JP5962114B2 - Manufacturing method of fiber reinforced thermoplastic resin molded article - Google Patents

Manufacturing method of fiber reinforced thermoplastic resin molded article Download PDF

Info

Publication number
JP5962114B2
JP5962114B2 JP2012069386A JP2012069386A JP5962114B2 JP 5962114 B2 JP5962114 B2 JP 5962114B2 JP 2012069386 A JP2012069386 A JP 2012069386A JP 2012069386 A JP2012069386 A JP 2012069386A JP 5962114 B2 JP5962114 B2 JP 5962114B2
Authority
JP
Japan
Prior art keywords
thermoplastic resin
preform
fiber
heat
resin molded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012069386A
Other languages
Japanese (ja)
Other versions
JP2013173338A (en
Inventor
森脇 敦史
敦史 森脇
真信 晝田
真信 晝田
将寿 山名
将寿 山名
葭原 法
法 葭原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2012069386A priority Critical patent/JP5962114B2/en
Publication of JP2013173338A publication Critical patent/JP2013173338A/en
Application granted granted Critical
Publication of JP5962114B2 publication Critical patent/JP5962114B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Moulding By Coating Moulds (AREA)

Description

本発明は、繊維強化熱可塑性樹脂成形品の製造方法に関する。より詳細には、本発明は、含浸性と生産性とを同時に満足し、溶融樹脂を流出させず、所望の繊維重量含有率が得られ、且つ低コストで実施され得る繊維強化熱可塑性樹脂成形品の製造方法に関する。   The present invention relates to a method for producing a fiber-reinforced thermoplastic resin molded article. More specifically, the present invention is a fiber reinforced thermoplastic resin molding that satisfies the impregnation property and the productivity at the same time, does not allow the molten resin to flow out, obtains a desired fiber weight content, and can be implemented at low cost. The present invention relates to a method for manufacturing a product.

近年、繊維強化熱可塑性樹脂シートが成形用中間体として、または成形品として幅広く用いられている。特に、成形用中間体はスタンパブルシートと呼ばれ、例えば、所定の形状に切断され、遠赤外線加熱などにより熱可塑性樹脂の軟化点または融点付近或いはそれ以上の温度まで加熱され、所定の温度の金型に配置され、そして加圧および冷却固化されて最終成形品に成形される。   In recent years, fiber reinforced thermoplastic resin sheets have been widely used as molding intermediates or molded articles. In particular, the molding intermediate is called a stampable sheet, and is cut into a predetermined shape, for example, heated to a temperature near or above the softening point or the melting point of a thermoplastic resin by far-infrared heating, etc. It is placed in a mold and pressed and cooled and solidified to form a final molded product.

このような成形用中間体は、従来、強化繊維(例えば、ガラス繊維、炭素繊維)のマット状物(例えば、チョップトストランドマット)または引き揃え品などに、熱可塑性樹脂の粉体、フィルムまたはシートを、少なくとも熱可塑性樹脂の軟化点または融点よりも高い温度で溶融含浸させて製造される。   Such a molding intermediate has conventionally been used in the form of a reinforced fiber (for example, glass fiber, carbon fiber) mat (for example, chopped strand mat) or an assorted product, for example, as a thermoplastic resin powder, film or The sheet is produced by melt impregnation at a temperature higher than at least the softening point or melting point of the thermoplastic resin.

この成形用中間体の従来の製造方法としては、例えば、次のような方法が挙げられる。   Examples of conventional methods for producing this molding intermediate include the following methods.

A.プレス成形:
プレスへの取り付けの嵌合精度に優れ、加熱および冷却装置を有する金型を、熱媒により少なくとも熱可塑性樹脂の軟化点または融点よりも高い温度に加熱する。この金型に、強化繊維と熱可塑性樹脂シートまたは熱可塑性樹脂粉末とを配置し、加熱および加圧により溶融含浸させる。次いで、金型を冷媒により冷却し、溶融樹脂を加圧および冷却固化して繊維強化熱可塑性樹脂シートを得る。
A. Press molding:
A mold having excellent fitting accuracy for attachment to the press and having a heating and cooling device is heated to a temperature higher than at least the softening point or melting point of the thermoplastic resin by a heating medium. A reinforcing fiber and a thermoplastic resin sheet or thermoplastic resin powder are placed in this mold and melt impregnated by heating and pressing. Next, the mold is cooled with a refrigerant, and the molten resin is pressurized and cooled and solidified to obtain a fiber-reinforced thermoplastic resin sheet.

B.金型搬送冷却成形:
加熱および/または冷却可能な一対のプレスに取り付けた嵌合精度に優れる金型を用いる。まず、この金型を一方のプレスに取り付け、少なくとも熱可塑性樹脂の軟化点または融点よりも高い温度に加熱した後に、この金型に強化繊維と熱可塑性樹脂シートまたは熱可塑性樹脂粉末とを配置し、加熱および加圧により溶融含浸させる。次いで、強化繊維と溶融樹脂とを配置したままの金型を、他方のプレスに移し、溶融樹脂を加圧および冷却固化して繊維強化熱可塑性樹脂シートを得る。
B. Mold transfer cooling molding:
A die having excellent fitting accuracy attached to a pair of presses that can be heated and / or cooled is used. First, this mold is attached to one press, heated at least to a temperature higher than the softening point or melting point of the thermoplastic resin, and then reinforced fibers and a thermoplastic resin sheet or thermoplastic resin powder are placed in this mold. And melt impregnation by heating and pressing. Next, the mold in which the reinforcing fibers and the molten resin are arranged is transferred to the other press, and the molten resin is pressurized and cooled and solidified to obtain a fiber-reinforced thermoplastic resin sheet.

C.ダブルベルトプレス成形:
無端ベルトと加熱および/または冷却を行う補助装置とを有するダブルベルトプレス装置と呼ばれる装置を用いる。強化繊維と熱可塑性樹脂シートまたは熱可塑性樹脂粉末とをダブルベルトプレス装置に配置し、加熱および加圧により溶融含浸させ、そして連続して加圧および冷却固化して、繊維強化熱可塑性樹脂シートを得る。
C. Double belt press molding:
A device called a double belt press device having an endless belt and an auxiliary device for heating and / or cooling is used. The reinforcing fiber and the thermoplastic resin sheet or thermoplastic resin powder are placed in a double belt press machine, melt impregnated by heating and pressing, and continuously pressed and cooled and solidified to obtain a fiber-reinforced thermoplastic resin sheet. obtain.

D.ロール成形:
少なくとも一対の加熱ロールと、少なくとも一対の冷却ロールとを有する装置を用いる。強化繊維と熱可塑性樹脂シートまたは熱可塑性樹脂粉末とを、加熱ロールで加熱および加圧することにより溶融含浸させ、次いで、冷却ロールで加圧および冷却固化して、繊維強化熱可塑性樹脂シートを得る。
D. Roll forming:
An apparatus having at least a pair of heating rolls and at least a pair of cooling rolls is used. The reinforcing fiber and the thermoplastic resin sheet or the thermoplastic resin powder are melted and impregnated by heating and pressurizing with a heating roll, and then pressurized and cooled and solidified with a cooling roll to obtain a fiber-reinforced thermoplastic resin sheet.

しかし、上記の方法は、それぞれに以下のような問題を有している。   However, each of the above methods has the following problems.

プレス成形および金型搬送冷却成形においては、(a)金型を少なくとも熱可塑性樹脂の軟化点または融点付近まで加熱し、(b)少なくとも樹脂が固化する温度まで、圧力を保持したまま金型ごと冷却しなければならない。そのため、加熱および冷却に非常に時間が掛かり、生産性を上げることが難しい。一方、生産性を上げようとすると、多くの金型が必要であり、設備に要する費用の増大を招く。   In press molding and mold conveyance cooling molding, (a) the mold is heated to at least the softening point or near the melting point of the thermoplastic resin, and (b) at least the temperature of the mold while maintaining the pressure until the resin solidifies. Must be cooled. Therefore, it takes a very long time for heating and cooling, and it is difficult to increase productivity. On the other hand, if it is going to raise productivity, many metal mold | dies will be required and the increase of the expense which an installation requires will be caused.

ダブルベルトプレス成形においては、無端ベルト(通常、金属ベルトが使用される)と加熱および/または冷却を行う補助装置とを有する装置を用いることにより、連続的な製造が可能である(すなわち、生産性に優れる)。しかし、この方法においては、熱可塑性樹脂を強化繊維に含浸させるために加圧および加熱すると、溶融した熱可塑性樹脂が金属ベルトの幅方向の端部から流出する。その結果、繊維強化熱可塑性樹脂シートの重要な特性である繊維重量含有率が変動するばかりでなく流出樹脂が装置を汚濁する。また装置の清掃に時間がかかり、得られるシートの幅方向の端部の厚みが不足するので端部を取り除く必要がある、などの種々の問題が生じる。一方、低圧で溶融含浸させると、強化繊維への熱可塑性樹脂の含浸が不十分となり、得られる繊維強化熱可塑性樹脂シート中にボイドが存在する、強化繊維と熱可塑性樹脂との濡れ性が不足する、などの問題が生じる。すなわち、強化繊維への熱可塑性樹脂の含浸性が不十分である。このような不十分な含浸では、例えば、スタンピング成形により、得られるシートを再度溶融し加圧および冷却しても、十分に改善することは不可能である。さらに、現状では、ダブルベルトプレス装置は、プレス装置などと比較して非常に高価であり、製造コストの面からも非常に不利である。   In double belt press molding, continuous production is possible by using an apparatus having an endless belt (usually a metal belt is used) and an auxiliary device for heating and / or cooling (ie, production). Excellent). However, in this method, when pressure and heating are performed to impregnate the thermoplastic resin into the reinforcing fiber, the molten thermoplastic resin flows out from the end in the width direction of the metal belt. As a result, not only the fiber weight content, which is an important characteristic of the fiber reinforced thermoplastic resin sheet, varies but also the spilled resin contaminates the apparatus. In addition, it takes time to clean the apparatus, and various problems such as the need to remove the end part due to insufficient thickness of the end part in the width direction of the obtained sheet arise. On the other hand, when melt-impregnated at low pressure, the reinforcing fiber is not sufficiently impregnated with the thermoplastic resin, and voids are present in the resulting fiber-reinforced thermoplastic resin sheet, resulting in insufficient wettability between the reinforcing fiber and the thermoplastic resin. Problems occur. That is, the impregnation property of the thermoplastic resin to the reinforcing fiber is insufficient. With such insufficient impregnation, it is impossible to sufficiently improve even if the obtained sheet is again melted, pressed and cooled by stamping, for example. Furthermore, under the present circumstances, the double belt press apparatus is very expensive compared with a press apparatus etc., and it is very disadvantageous also from the viewpoint of manufacturing cost.

