas dissolver.

この気体溶解タンクにおいては、前記縮流段部は、前記内周壁面から内側斜め上方向に向かって突出する傾斜部を有することが好ましい。   In this gas dissolution tank, it is preferable that the contracted flow step portion has an inclined portion that protrudes obliquely upward inward from the inner peripheral wall surface.

この気体溶解タンクにおいては、前記縮流段部は、水平方向全周に亘る帯状であり、上下方向に複数段設けられていることがより好ましい。   In the gas dissolution tank, it is more preferable that the contracted flow step portion has a strip shape extending over the entire circumference in the horizontal direction, and is provided in a plurality of steps in the vertical direction.

この気体溶解タンクにおいては、前記縮流段部は、上下方向に連続する螺旋状であることがより好ましい。   In this gas dissolution tank, it is more preferable that the contracted flow step portion has a spiral shape continuous in the vertical direction.

本発明の気体溶解装置は、前記気体溶解タンクを備えることを特徴としている。   The gas dissolving apparatus of the present invention includes the gas dissolving tank.

本発明の気体溶解タンクおよび気体溶解装置によれば、気液混合流体に大きな気泡が混入するのを抑制しつつ、低流量の場合でも気体と液相流体(液体)を効率的に混合することができる。   According to the gas dissolution tank and the gas dissolution apparatus of the present invention, gas and liquid phase fluid (liquid) can be efficiently mixed even at a low flow rate while suppressing large bubbles from being mixed into the gas-liquid mixed fluid. Can do.

(A)は、本発明の気体溶解タンクの一実施形態を例示した上面図であり、(B)は、本発明の気体溶解タンクの一実施形態を例示した側面図である。(A) is the top view which illustrated one embodiment of the gas dissolution tank of the present invention, and (B) is the side view which illustrated one embodiment of the gas dissolution tank of the present invention. 図1(A)に示したC−C断面における斜視断面図である。It is a perspective sectional view in the CC section shown in Drawing 1 (A). 本発明の気体溶解タンクにおける流体の流れを例示した斜視断面図である。It is a perspective sectional view which illustrated the flow of the fluid in the gas dissolution tank of the present invention. 本発明の気体溶解タンクにおける縮流段部の別の形態を例示した斜視部分透視図である。It is the perspective partial perspective view which illustrated another form of the contraction step part in the gas dissolution tank of the present invention.

図1(A)は、本発明の気体溶解タンクの一実施形態を例示した上面図であり、図1(B)は、本発明の気体溶解タンクの一実施形態を例示した側面図である。図2は、図1(A)に示したC−C断面における斜視断面図である。   FIG. 1A is a top view illustrating an embodiment of the gas dissolution tank of the present invention, and FIG. 1B is a side view illustrating an embodiment of the gas dissolution tank of the present invention. FIG. 2 is a perspective cross-sectional view taken along the line CC shown in FIG.

気体溶解タンク1は、やや縦長な形状を有する中空な筒箱状に形成されている。気体溶解タンク1の内部では、気体溶解槽2と気液分離槽3とが仕切り壁4を介して隣接している。また、運転前の気体溶解タンク1の内部には、空気などの溶質となる気体が貯留している。   The gas dissolution tank 1 is formed in a hollow cylindrical box shape having a slightly vertically long shape. Inside the gas dissolution tank 1, the gas dissolution tank 2 and the gas-liquid separation tank 3 are adjacent to each other through the partition wall 4. Moreover, gas which becomes solutes, such as air, is stored in the inside of the gas dissolution tank 1 before a driving | operation.