ロール成形は、ダブルベルトプレス成形と同様に生産性に優れる。さらに、近年、ロールに溝加工を施すことにより、溶融樹脂の流出の防止が試みられている。しかし、このような溝加工は高価であり、しかも、樹脂の流出を十分に防止することはできない。従って、ロール成形は、上記のダブルベルトプレス成形と同様に、溶融樹脂の流出という問題を有している。さらに、ロール成形は、プレス成形のような高圧での成形が困難であるので、得られるシートの含浸性が不十分である場合が多い。   Roll forming is excellent in productivity as in double belt press forming. Furthermore, in recent years, attempts have been made to prevent the molten resin from flowing out by subjecting the roll to groove processing. However, such groove processing is expensive, and the outflow of resin cannot be sufficiently prevented. Therefore, the roll molding has a problem that the molten resin flows out, as in the double belt press molding. Furthermore, since roll forming is difficult to form at high pressure as in press forming, the resulting sheet often has insufficient impregnation properties.

以上の問題を解決すべく、特許文献1、2の繊維強化熱可塑性樹脂シートの製造方法が開示されている。しかしながら、これらの発明で用いられている耐熱性離型シートは非常に高価であるにも係らず、再利用は難しく、また、熱可塑性樹脂の過熱および冷却を金型内で行おうとすれば、非常に時間がかかり、コスト面と生産性の面で依然として問題があった。
以上のように、含浸性と生産性とを同時に満足し、溶融樹脂を流出させず、所望の繊維重量含有率が得られ、かつ、低コストで実施され得る繊維強化熱可塑性樹脂シート及び成形品の製造方法は、いまだ得られていない。
In order to solve the above problem, the manufacturing method of the fiber reinforced thermoplastic resin sheet of patent document 1, 2 is disclosed. However, although the heat-resistant release sheet used in these inventions is very expensive, it is difficult to reuse, and if it is attempted to overheat and cool the thermoplastic resin in the mold, It was very time consuming and there were still problems in terms of cost and productivity.
As described above, a fiber-reinforced thermoplastic resin sheet and a molded article that satisfy both impregnation properties and productivity, do not allow molten resin to flow out, can obtain a desired fiber weight content, and can be implemented at low cost. No manufacturing method has yet been obtained.

特開平9−234751号公報JP-A-9-234751 特開平9−277387号公報JP-A-9-277387

本発明は、上記従来の課題を解決するためになされたものである。その目的とするところは、含浸性と生産性とを同時に満足し、溶融樹脂を流出させず、所望の繊維重量含有率が得られ、かつ、低コストで実施され得る繊維強化熱可塑性樹脂成形品の製造方法を提供することにある。   The present invention has been made to solve the above conventional problems. The object is to provide a fiber reinforced thermoplastic resin molded article that satisfies both impregnation and productivity at the same time, does not allow the molten resin to flow out, obtains the desired fiber weight content, and can be implemented at low cost. It is in providing the manufacturing method of.

本発明者らは、鋭意検討を行った結果、強化繊維と熱可塑性樹脂とを含有する予備成形体をあらかじめ成形し、かつ、熱可塑性樹脂の軟化点または融点よりも高い融点を有する開口率が10〜90%の耐熱性離型物品を介して予備成形体を加熱溶融させた後、所望の冷却金型へ直接チャージさせる事により上記目的を達成することを見出し、本発明を完成するに至った。   As a result of intensive studies, the present inventors have preformed a preform containing reinforcing fibers and a thermoplastic resin in advance, and have an opening ratio having a melting point higher than the softening point or melting point of the thermoplastic resin. It is found that the above-mentioned object is achieved by heating and melting the preform through a 10 to 90% heat-resistant release article and then directly charging it to a desired cooling mold, thereby completing the present invention. It was.

本発明の繊維強化熱可塑性樹脂成形品の製造方法は、連続強化繊維を開繊後、内部圧力が0.1MPa以上である熱可塑性樹脂槽を通し、熱可塑性樹脂を連続含浸させ、その後、賦形ローラーで潰し冷却固化させた後、カッティングして予備成形体を作製する工程と、開口率が10〜90%である少なくとも底面と側面から構成された、該熱可塑性樹脂の軟化点または融点よりも高い融点を有する耐熱性離型物品内に、該予備成形体を堆積する工程と、該熱可塑性樹脂の軟化点または融点よりも高い温度で、該耐熱性離型物品を介して該予備成形体の熱可塑性樹脂を溶融する工程と、該耐熱性離型物品底面の径よりも1〜80mm大きい径を有する金型を用い、該熱可塑性樹脂の軟化点または融点未満の温度、及び2MPa以上の圧力で、該予備成形体の堆積物を加圧冷却固化する工程を包含する。   In the method for producing a fiber-reinforced thermoplastic resin molded article of the present invention, after continuous reinforcing fibers are opened, a thermoplastic resin tank having an internal pressure of 0.1 MPa or more is passed through and continuously impregnated with the thermoplastic resin. From the process of cutting and solidifying by cooling with a shaped roller, and cutting to prepare a preform, and the softening point or melting point of the thermoplastic resin, which is composed of at least the bottom and side surfaces with an opening ratio of 10 to 90% Depositing the preform in a heat-resistant release article having a higher melting point, and the preform through the heat-resistant release article at a temperature higher than the softening point or melting point of the thermoplastic resin. Using a mold having a diameter 1 to 80 mm larger than the diameter of the bottom surface of the heat-resistant release article, a temperature below the softening point or melting point of the thermoplastic resin, and 2 MPa or more At a pressure of Deposits 備成 feature includes the step of cooling under pressure and solidified.

好適な実施態様として上記予備成形体は、長さ5mm〜100mm、幅5mm〜50mm、厚み0.05mm〜0.3mmの薄膜片のテープであり、予備成形体に含有される強化繊維と熱可塑性樹脂との質量比が85/15〜40/60である。
望ましくは、上記予備成形体は、連続強化繊維を開繊させた後、熱可塑性樹脂槽を通す前に、樹脂吐出スリットを有する曲面ダイに接触させ、熱可塑性樹脂を含浸されて得られる事が好ましい。
As a preferred embodiment, the preform is a thin film tape having a length of 5 mm to 100 mm, a width of 5 mm to 50 mm, and a thickness of 0.05 mm to 0.3 mm. The reinforcing fiber and the thermoplastic contained in the preform. The mass ratio with the resin is 85/15 to 40/60.
Desirably, the preform may be obtained by opening a continuous reinforcing fiber and then contacting a curved die having a resin discharge slit and impregnating the thermoplastic resin before passing through the thermoplastic resin tank. preferable.

また前記耐熱性離型物品は、底面板と側面枠から構成され、予備成形体を側面枠内に堆積した後、熱可塑性樹脂の軟化点または融点よりも高い温度で予備成形体の熱可塑性樹脂を溶融し、その後、側面枠を取り外し、底面板を反転させて金型内に予備成形体の堆積物をチャージし、冷却プレスして冷却固化する事が好ましい。耐熱性離型物品がアルミニウム、またはステンレスである事が好ましい。耐熱性離型物品の、少なくとも予備成形体と接触する面に離型処理が施されている事が好ましい。耐熱性離型物品の側面枠の高さが、予備成形体の堆積物の高さより1〜15mm高い事が好ましい。
望ましくは、熱可塑性樹脂成形品がシート状であり、その厚み斑が平均厚み±10%以下となる事が好ましい。
The heat-resistant release article is composed of a bottom plate and a side frame, and after depositing the preform in the side frame, the thermoplastic resin of the preform at a temperature higher than the softening point or melting point of the thermoplastic resin. After that, it is preferable to remove the side frame, invert the bottom plate, charge the deposit of the preform into the mold, cool and solidify by cooling. It is preferable that the heat-resistant release article is aluminum or stainless steel. It is preferable that a release treatment is performed on at least the surface of the heat-resistant release article that comes into contact with the preform. The height of the side frame of the heat-resistant release article is preferably 1 to 15 mm higher than the height of the deposit of the preform.
Desirably, the thermoplastic resin molded article is in the form of a sheet, and the thickness variation is preferably an average thickness of ± 10% or less.

本発明によれば、含浸性と生産性とを同時に満足し、溶融樹脂を流出させず、所望の繊維重量含有率が得られ、かつ、低コストで実施され得る繊維強化熱可塑性樹脂成形品の製造方法が提供される。さらには、得られる熱可塑性樹脂成形品がシート状である場合、その厚み斑が非常に小さいと言う効果も有する。   According to the present invention, a fiber-reinforced thermoplastic resin molded article that satisfies the impregnation property and the productivity at the same time, does not cause the molten resin to flow out, can obtain a desired fiber weight content, and can be implemented at low cost. A manufacturing method is provided. Furthermore, when the obtained thermoplastic resin molded article is in the form of a sheet, the thickness variation is very small.

本明細書において、「予備成形体」とは、強化繊維と熱可塑性樹脂とを含有し、最終繊維強化熱可塑性樹脂成形品を形成し得るあらゆる成形体を包含するが、強化繊維を開繊させた状態で、熱可塑性樹脂を溶融含浸させた後、ローラーで挟み、冷却固化した後、カットして得られるテープが特に望ましい。   In the present specification, the “preliminary molded product” includes any molded product that contains reinforcing fibers and a thermoplastic resin and can form a final fiber reinforced thermoplastic resin molded product. In particular, a tape obtained by melt impregnating a thermoplastic resin, sandwiching with a roller, cooling and solidifying, and then cutting is particularly desirable.

強化繊維は特に限定されないが、代表例としては、炭素繊維、炭化珪素繊維、ガラス繊維などの無機繊維、ボロン繊維などの金属繊維、アラミド繊維などの有機繊維が挙げられる。コスト、ならびに得られる成形品の弾性率および機械的強度の点から、ガラス繊維、炭素繊維などの無機繊維が好ましい。これらの繊維は、連続繊維を引き揃え、そして十分に開繊させて用いることが好ましい。   The reinforcing fibers are not particularly limited, but representative examples include inorganic fibers such as carbon fibers, silicon carbide fibers, and glass fibers, metal fibers such as boron fibers, and organic fibers such as aramid fibers. In view of cost and the elastic modulus and mechanical strength of the resulting molded article, inorganic fibers such as glass fibers and carbon fibers are preferred. These fibers are preferably used by drawing continuous fibers and opening them sufficiently.

熱可塑性樹脂は特に限定されないが、代表例としては、ナイロン6、ナイロン12、ナイロン66、ナイロン46などのポリアミド系樹脂、ポリエチレンテレフタレート、ポリブチレンテレフタレートなどのポリエステル系樹脂、ポリエチレン、ポリプロピレンなどのポリオレフィン系樹脂、ポリエーテルケトン樹脂、ポリフェニレンサルファイド樹脂、ポリエーテルイミド樹脂、ポリカーボネート樹脂などが挙げられる。   The thermoplastic resin is not particularly limited, but representative examples include polyamide resins such as nylon 6, nylon 12, nylon 66, and nylon 46, polyester resins such as polyethylene terephthalate and polybutylene terephthalate, and polyolefin resins such as polyethylene and polypropylene. Examples thereof include resins, polyether ketone resins, polyphenylene sulfide resins, polyether imide resins, and polycarbonate resins.

特に好ましい熱可塑性樹脂の代表例は以下の通りである。これらは、成形品の用途(または所望の特性)に応じて、適宜使用され得る。
(1)低コスト、成形時の流動性、耐水性、耐熱水性、または耐化学薬品性が要求される場合には、ポリオレフィン系樹脂が好ましい。入手が容易であるという理由で、ポリプロピレンが特に好ましく、本発明においては、酸変性されたポリプロピレンを用いる事が好ましい。後述の強化繊維との接着性に特に優れるからである。
(2)耐摩耗性、耐油性、または長期耐熱特性が要求される場合には、ポリアミド系樹脂が好ましく、ナイロン6、ナイロン66、MXD6樹脂が特に好ましい。
(3)耐熱性、機械的強度、クリープ特性、耐薬品性、または耐油性が要求される場合には、ポリエステル系樹脂が好ましく、ポリエチレンテレフタレートが特に好ましい。
Representative examples of particularly preferred thermoplastic resins are as follows. These can be used as appropriate depending on the use (or desired properties) of the molded article.
(1) Polyolefin resins are preferred when low cost, fluidity during molding, water resistance, hot water resistance, or chemical resistance is required. Polypropylene is particularly preferable because it is easily available. In the present invention, it is preferable to use acid-modified polypropylene. This is because it is particularly excellent in adhesiveness with the reinforcing fiber described later.
(2) When abrasion resistance, oil resistance, or long-term heat resistance is required, a polyamide-based resin is preferable, and nylon 6, nylon 66, and MXD6 resin are particularly preferable.
(3) When heat resistance, mechanical strength, creep properties, chemical resistance, or oil resistance is required, polyester resins are preferable, and polyethylene terephthalate is particularly preferable.

本発明に用いられる耐熱性離型物品は、熱可塑性樹脂の軟化点または融点よりも高い融点を有する開口率が10〜90%の耐熱性離型物品である。耐熱性離型物品は熱可塑性樹脂を効率良く溶融、搬送し、短時間で金型内にチャージ出来る様、ハンドリング性と生産性を向上させるために用いられる。ここで言う開口率とは、垂直方向より耐熱性離型物品を投影した際の空隙面積率を指し、特に規定はしないが、材料を搬送する際に必要な強度と熱伝達性に問題が無い範囲で適宜仕様は選定される。耐熱性離型物品の個々の開口部は、上記予備成形体がすり抜けない大きさである必要がある。特に、2〜8mmの直径の円で打ち抜きされたプレートは、強度と熱伝達の点から望ましい。開口率が10%未満である場合、熱の伝達率が不足し、開口率が90%を超える場合、強度が不足するので好ましくない。より好ましい範囲は、20〜85%、更に好ましい範囲は30〜80%である。
耐熱性離型物品は、少なくとも底面と側面から構成されたものである。このように構成された箱状物の内部に、前記予備成形体を堆積させるためである。
The heat-resistant release article used in the present invention is a heat-resistant release article having an opening ratio of 10 to 90% having a melting point higher than the softening point or melting point of a thermoplastic resin. The heat-resistant release article is used to improve handling and productivity so that the thermoplastic resin can be efficiently melted and conveyed and charged into the mold in a short time. The aperture ratio here refers to the void area ratio when a heat-resistant release article is projected from the vertical direction, and is not particularly defined, but there is no problem in the strength and heat transfer necessary for conveying the material. The specifications are selected as appropriate within the range. Each opening of the heat-resistant release article needs to have a size that prevents the preform from slipping through. In particular, a plate punched with a circle having a diameter of 2 to 8 mm is desirable in terms of strength and heat transfer. When the aperture ratio is less than 10%, the heat transfer rate is insufficient, and when the aperture ratio exceeds 90%, the strength is insufficient. A more preferable range is 20 to 85%, and a further preferable range is 30 to 80%.
The heat-resistant release article is composed of at least a bottom surface and a side surface. This is because the preform is deposited inside the box-shaped material configured as described above.

予備成形体は、長さ5mm〜100mm、幅5mm〜50mm、厚み0.05mm〜0.3mmの薄膜片のテープであり、含有される強化繊維と熱可塑性樹脂との質量比(強化繊維/熱可塑性樹脂)は、85/15〜40/60である事が望ましい。   The preform is a tape of a thin film piece having a length of 5 mm to 100 mm, a width of 5 mm to 50 mm, and a thickness of 0.05 mm to 0.3 mm, and the mass ratio of the reinforcing fiber and the thermoplastic resin contained (reinforcing fiber / heat The plastic resin) is desirably 85/15 to 40/60.

厚みが0.05mm未満であると生産効率が悪く、0.3mmを超えると含浸性が不足する傾向となる。より好ましくは0.07mm〜0.2mmの範囲内である。また幅は5mm未満、及び50mmを超えると生産効率が悪くなる。より好ましくは10mm〜40mmの範囲内である。長さに関しても5mm未満、若しくは100mmを超える場合、生産性が悪くなり好ましくない。より好ましくは10mm〜50mmの範囲内である。また幅と長さが同じサイズに近いと異方性が無くなり、ランダマイズされ易いのでより好ましい。含有される強化繊維の質量比も85%を超えると樹脂含浸性が不十分となり破壊の基点となり易く、40%未満の場合、強化繊維補強効果が得られにくくなるので好ましくない。強化繊維と熱可塑性樹脂のより好ましい質量比の範囲は、80/20〜50/50である。   When the thickness is less than 0.05 mm, the production efficiency is poor, and when it exceeds 0.3 mm, the impregnation property tends to be insufficient. More preferably, it exists in the range of 0.07 mm-0.2 mm. If the width is less than 5 mm or more than 50 mm, the production efficiency is deteriorated. More preferably, it exists in the range of 10 mm-40 mm. When the length is less than 5 mm or more than 100 mm, the productivity deteriorates, which is not preferable. More preferably, it exists in the range of 10 mm-50 mm. Further, it is more preferable that the width and the length are close to the same size, since the anisotropy is lost and randomization is easily performed. If the mass ratio of the reinforcing fibers contained exceeds 85%, the resin impregnation property becomes insufficient and tends to be a starting point of breakage, and if it is less than 40%, it is difficult to obtain a reinforcing fiber reinforcing effect. A more preferable range of the mass ratio between the reinforcing fiber and the thermoplastic resin is 80/20 to 50/50.

また、予備成形体は、必要に応じて、熱劣化防止剤、酸化劣化防止剤、紫外線吸収剤、などの添加剤を含有し得る。これらの添加剤の含有量は、目的に応じて変化し得るが、通常、これらの添加剤は、それぞれ0.5質量%以下が好ましく、より好ましくはそれぞれ0.2〜0.5質量%の範囲内で添加される。   In addition, the preform may contain additives such as a thermal degradation inhibitor, an oxidation degradation inhibitor, and an ultraviolet absorber as necessary. The content of these additives may vary depending on the purpose, but usually these additives are preferably 0.5% by mass or less, more preferably 0.2 to 0.5% by mass, respectively. It is added within the range.

前記予備成形体は、連続強化繊維を開繊後、0.1MPa以上の圧力を有する熱可塑性樹脂槽を通り、更に望ましくは、強化繊維が樹脂槽へ入る前に、樹脂吐出スリットを有する曲面ダイに接触、熱可塑性樹脂を連続的に含浸させ、その後、賦形ローラーで潰し冷却固化させた後、カッティングされて得られる事が望ましい。   The preform is a curved die having a resin discharge slit after opening the continuous reinforcing fibers, passing through a thermoplastic resin tank having a pressure of 0.1 MPa or more, and more preferably before the reinforcing fibers enter the resin tank. It is desirable to obtain a product obtained by cutting, after continuously impregnating with a thermoplastic resin, crushing with a shaping roller and solidifying by cooling.