気体溶解槽2は、略円筒状に形成されており、底面に液相流体の流入口21を備えている。流入口21は、気体溶解槽2の底面において、略円形の内周壁面22に沿って配置されており、気体溶解槽2の内部と外部を連通することで、外部から所望の液相流体を気体溶解槽2内へ流入させることができる。気体溶解タンク1の流入口21は、例えば、供給管(図示していない)を介してポンプ(図示していない)などと接続することができる。ポンプを作動させ、運転を開始させることで、例えば浴槽内の湯水などの、流体において溶媒となる液相流体が流入口21を通じて気体溶解タンク1の気体溶解槽2に、その下部から供給され、気体溶解槽2内に噴出する。この液相流体の噴出は、ポンプによって所定の圧力に加圧されていることによって生じる。   The gas dissolution tank 2 is formed in a substantially cylindrical shape, and includes a liquid phase fluid inlet 21 on the bottom surface. The inflow port 21 is disposed along the substantially circular inner peripheral wall surface 22 on the bottom surface of the gas dissolution tank 2, and a desired liquid phase fluid is supplied from the outside by communicating the inside and the outside of the gas dissolution tank 2. The gas can be introduced into the gas dissolution tank 2. The inlet 21 of the gas dissolution tank 1 can be connected to, for example, a pump (not shown) via a supply pipe (not shown). By operating the pump and starting the operation, a liquid phase fluid that is a solvent in the fluid, for example, hot water in the bathtub, is supplied from the lower part to the gas dissolution tank 2 of the gas dissolution tank 1 through the inlet 21. It ejects into the gas dissolution tank 2. This ejection of the liquid phase fluid is caused by being pressurized to a predetermined pressure by a pump.

気体溶解槽2の流入口21から噴出された液相流体は略円形の内周壁面22に沿って流入するため、気体溶解槽2内に液相流体の旋回流を導入することができる。ここで、「旋回流」とは、気体溶解槽2の内周壁面22に沿って円を描くような流体の流れをいい、流入口21から気体溶解槽2の内部に流入した液相流体は、気体溶解槽2の内周壁面22に沿って旋回しながら竜巻状に上昇する。   Since the liquid phase fluid ejected from the inlet 21 of the gas dissolution tank 2 flows along the substantially circular inner peripheral wall surface 22, a swirl flow of the liquid phase fluid can be introduced into the gas dissolution tank 2. Here, the “swirl flow” refers to a fluid flow that draws a circle along the inner peripheral wall surface 22 of the gas dissolution tank 2, and the liquid phase fluid that has flowed into the gas dissolution tank 2 from the inlet 21. Ascending along the inner peripheral wall surface 22 of the gas dissolution tank 2, it rises in a tornado shape.

また、気体溶解タンク1に導入される液相流体には、単独の液体および気体を含む液体、すなわち、気液混合流体が含まれる。気体溶解タンク1に導入される液相流体が気液混合流体の場合には、気体溶解タンク1に貯留する気体と導入する気液混合流体に含まれる気体とが同種であることが好ましい。   The liquid phase fluid introduced into the gas dissolution tank 1 includes a single liquid and a liquid containing a gas, that is, a gas-liquid mixed fluid. When the liquid phase fluid introduced into the gas dissolution tank 1 is a gas-liquid mixed fluid, the gas stored in the gas dissolution tank 1 and the gas contained in the gas-liquid mixed fluid to be introduced are preferably the same type.

さらに、気体溶解槽2の内周壁面22には、水平方向全周に亘って、帯状の縮流段部23が上下に3段設けられている。縮流段部23の下側の部分には、内周壁面22から内側斜め上方向に向かって突出する傾斜部23aが形成されている。さらに、この傾斜部23aの上端からは、上方向に向かって延びる先端部23bが形成され、この先端部23bの上端からは、気体溶解槽2の内周壁面22へと向かう平坦部23cが形成されている。   Further, the inner peripheral wall surface 22 of the gas dissolution tank 2 is provided with three strip-shaped contracted step portions 23 in the vertical direction over the entire circumference in the horizontal direction. In the lower portion of the contracted step portion 23, an inclined portion 23a is formed that protrudes from the inner peripheral wall surface 22 in an obliquely upward inner direction. Further, a tip portion 23b extending upward is formed from the upper end of the inclined portion 23a, and a flat portion 23c toward the inner peripheral wall surface 22 of the gas dissolution tank 2 is formed from the upper end of the tip portion 23b. Has been.

気液分離槽3は、仕切り壁4と気体溶解タンク1の外壁1aとの間に形成されており、仕切り壁4を介して気体溶解槽2と隣接している。仕切り壁4は気体溶解槽2の壁面の一部として形成されており、気体溶解槽2の上方に位置する上端付近に気体溶解槽2と気液分離槽3とを連通する連通部41を有している。また、気液分離槽3の底面付近には排出口31が設けられており、気液分離槽3内の気液混合流体を外部へ排出可能とされている。   The gas-liquid separation tank 3 is formed between the partition wall 4 and the outer wall 1 a of the gas dissolution tank 1, and is adjacent to the gas dissolution tank 2 through the partition wall 4. The partition wall 4 is formed as a part of the wall surface of the gas dissolution tank 2, and has a communication portion 41 that connects the gas dissolution tank 2 and the gas-liquid separation tank 3 near the upper end located above the gas dissolution tank 2. doing. A discharge port 31 is provided near the bottom of the gas-liquid separation tank 3 so that the gas-liquid mixed fluid in the gas-liquid separation tank 3 can be discharged to the outside.