開繊工程は撚りが殆ど入らない状態で行われるのが望ましく、通常、ローラー及び空気開繊工程が用いられるが、これに限定されるものではない。熱可塑性樹脂を連続的に効率良く含浸させるため、0.1MPa以上の圧力を有する樹脂槽を通すのが好ましい。0.1MPa未満である場合、含浸性が十分に得られにくくなる。樹脂槽内の圧力は高い方がより含浸性が向上し好ましく、より好ましくは0.3MPa以上、更に好ましくは、0.5MPa以上である。樹脂槽内の圧力は高い方がより含浸性が向上し好ましいが、設備コストも高くなるので、2MPa以下であることが好ましい。
また、強化繊維が樹脂槽へ入る前に、樹脂吐出スリットを有する曲面ダイに接触させる事が好ましい。強化繊維が開繊された常態を保持したまま、プレ含浸が良好に行われ得るためである。
The opening process is desirably performed in a state in which almost no twist is generated, and a roller and an air opening process are usually used, but are not limited thereto. In order to impregnate the thermoplastic resin continuously and efficiently, it is preferable to pass through a resin tank having a pressure of 0.1 MPa or more. When the pressure is less than 0.1 MPa, it is difficult to obtain sufficient impregnation properties. The higher the pressure in the resin tank, the better the impregnation property, more preferably 0.3 MPa or more, and still more preferably 0.5 MPa or more. A higher pressure in the resin tank is preferable because the impregnation property is further improved, but the equipment cost is also increased, so that the pressure is preferably 2 MPa or less.
Moreover, it is preferable to contact the curved die having the resin discharge slit before the reinforcing fiber enters the resin tank. This is because the pre-impregnation can be carried out satisfactorily while maintaining the normal state where the reinforcing fibers are opened.

樹脂含浸槽を通過した強化繊維は、引取り張力により集束し易く、この状態では強化繊維の細部に熱可塑性樹脂が含浸しきれていない。賦形ローラーで潰し冷却固化させる事により樹脂含浸性と、取り扱い性を向上させる事が出来る。カッティングは通常、ファンカッターで行われるが、特に限定はされない。   The reinforcing fibers that have passed through the resin impregnation tank are easily bundled by the take-up tension, and in this state, the details of the reinforcing fibers are not completely impregnated with the thermoplastic resin. The resin impregnation and handling can be improved by crushing with a shaping roller and solidifying by cooling. Cutting is usually performed with a fan cutter, but is not particularly limited.

また、前記耐熱性離型物品は、底面板と側面枠から構成され、予備成形体を側面枠内に堆積した後、熱可塑性樹脂の軟化点または融点よりも高い温度で予備成形体の熱可塑性樹脂を溶融し、側面枠を取り外し、底面板を反転させて金型内に予備成形体の堆積物をチャージさせて予備成形体を冷却固化させる事が好ましい。耐熱性離型物品は、前述の様に、溶融した予備成形体を金型内にチャージするハンドリング性を良くするために用いられる。底面板と側面枠がセパレートされた構成とする理由は、比較的嵩の大きい溶融前の予備成形体を枠内に配置し通常のIRヒーターで熱可塑性樹脂を溶融した後、枠が直ぐに取り外せることで、材料温度が大きく低下しない内に、底板のみを反転させるだけで容易に予備成形体を金型内にチャージする事が可能となるためである。   The heat-resistant release article is composed of a bottom plate and a side frame, and after depositing the preform in the side frame, the thermoplastic of the preform at a temperature higher than the softening point or melting point of the thermoplastic resin. It is preferable to melt the resin, remove the side frame, invert the bottom plate, charge the deposit of the preform in the mold, and cool and solidify the preform. As described above, the heat-resistant release article is used for improving the handling property of charging the molten preform into the mold. The reason why the bottom plate and side frame are separated is that the relatively bulky pre-melted preform is placed in the frame and the thermoplastic resin is melted with a normal IR heater, and then the frame can be removed immediately. This is because it is possible to easily charge the preform into the mold by inverting only the bottom plate while the material temperature is not greatly reduced.

また耐熱性離型物品はアルミニウム、若しくはステンレス製である事が好ましく、耐熱性離型物品の、少なくとも予備成形体と接触する面に離型処理が施されている事が好ましい。耐熱性離型物品の側面枠の高さが、側面枠内に堆積された予備成形体の高さより1〜15mm高い事が望ましい。アルミニウム、若しくはステンレス製であると熱伝導性に優れ、軽量化が可能となる。また予備成形体と接触する面に離型処理が施されていると、溶融後の予備成形体を金型内にチャージする際の離型性が良くなる。離型処理は通常、テフロン(登録商標)加工が施されるがこれに限定されるものではない。耐熱性離型物品の側面枠の高さと、側面枠内に堆積された予備成形体の高さの差が、1mm未満である場合、予備成形体が枠内よりこぼれ易く好ましくなく、15mmを超える場合には、枠内に接する予備成形体が枠にもたれかかる状態になり易く、その部分はIRヒーター加熱によって過加熱になり樹脂劣化し易いので好ましくない。より好ましい範囲は3〜12mmである。
なお、側面枠は底面板に対して垂直に立っている事が好ましいが、内側、外側のどちらに傾いていても構わない。傾いている場合の側面枠の高さとは、底面板から垂直方向への高さを指す。
The heat-resistant release article is preferably made of aluminum or stainless steel, and it is preferable that a release treatment is applied to at least the surface of the heat-resistant release article that comes into contact with the preform. It is desirable that the height of the side frame of the heat-resistant release article is 1 to 15 mm higher than the height of the preform formed in the side frame. If it is made of aluminum or stainless steel, it has excellent thermal conductivity and can be reduced in weight. Moreover, when the mold release process is performed on the surface in contact with the preform, the releasability when charging the melted preform into the mold is improved. The mold release treatment is usually performed with Teflon (registered trademark), but is not limited thereto. When the difference between the height of the side frame of the heat-resistant release article and the height of the preform formed in the side frame is less than 1 mm, the preform is not preferred because it easily spills out of the frame, and exceeds 15 mm. In such a case, the preformed body in contact with the frame is likely to lean against the frame, and the portion is overheated by IR heater heating and the resin is easily deteriorated, which is not preferable. A more preferable range is 3 to 12 mm.
The side frame is preferably standing perpendicular to the bottom plate, but may be inclined inward or outward. The height of the side frame when tilted refers to the height in the vertical direction from the bottom plate.

本発明では、耐熱性離型物品底面の径よりも1〜80mm大きい径を有する金型を用いる。つまり、耐熱性離型物品は底面の径が、用いる金型の径より1〜80mm小さいものを用いる。
耐熱性離型物品底面の大きさが、側面に囲われた範囲より大きい場合、底面の径とは、側面に囲われた範囲で考える。
耐熱性離型物品の側面枠は、通常、金型の形状と相似形で作製されると、プレスの際の材料の流動状態のバランスが良いので望ましい。所望の金型形状に合わせ、適宜仕様は変化し得るが、プリプレグシート中間材を作製する際には、取り扱い性、搬送効率の点より、長方形が好ましく、正方形に近い形とする事がより好ましい。故に、本発明において径とは、長方形に対応する各辺のサイズを指す。耐熱性離型物品は底面の径が、金型の径よりも小さければ小さい程、チャージはし易くなるが、その差が1mm未満であると、チャージの際に溶融後の予備成形体が金型からはみ出す恐れがあり好ましくなく、また80mmを超えると金型内の流動距離が大きくなり、金型内に材料が十分に流れにくくなる。より好ましい範囲は3〜60mmである。
In the present invention, a mold having a diameter 1 to 80 mm larger than the diameter of the bottom surface of the heat-resistant release article is used. That is, the heat-resistant release article has a bottom diameter that is 1 to 80 mm smaller than the diameter of the mold to be used.
When the size of the bottom surface of the heat-resistant release article is larger than the range surrounded by the side surface, the diameter of the bottom surface is considered within the range surrounded by the side surface.
In general, it is desirable that the side frame of the heat-resistant release article is produced in a shape similar to the shape of the mold because the flow state of the material during pressing is well balanced. The specifications can be changed as appropriate according to the desired mold shape, but when producing a prepreg sheet intermediate material, a rectangle is preferable and a shape close to a square is more preferable in terms of handleability and conveyance efficiency. . Therefore, in the present invention, the diameter refers to the size of each side corresponding to a rectangle. The smaller the diameter of the bottom surface of the heat-resistant release article, the easier it is to charge. However, if the difference is less than 1 mm, the pre-melted product after melting will be gold when charged. There is a possibility that it may protrude from the mold, and if it exceeds 80 mm, the flow distance in the mold increases, and the material does not flow sufficiently in the mold. A more preferable range is 3 to 60 mm.