気液分離槽3の上方には、気体溶解タンク1の外側に分岐する排気部32が並設されている。排気部32は上面部32a、下面部32bおよび側面部32cを有する略円筒状であり、気液分離槽3と接する側面部32cに気液分離槽3と通じる貫通孔321を有するとともに、上面部32aに外部と通じる排気口322を有している。   Above the gas-liquid separation tank 3, an exhaust part 32 that branches to the outside of the gas dissolution tank 1 is provided in parallel. The exhaust portion 32 has a substantially cylindrical shape having an upper surface portion 32a, a lower surface portion 32b, and a side surface portion 32c, and has a through-hole 321 communicating with the gas-liquid separation tank 3 in a side surface portion 32c in contact with the gas-liquid separation tank 3, and an upper surface portion. 32a has an exhaust port 322 communicating with the outside.

図3は、本発明の気体溶解タンクにおける流体の流れを例示した斜視断面図である。   FIG. 3 is a perspective cross-sectional view illustrating the flow of fluid in the gas dissolution tank of the present invention.

図3に例示したように、流入口21から気体溶解槽2内に流入した液相流体は、旋回流として導入され、気体溶解槽2の内周壁面22に沿って旋回しながら上昇する(矢印A)。この際、上昇する液相流体が気体溶解槽2の内周壁面22に設けられた縮流段部23に接触すると、縮流段部23の傾斜部23aによって液相流体の流れが気体溶解槽2の円筒中心方向へ誘導される(矢印B)。その結果、液相流体の一部は気体溶解槽2の内周壁面22から離脱し、微細な液滴となって気体溶解槽2内の気相に飛散する。この液滴と気体との接触面積(気液界面積)は、液相流体が気体溶解槽2の内周壁面22に沿って流れるときの接触面積と比較して大きいため、高い溶解効率で気体と液相流体とが混合され、気液混合流体が生成される。また、縮流段部23が複数段設けられているため、上昇する流体は、内周壁面22からの離脱と気体の溶解とを繰り返し、さらに気体の溶解効率が向上する。このように、内周壁面22から離脱する液滴によって気液界面積を拡大して気体を溶解させるため、流入口21から導入される液相流体が低流量の場合であっても、大きな気泡が混入し難く、気体と液相流体とを効率的に混合することができる。   As illustrated in FIG. 3, the liquid phase fluid that has flowed into the gas dissolution tank 2 from the inlet 21 is introduced as a swirl flow, and rises while swirling along the inner peripheral wall surface 22 of the gas dissolution tank 2 (arrow). A). At this time, when the rising liquid phase fluid comes into contact with the contracted flow step portion 23 provided on the inner peripheral wall surface 22 of the gas dissolution tank 2, the flow of the liquid phase fluid is caused to flow by the inclined portion 23 a of the contract flow step portion 23. 2 toward the center of the cylinder (arrow B). As a result, a part of the liquid phase fluid is detached from the inner peripheral wall surface 22 of the gas dissolving tank 2 and scattered into the gas phase in the gas dissolving tank 2 as fine droplets. Since the contact area (gas-liquid interface area) between the droplet and the gas is larger than the contact area when the liquid phase fluid flows along the inner peripheral wall surface 22 of the gas dissolution tank 2, the gas has a high dissolution efficiency. Are mixed with the liquid phase fluid to generate a gas-liquid mixed fluid. In addition, since a plurality of the contracted flow step portions 23 are provided, the rising fluid repeats the separation from the inner peripheral wall surface 22 and the dissolution of the gas, and the gas dissolution efficiency is further improved. As described above, since the gas-liquid interface area is expanded by the liquid droplets detached from the inner peripheral wall surface 22 to dissolve the gas, large bubbles are generated even when the liquid phase fluid introduced from the inlet 21 has a low flow rate. Is difficult to mix, and the gas and the liquid phase fluid can be mixed efficiently.