また、前記熱可塑性樹脂の軟化点または融点よりも高い温度で耐熱性離型物品を介し予備成形体の熱可塑性樹脂を溶融した後、加圧下で熱可塑性樹脂の軟化点または融点未満の温度で予備成形体の堆積物を冷却固化する工程に於いて、成形圧力は2MPa以上であり、好ましくは、熱可塑性樹脂成形品がシート状であり、厚み斑が平均厚み±10%以内である事が望ましい。
成形圧力が2MPa未満である場合、予備成形体の流動距離が限定され、金型の細部にまで材料が行き渡り難くなるので好ましくない。より好ましくは、5MPa以上、更に好ましくは、8MPa以上である。圧力は高い方が望ましいが、成形機のコストも高くなるので、経済性と性能の観点より適宜条件は選択されるが、50MPa以下であることが好ましい。
予備成形体の熱可塑性樹脂を溶融する温度としては、軟化点または融点より、5〜85℃高い温度であることが好ましい。
また、予備成形体の堆積物を冷却固化する温度としては、軟化点または融点より、30〜120℃低い温度であることが好ましい。
Further, after the thermoplastic resin of the preform is melted through the heat-resistant release article at a temperature higher than the softening point or melting point of the thermoplastic resin, the temperature is lower than the softening point or melting point of the thermoplastic resin under pressure. In the step of cooling and solidifying the deposit of the preform, the molding pressure is 2 MPa or more. Preferably, the thermoplastic resin molded product is a sheet and the thickness unevenness is within an average thickness of ± 10%. desirable.
When the molding pressure is less than 2 MPa, the flow distance of the preform is limited, and it is difficult to spread the material to the details of the mold. More preferably, it is 5 MPa or more, More preferably, it is 8 MPa or more. Although it is desirable that the pressure is higher, the cost of the molding machine is also increased. Therefore, conditions are appropriately selected from the viewpoint of economy and performance, but it is preferably 50 MPa or less.
The temperature at which the thermoplastic resin of the preform is melted is preferably 5 to 85 ° C. higher than the softening point or melting point.
The temperature at which the deposit of the preform is cooled and solidified is preferably 30 to 120 ° C. lower than the softening point or melting point.

また、繊維強化熱可塑性樹脂成形品は予備成形体を過熱後、直接所望の形状の金型に投入し成形する事が可能であるが、厚み斑が平均厚み±10%以内であるプリプレグのシート状に加工する事も望ましい。シート状とすると、中間材料として広く扱う事が出来、輸送の際のスペースも小さく出来る。厚み斑が平均厚み±10%を超える部分があると、所望の容積に切り出しにくくなり好ましくない。より好ましくは、厚み斑は平均厚み±8%、更に好ましくは、±6%の範囲が望ましい。   In addition, a fiber reinforced thermoplastic resin molded article can be molded by directly heating it into a mold having a desired shape after overheating the preform, but the thickness variation is within ± 10% of the average thickness. It is also desirable to process into a shape. If it is in the form of a sheet, it can be handled widely as an intermediate material, and the space for transportation can also be reduced. If there is a portion where the thickness unevenness exceeds the average thickness ± 10%, it is difficult to cut into a desired volume. More preferably, the thickness variation is within an average thickness of ± 8%, and more preferably ± 6%.

以下、実施例により本発明を具体的に説明するが、本発明はこれらに限定されるものではない。尚、繊維強化熱可塑性樹脂成形品のシート厚みの測定は、シートを縦3、横3の9分割にしたパーツの中央部の平均値で評価した。   EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. In addition, the measurement of the sheet | seat thickness of a fiber reinforced thermoplastic resin molded product evaluated by the average value of the center part of the part which divided the sheet | seat into 9 division | segmentation of length 3 and width 3.

(実施例1)
強化繊維として、連続ガラス繊維(日本電気硝子(株)製、ER2310−431N、2310Tex、4000f)を直径2cmのローラーに通し開繊後、0.6MPaの圧力を有する酸変性されたポリプロピレン((株)プライムポリマー製、J139、及びMMP006のブレンド、融点160℃)からなる240℃の樹脂槽を通し、樹脂を連続的に含浸させ、その後、賦形ローラーで潰し冷却固化させた後、カッティングし、ガラス繊維75質量部にポリプロピレン樹脂25質量部が含浸されてなる、幅15mm、長さ20mm、厚み0.1mmのテープ状の予備成形体を作製した。一方、耐熱性離型物品として、厚み1mm、開口率50%(開口部は直径3mmの円形)のステンレス板(SUS304、融点1420℃)を加工し、一辺455mmの正方形の縁部に側面枠固定用に高さ20mmの壁を有する底面板を作製し、一般的なテフロン(登録商標)加工を施した。また同じ厚み1mm、開口率50%のステンレス板を加工し、一辺430mm角、高さ50mmの側面枠を作製し、同様にテフロン(登録商標)加工を施し、前記底面板の壁の内側にセットして、底面が430mm角の耐熱性離型物品とした。この側面枠内に上記予備成形体2kgをガラス繊維の配向がランダムになる様、また高さが40mmになる様、堆積させた後、一般的なIRヒーター(日本ガイシ(株)製、インフラスタイン炉、品番H7GS―73363)で、耐熱性離型物品を介し該予備成形体の熱可塑性樹脂を220℃に加熱した。その後、側面枠を取り外し、一辺450mm角、温度100℃の平板金型内へ耐熱性離型物品の底面板を反転させ、予備成形体の堆積物を金型内へチャージした後、15MPaの圧力で2分間プレスし、所望の平板を作製した。得られたシートの厚みは5.7mmとボイドがなく、テープの焼けもなく、シートを9分割した中央部分の厚み斑も平均厚み±7%に収まり、良好なものであった。
Example 1
As a reinforcing fiber, continuous glass fiber (manufactured by Nippon Electric Glass Co., Ltd., ER2310-431N, 2310Tex, 4000f) is passed through a roller having a diameter of 2 cm and opened, and then acid-modified polypropylene having a pressure of 0.6 MPa ((Co., Ltd. ) Through a 240 ° C. resin bath made of prime polymer, blend of J139 and MMP006, melting point 160 ° C.), continuously impregnated with resin, then crushed with a shaping roller and solidified by cooling, then cutting, A tape-shaped preform having a width of 15 mm, a length of 20 mm, and a thickness of 0.1 mm, in which 75 parts by mass of glass fiber was impregnated with 25 parts by mass of polypropylene resin was produced. On the other hand, a stainless steel plate (SUS304, melting point 1420 ° C.) having a thickness of 1 mm and an opening ratio of 50% (opening is a circle with a diameter of 3 mm) is processed as a heat-resistant release article, and a side frame is fixed to a square edge of 455 mm on a side. For this purpose, a bottom plate having a wall with a height of 20 mm was prepared and subjected to general Teflon (registered trademark) processing. In addition, a stainless steel plate with the same thickness of 1 mm and an aperture ratio of 50% is processed to produce a side frame with a side of 430 mm square and a height of 50 mm, and similarly Teflon (registered trademark) processing is performed and set inside the wall of the bottom plate Thus, a heat-resistant release article having a bottom surface of 430 mm square was obtained. After depositing 2 kg of the above preform into the side frame so that the orientation of the glass fibers is random and the height is 40 mm, a general IR heater (manufactured by NGK, Inc., Infrastein) is used. In a furnace, product number H7GS-73363), the thermoplastic resin of the preform was heated to 220 ° C. through a heat-resistant release article. Thereafter, the side frame is removed, the bottom plate of the heat-resistant release article is inverted into a flat plate mold having a side of 450 mm square and a temperature of 100 ° C., and the deposit of the preform is charged into the mold, and then the pressure of 15 MPa Was pressed for 2 minutes to prepare a desired flat plate. The thickness of the obtained sheet was 5.7 mm with no voids, no burning of the tape, and the thickness unevenness at the center part obtained by dividing the sheet into 9 parts was within an average thickness of ± 7%, which was good.

(実施例2)
強化繊維としてのガラス繊維60質量部に、熱可塑性樹脂として実施例1に使用したポリプロピレン樹脂40質量部を0.7MPaの圧力を有する樹脂槽を通し含浸させ、幅20mm、長さ20mm、厚み0.1mm、のテープ状に切断し、堆積高さが25mmとなる様に、高さ35mmの耐熱性離型物品の側面枠内に予備成形体1kgを配置させた以外は、実施例1と同法により所望の平板を作製した。得られたシートの厚みは3.4mm、テープに焼けもなく、シートを9分割した中央部分の厚み斑は平均厚み±6%に収まる良好なものであった。
(Example 2)
60 parts by mass of glass fibers as reinforcing fibers were impregnated with 40 parts by mass of the polypropylene resin used in Example 1 as a thermoplastic resin through a resin tank having a pressure of 0.7 MPa, and the width was 20 mm, the length was 20 mm, and the thickness was 0. The same as in Example 1, except that 1 kg of the preform was placed in the side frame of the heat-resistant release article having a height of 35 mm so that it was cut into a tape shape of 1 mm and the deposition height was 25 mm. A desired flat plate was prepared by the method. The thickness of the obtained sheet was 3.4 mm, the tape was not burned, and the thickness unevenness in the central part obtained by dividing the sheet into 9 parts was good and within an average thickness of ± 6%.

(実施例3)
金型として、一般構造部材を模擬した、一辺450mm角、リブ部の厚み3mm、高さ60mm、温度100℃のリブ試験金型を用いた事以外は実施例1と同法にて熱可塑性樹脂成形品を作製した。得られた成形品はショートがなく成形性は良好であり、同法により複雑な形状部材も直接作製出来る事を確認した。
(Example 3)
Thermoplastic resin molding in the same manner as in Example 1 except that a rib test mold with a side of 450 mm square, a rib part thickness of 3 mm, a height of 60 mm, and a temperature of 100 ° C. was used as a mold. An article was made. It was confirmed that the obtained molded product had no short circuit and had good moldability, and that complicated shaped members could be directly produced by this method.

(実施例4)
耐熱性離型物品の側面枠の高さが、側面枠内に配置された予備成形体の堆積物の高さより20mm高い、60mmの物を用いた事以外は、実施例1と同じ方法でシートを作製した。得られたシートの平均厚みは5.8mm、シートを9分割した中央部分の厚み斑は平均厚み±6%と良好であったが、予備成形体を加熱する時点で、側面枠の高さが高い事によりテープの数枚が側面枠にもたれ掛かる状態になる事になり、その部分が過加熱となり、樹脂が変色する問題が起きた。
Example 4
The sheet was prepared in the same manner as in Example 1 except that the side frame of the heat-resistant release article had a height of 20 mm, which was 20 mm higher than the height of the deposit of the preform placed in the side frame. Produced. The average thickness of the obtained sheet was 5.8 mm, and the thickness unevenness of the central part obtained by dividing the sheet into 9 was good with an average thickness of ± 6%. However, when the preform was heated, the height of the side frame was Due to the high height, some of the tapes leaned against the side frame, and this part was overheated, causing a problem of discoloration of the resin.

(実施例5)
予備成形体が、連続強化繊維を開繊させた後、樹脂槽に通す前に、樹脂吐出スリットを有する曲面ダイに接触させ、熱可塑性樹脂を含浸させた工程を付加した以外は、実施例1と同じ方法でシートを作製した。得られたシートの厚みは5.7mmとボイドがなく、シートを9分割した中央部分の厚み斑も平均厚み±7%に収まり、テープの焼けもなく、含浸状態も非常に良好なものであった。
(Example 5)
Example 1 except that a preform was added after the continuous reinforcing fiber was opened and before the resin was passed through the resin tank, the preform was brought into contact with a curved die having a resin discharge slit and impregnated with a thermoplastic resin. A sheet was prepared in the same manner as in Example 1. The thickness of the obtained sheet was 5.7 mm, there was no void, the thickness unevenness of the central part of the sheet divided into 9 parts was within an average thickness of ± 7%, the tape was not burned, and the impregnation state was very good. It was.

(実施例6)
樹脂槽内の圧力が0.12MPaである事以外は、実施例1と同じ方法でシートを作製した。得られたシートの厚みは5.8mmとボイドがなく、含浸状態も良好であり、テープの焼けもなく、シートを9分割した中央部分の厚み斑も平均厚み±7%に収まり、良好なものであった。
(Example 6)
A sheet was produced in the same manner as in Example 1 except that the pressure in the resin tank was 0.12 MPa. The thickness of the obtained sheet is 5.8 mm, there is no void, the impregnation state is also good, the tape is not burned, and the thickness unevenness in the center part obtained by dividing the sheet into nine is within the average thickness ± 7%, which is good Met.

(実施例7)
樹脂槽内の圧力が0.8MPaである事以外は、実施例1と同じ方法でシートを作製した。得られたシートの厚みは5.7mmとボイドがなく、含浸状態も非常に良好であり、テープの焼けもなく、シートを9分割した中央部分の厚み斑も平均厚み±6%に収まり、良好なものであった。
(Example 7)
A sheet was produced in the same manner as in Example 1 except that the pressure in the resin tank was 0.8 MPa. The thickness of the obtained sheet is 5.7 mm, there is no void, the impregnation state is also very good, the tape is not burned, and the thickness unevenness of the central part obtained by dividing the sheet into nine is within the average thickness ± 6%, which is good It was something.

(実施例8)
耐熱性離型物品の開口率が15%である事以外は、実施例1と同じ方法でシートを作製した。熱可塑性樹脂を加熱するのに必要な時間が若干長くなる傾向が見られたが、得られたシートの厚みは5.7mmとボイドがなく、含浸状態も良好であり、テープの焼けもなく、シートを9分割した中央部分の厚み斑も平均厚み±7%に収まり、良好なものであった。
(Example 8)
A sheet was produced in the same manner as in Example 1 except that the opening ratio of the heat-resistant release article was 15%. Although the time required to heat the thermoplastic resin tended to be slightly longer, the thickness of the obtained sheet was 5.7 mm and there was no void, the impregnation state was good, the tape was not burned, The thickness unevenness in the central part obtained by dividing the sheet into 9 parts was also within an average thickness of ± 7% and was good.

(実施例9)
耐熱性離型物品の開口率が85%である事以外は、実施例1と同じ方法でシートを作製した。開口率が高い事により、若干材料強度が不足し、扱い辛い傾向が見られたが、得られたシートの厚みは5.7mmとボイドがなく、含浸状態も非常に良好であり、テープの焼けもなく、シートを9分割した中央部分の厚み斑も平均厚み±6%に収まり、良好なものであった。
Example 9
A sheet was produced in the same manner as in Example 1 except that the opening ratio of the heat-resistant release article was 85%. Due to the high open area ratio, the material strength was slightly insufficient and it was difficult to handle. However, the thickness of the obtained sheet was 5.7 mm and there was no void, the impregnation state was very good, and the tape was burnt. In addition, the thickness unevenness in the central portion obtained by dividing the sheet into 9 parts was within an average thickness of ± 6%, which was good.

(実施例10)
一辺448mm角、高さ50mmの側面枠を用いた事以外は、実施例1と同じ方法でシートを作製した。底面板を反転させ、予備成形体の堆積物を金型内へチャージする際、材料の一部が若干、金型よりはみ出やすい傾向があったが、得られたシートの厚みは5.7mmとボイドがなく、含浸状態も非常に良好であり、テープの焼けもなく、シートを9分割した中央部分の厚み斑も平均厚み±7%に収まり、良好なものであった。
(Example 10)
A sheet was produced in the same manner as in Example 1 except that a side frame having a side of 448 mm square and a height of 50 mm was used. When the bottom plate was reversed and the deposit of the preform was charged into the mold, some of the material tended to protrude slightly from the mold, but the thickness of the obtained sheet was 5.7 mm. There were no voids, the impregnation state was very good, the tape was not burned, and the thickness unevenness in the central part obtained by dividing the sheet into nine parts was within an average thickness of ± 7%, which was good.

(実施例11)
一辺380mm角、高さ50mmの側面枠を用いた事以外は、実施例1と同じ方法でシートを作製した。金型内での予備成形体の流動距離が長く、若干四隅が中央部に比べ薄くなる傾向が見られたが、得られたシートの厚みは5.8mmとボイドがなく、含浸状態も非常に良好であり、テープの焼けもなく、シートを9分割した中央部分の厚み斑も平均厚み±9%に収まり、良好なものであった。
(Example 11)
A sheet was produced in the same manner as in Example 1 except that a side frame having a side of 380 mm square and a height of 50 mm was used. Although the flow distance of the preform in the mold was long and the four corners tended to be thinner than the center part, the thickness of the obtained sheet was 5.8 mm and there was no void, and the impregnation state was also very The film was good, there was no burning of the tape, and the thickness unevenness at the center part obtained by dividing the sheet into 9 parts was within an average thickness of ± 9%.

(実施例12)
耐熱性離型物品の側面枠の高さが、側面枠内に配置された予備成形体の堆積物の高さより2mm高い、42mmの物を用いた事以外は、実施例1と同じ方法でシートを作製した。予備成形体の堆積物の高さと側面枠の高さが近い事により均一に堆積させやすく、搬送の際にテープが溢れる事もなく、テープが側面枠にもたれ掛かり過加熱となる事もなく、シートを作製する事が出来た。得られたシートの平均厚みは5.7mm、シートを9分割した中央部分の厚み斑は平均厚み±6%と良好であった。
(Example 12)
The sheet was prepared in the same manner as in Example 1 except that a side frame of the heat-resistant release article had a height of 42 mm, which was 2 mm higher than the height of the deposit of the preform formed in the side frame. Produced. It is easy to deposit uniformly because the height of the deposit of the preform and the height of the side frame are close, the tape does not overflow during transportation, and the tape does not lean over the side frame and overheat, A sheet could be produced. The average thickness of the obtained sheet was 5.7 mm, and the thickness unevenness at the center part obtained by dividing the sheet into 9 parts was as good as an average thickness of ± 6%.

(実施例13)
連続ガラス繊維(日本電気硝子(株)製、ER2310−431N、2310Tex、4000f)を直径2cmのローラーに通し開繊後、0.8MPaの圧力を有する熱可塑性樹脂としてNy6(東洋紡績(株)製、A2500、融点220℃)を用い、270℃の樹脂槽を通し、樹脂を連続的に含浸させ、その後、賦形ローラーで潰し冷却固化させた後、カッティングし、ガラス繊維73質量部にナイロン樹脂27質量部が含浸されてなる、幅14mm、長さ20mm、厚み0.1mmのテープ状の予備成形体を作製した。実施例1と同じ側面枠内に上記予備成形体2.15kgをガラス繊維の配向がランダムになる様、また高さが40mmになる様、堆積させた後、一般的なIRヒーター(日本ガイシ(株)製、インフラスタイン炉、品番H7GS―73363)で、耐熱性離型物品を介し該予備成形体の熱可塑性樹脂を260℃に加熱した。その後、側面枠を取り外し、一辺450mm角、温度150℃の平板金型内へ耐熱性離型物品の底面板を反転させ、予備成形体の堆積物を金型内へチャージした後、15MPaの圧力で2分間プレスし、所望の平板を作製した。得られたシートの厚みは5.7mmとボイドがなく、テープの焼けもなく、シートを9分割した中央部分の厚み斑も平均厚み±6%に収まり、良好なものであった。
(Example 13)
Ny6 (manufactured by Toyobo Co., Ltd.) as a thermoplastic resin having a pressure of 0.8 MPa after opening continuous fiberglass (manufactured by Nippon Electric Glass Co., Ltd., ER2310-431N, 2310Tex, 4000f) through a roller having a diameter of 2 cm. , A2500, melting point 220 ° C.), passing through a resin bath at 270 ° C., continuously impregnating the resin, then crushing with a shaping roller and solidifying by cooling, then cutting, nylon resin on 73 parts by mass of glass fiber A tape-shaped preform having a width of 14 mm, a length of 20 mm, and a thickness of 0.1 mm, which was impregnated with 27 parts by mass, was produced. After depositing 2.15 kg of the preform in the same side frame as in Example 1 so that the orientation of the glass fibers is random and the height is 40 mm, a general IR heater (NGK The thermoplastic resin of the preform was heated to 260 ° C. through a heat-resistant release article in an Infrastein furnace, product number H7GS-73363). Thereafter, the side frame is removed, the bottom plate of the heat-resistant release article is inverted into a flat plate mold having a side of 450 mm square and a temperature of 150 ° C., and the deposit of the preform is charged into the mold, and then the pressure of 15 MPa Was pressed for 2 minutes to prepare a desired flat plate. The thickness of the obtained sheet was 5.7 mm, no void, no burning of the tape, and the thickness unevenness of the central part obtained by dividing the sheet into 9 parts was within an average thickness of ± 6%, which was good.

(実施例14)
強化繊維として、連続炭素繊維ロービング(東邦テナックス社製 IMS40,340Tex,6000フィラメント)を使用した以外は、実施例1と全く同様に、樹脂を連続的に含浸させ、その後、賦形ローラーで潰し冷却固化させた後、カッティングし、炭素繊維68質量部にポリプロピレン樹脂32質量部が含浸されてなる、幅15mm、長さ20mm、厚み0.12mmの短冊状の予備成形体を作製した。一方、耐熱性離型物品として、実施例1と全く同様の底面が430mm角の耐熱性離型物品とした。この側面枠内に上記予備成形体1.5kgを炭素繊維の配向がランダムになる様、また高さが40mmになる様、堆積させた後、実施例1と全く同様に、耐熱性離型物品を介し該予備成形体の熱可塑性樹脂を220℃に加熱した。その後、側面枠を取り外し、一辺450mm角、温度100℃の平板金型内へ耐熱性離型物品の底面板を反転させ、予備成形体の堆積物を金型内へチャージした後、17MPaの圧力で2分間プレスし、所望の平板を作製した。得られたシートの厚みは5.5mmとボイドがなく、テープの焼けもなく、シートを9分割した中央部分の厚み斑も平均厚み±6%に収まり、良好なものであった。
(Example 14)
Except for using continuous carbon fiber roving (IMS40,340Tex, 6000 filament manufactured by Toho Tenax Co., Ltd.) as the reinforcing fiber, the resin was continuously impregnated in the same manner as in Example 1, and then crushed and cooled with a shaping roller. After solidifying, cutting was performed to prepare a strip-shaped preform having a width of 15 mm, a length of 20 mm, and a thickness of 0.12 mm, in which 68 parts by mass of carbon fibers were impregnated with 32 parts by mass of polypropylene resin. On the other hand, as the heat-resistant release article, a heat-resistant release article having a bottom surface of 430 mm square exactly the same as in Example 1 was used. After depositing 1.5 kg of the preform in the side frame so that the orientation of the carbon fibers is random and the height is 40 mm, the heat-resistant release article is exactly the same as in Example 1. The thermoplastic resin of the preform was heated to 220 ° C. Thereafter, the side frame is removed, the bottom plate of the heat-resistant release article is inverted into a flat plate mold having a side of 450 mm square and a temperature of 100 ° C., and the deposit of the preform is charged into the mold, and then the pressure of 17 MPa Was pressed for 2 minutes to prepare a desired flat plate. The obtained sheet had a thickness of 5.5 mm, no voids, no burning of the tape, and the thickness unevenness in the central part obtained by dividing the sheet into 9 parts was within an average thickness of ± 6%, which was good.

(比較例1)
耐熱離型物品の開口率を0%とした以外は、実施例1と同法にて一辺450mm角のシート状物を作製した。得られたシートの厚みは6.2mm、シートを9分割した中央部分の厚み斑は平均厚み±13%であった。予備成形体への熱伝達率が悪く、熱可塑性樹脂を220℃に加熱するのに非常に時間がかかり、且つシート中央部に所々ボイドの残るものとなってしまった。
(Comparative Example 1)
A sheet-like material having a side of 450 mm square was produced in the same manner as in Example 1 except that the opening ratio of the heat-resistant release article was 0%. The thickness of the obtained sheet was 6.2 mm, and the thickness unevenness at the center part obtained by dividing the sheet into 9 parts was an average thickness of ± 13%. The heat transfer rate to the preform was poor, it took a very long time to heat the thermoplastic resin to 220 ° C., and voids remained in the center of the sheet.

(比較例2)
強化繊維としてのガラス繊維75質量部に、実施例1で使用したポリプロピレン樹脂25質量部を0.05MPaの圧力を有する樹脂槽を通し含浸させた以外は、実施例1と同じ方法により所望の平板を得た。得られたシートの厚みは6.0mm、シートを9分割した中央部分の厚み斑は平均厚み±11%となり、所々に含浸不良に伴うボイド跡の残るシートとなった。
(Comparative Example 2)
A desired flat plate was obtained by the same method as in Example 1 except that 75 parts by mass of glass fiber as a reinforcing fiber was impregnated with 25 parts by mass of the polypropylene resin used in Example 1 through a resin tank having a pressure of 0.05 MPa. Got. The thickness of the obtained sheet was 6.0 mm, and the thickness unevenness at the center part obtained by dividing the sheet into 9 parts had an average thickness of ± 11%, resulting in sheets having void marks due to poor impregnation.

(比較例3)
強化繊維としてのガラス繊維75質量部に、実施例1で使用したポリプロピレン樹脂25質量部の予備成形体を用い、一辺550mm角の金型を用いた以外は、実施例1と同じ方法でシートを得た。得られたシートの平均厚みは4.0mm、シートを9分割した中央部分の厚み斑は平均厚み±12%となり、材料の流動距離が長いために金型の隅にまで十分材料が行き渡らず、四隅が薄いシートとなった。
(Comparative Example 3)
The sheet was formed in the same manner as in Example 1, except that a preform of 25 parts by mass of the polypropylene resin used in Example 1 was used for 75 parts by mass of glass fiber as a reinforcing fiber, and a 550 mm square mold was used. Obtained. The average thickness of the obtained sheet is 4.0 mm, the thickness unevenness of the central part obtained by dividing the sheet into 9 parts is the average thickness ± 12%, and the material does not reach the corners of the mold sufficiently because the flow distance of the material is long. The four corners became thin sheets.

(比較例4)
強化繊維としてのガラス繊維75質量部に、実施例1で使用したポリプロピレン樹脂25質量部の予備成形体を用い、成形圧力が1.5MPaである事以外は、実施例1と同じ方法でシートを作製した。得られたシートの平均厚みは6.3mm、シートを9分割した中央部分の厚み斑は平均厚み±14%となり、所々にボイドの残ったシートとなってしまった。
(Comparative Example 4)
Using 75 parts by mass of glass fiber as a reinforcing fiber, a preform of 25 parts by mass of the polypropylene resin used in Example 1, and using the same method as in Example 1 except that the molding pressure is 1.5 MPa. Produced. The average thickness of the obtained sheet was 6.3 mm, and the thickness unevenness at the center portion obtained by dividing the sheet into 9 parts had an average thickness of ± 14%, resulting in sheets with voids remaining in places.

(比較例5)
強化繊維としてのガラス繊維75質量部に、実施例1で使用したポリプロピレン樹脂25質量部の予備成形体を用い、445mm角、高さが4cmのアルミ箔からなるボックス内に予備成形体を2kg充填させ、450mm角、温度が230℃の加熱プレス機内で0.6MPaの成形圧力をかけながら熱可塑性樹脂を溶融させた後、ボックス自体を取り出し、100℃の冷却プレス機内に設置後、5MPaの圧力をかけシートを作製した。得られたシートの平均厚みは5.9mm、シートを9分割した中央部分の厚み斑は平均厚み±6%と良好であったが、加熱プレスから冷却プレスに予備成形体を搬送するために用いられるアルミ箔からなるボックスは使い捨てのため高コストとなり、且つ、ボックス作製、アルミ箔除去、加熱プレスから冷却プレスへの搬送と、作業効率の非常に悪いものとなった。
(Comparative Example 5)
Using a preform of 25 parts by mass of the polypropylene resin used in Example 1 for 75 parts by mass of glass fiber as a reinforcing fiber, 2 kg of a preform is filled in a box made of 445 mm square and 4 cm high aluminum foil. The thermoplastic resin was melted while applying a molding pressure of 0.6 MPa in a hot press machine having a 450 mm square and a temperature of 230 ° C., then the box itself was taken out and placed in a 100 ° C. cooling press machine, and then a pressure of 5 MPa. To prepare a sheet. The average thickness of the obtained sheet was 5.9 mm, and the thickness unevenness of the central part obtained by dividing the sheet into 9 was good with an average thickness of ± 6%, but it was used to convey the preform from the heating press to the cooling press. Since the box made of aluminum foil is disposable, the cost is high because it is disposable, and the work efficiency is very poor since the box is produced, the aluminum foil is removed, and the conveyance from the heating press to the cooling press.

本発明によれば、含浸性と生産性とを同時に満足し、溶融樹脂を流出させず、所望の繊維重量含有率が得られ、かつ、低コストで実施され得る繊維強化熱可塑性樹脂成形品の製造方法が提供できる。   According to the present invention, a fiber-reinforced thermoplastic resin molded article that satisfies the impregnation property and the productivity at the same time, does not cause the molten resin to flow out, can obtain a desired fiber weight content, and can be implemented at low cost. A manufacturing method can be provided.

Claims (7)

強化繊維と熱可塑性樹脂とを含有する繊維強化熱可塑性樹脂成形品の製造方法であって、
連続強化繊維を開繊後、内部圧力が0.1MPa以上である熱可塑性樹脂槽を通し、熱可塑性樹脂を連続含浸させ、その後、賦形ローラーで潰し冷却固化させた後、カッティングして予備成形体を作製する工程と、
開口率が10〜90%である少なくとも底面と側面から構成された、該熱可塑性樹脂の軟化点または融点よりも高い融点を有する耐熱性離型物品内に、該予備成形体を堆積する工程と、
該熱可塑性樹脂の軟化点または融点よりも高い温度で、該耐熱性離型物品を介して該予備成形体の熱可塑性樹脂を溶融する工程と、
該耐熱性離型物品底面の径よりも1〜80mm大きい径を有する金型を用い、該熱可塑性樹脂の軟化点または融点未満の温度、及び2MPa以上の圧力で、該予備成形体の堆積物を加圧冷却固化する工程を
包含する繊維強化熱可塑性樹脂成形品の製造方法であって、
前記耐熱性離型物品が、底面板と側面枠から構成され、予備成形体を側面枠内に堆積した後、熱可塑性樹脂の軟化点または融点よりも高い温度で予備成形体の熱可塑性樹脂を溶融し、その後、側面枠を取り外し、底面板を反転させて金型内に予備成形体の堆積物をチャージし、冷却プレスして冷却固化する事を特徴とする繊維強化熱可塑性樹脂成形品の製造方法。
A method for producing a fiber reinforced thermoplastic resin molded article containing a reinforced fiber and a thermoplastic resin,
After opening the continuous reinforcing fiber, it is passed through a thermoplastic resin tank with an internal pressure of 0.1 MPa or more, continuously impregnated with the thermoplastic resin, then crushed by a shaping roller, cooled and solidified, and then cut and preformed. Producing a body;
Depositing the preform in a heat-resistant release article having a melting point higher than the softening point or melting point of the thermoplastic resin, which is composed of at least a bottom surface and a side surface having an opening ratio of 10 to 90%; ,
Melting the thermoplastic resin of the preform through the heat-resistant release article at a temperature higher than the softening point or melting point of the thermoplastic resin;
Using a mold having a diameter 1 to 80 mm larger than the diameter of the bottom surface of the heat-resistant release article, and depositing the preform at a temperature below the softening point or melting point of the thermoplastic resin and a pressure of 2 MPa or more A method for producing a fiber-reinforced thermoplastic resin molded article comprising the step of solidifying under pressure cooling ,
The heat-resistant release article is composed of a bottom plate and a side frame, and after depositing the preform in the side frame, the thermoplastic resin of the preform is heated at a temperature higher than the softening point or melting point of the thermoplastic resin. The fiber reinforced thermoplastic resin molded product is characterized by melting, and then removing the side frame, reversing the bottom plate, charging the deposit of the preform into the mold, cooling and solidifying by cooling . Production method.
前記予備成形体が、長さ5mm〜100mm、幅5mm〜50mm、厚み0.05mm〜0.3mmの薄膜片のテープであり、予備成形体に含有される強化繊維と熱可塑性樹脂との質量比が85/15〜40/60である、請求項1に記載の繊維強化熱可塑性樹脂成形品の製造方法。 The preform is a thin film tape having a length of 5 mm to 100 mm, a width of 5 mm to 50 mm, and a thickness of 0.05 mm to 0.3 mm, and a mass ratio of reinforcing fibers and thermoplastic resin contained in the preform. The method for producing a fiber-reinforced thermoplastic resin molded article according to claim 1, wherein is 85/15 to 40/60. 前記予備成形体が、連続強化繊維を開繊させた後、熱可塑性樹脂槽を通す前に、樹脂吐出スリットを有する曲面ダイに接触させ、熱可塑性樹脂を含浸させて得られる事を特徴とする請求項1または2に記載の繊維強化熱可塑性樹脂成形品の製造方法。 The preform is obtained by opening a continuous reinforcing fiber and then contacting a curved die having a resin discharge slit and impregnating with a thermoplastic resin before passing through the thermoplastic resin tank. The manufacturing method of the fiber reinforced thermoplastic resin molded product of Claim 1 or 2. 前記耐熱性離型物品がアルミニウム、またはステンレスである事を特徴とする請求項1〜のいずれかに記載の繊維強化熱可塑性樹脂成形品の製造方法。 The method for producing a fiber-reinforced thermoplastic resin molded article according to any one of claims 1 to 3 , wherein the heat-resistant release article is aluminum or stainless steel. 前記耐熱性離型物品の、少なくとも予備成形体と接触する面に離型処理が施されている事を特徴とする請求項1〜のいずれかに記載の繊維強化熱可塑性樹脂成形品の製造方法。 The heat-resistant release article, the manufacture of fiber-reinforced thermoplastic resin molded article according to any one of claims 1 to 4, characterized in that the release treatment is applied to the surface in contact with at least the preform Method. 前記耐熱性離型物品の側面枠の高さが、予備成形体の堆積物の高さより1〜15mm高い事を特徴とする請求項1〜のいずれかに記載の繊維強化熱可塑性樹脂成形品の製造方法。 The fiber-reinforced thermoplastic resin molded article according to any one of claims 1 to 5 , wherein a height of a side frame of the heat-resistant release article is 1 to 15 mm higher than a height of a deposit of the preform. Manufacturing method. 前記熱可塑性樹脂成形品がシート状であり、その厚み斑が平均厚み±10%以内である事を特徴とする請求項1〜のいずれかに記載の繊維強化熱可塑性樹脂成形品の製造方法。 The method for producing a fiber-reinforced thermoplastic resin molded article according to any one of claims 1 to 6 , wherein the thermoplastic resin molded article has a sheet shape, and the thickness unevenness thereof is within an average thickness ± 10%. .
JP2012069386A 2012-01-26 2012-03-26 Manufacturing method of fiber reinforced thermoplastic resin molded article Active JP5962114B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012069386A JP5962114B2 (en) 2012-01-26 2012-03-26 Manufacturing method of fiber reinforced thermoplastic resin molded article

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012013942 2012-01-26
JP2012013942 2012-01-26
JP2012069386A JP5962114B2 (en) 2012-01-26 2012-03-26 Manufacturing method of fiber reinforced thermoplastic resin molded article

Publications (2)

Publication Number Publication Date
JP2013173338A JP2013173338A (en) 2013-09-05
JP5962114B2 true JP5962114B2 (en) 2016-08-03

Family

ID=49266731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012069386A Active JP5962114B2 (en) 2012-01-26 2012-03-26 Manufacturing method of fiber reinforced thermoplastic resin molded article

Country Status (1)

Country Link
JP (1) JP5962114B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015157384A (en) * 2014-02-24 2015-09-03 東洋紡株式会社 Method for producing fiber-reinforced thermoplastic resin-molded article
JP2016078308A (en) * 2014-10-16 2016-05-16 東洋紡株式会社 Method for producing fiber-reinforced thermoplastic resin molded article
JP6703842B2 (en) * 2016-01-20 2020-06-03 株式会社Ihi Molding apparatus for fiber-reinforced composite member and method for molding fiber-reinforced composite member
JP6368748B2 (en) * 2016-08-17 2018-08-01 株式会社日本製鋼所 Molding method for molding fiber reinforced resin
JP2018134807A (en) * 2017-02-22 2018-08-30 三菱ケミカル株式会社 Simulation method of resin fluidity

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03264314A (en) * 1990-03-15 1991-11-25 Mitsubishi Petrochem Co Ltd Manufacture of fiber reinforced thermoplastic resin molded body
JPH04212811A (en) * 1990-12-07 1992-08-04 Matsushita Electric Works Ltd Manufacture of prepreg
JP3237717B2 (en) * 1991-12-26 2001-12-10 東洋紡績株式会社 Method for producing thermoplastic composite material
JPH09109164A (en) * 1995-10-16 1997-04-28 Toyota Kako Kk Hot press molded product of carpet waste material and its manufacture
JPH09277387A (en) * 1996-04-16 1997-10-28 Toyobo Co Ltd Manufacture of fiber reinforced thermoplastic resin sheet
JP2004143226A (en) * 2002-10-22 2004-05-20 Toyobo Co Ltd Compression molding material
US20070160822A1 (en) * 2005-12-21 2007-07-12 Bristow Paul A Process for improving cycle time in making molded thermoplastic composite sheets

Also Published As

Publication number Publication date
JP2013173338A (en) 2013-09-05

Similar Documents

Publication Publication Date Title
JP5962114B2 (en) Manufacturing method of fiber reinforced thermoplastic resin molded article
JP5858171B2 (en) Thermoplastic prepreg, laminated substrate and molded product
JPWO2007020910A1 (en) Isotropic fiber-reinforced thermoplastic resin sheet, method for producing the same, and molded plate
JP5459005B2 (en) Press molding method and molded body thereof
KR101417245B1 (en) Complex sheet manufacturing device with excellent saturation property and method of manufacturing high strength complex sheet
CN109228408B (en) Method for producing fiber-reinforced resin base material or resin molded article, and plasticizing ejector used in the production method
JP2016078308A (en) Method for producing fiber-reinforced thermoplastic resin molded article
CN106626444A (en) Production technology of continuous fiber reinforced thermoplastic composites (CFRTP) pultruded profiles
JP2014105310A (en) Method of manufacturing prepreg
JPH09277387A (en) Manufacture of fiber reinforced thermoplastic resin sheet
TW201406842A (en) Carbon fiber composite material and molded article formed by the same, and manufacturing method of these
JP2015140353A (en) Fiber-reinforced thermoplastic resin composition, method for producing the same, and method for producing fiber-reinforced thermoplastic resin molding
JP2015157384A (en) Method for producing fiber-reinforced thermoplastic resin-molded article
JP2016172322A (en) Method for producing fiber-reinforced thermoplastic resin-molded article
JP6786826B2 (en) Fiber reinforced composite and its manufacturing method
JPWO2015076283A1 (en) Fiber reinforced thermoplastic resin sheet
JPH05147147A (en) Half-finished product having electrically conductive layer of plastic material
JPH09234751A (en) Manufacture of fiber reinforced thermoplastic resin sheet
JP2019210417A (en) Process for producing fiber reinforced composite material
JP2016169271A (en) Carbon fiber resin composite material sheet having improved draw-down properties
JP2023113513A (en) Production method of fiber-reinforced thermoplastic resin sheet
CN102601908B (en) Compression molding method of large-sized polyvinylidene fluoride plate
CN114555312B (en) Method for producing thermoplastic fiber-reinforced resin molded article
CN108437343A (en) The production method of the big thickness product of carbon fiber polyether-ether-ketone thermoplastics type's composite material
JP2014105245A (en) Method for producing thermoplastic molding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160613

R151 Written notification of patent or utility model registration

Ref document number: 5962114

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350