また、気体溶解槽2において、上昇する気液混合流体が仕切り壁4の上端付近に接近するとき、気液混合流体に含まれる比較的大きな気泡も浮力によって上昇し、液面付近において破裂させることができる。このため、気液混合流体中に大きな気泡の混入することがより確実に抑制される。   In the gas dissolution tank 2, when the rising gas-liquid mixed fluid approaches the vicinity of the upper end of the partition wall 4, relatively large bubbles contained in the gas-liquid mixed fluid are also lifted by buoyancy and ruptured near the liquid level. Can do. For this reason, mixing of a big bubble in a gas-liquid mixed fluid is suppressed more reliably.

このように、液相流体が気体溶解槽2内を上昇することで、微細気泡を含む気液混合流体が高い溶解効率で生成され、この気液混合流体が、仕切り壁4の連通部41を通じて気液分離槽3へと流れ落ちる(矢印C)。この際、気液混合流体中に含まれる未溶解の気泡の合一が促される。そして、合一した余剰の気泡は、気液分離槽3の上方の気相に放出され、排気部32の貫通孔321および排気口322を通って気体溶解タンク1の外部へ排気されるため、気液分離が促進され、さらに大きな気泡の流出が抑制される。そして、微細気泡を含む気液混合流体は、その後、排出口31から排出される(矢印D)。   Thus, the liquid-phase fluid rises in the gas dissolution tank 2, so that a gas-liquid mixed fluid containing fine bubbles is generated with high dissolution efficiency, and this gas-liquid mixed fluid passes through the communication portion 41 of the partition wall 4. It flows down to the gas-liquid separation tank 3 (arrow C). At this time, coalescence of undissolved bubbles contained in the gas-liquid mixed fluid is promoted. Then, the surplus bubbles merged are discharged into the gas phase above the gas-liquid separation tank 3 and exhausted to the outside of the gas dissolution tank 1 through the through hole 321 and the exhaust port 322 of the exhaust part 32. Gas-liquid separation is promoted, and the outflow of larger bubbles is suppressed. Then, the gas-liquid mixed fluid containing fine bubbles is thereafter discharged from the discharge port 31 (arrow D).

また、気液分離槽3には、底面付近に気液混合流体の排出口31が設けられているので、未溶解の気体による気泡が気液混合流体中に混合されていたとしても、液面付近に存在する大きな気泡の流出を抑制することができる。気泡は、気液分離槽3に貯留する気液混合流体の上側ほど密に存在するため、大きな気泡は底面付近にはあまり存在しない。気液混合流体は、気液分離槽3の底面付近に設けられた排出口31を通じて気体溶解タンク1の外部に流出し、取り出されるため、大きな気泡の流出が抑制される。   In addition, since the gas-liquid separation tank 3 is provided with the gas-liquid mixed fluid discharge port 31 near the bottom surface, even if bubbles due to undissolved gas are mixed in the gas-liquid mixed fluid, the liquid level Outflow of large bubbles existing in the vicinity can be suppressed. Since the bubbles are present densely toward the upper side of the gas-liquid mixed fluid stored in the gas-liquid separation tank 3, there are not many large bubbles near the bottom surface. Since the gas-liquid mixed fluid flows out and is taken out of the gas dissolution tank 1 through the discharge port 31 provided near the bottom of the gas-liquid separation tank 3, the outflow of large bubbles is suppressed.

図4は、本発明の気体溶解タンクにおける縮流段部の別の形態を例示した斜視部分透視図である。図4では、気体溶解タンクの気体溶解槽の部分について内部透視図として示している。また、縮流段部以外の部分は、図2、図3も用いて説明した部分と共通するため、この部分については、同一の符号を付し、以下では説明は省略する。   FIG. 4 is a partial perspective view illustrating another form of the contraction step portion in the gas dissolution tank of the present invention. In FIG. 4, the gas dissolution tank portion of the gas dissolution tank is shown as an internal perspective view. Further, since the portions other than the contracted flow step portion are the same as the portions described with reference to FIGS. 2 and 3, the same reference numerals are given to these portions, and description thereof will be omitted below.

図4に例示した気体溶解タンク1では、気体溶解槽2の内周壁面22の全周に、上下方向に連続する螺旋状の縮流段部23が設けられている。縮流段部23の断面形状は、図2に例示した形態と略同様であり、縮流段部23は、内周壁面22から内側斜め上方向に向かって突出する傾斜部を有している。   In the gas dissolution tank 1 illustrated in FIG. 4, a spiral contracted step portion 23 that is continuous in the vertical direction is provided on the entire circumference of the inner peripheral wall surface 22 of the gas dissolution tank 2. The cross-sectional shape of the contracted flow step portion 23 is substantially the same as that illustrated in FIG. 2, and the contracted flow step portion 23 has an inclined portion that protrudes from the inner peripheral wall surface 22 toward the diagonally upward direction. .

そして、流入口21から気体溶解槽2内に流入した液相流体は、旋回流として導入され、気体溶解槽2の内周壁面22に沿って旋回しながら上昇する。この際、上昇する液相流体が気体溶解槽2の内周壁面22に設けられた縮流段部23に接触すると、縮流段部23の傾斜部23aによって液相流体の流れが気体溶解槽2の円筒中心方向へ誘導される。その結果、液相流体の一部は気体溶解槽2の内周壁面22から離脱し、微細な液滴となって気体溶解槽2内の気相に飛散する。この液滴と気体との接触面積(気液界面積)は、液相流体が気体溶解槽2の内周壁面22に沿って流れるときの接触面積と比較して大きいため、高い溶解効率で気体と液相流体とが混合され、気液混合流体が生成される。また、縮流段部23は螺旋状に連続して設けられており、上昇する流体は、内周壁面22からの離脱と気体の溶解とを繰り返すため、気体の溶解効率が向上している。このため、流入口21から導入される液相流体が低流量の場合であっても、気体と液相流体とを効率的に混合することができる。   Then, the liquid phase fluid that has flowed into the gas dissolution tank 2 from the inlet 21 is introduced as a swirl flow and rises while swirling along the inner peripheral wall surface 22 of the gas dissolution tank 2. At this time, when the rising liquid phase fluid comes into contact with the contracted flow step portion 23 provided on the inner peripheral wall surface 22 of the gas dissolution tank 2, the flow of the liquid phase fluid is caused to flow by the inclined portion 23 a of the contract flow step portion 23. 2 is guided toward the center of the cylinder. As a result, a part of the liquid phase fluid is detached from the inner peripheral wall surface 22 of the gas dissolving tank 2 and scattered into the gas phase in the gas dissolving tank 2 as fine droplets. Since the contact area (gas-liquid interface area) between the droplet and the gas is larger than the contact area when the liquid phase fluid flows along the inner peripheral wall surface 22 of the gas dissolution tank 2, the gas has a high dissolution efficiency. Are mixed with the liquid phase fluid to generate a gas-liquid mixed fluid. Further, the contracted flow step portion 23 is continuously provided in a spiral shape, and the rising fluid repeats the separation from the inner peripheral wall surface 22 and the dissolution of the gas, so that the gas dissolution efficiency is improved. For this reason, even if it is a case where the liquid phase fluid introduce | transduced from the inflow port 21 is a low flow rate, gas and a liquid phase fluid can be mixed efficiently.

そして、本発明の気体溶解装置(図示していない)は、例えば、図1〜図4に例示した気体溶解タンクを備えている。気体溶解装置は、気体溶解タンクの他に、例えば、気体溶解槽へ液相流体を導入するための供給管、ポンプなどを備えることができる。また、気体溶解装置は、例えば、気体溶解タンク内に貯留している気体を気体溶解タンクから一旦取り出した後、気体溶解タンク内に戻して循環させるための気体循環経路などを備えることもできる。さらに、気体溶解装置は、気体溶解タンク内の上部などに貯留している未溶解の気体を吸引し、気体循環経路を介して気体溶解タンクの気液混合槽に送り出すための気体循環エジェクタなどを備えることもできる。また、例えば、気体溶解タンクの排出管と浴槽内部などとを連通し、空気が溶解した湯水(気液混合流体)を吐出するための吐出管などを備えることもできる。   And the gas dissolution apparatus (not shown) of this invention is equipped with the gas dissolution tank illustrated in FIGS. 1-4, for example. In addition to the gas dissolution tank, the gas dissolution apparatus can include, for example, a supply pipe and a pump for introducing a liquid phase fluid into the gas dissolution tank. In addition, the gas dissolving device can include, for example, a gas circulation path for temporarily extracting the gas stored in the gas dissolving tank from the gas dissolving tank and then circulating it back into the gas dissolving tank. Further, the gas dissolving device includes a gas circulation ejector for sucking undissolved gas stored in the upper part of the gas dissolving tank and sending it to the gas-liquid mixing tank of the gas dissolving tank through the gas circulation path. It can also be provided. In addition, for example, a discharge pipe for discharging hot water (gas-liquid mixed fluid) in which air is dissolved can be provided by connecting the discharge pipe of the gas dissolution tank and the inside of the bathtub.

本発明の気体溶解タンクおよび気体溶解装置は、上記実施形態に限定されるものではない。   The gas dissolution tank and the gas dissolution apparatus of the present invention are not limited to the above embodiment.

具体的には、例えば、気体溶解タンクは、気体溶解槽と気液分離槽とが必ずしも隣接していなくてもよく、気体溶解槽と気液分離槽とが分離して位置し、配管状の連通部を介して接続されている構造を有していてもよい。また、流入口、排出口、排気部などの配設位置や形態も適宜設計することができる。   Specifically, for example, in the gas dissolution tank, the gas dissolution tank and the gas-liquid separation tank do not necessarily have to be adjacent to each other. You may have the structure connected through the communication part. In addition, the arrangement positions and forms of the inlet, the outlet, the exhaust part, and the like can be appropriately designed.

さらに、気体溶解槽の縮流段部の形状、大きさ、配設位置などは、上昇する液相流体の流れを円筒中心方向へ誘導可能であれば特に限定されず、適宜設計することができる。また、縮流段部を帯状に設ける場合の配設数(段の数)や、縮流段部を螺旋状に設ける場合のピッチ数なども適宜設計することができる。   Further, the shape, size, arrangement position and the like of the contracted step portion of the gas dissolution tank are not particularly limited as long as the rising liquid phase fluid can be guided toward the center of the cylinder, and can be designed as appropriate. . Further, the number of arrangements (the number of stages) when the contracted flow step portions are provided in a strip shape, the number of pitches when the contracted flow step portions are provided in a spiral shape, and the like can be appropriately designed.

1 気体溶解タンク
2 気体溶解槽
21 流入口
22 内周壁面
23 縮流段部
23a 傾斜部
3 気液分離槽
31 排出口
32 排気部
4 仕切り壁
41 連通部
DESCRIPTION OF SYMBOLS 1 Gas dissolution tank 2 Gas dissolution tank 21 Inflow port 22 Inner peripheral wall surface 23 Shrinking step part 23a Inclination part 3 Gas-liquid separation tank 31 Outlet 32 Exhaust part 4 Partition wall 41 Communication part

Claims (5)

底面付近に液相流体の流入口を備えた略円筒状の気体溶解槽と、気液混合流体の排出口および気体の排気部を備えた気液分離槽とが、気体溶解槽の上方に設けられた連通部を介して連通しており、前記流入口から導入された液相流体が前記気体溶解槽内を上昇することで気液混合流体が生成され、この気液混合流体が、前記連通部を通じて前記気液分離槽へと流れ、前記排出口から排出される気体溶解タンクであって、
前記流入口からは前記気体溶解槽内に液相流体の旋回流を導入可能であるとともに、前記気体溶解槽の内周壁面には、内方に突出する縮流段部が全周に亘って設けられており、前記気体溶解槽内を旋回して上昇する液相流体の流れが、前記縮流段部によって、前記気体溶解槽の円筒中心方向へ誘導されることを特徴とする気体溶解タンク。
A substantially cylindrical gas dissolution tank having a liquid-phase fluid inlet near the bottom surface, and a gas-liquid separation tank having a gas-liquid mixed fluid outlet and a gas exhaust section are provided above the gas dissolution tank. The gas-liquid mixed fluid is generated by the liquid phase fluid introduced from the inflow port rising in the gas dissolution tank, and the gas-liquid mixed fluid is communicated with the communication portion. A gas dissolution tank that flows to the gas-liquid separation tank through a section and is discharged from the discharge port,
From the inlet, it is possible to introduce a swirl flow of the liquid phase fluid into the gas dissolution tank, and the inner peripheral wall surface of the gas dissolution tank has an inwardly protruding contraction step portion extending over the entire circumference. A gas dissolution tank, wherein a flow of a liquid phase fluid swirling and rising in the gas dissolution tank is guided toward the cylindrical center of the gas dissolution tank by the contraction step portion. .
前記縮流段部は、前記内周壁面から内側斜め上方向に向かって突出する傾斜部を有することを特徴とする請求項1に記載の気体溶解タンク。   The gas dissolution tank according to claim 1, wherein the contracted flow step portion includes an inclined portion that protrudes inward and obliquely upward from the inner peripheral wall surface. 前記縮流段部は、水平方向全周に亘る帯状であり、上下方向に複数段設けられていることを特徴とする請求項1または2に記載の気体溶解タンク。   3. The gas dissolution tank according to claim 1, wherein the contracted flow step portion has a strip shape extending over the entire circumference in the horizontal direction and is provided in a plurality of steps in the vertical direction. 前記縮流段部は、上下方向に連続する螺旋状であることを特徴とする請求項1または2に記載の気体溶解タンク。   The gas dissolution tank according to claim 1, wherein the contracted flow step portion has a spiral shape continuous in the vertical direction. 請求項1から4のいずれか一項に記載の気体溶解タンクを備えることを特徴とする気体溶解装置。   A gas dissolving apparatus comprising the gas dissolving tank according to any one of claims 1 to 4.
JP2012108916A 2012-05-10 2012-05-10 Gas dissolution tank and gas dissolution apparatus equipped with the same Expired - Fee Related JP5975382B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012108916A JP5975382B2 (en) 2012-05-10 2012-05-10 Gas dissolution tank and gas dissolution apparatus equipped with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012108916A JP5975382B2 (en) 2012-05-10 2012-05-10 Gas dissolution tank and gas dissolution apparatus equipped with the same

Publications (2)

Publication Number Publication Date
JP2013233524A JP2013233524A (en) 2013-11-21
JP5975382B2 true JP5975382B2 (en) 2016-08-23

Family

ID=49760079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012108916A Expired - Fee Related JP5975382B2 (en) 2012-05-10 2012-05-10 Gas dissolution tank and gas dissolution apparatus equipped with the same

Country Status (1)

Country Link
JP (1) JP5975382B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7235364B1 (en) 2022-07-22 2023-03-08 株式会社クリーンテックサービス東京 gas dissolver

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4861165A (en) * 1986-08-20 1989-08-29 Beloit Corporation Method of and means for hydrodynamic mixing
JP2005193140A (en) * 2004-01-07 2005-07-21 Yokogawa Electric Corp Method and apparatus for supplying oxygen into water
US7097160B2 (en) * 2004-10-13 2006-08-29 Ozone Safe Food, Incorporated Apparatus for treating a liquid with a gas
JP2009136794A (en) * 2007-12-07 2009-06-25 Kobelco Eco-Solutions Co Ltd Air diffuser and aeration method

Also Published As

Publication number Publication date
JP2013233524A (en) 2013-11-21

Similar Documents

Publication Publication Date Title
JP4706664B2 (en) Fine bubble generating apparatus and fine bubble generating method
TWM483123U (en) Generation device for gas dissolution into liquid and fluid nozzle
JP4558868B2 (en) Gas-liquid mixing and dissolving device
JP5017305B2 (en) Gas dissolving device
JP2007313465A (en) Gas dissolving apparatus
JP5975382B2 (en) Gas dissolution tank and gas dissolution apparatus equipped with the same
JP4706665B2 (en) Microbubble generator
JP5218948B1 (en) Gas dissolver
WO2014050521A1 (en) Gas dissolving device
JP4872459B2 (en) Gas dissolving device
JP5887555B2 (en) Gas dissolution tank
JP2008178780A (en) Microbubble generating apparatus
JP5017304B2 (en) Gas dissolving device
JP5001321B2 (en) Gas dissolving device
JP5914802B2 (en) Gas dissolving device
JP2010029754A (en) Gas dissolving apparatus
EP2870995A1 (en) Gas dissolver
JP5870297B2 (en) Gas dissolving device
JP5870262B2 (en) Gas dissolution tank
JP5210283B2 (en) Gas dissolving device
KR20150111631A (en) Apparatus for condensing dissolved oxygen
JP2008178779A (en) Microbubble generating apparatus
JP7101366B2 (en) Gas melting device
EP2881165A1 (en) Gas-dissolving device
JP5967567B2 (en) Gas dissolving device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140710

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20141009

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20141107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160708

R151 Written notification of patent or utility model registration

Ref document number: 5975382

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees