JP5958972B2 - Microwave dielectric heating assembly - Google Patents

Microwave dielectric heating assembly Download PDF

Info

Publication number
JP5958972B2
JP5958972B2 JP2013252984A JP2013252984A JP5958972B2 JP 5958972 B2 JP5958972 B2 JP 5958972B2 JP 2013252984 A JP2013252984 A JP 2013252984A JP 2013252984 A JP2013252984 A JP 2013252984A JP 5958972 B2 JP5958972 B2 JP 5958972B2
Authority
JP
Japan
Prior art keywords
heating element
dielectric heating
lower member
upper member
welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013252984A
Other languages
Japanese (ja)
Other versions
JP2015110287A (en
Inventor
隆行 大平
隆行 大平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Chemical Co Ltd
Original Assignee
Aisin Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Chemical Co Ltd filed Critical Aisin Chemical Co Ltd
Priority to JP2013252984A priority Critical patent/JP5958972B2/en
Publication of JP2015110287A publication Critical patent/JP2015110287A/en
Application granted granted Critical
Publication of JP5958972B2 publication Critical patent/JP5958972B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lining Or Joining Of Plastics Or The Like (AREA)

Description

本発明は熱可塑性材料を母体材料とし、分割した合成樹脂成型体を溶着させるマイクロ波誘電加熱接合体に関するものである。   The present invention relates to a microwave dielectric heating joined body using a thermoplastic material as a base material and welding a divided synthetic resin molded body.

2つの合成樹脂成型体を溶着させる技術は公知であり、その加熱源として、例えば、レーザ、超音波、マイクロ波等の熱源による溶着面の加熱手段が採用されてきている。しかし、このような方法は2つの合成樹脂成型体を溶着させる手段として採用することができても、3つ以上の合成樹脂成型体を一度に溶着することはできない。特に、マイクロ波等で誘電加熱すると形、大きさ、位置によって溶融及び溶着制御できないのが普通であり均一な溶着を期待できない。   A technique for welding two synthetic resin moldings is known, and as a heating source, for example, a heating means for a welding surface by a heat source such as a laser, an ultrasonic wave, or a microwave has been adopted. However, even if such a method can be adopted as a means for welding two synthetic resin moldings, it is not possible to weld three or more synthetic resin moldings at a time. In particular, when dielectric heating is performed using microwaves or the like, it is normal that melting and welding cannot be controlled depending on the shape, size, and position, and uniform welding cannot be expected.

例えば、特許文献1には、樹脂性ケースの溶着面の形状を略等分化した複数の線条の抵抗発熱体を、ケース本体とカバー間の溶着面全体に挟み込んで閉じ、次に、ケース本体或いはカバーのいずれか一方に、お互いの抵抗発熱体の端部が隣接する位置に形成したガイド孔を介して給電装置に接続した電圧印加端子を挿入して隣接する抵抗発熱体に同時に電圧を印加する。そして、抵抗発熱体はその電気抵抗により発熱して、周囲の樹脂を溶融する。即ち、溶着面全周の樹脂を溶融する。十分に溶融したところで電圧印加を止め、電圧印加端子を抜き、冷却すると、溶融した樹脂が硬化してケース本体とカバーは全周溶着する。その後、貫通孔の周辺に突出した段部を溶着チップで押し潰すと貫通孔が封鎖され、密封効果の高い一体化したケースが完成する。この種の熱可塑性樹脂で成形された樹脂製ケースにおいては、ケース本体とカバーの溶着部に、未溶着部分を残さないようにすることができる技術が開示されている。   For example, in Patent Document 1, a plurality of linear resistance heating elements whose shape of a welding surface of a resinous case is approximately equally divided are sandwiched and closed across the entire welding surface between the case body and the cover, and then the case body Alternatively, a voltage application terminal connected to the power supply device is inserted into one of the covers through a guide hole formed at a position where the ends of the resistance heating elements are adjacent to each other, and a voltage is simultaneously applied to the adjacent resistance heating elements. To do. The resistance heating element generates heat due to its electric resistance and melts the surrounding resin. That is, the resin around the entire weld surface is melted. When the voltage is sufficiently melted, the voltage application is stopped, the voltage application terminal is pulled out, and the resin is cooled. Thereafter, when the stepped portion protruding around the through hole is crushed with a welding tip, the through hole is sealed, and an integrated case with a high sealing effect is completed. In a resin case molded with this type of thermoplastic resin, a technique is disclosed that can prevent an unwelded portion from remaining in the welded portion of the case body and the cover.

また、特許文献2では、熱可塑性樹脂よりなる一対の樹脂部材における一方の接合面に溝を形成し、可撓性を有する熱可塑性樹脂にマイクロ波吸収材料を混合したものを紐状に押出成形した溶着媒体を前記溝に装着した後に、一対の樹脂部材を重ね合わせて外部からマイクロ波を照射し、マイクロ波吸収材料が発熱して溶着媒体及びその周辺の樹脂部材を溶融することにより、該樹脂部材が一体に溶着され、柔軟な紐状に形成した溶着媒体を一方の樹脂部材の接合面に形成した溝にセットするので、複雑な接合面を有する樹脂部材であっても溶着媒体を容易に、かつ、正確にセットして溶着の品質及び作業性を高めることができ、マイクロ波吸収材料を混合した溶着媒体にマイクロ波を作用させて一対の樹脂部材を溶着する際、その溶着の品質及び作業性を高める技術が開示されている。   In Patent Document 2, a groove is formed on one joining surface of a pair of resin members made of a thermoplastic resin, and a mixture of a thermoplastic resin having flexibility and a microwave absorbing material is extruded into a string shape. After mounting the welding medium in the groove, a pair of resin members are overlapped and irradiated with microwaves from the outside, and the microwave absorbing material generates heat to melt the welding medium and the surrounding resin members. Since the resin member is integrally welded and the welding medium formed in a flexible string shape is set in the groove formed on the joint surface of one resin member, the welding medium can be easily used even with a resin member having a complicated joint surface. In addition, it is possible to improve the quality and workability of welding by accurately setting, and when welding a pair of resin members by applying a microwave to a welding medium mixed with a microwave absorbing material, the welding product And techniques to improve the workability is disclosed.

特開平10−323903号公報JP 10-323903 A 特開2000−233450号公報JP 2000-233450 A

このように、特許文献1は、抵抗発熱体をリング状に2等分されるようにケースの上下にセットした後、前記抵抗発熱体に直接電圧を印加して発熱させ、接合面全周を溶着させる技術である。ここでは、電極を前記抵抗発熱体に直接当てるため、前記抵抗発熱体は一体に形成したリング状とはなっていない。そのため、電極を当てる部分に予め孔をあけておくか、前記抵抗発熱体の端部を外へ出しておく必要がある。また、前記抵抗発熱体は一体に形成したリング状となっていないために、一般的に考えて、溶着後の気密性を確保できていないと推定される。勿論、前記抵抗発熱体の電極のために形成した孔を後から樹脂で埋める方法もあるが、それで十分な気密性を得るには、作業が煩雑となり、生産性が良くない。   As described above, in Patent Document 1, after the resistance heating element is set on the upper and lower sides of the case so as to be divided into two halves, a voltage is directly applied to the resistance heating element so as to generate heat, It is a technique for welding. Here, since the electrode is directly applied to the resistance heating element, the resistance heating element is not formed in an integrally formed ring shape. For this reason, it is necessary to make a hole in advance in the portion to which the electrode is applied or to leave the end of the resistance heating element to the outside. Further, since the resistance heating element is not formed in an integrally formed ring shape, it is presumed that the airtightness after welding cannot be ensured in general. Of course, there is a method of filling the hole formed for the electrode of the resistance heating element with a resin later, but in order to obtain sufficient airtightness, the work becomes complicated and the productivity is not good.

また、ケース内部の上下を複数箇所同時に溶着させる場合には、そもそも電極の接続ができないことから、溶着することができない。それでも電極を接続するとなると、ケースが孔だらけとなり、気密性以前の問題となる。よって、箱の外周のみであれば接合可能だが、箱の内部や多層構造体には使用できない技術である。
そして、特許文献2には、マイクロ波吸収部材を用いて溶着部材を溶着する技術を開示している。この特許文献2の発熱体の断面は円形であり、下に位置する樹脂は発熱体がきれいに嵌るような半円形状で、上に位置する樹脂は平面とし、発熱体を潰しながら、溶着している。この断面形状では上下樹脂が溶け合うことができず、気密性は確保できないと推定される。更に、発熱体が外側へ溢れ出ることから、マイクロ波を吸収させて溶着することには展開できない。
In addition, when the upper and lower portions inside the case are simultaneously welded, since the electrodes cannot be connected in the first place, they cannot be welded. If the electrodes are still connected, the case becomes full of holes, which becomes a problem before airtightness. Therefore, it is a technique that can be joined only on the outer periphery of the box, but cannot be used for the inside of the box or a multilayer structure.
And in patent document 2, the technique which welds a welding member using a microwave absorption member is disclosed. The cross section of the heating element of this Patent Document 2 is circular, the resin located below is semi-circular so that the heating element fits neatly, and the resin located above is flat and welded while crushing the heating element Yes. In this cross-sectional shape, the upper and lower resins cannot be melted together, and it is estimated that airtightness cannot be ensured. Furthermore, since the heating element overflows to the outside, it cannot be developed to absorb microwaves and weld them.

そこで、本発明は、上記問題点を解消すべくなされたもので、外形や大きさ、溶着位置によって溶着状態が左右されることがなく、信頼性の高い均一な溶着ができ、シール性に富むマイクロ波誘電加熱接合体の提供を課題とするものである。   Therefore, the present invention has been made to solve the above problems, and the welding state is not affected by the outer shape, size, or welding position, and a highly reliable and uniform welding can be performed, and the sealing performance is high. An object of the present invention is to provide a microwave dielectric heating assembly.

請求項1の発明のマイクロ波誘電加熱接合体は、熱可塑性樹脂を母材とするロアー部材とアッパー部材が、マイクロ波によって発熱する誘電発熱体によって溶融し、加圧することで前記ロアー部材とアッパー部材が溶着するマイクロ波誘電加熱接合体において、凹凸組み合わせ構造内に前記誘電発熱体が収容され、前記ロアー部材とアッパー部材の溶着前の溶着部位が、前記加圧方向に対し接した位置の凹凸組み合わせ構造内にあり、前記ロアー部材とアッパー部材間には、前記加圧方向に加圧のための加圧距離を設定したものである。
ここで、上記加圧のための加圧距離は、ロアー部材とアッパー部材間に設けられ、前記誘電発熱体が凹凸組み合わせ構造内に収容された状態で加圧方向に圧縮される距離を意味する。
The microwave dielectric heating assembly according to the first aspect of the present invention is such that a lower member and an upper member having a thermoplastic resin as a base material are melted and pressed by a dielectric heating element that generates heat by microwaves, and the lower member and the upper member are pressed. In the microwave dielectric heating assembly to which the member is welded, the dielectric heating element is accommodated in the concave / convex combination structure, and the concave / convex portion is located at a position where the welding portion of the lower member and the upper member is in contact with the pressing direction. In the combined structure, a pressing distance for pressing is set in the pressing direction between the lower member and the upper member.
Here, the pressurizing distance for pressurization means a distance that is provided between the lower member and the upper member and is compressed in the pressurizing direction in a state where the dielectric heating element is housed in the uneven combination structure. .

また、前記凹凸組み合わせ構造には前記誘電発熱体を収容する凹部が設けられているものである。
ここで、凹凸組み合わせ構造とは、ロアー部材またはアッパー部材の一方を凹部または凸部とするものであり、対応するアッパー部材またはロアー部材が逆に凸部または凹部とするものである。そして、凹凸組み合わせ構造には、誘電発熱体を収容する凹部が凹凸組み合わせ構造の凹部または凸部の一方に、または、凹部と凸部の双方に設けられる構造もある。
The concave / convex combination structure is provided with a concave portion for accommodating the dielectric heating element.
Here, the concave / convex combination structure is such that one of the lower member or the upper member is a concave portion or a convex portion, and the corresponding upper member or the lower member is a convex portion or a concave portion. In addition, the concave / convex combination structure includes a structure in which a concave portion that accommodates the dielectric heating element is provided in one of the concave portion and the convex portion of the concave / convex combination structure or in both the concave portion and the convex portion.

請求項1の発明のマイクロ波誘電加熱接合体は、熱可塑性樹脂を母材とするロアー部材とアッパー部材が、マイクロ波によって発熱する誘電発熱体によって溶融し、加圧することで前記ロアー部材とアッパー部材が溶着するマイクロ波誘電加熱接合体において、凹凸組み合わせ構造内に前記誘電発熱体が収容され、前記ロアー部材とアッパー部材の溶着前の溶着部位が、前記加圧方向に対し接した位置の凹凸組み合わせ構造内にあり、前記ロアー部材とアッパー部材間には、前記加圧方向に加圧のための加圧距離を有している。
このように、溶着させるロアー部材とアッパー部材の溶着前の溶着部位が凹凸組み合わせ構造であるため、ロアー部材とアッパー部材の溶着部位はこの凹凸組み合わせ構造によって溶着位置が定まり、凹凸組み合わせ構造は加圧方向に対し接合した状態で加圧されるため、溶着後のロアー部材とアッパー部材間は確実なシール性が確保できる。そして、このときの加圧は、ロアー部材とアッパー部材間の加圧距離によって確実な加圧が保障される。
また、誘電発熱体が凹凸組み合わせ構造内の溶着部位に収容されているため、溶着部位の所定の位置に配する事ができ、この誘電発熱体によって溶着部位が効率よく溶融し、均一な溶着が可能となる。
The microwave dielectric heating assembly according to the first aspect of the present invention is such that a lower member and an upper member having a thermoplastic resin as a base material are melted and pressed by a dielectric heating element that generates heat by microwaves, and the lower member and the upper member are pressed. In the microwave dielectric heating assembly to which the member is welded, the dielectric heating element is accommodated in the concave / convex combination structure, and the concave / convex portion is located at a position where the welding portion of the lower member and the upper member is in contact with the pressing direction. It exists in a combination structure, and has the pressurization distance for pressurization in the said pressurization direction between the said lower member and an upper member.
Thus, since the welding portion before welding of the lower member and the upper member to be welded is uneven combination structure, welding site of the lower member and the upper member Ri Sadama is welded position by the unevenness combined structure, uneven combination structure Since pressure is applied in a state of being joined in the pressurizing direction, a reliable sealing property can be secured between the lower member and the upper member after welding. And the pressurization at this time is ensured by the pressurization distance between the lower member and the upper member.
In addition, since the dielectric heating element is accommodated in the welding part in the concave-convex combination structure, it can be arranged at a predetermined position of the welding part, and the welding part efficiently melts by this dielectric heating element, and uniform welding is achieved. It becomes possible.

更に、前記凹凸組み合わせ構造に前記誘電発熱体を収容する凹部が設けられている。このため、前記誘電発熱体によって、ロアー部材とアッパー部材の溶着部位が加圧方向に対し接合した状態で確実に凹凸部の溶着部位を溶融させることができ、より確実なシール性の確保が可能となる。 Further, the concave / convex combination structure is provided with a concave portion for accommodating the dielectric heating element. For this reason, the dielectric heating element can surely melt the welded portion of the uneven portion while the welded portion of the lower member and the upper member are joined in the pressurizing direction, thereby ensuring more reliable sealing performance. It becomes.

図1は本発明の実施の形態であり、(a)は成型体の平面図及び(b)はそのA−A切断線による誘電発熱体の断面図である。1A and 1B show an embodiment of the present invention, in which FIG. 1A is a plan view of a molded body and FIG. 図2は本発明の実施の形態の凹凸組み合わせ構造を示す事例で、(a)はロアー部材とアッパー部材の解放状態を説明する断面図、(b)はロアー部材とアッパー部材を嵌合させた嵌合状態を説明する断面図、(c)はロアー部材とアッパー部材を溶着した状態を説明する断面図である。FIGS. 2A and 2B show examples of the uneven combination structure according to the embodiment of the present invention. FIG. 2A is a cross-sectional view illustrating a released state of the lower member and the upper member, and FIG. 2B is a diagram in which the lower member and the upper member are fitted. Sectional drawing explaining a fitting state, (c) is sectional drawing explaining the state which welded the lower member and the upper member. 図3は本発明の実施の形態の凹凸組み合わせ構造の変形例(a)〜(g)を示すものである。FIG. 3 shows modified examples (a) to (g) of the uneven combination structure according to the embodiment of the present invention. 図4は本発明の実施の形態の図3の凹凸組み合わせ構造と異なる変形例(a)〜(e)を示すものである。FIG. 4 shows modified examples (a) to (e) different from the concave-convex combination structure of FIG. 3 according to the embodiment of the present invention.

以下、本発明の実施の形態について、図面に基づいて説明する。なお、実施の形態において、図示の同一記号及び同一符号は、同一または相当する機能部分であるから、ここではその重複する説明を省略する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that, in the embodiments, the same reference numerals and the same reference numerals are the same or corresponding functional parts, and therefore, redundant description thereof is omitted here.

[実施の形態]
まず、本発明の図2に示す成型体1のロアー部材5及びアッパー部材4の母材としては、一般の熱可塑性樹脂が使用できる。例えば、エンジニアリング・プラスチック、スーパー・エンジニアリング・プラスチックを用いることができる。具体的には、ポリアミド(ナイロン、芳香族ポリアミド等)、ポリアセタール、ポリカーボネート、変性ポリフェニレンエーテル、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ガラス繊維強化ポリエチレンテレフタレート、環状ポリオレフィン等がある。そして、スーパーエンプラとしては、ポリテトラフルオロエチレン(PTFE)、ポリスルホン、ポリエーテルサルフォン、非晶ポリアレート、液晶ポリマー、ポリアミドイミド等が使用できる。
[Embodiment]
First, as a base material of the lower member 5 and the upper member 4 of the molded body 1 shown in FIG. 2 of the present invention, a general thermoplastic resin can be used. For example, engineering plastics and super engineering plastics can be used. Specific examples include polyamide (nylon, aromatic polyamide, etc.), polyacetal, polycarbonate, modified polyphenylene ether, polyethylene terephthalate (PET), polybutylene terephthalate (PBT), glass fiber reinforced polyethylene terephthalate, and cyclic polyolefin. As the super engineering plastic, polytetrafluoroethylene (PTFE), polysulfone, polyethersulfone, amorphous polyarate, liquid crystal polymer, polyamideimide and the like can be used.

ここで、本発明の実施の形態の成型体1としては、金属、熱硬化性樹脂からの代替として選択されている融点が約280℃の高い耐熱性及び優れた耐薬品性と難燃剤を何ら添加せずに自己消火性を実現する高機能樹脂材料として知られているポリフェニレンサルファイド(以下、単に、『PPS』という)樹脂を選択した。また、機械強度、耐熱性、耐薬品性、難燃性を維持しながら、耐衝撃性とウエルド強度を高める材料であることからもこの材料を特定したものである。   Here, as the molded body 1 according to the embodiment of the present invention, high heat resistance having a melting point of about 280 ° C. selected as an alternative to metal and thermosetting resin, and excellent chemical resistance and flame retardant are used. A polyphenylene sulfide (hereinafter simply referred to as “PPS”) resin, which is known as a highly functional resin material that achieves self-extinguishing properties without addition, was selected. This material is also specified because it is a material that increases impact resistance and weld strength while maintaining mechanical strength, heat resistance, chemical resistance, and flame retardancy.

次に、本発明の実施の形態で使用する誘電発熱体2としては、接合される成型体1である母材となる熱可塑性樹脂を溶融可能とするために、発熱体10をバインダー20で固めて所定の形状に形成したものである。   Next, as the dielectric heating element 2 used in the embodiment of the present invention, the heating element 10 is hardened with a binder 20 so that the thermoplastic resin as a base material which is the molded body 1 to be joined can be melted. Are formed in a predetermined shape.

本発明の実施の形態で使用する発熱体10としては、接合される成型体の母材となる熱可塑性樹脂を溶融させる特定の温度以上に昇温する物質であればよい。発熱体10の材料としては、例えば、鉄、クロム、ニッケル、鉄−クロム合金、鉄−ニッケル合金、ニッケル−クロム合金、及びSUS等を用いることができる。このとき、マイクロ波の照射エネルギの変化は、前記誘電発熱体の温度を変化させ放出する放射及び/または伝熱する熱エネルギに変化される。   The heating element 10 used in the embodiment of the present invention may be any substance that raises the temperature to a specific temperature or higher that melts the thermoplastic resin that is the base material of the molded body to be joined. As a material of the heating element 10, for example, iron, chromium, nickel, iron-chromium alloy, iron-nickel alloy, nickel-chromium alloy, SUS, or the like can be used. At this time, the change in the irradiation energy of the microwave is changed to the radiation to be emitted and / or the heat energy to be transferred by changing the temperature of the dielectric heating element.

ここで、本発明の実施の形態で使用する誘電発熱体2には溶着時の成型体と同じ熱可塑性樹脂の母材を配してもよい。成型体1の母材と同種の熱可塑性樹脂を用いることで、誘電発熱体2と母材とが接合しやすくなる。
また、発熱体10には、PTC特性を有する材料を用いることもできる。PTC特性とは温度の上昇に伴って抵抗が上昇する正の温度係数を有する特性を指し、このPTC特性を有することによって発熱体10は昇温と共に抵抗が上昇するため、マイクロ波の照射によって発熱体10が昇温しても、温度が高くなると昇温し難くなり所望の温度で停止することが可能となる。このようなPTC特性は、特定のフェライト材料や、PTCサーミスタ等が有している。このような材料を発熱体10として用いることで特定の所望温度まで昇温させて、所望の溶着温度を維持できる誘電発熱体2が得られる。
本発明を実施する場合の誘電発熱体2としては、何れを使用してもよい。ここで、誘電発熱体2の発熱体10は、所望の特性を得るために1種類または2種類以上を組み合わせて使用することができる。
Here, the base material of the same thermoplastic resin as the molded body at the time of welding may be disposed on the dielectric heating element 2 used in the embodiment of the present invention. By using the same kind of thermoplastic resin as the base material of the molded body 1, the dielectric heating element 2 and the base material can be easily joined.
The heating element 10 can also be made of a material having PTC characteristics. The PTC characteristic refers to a characteristic having a positive temperature coefficient in which the resistance increases as the temperature rises. By having the PTC characteristic, the resistance of the heating element 10 increases as the temperature rises. Even if the temperature of the body 10 is increased, it is difficult to increase the temperature when the temperature is increased, and the body 10 can be stopped at a desired temperature. Such a PTC characteristic is possessed by a specific ferrite material, a PTC thermistor, or the like. By using such a material as the heating element 10, the dielectric heating element 2 can be obtained that can be heated to a specific desired temperature and maintain a desired welding temperature.
Any of the dielectric heating elements 2 for carrying out the present invention may be used. Here, the heating element 10 of the dielectric heating element 2 can be used alone or in combination of two or more in order to obtain desired characteristics .

本発明の実施形態に使用する発熱体10は、上述したような物質を所定の形状で使用するが、粉末または粒子状等の固体である場合、所望の形状に形成することが困難である。このため、本発明の実施の形態で使用する誘電発熱体2は、発熱体10を所望の形状に形成可能とするために、熱硬化性樹脂をバインダー20として添加している。ここでバインダー20に熱硬化性樹脂を選定している理由は、熱硬化性樹脂は硬化後加熱によって溶融することがないようにするためである。これによって溶着時に誘電発熱体2が昇温しても硬化後は形状保持ができ、誘電発熱体2による溶融の効果を一定にすることができる。
このように、誘電発熱体2は、熱可塑性樹脂を溶融させる特定の温度以上に昇温する物質、即ち、発熱体10をバインダー20によって所定の形状に形成したものである。
なお、誘電発熱体2は形状を形成した後に、予め熱硬化性樹脂を硬化させるか否かは、誘電発熱体2の配置状態と、この誘電発熱体2による溶着状態によって適宜選択できる。
そして、バインダー20としては、エポキシ樹脂(EP)、フェノール樹脂(PF)、メラミン樹脂(MF)、尿素樹脂(ユリア樹脂、UF)、不飽和ポリエステル樹脂(UP)、アルキド樹脂、ポリウレタン(PUR)、熱硬化性ポリイミド(PI)、ジリアルフタレート樹脂(PDAP)等の使用が可能である。
更に、このバインダー20としての熱硬化性樹脂は、固形タイプ、液状タイプが使用できるが、液状タイプを使用すると、誘電発熱体2中に発熱体10を均一に配しやすくなり形状形成も容易となる。
The heating element 10 used in the embodiment of the present invention uses the above-described substances in a predetermined shape. However, when the heating element 10 is a solid such as a powder or particles, it is difficult to form the desired shape. For this reason, in the dielectric heating element 2 used in the embodiment of the present invention, a thermosetting resin is added as the binder 20 so that the heating element 10 can be formed into a desired shape. Here, the reason why the thermosetting resin is selected as the binder 20 is to prevent the thermosetting resin from being melted by heating after curing. As a result, even if the temperature of the dielectric heating element 2 is increased during welding, the shape can be maintained after curing, and the melting effect of the dielectric heating element 2 can be made constant.
As described above, the dielectric heating element 2 is a substance that is heated to a temperature higher than a specific temperature at which the thermoplastic resin is melted, that is, the heating element 10 is formed in a predetermined shape by the binder 20.
Whether or not the thermosetting resin is cured in advance after forming the shape of the dielectric heating element 2 can be appropriately selected depending on the arrangement state of the dielectric heating element 2 and the welding state of the dielectric heating element 2.
As the binder 20, epoxy resin (EP), phenol resin (PF), melamine resin (MF), urea resin (urea resin, UF), unsaturated polyester resin (UP), alkyd resin, polyurethane (PUR), Thermosetting polyimide (PI), direal phthalate resin (PDAP), etc. can be used.
Further, the thermosetting resin as the binder 20 can be a solid type or a liquid type. However, if the liquid type is used, the heating element 10 can be easily uniformly distributed in the dielectric heating element 2 and the shape can be easily formed. Become.

次に、本実施の形態の誘電発熱体2についてさらに説明する。
本実施の形態においては、フェライト粉(JFEケミカル(株)、Ni−Znフェライト仮焼粉)からなる発熱体10に液状エポキシ樹脂((株)サンライズ、耐熱エポキシ樹脂)のバインダー20をフェライト粉84重量%とエポキシ樹脂16重量%の配合割合で混合して所定形状の型を用いて圧縮成形することで所定形状の誘電発熱体2を形成した。本実施の形態では、図1に示したように断面が長方形の円環状の形状に形成した。液状エポキシ樹脂を使用した理由は、接着性に優れて発熱体10とバインダー20との結合力が良好となるためである。
Next, the dielectric heating element 2 of the present embodiment will be further described.
In the present embodiment, a binder 20 of liquid epoxy resin (Sunrise, heat-resistant epoxy resin) is added to the heating element 10 made of ferrite powder (JFE Chemical Co., Ltd., Ni-Zn ferrite calcined powder) and ferrite powder 84. The dielectric heating element 2 having a predetermined shape was formed by mixing at a blending ratio of wt% and epoxy resin 16 wt% and compression molding using a mold having a predetermined shape. In this embodiment, as shown in FIG. 1, the cross section is formed in an annular shape having a rectangular shape. The reason for using the liquid epoxy resin is that the adhesiveness is excellent and the bonding force between the heating element 10 and the binder 20 becomes good.

母材であるPPS樹脂の成型体1は、図2(a)に示すように、アッパー部材4とロアー部材5から構成されており、ロアー部材5に凹形状の嵌合凹部5aを設け、アッパー部材4に凸形状の突出部4aを設けて、凹凸嵌合する形状、即ち、凹凸組み合わせ構造としている。アッパー部材4の突出部4aは、ロアー部材5の嵌合凹部5aとの嵌め合いにより、その間隔を0.1〜0.5mm程度小さい巾に設定し、嵌合凹部5aへの突出部4aの挿入を容易にしている。   As shown in FIG. 2A, the molded body 1 of the PPS resin as the base material is composed of an upper member 4 and a lower member 5, and the lower member 5 is provided with a concave fitting concave portion 5a. The member 4 is provided with a protruding portion 4a having a convex shape to form a concave and convex fit, that is, a concave and convex combination structure. The protrusion 4a of the upper member 4 is set to a width that is about 0.1 to 0.5 mm smaller by fitting with the fitting recess 5a of the lower member 5, and the protrusion 4a to the fitting recess 5a Easy to insert.

ここで誘電発熱体2は、図2(b)に示したようにロアー部材5とアッパー部材4の凹凸組み合わせ構造に設けた凹部に配置される。更に詳細には、アッパー部材4には凸形状の突出部4aが設けられ、ロアー部材5には凹形状の嵌合凹部5aが設けられている。そして、アッパー部材4の凸形状の突出部4aがロアー部材5の凹形状の嵌合凹部5aに挿入されている。つまりロアー部材5とアッパー部材4の溶着部位には、凹凸嵌合形状の凹凸組み合わせ構造が形成されている。
更に、アッパー部材4の突出部4aには先端面4cから突出部4a内部に向かって凹形状の突出内空部4bを有し、ロアー部材5の嵌合凹部5aには、その凹部の底面5cからさらに凹形状の嵌合凹部内空部5bを有している。そして突出部4aと嵌合凹部5aは、加圧方向(図2(b)の上下方向)に対しては先端面4cと底面5cが接した状態で嵌合する形状に形成されている。このとき、突出内空部4bと嵌合凹部内空部5bによって閉鎖空間が形成され、この閉鎖空間内に誘電発熱体2が収容される。このように溶着部位の既定の位置に設けた閉鎖空間内に誘電発熱体2を配することで、溶着部位に所望の溶融状態が容易に得ることができ、溶着精度が向上する。
Here, the dielectric heating element 2 is disposed in a recess provided in the concave / convex combination structure of the lower member 5 and the upper member 4 as shown in FIG. More specifically, the upper member 4 is provided with a convex protrusion 4a, and the lower member 5 is provided with a concave fitting recess 5a. The convex protrusion 4 a of the upper member 4 is inserted into the concave fitting recess 5 a of the lower member 5. That is, an uneven combination structure having an uneven fitting shape is formed at the welded portion of the lower member 5 and the upper member 4.
Further, the protruding portion 4a of the upper member 4 has a protruding inner space portion 4b having a concave shape from the front end surface 4c toward the inside of the protruding portion 4a, and the fitting concave portion 5a of the lower member 5 has a bottom surface 5c of the concave portion. Furthermore, it has a concave fitting hollow portion 5b having a concave shape. And the protrusion part 4a and the fitting recessed part 5a are formed in the shape fitted in the state which the front end surface 4c and the bottom face 5c contact | connected with respect to the pressurization direction (up-down direction of FIG.2 (b)). At this time, a closed space is formed by the projecting inner space 4b and the fitting recess inner space 5b, and the dielectric heating element 2 is accommodated in the closed space. Thus, by disposing the dielectric heating element 2 in the closed space provided at the predetermined position of the welding site, a desired molten state can be easily obtained at the welding site, and the welding accuracy is improved.

次に本実施の形態における溶着について説明する。
図2(a)に示したように、ロアー部材5の嵌合凹部内空部5bに誘電発熱体2を配置した後、アッパー部材4をロアー部材5の嵌合凹部5aにアッパー部材4の突出部4aを挿入し、嵌合凹部5aに突出部4aを嵌合させる。このとき突出部4aには突出内空部4bが設けられていて、この突出内空部4bと嵌合凹部内空部5bによって誘電発熱体2を収容できる閉鎖空間が形成されるように設定されている。このため、誘電発熱体2は図2(b)のように、この突出内空部4bと嵌合凹部内空部5bによって形成された閉鎖空間内に収まっている。このように誘電発熱体2は、アッパー部材4とロアー部材5とを溶着する溶着部位となる突出部4aと嵌合凹部5a内の所定の位置に精度良く配置されることになる。なお、誘電発熱体2を収容する閉鎖空間を本実施の形態ではアッパー部材4とロアー部材5とによって形成しているが、アッパー部材4またはロアー部材5だけで形成することもできる。
Next, the welding in this Embodiment is demonstrated.
As shown in FIG. 2A, after the dielectric heating element 2 is disposed in the fitting recess inner space 5 b of the lower member 5, the upper member 4 is projected into the fitting recess 5 a of the lower member 5. The part 4a is inserted, and the protrusion 4a is fitted into the fitting recess 5a. At this time, the protruding portion 4a is provided with a protruding inner space portion 4b, and the protruding inner space portion 4b and the fitting recess inner space portion 5b are set so as to form a closed space in which the dielectric heating element 2 can be accommodated. ing. Therefore, as shown in FIG. 2B, the dielectric heating element 2 is accommodated in a closed space formed by the protruding inner space 4b and the fitting recess inner space 5b. As described above, the dielectric heating element 2 is accurately arranged at a predetermined position in the protrusion 4a and the fitting recess 5a that serve as a welding portion where the upper member 4 and the lower member 5 are welded. In this embodiment, the closed space for accommodating the dielectric heating element 2 is formed by the upper member 4 and the lower member 5, but may be formed by only the upper member 4 or the lower member 5.

また、突出部4aと嵌合凹部5aが嵌合すると、突出部4aの先端面4cは嵌合凹部5aの底面5cと接するように設定されている。このとき、突出部4aの先端面4cと嵌合凹部5aの底面5cとが接してもアッパー部材4とロアー部材5との間には隙間6が生じるようになっている。そして、アッパー部材4とロアー部材5間に、間隙6を減ずる方向に加圧すると(以下、アッパー部材4とロアー部材5間の間隙6を減ずる方向を「加圧方向」と呼ぶ。)、上記の突出部4aの先端面4cと嵌合凹部5aの底面5cとの接合面に圧力が加わることになる。つまり、アッパー部材4の突出部4bを除いた加圧方向下面4dと、ロアー部材5の嵌合凹部5bを除いた加圧方向上面5d間には間隙6が生じる設定となっていて、この間隙6が加圧距離であり、この加圧距離、つまり隙間6を調整することで溶融樹脂量の調整が可能となる。   Moreover, when the protrusion 4a and the fitting recessed part 5a are fitted, the front end surface 4c of the protruding part 4a is set to contact the bottom surface 5c of the fitting recessed part 5a. At this time, a gap 6 is formed between the upper member 4 and the lower member 5 even if the tip surface 4c of the protrusion 4a and the bottom surface 5c of the fitting recess 5a are in contact with each other. Then, when pressure is applied between the upper member 4 and the lower member 5 in a direction to reduce the gap 6 (hereinafter, the direction in which the gap 6 between the upper member 4 and the lower member 5 is reduced is referred to as a “pressurizing direction”). Pressure is applied to the joint surface between the tip surface 4c of the protruding portion 4a and the bottom surface 5c of the fitting recess 5a. That is, the gap 6 is set to be generated between the pressure direction lower surface 4d excluding the protrusion 4b of the upper member 4 and the pressure direction upper surface 5d of the lower member 5 excluding the fitting recess 5b. Reference numeral 6 denotes a pressurization distance. By adjusting the pressurization distance, that is, the gap 6, the amount of the molten resin can be adjusted.

このような、溶着部位としての突出部4aと嵌合凹部5a内に誘電発熱体2が収容され、突出部4aの先端面4cと嵌合凹部5aの底面5cが接した状態でマイクロ波を照射すると、マイクロ波の照射により誘電発熱体2は特定の温度まで昇温し、PTC特性を有するフェライト材料等が発熱体10として使用されている場合には、当該昇温が自ら停止するまで昇温する。このとき、誘電発熱体2の発熱によって誘電発熱体2の周囲にあるアッパー部材4及びロアー部材5の溶着部位の樹脂が加熱され溶融状態となる。この際誘電発熱体2は、予め既定された閉鎖空間内に配置されていることから、溶着部位の溶融状態を自在に制御できる。   The dielectric heating element 2 is accommodated in the protruding portion 4a and the fitting recess 5a as the welding part, and the microwave is irradiated in a state where the tip surface 4c of the protruding portion 4a and the bottom surface 5c of the fitting recess 5a are in contact with each other. Then, the dielectric heating element 2 is heated to a specific temperature by microwave irradiation, and when a ferrite material having PTC characteristics or the like is used as the heating element 10, the temperature is increased until the temperature increase stops itself. To do. At this time, the heat generated by the dielectric heating element 2 heats the resin at the welded portion of the upper member 4 and the lower member 5 around the dielectric heating element 2 to be in a molten state. At this time, since the dielectric heating element 2 is arranged in a predetermined closed space, it is possible to freely control the molten state of the welded portion.

そして、この状態で加圧されると、図2(c)に示すように、溶融状態となった樹脂は、閉鎖空間内の誘電発熱体2が占有する部分以外の残存空間や、突出部4aの側面4eと嵌合凹部5aの側面5eによって形成される隙間空間に流入し、誘電発熱体2の周囲に樹脂の溶融によって一体化した溶融接着接合部45が形成し、この溶融接着接合部45によってアッパー部材4とロアー部材5は溶着接合する。ここで溶融接着接合部45では閉鎖空間内と隙間空間内、及び突出部4aの先端面4cと嵌合凹部5aの底面5cでの溶融部で溶着接合が可能となるため溶着時の接合面積が広く設定できる。このため、この溶融接着接合部45によって良好な接合力得られる。また、溶着前から先端面4cと底面5cが接し、一体に溶着されているからシール性も優れる。このとき加圧距離を適宜設定すると図2(c)のように溶融樹脂が隙間空間内から溢れ出さずにアッパー部材4とロアー部材5が密着した接合体が得られ、意匠性に優れた接合体となる。   When pressurized in this state, as shown in FIG. 2 (c), the resin in the molten state is left in the remaining space other than the portion occupied by the dielectric heating element 2 in the closed space, or the protruding portion 4a. Into the gap space formed by the side surface 4e of the fitting recess 5a and the melt heating joint 45 formed by melting the resin around the dielectric heating element 2, and this melt bonding joint 45 is formed. Thus, the upper member 4 and the lower member 5 are welded and joined. Here, in the melt-bonded joint 45, welding can be performed in the closed space and in the gap space, and in the melted portion at the front end surface 4c of the protruding portion 4a and the bottom surface 5c of the fitting recess 5a. Can be set widely. For this reason, a good bonding force can be obtained by the melt-bonded bonding portion 45. Further, since the front end surface 4c and the bottom surface 5c are in contact with each other before welding and are integrally welded, the sealing property is excellent. At this time, if the pressurization distance is appropriately set, a joined body in which the molten resin does not overflow from the gap space and the upper member 4 and the lower member 5 are in close contact with each other is obtained as shown in FIG. Become a body.

閉鎖空間と誘電発熱体2の関係について更に説明する。
閉鎖空間は誘電発熱体2を収容可能とするために誘電発熱体2の容積より大きな容積を要する。このため、閉鎖空間の短手方向(図2(b)左右方向)の加圧方向に対する平行断面は、誘電発熱体2のそれより大きい値となるように形成されている。本実施の形態では閉鎖空間がアッパー部材4とロアー部材5の双方に形成されているため、アッパー部材4の突出内空部4bの平行断面とロアー部材5の嵌合凹部内空部5bの平行断面の和が誘電発熱体2の平行断面より大きくなっている。そして、閉鎖空間の加圧方向に対する長さ(高さ)と誘電発熱体2の加圧方向に対する長さ(高さ)は略同じとなっている。このため閉鎖空間は誘電発熱体2の加圧方向に交叉する方向の両面側に隙間空間を有する。
The relationship between the closed space and the dielectric heating element 2 will be further described.
The closed space needs a volume larger than the volume of the dielectric heating element 2 in order to accommodate the dielectric heating element 2. For this reason, the parallel cross section with respect to the pressurization direction of the short side direction (FIG. 2 (b) left-right direction) of closed space is formed so that it may become a larger value than that of the dielectric heating element 2. In this embodiment, since the closed space is formed in both the upper member 4 and the lower member 5, the parallel section of the projecting inner space 4 b of the upper member 4 and the fitting recess inner space 5 b of the lower member 5 are parallel. The sum of the cross sections is larger than the parallel cross section of the dielectric heating element 2. And the length (height) with respect to the pressurization direction of closed space and the length (height) with respect to the pressurization direction of the dielectric heating element 2 are substantially the same. For this reason, the closed space has a gap space on both sides in the direction intersecting with the pressing direction of the dielectric heating element 2.

上述したように、本実施の形態では閉鎖空間、即ち、突出内空部4bと嵌合凹部内空部5bがアッパー部材4とロアー部材5の双方に形成されているが、ロアー部材5の嵌合凹部内空部5bの加圧方向に対する長さ、言い換えれば、嵌合凹部内空部5bの深さは、アッパー部材4の突出内空部4bの加圧方向に対する長さ、言い換えれば、突出内空部4bの深さより大きくしている。これにより、誘電発熱体2の加圧方向に対する長さの半分以上を嵌合凹部内空部5b内に収容できる。これは、誘電発熱体2をロアー部材5の嵌合凹部内空部5b内に配置した後、アッパー部材4の突出内空部4bを嵌合凹部内空部5b内に挿入して嵌合させるとき、誘電発熱体2の位置ずれが抑制され、アッパー部材4とロアー部材5の確実な嵌め合いが容易に行えるからである。   As described above, in this embodiment, the closed space, that is, the projecting inner space 4b and the fitting recess inner space 5b are formed in both the upper member 4 and the lower member 5, but the lower member 5 is fitted. The length of the joint recess inner space 5b in the pressing direction, in other words, the depth of the fitting recess inner space 5b is the length of the protruding inner space 4b of the upper member 4 in the pressing direction, in other words, the protrusion. It is larger than the depth of the inner space 4b. Thereby, half or more of the length with respect to the pressurizing direction of the dielectric heating element 2 can be accommodated in the fitting recess inner space 5b. This is because, after the dielectric heating element 2 is arranged in the fitting recess inner space 5b of the lower member 5, the protruding inner space 4b of the upper member 4 is inserted into the fitting recess inner space 5b to be fitted. This is because the displacement of the dielectric heating element 2 is suppressed and the upper member 4 and the lower member 5 can be easily engaged with each other.

このように、本実施の形態の溶着は、ロアー部材5とアッパー部材4の溶着部位である突出部4aの突出内空部4bと嵌合凹部5aの嵌合凹部内空部5bで形成された閉鎖空間内に配置された誘電発熱体2にマイクロ波を照射することで、誘電発熱体2は、マイクロ波で供給された電気エネルギを熱源に変換し、その周囲のロアー部材5とアッパー部材4に熱を与えることで、ロアー部材5とアッパー部材4が溶融する。このとき、ロアー部材5とアッパー部材4間の隙間6を減ずる方向に外力が付与されるため、溶融した熱可塑性樹脂が閉鎖空間内の残存空間及び突出部4aと嵌合凹部5a間の隙間空間に流動しながら結合し、誘電発熱体2の周囲に所定距離範囲の溶融接着接合部45が形成できるものである。ここで、所定距離範囲の溶融接着接合部45は、誘電発熱体2の周囲に位置し、アッパー部材4及びロアー部材5の溶融部分を示すものである。ここで隙間6、即ち、加圧距離は、残存空間及び隙間空間の大きさによって適宜設定する必要がある。つまり、溶融した熱可塑性樹脂が残存空間を充填することができ、隙間空間から溢れ出さない範囲内に収める必要がある。   As described above, the welding in the present embodiment is formed by the projecting inner space 4b of the projecting portion 4a, which is the welding portion of the lower member 5 and the upper member 4, and the fitting recess inner space 5b of the fitting recess 5a. By irradiating the dielectric heating element 2 disposed in the closed space with microwaves, the dielectric heating element 2 converts the electric energy supplied by the microwaves into a heat source, and the lower member 5 and the upper member 4 around it. By applying heat to the lower member 5, the lower member 5 and the upper member 4 are melted. At this time, since an external force is applied in a direction to reduce the gap 6 between the lower member 5 and the upper member 4, the molten thermoplastic resin is left in the closed space and the gap space between the protrusion 4a and the fitting recess 5a. The melt-bonded joint 45 having a predetermined distance range can be formed around the dielectric heating element 2. Here, the melt-bonded joint portion 45 within a predetermined distance range is located around the dielectric heating element 2 and indicates a melted portion of the upper member 4 and the lower member 5. Here, the gap 6, that is, the pressurizing distance, needs to be set as appropriate depending on the size of the remaining space and the gap space. That is, it is necessary that the molten thermoplastic resin can fill the remaining space and be within a range that does not overflow from the gap space.

以上説明してきたように、上記実施の形態のマイクロ波誘電加熱接合体は、マイクロ波の照射により、接合される成型体1の母材となる熱可塑性樹脂を溶融させる温度以上に昇温させる発熱体10を熱硬化性樹脂のバインダー20で結合した誘電発熱体2を収容する閉鎖空間を成型体1のロアー部材5とアッパー部材4の凹凸組み合わせ構造内に具備する。そして、ロアー部材5とアッパー部材4の凹凸組み合わせ構造の溶着部位が加圧方向に対抗した形状であり、更に、ロアー部材5とアッパー部材4間には加圧距離を有した構成となっている。このような構成のマイクロ波誘電加熱接合体にマイクロ波を照射すると、誘電発熱体2はマイクロ波で供給された電気エネルギを、その熱源に代え、マイクロ波エネルギに準じて昇温し、放射熱または熱伝導エネルギを周囲のロアー部材5とアッパー部材4に伝え、それらロアー部材5とアッパー部材4間の加圧力を受けながらロアー部材5とアッパー部材4が溶融し、かつ、前記加圧力により一体に接合する。このとき外力が付与されることで溶融した熱可塑性樹脂が流動しながら結合し、誘電発熱体2の周囲に形成された所定距離範囲の溶融接着接合部45で接合する。 As described above, the microwave dielectric heating bonded body according to the above-described embodiment generates heat by raising the temperature to a temperature equal to or higher than the temperature at which the thermoplastic resin serving as a base material of the molded body 1 to be bonded is melted by microwave irradiation. A closed space for accommodating the dielectric heating element 2 in which the body 10 is bonded with a thermosetting resin binder 20 is provided in the concave / convex combination structure of the lower member 5 and the upper member 4 of the molded body 1. And the welding site | part of the uneven | corrugated combination structure of the lower member 5 and the upper member 4 is a shape which opposes the pressurization direction, and also has the structure which has the pressurization distance between the lower member 5 and the upper member 4. FIG. . When the microwave dielectric heating assembly having such a configuration is irradiated with microwaves, the dielectric heating element 2 raises the temperature of the electric energy supplied by the microwaves in accordance with the microwave energy instead of the heat source, and radiant heat is applied. Alternatively, heat conduction energy is transmitted to the surrounding lower member 5 and the upper member 4, and the lower member 5 and the upper member 4 are melted while receiving pressure applied between the lower member 5 and the upper member 4, and are integrated by the applied pressure. To join. At this time, by applying an external force, the melted thermoplastic resin is bonded while flowing, and is bonded by a melt-bonded bonding portion 45 in a predetermined distance range formed around the dielectric heating element 2.

また、上記実施の形態のマイクロ波誘電加熱接合体は、マイクロ波の照射により、昇温する発熱体10をバインダー20により結合した誘電発熱体2を、母材となるロアー部材5に形成した嵌合凹部内空部5bに入れる工程と、嵌合凹部5aにアッパー部材4の突出部4aを嵌合する工程と、ロアー部材5とアッパー部材4にマイクロ波を照射して誘電発熱体2を昇温させて溶着部位の熱可塑性樹脂を溶融状態にするとともに、ロアー部材5とアッパー部材4間に、ロアー部材5とアッパー部材4間の隙間6を減ずるような外力を付与する工程を通じ、これらの工程による溶着部位の溶融化と加圧によって、閉鎖空間内の残存空間及び突出部4aと嵌合凹部5a間の隙間空間に溶融状態の溶融樹脂を流動させてロアー部材5とアッパー部材4の溶着部位に溶融接着接合部45を接合する接合方法の発明として捉えることができる。   Further, the microwave dielectric heating assembly of the above-described embodiment is a fitting in which the dielectric heating element 2 in which the heating element 10 that is heated by microwave irradiation is combined with the binder 20 is formed on the lower member 5 that is a base material. The step of inserting into the inner recess 5b, the step of fitting the protrusion 4a of the upper member 4 into the fitting recess 5a, and the dielectric heating element 2 rising by irradiating the lower member 5 and the upper member 4 with microwaves These steps are carried out by applying an external force between the lower member 5 and the upper member 4 so as to reduce the gap 6 between the lower member 5 and the upper member 4 while heating the thermoplastic resin at the welding site to a molten state. By melting and pressurizing the welded part in the process, the molten resin flows in the remaining space in the closed space and the gap space between the protrusion 4a and the fitting recess 5a, and the lower member 5 and the upper member 4 are flown. It can be regarded as an invention of the joining method of joining melt glue joint 45 to the welding site.

[他の実施の形態]
次に、本実施の形態の変形例について検討する。
図3は突出部4aの先端面4cから内部側に形成した凹部である突出内空部4bに関する変形例である。
図3(a)、(b)、(c)、(d)、(e)は、突出部4aの先端面4cから突出部4aの内部側に凹形状の突出内空部4bが形成されているが、突出内空部4bの凹みが内部に向かって空間が狭くなる窪みとなっており、誘電発熱体2は、突出内空部4bの凹部内面と、その一部が接触した形態となっている。ここで、図3(a)、(b)、(e)は突出内空部4bの凹部の断面が台形形状、図3(c)は断面が三角形状、図3(d)は断面が円形状となっている。このような形状にすることで、誘電発熱体2の上面2aは、突出内空部4bの凹部内面の2箇所と接することができ、誘電発熱体2を閉鎖空間内の所定の位置に配することができる。この際突出内空部4bの断面が対称形状とすることが好ましい。対称形状とすることで、誘電発熱体2を閉鎖空間内の中央部に配することができる。また、図3(g)は、突出内空部4bの凹部断面を台形状のテーパー形状とし、更に、嵌合凹部内空部5bの凹部もテーパー形状としている。このようにアッパー部材4及びロアー部材5の双方をテーパー形状とすることで、誘電発熱体2は所定の位置に容易に配置することができる。
[Other embodiments]
Next, a modification of the present embodiment will be considered.
FIG. 3 shows a modification of the projecting inner space 4b, which is a recess formed on the inner side from the front end surface 4c of the projecting portion 4a.
3 (a), 3 (b), 3 (c), 3 (d), and 3 (e), a concave protruding inner space 4b is formed on the inner side of the protruding portion 4a from the tip surface 4c of the protruding portion 4a. However, the recess of the projecting inner space 4b is a recess whose space becomes narrower toward the inside, and the dielectric heating element 2 is in a form in which the inner surface of the recess of the projecting inner space 4b is in contact with a part thereof. ing. 3 (a), 3 (b), and 3 (e), the cross section of the recessed portion of the protruding inner space 4b is trapezoidal, FIG. 3 (c) is a triangular cross section, and FIG. 3 (d) is a circular cross section. It has a shape. By adopting such a shape, the upper surface 2a of the dielectric heating element 2 can be in contact with two places on the inner surface of the recessed portion of the projecting inner space 4b, and the dielectric heating element 2 is arranged at a predetermined position in the closed space. be able to. At this time, it is preferable that the cross section of the protruding inner space 4b is symmetrical. By setting it as a symmetrical shape, the dielectric heating element 2 can be arrange | positioned in the center part in closed space. In FIG. 3G, the cross section of the recessed portion of the projecting inner space portion 4b is a trapezoidal taper shape, and the recessed portion of the fitting recessed portion inner space portion 5b is also tapered. Thus, by making both the upper member 4 and the lower member 5 into a tapered shape, the dielectric heating element 2 can be easily disposed at a predetermined position.

また、図3(b)、(e)、(f)は突出部4aが、その突出方向の巾が先端程狭くなる形状となっている。つまり容積が小さくなる形状である。ここで図3(b)は突出部4aの全範囲に亙って次第に、図3(e)と(f)は突出部4aの先端部分が狭くなっている。更に、図3(e)は、先端部分の全範囲に亙って次第に狭くなっているのに対し、図3(f)の先端の巾は一定の狭さを有している。これらのように突出部4aの先端部を狭くすることで嵌合凹部5aとの嵌合が容易となる。ここで、突出部4aの先端部を狭くする代わりに嵌合凹部内空部5bの凹部の開口部(入り口)を広くしても同様の効果が得られる。   3B, 3E, and 3F, the protruding portion 4a has a shape in which the width in the protruding direction becomes narrower toward the tip. That is, the volume is reduced. Here, in FIG. 3B, the tip end portion of the protruding portion 4a is narrowed gradually in FIGS. 3E and 3F over the entire range of the protruding portion 4a. Further, FIG. 3E is gradually narrowing over the entire range of the tip portion, whereas the tip width of FIG. 3F has a certain narrowness. By narrowing the tip of the protrusion 4a as described above, the fitting with the fitting recess 5a is facilitated. Here, the same effect can be obtained by widening the opening (entrance) of the recess of the fitting recess inner space 5b instead of narrowing the tip of the protrusion 4a.

更に、突出部4aの形状は、図4(a)に示したように、突出部4aの突出方向の先端面4cにスリット41が形成されている。スリット41の形成によって突出部4aは熱可塑性樹脂が溶融しやすくなり、スリット41には突出部4aや嵌合凹部5aの溶融した熱可塑性樹脂が流入することで、均一化が促進されて接合強度に優れた溶融接着接合部45が得られやすくなる。この際、嵌合凹部5aの底面5cにも図4(a)や図4(b)のようなスリット51、スリット52を形成することが好ましい。このようなスリット51、スリット52を形成することで、スリット41と同様に、スリットで仕切られた誘電発熱体2の近傍の熱可塑性樹脂が溶融しやすくなり、スリット51、スリット52には突出部4aや嵌合凹部5aの溶融した熱可塑性樹脂が流入することで、より均一化が可能な溶融接着接合部45が得られやすくなる。   Furthermore, as for the shape of the protrusion part 4a, as shown to Fig.4 (a), the slit 41 is formed in the front end surface 4c of the protrusion direction of the protrusion part 4a. Due to the formation of the slit 41, the thermoplastic resin is easily melted in the protruding portion 4a, and the molten thermoplastic resin in the protruding portion 4a and the fitting concave portion 5a flows into the slit 41, so that the homogenization is promoted and the bonding strength is increased. It becomes easy to obtain the melt-bonded joint 45 excellent in. At this time, it is preferable to form slits 51 and 52 as shown in FIGS. 4A and 4B on the bottom surface 5c of the fitting recess 5a. By forming such slits 51 and 52, the thermoplastic resin in the vicinity of the dielectric heating element 2 partitioned by the slits can be easily melted as in the case of the slits 41, and the slits 51 and 52 have protrusions. When the molten thermoplastic resin in 4a and the fitting recess 5a flows in, it becomes easier to obtain a melt-bonded joint 45 that can be made more uniform.

図4(c)、(d)、(e)は、誘電発熱体2の形状を変化させた変形例である。図4(c)は、誘電発熱体2の断面形状が長方形でなく菱形とした事例である。図4(d)は誘電発熱体2の断面を長円とした事例である。図4(e)は誘電発熱体2の断面を四角台形とした事例である。これら図4の各事例においては、何れにせよ、誘電発熱体2を中心に、誘電発熱体2の温度上昇に伴う放射及び/または熱伝導によってアッパー部材4及びロアー部材5の溶着部位が溶融することで溶融接着接合部45が形成されて、一体化されたマイクロ波誘電加熱接合体が得られる。   4C, 4D, and 4E are modifications in which the shape of the dielectric heating element 2 is changed. FIG. 4C shows an example in which the dielectric heating element 2 has a rhombus shape in cross section. FIG. 4D shows an example in which the cross section of the dielectric heating element 2 is an ellipse. FIG. 4E shows an example in which the dielectric heating element 2 has a square trapezoidal cross section. In any of these cases of FIG. 4, in any case, the welded portion of the upper member 4 and the lower member 5 is melted by radiation and / or heat conduction accompanying the temperature rise of the dielectric heating element 2 with the dielectric heating element 2 as the center. As a result, the melt-bonding bonded portion 45 is formed, and an integrated microwave dielectric heating bonded body is obtained.

このように何れの変形例においても、突出部4aが嵌合凹部5aに挿着され、突出部4aの先端面4cと嵌合凹部5aの底面5cが接し、この際、突出内空部4bと嵌合凹部内空部5bによって形成される閉鎖空間内に誘電発熱体2が収容される構成となっている。そして、誘電発熱体2にマイクロ波が照射されると、誘電発熱体2は成型体1の成形材料である熱可塑性樹脂の溶融温度を越えて昇温する。この昇温によって、突出内空部4b及び嵌合凹部内空部5bの誘電発熱体2に接触していた接触部及びこの接触部近傍は溶融し所定距離範囲の溶融接着接合部45を形成して溶着が行われる。   As described above, in any of the modifications, the protrusion 4a is inserted into the fitting recess 5a, and the tip surface 4c of the protrusion 4a and the bottom surface 5c of the fitting recess 5a are in contact with each other. The dielectric heating element 2 is accommodated in a closed space formed by the fitting recess inner space 5b. When the dielectric heating element 2 is irradiated with microwaves, the dielectric heating element 2 rises in temperature beyond the melting temperature of the thermoplastic resin that is the molding material of the molding 1. Due to this temperature rise, the contact portion in contact with the dielectric heating element 2 in the protrusion inner space 4b and the fitting recess inner space 5b and the vicinity of the contact portion are melted to form a melt-bonded joint 45 in a predetermined distance range. Welding is performed.

以上説明してきたように、本実施の形態におけるマイクロ波誘電加熱接合体は、アッパー部材4とロアー部材5の成型体1の溶着母材となる熱可塑性樹脂を溶融温度以上に昇温させる発熱体10を熱硬化性樹脂のバインダー20で結合した誘電発熱体2が、アッパー部材4の凸部の突出部4aに設けた突出内空部4bと、アッパー部材4の凸部と凹凸嵌合するロアー部材5の嵌合凹部5aに設けた嵌合凹部内空部5bによって、アッパー部材4とロアー部材5が凹凸嵌合したときに形成される閉鎖空間内に誘電発熱体2が収容される。この際、アッパー部材4の突出部4aの先端面4cと、ロアー部材5の嵌合凹部5aの底面5cが接するが、アッパー部材4とロアー部材5の間には加圧距離としての隙間6が生じる構成となっている。このようなマイクロ波誘電加熱接合体にマイクロ波を照射し、隙間6を減ずる方向に外力を加えることで、誘電発熱体2の周囲の突出部4a及び嵌合凹部5aの溶着部位が溶融して、溶融接着接合部45で一体に接合するものである。   As described above, the microwave dielectric heating joined body in the present embodiment is a heating element that raises the temperature of the thermoplastic resin serving as a welding base material of the molded body 1 of the upper member 4 and the lower member 5 to a melting temperature or higher. The dielectric heating element 2 in which 10 is bonded with a thermosetting resin binder 20, the projecting inner space 4 b provided in the projecting part 4 a of the projecting part of the upper member 4, and the lower part in which the projecting part of the upper member 4 is unevenly fitted. The dielectric heating element 2 is accommodated in a closed space formed when the upper member 4 and the lower member 5 are concavo-convexly fitted by the fitting recess inner space 5 b provided in the fitting recess 5 a of the member 5. At this time, the front end surface 4 c of the protrusion 4 a of the upper member 4 and the bottom surface 5 c of the fitting recess 5 a of the lower member 5 are in contact with each other, but a gap 6 as a pressurizing distance is formed between the upper member 4 and the lower member 5. The resulting configuration. By irradiating such a microwave dielectric heating assembly with microwaves and applying an external force in the direction of reducing the gap 6, the welded portions of the protrusion 4a and the fitting recess 5a around the dielectric heating element 2 are melted. These are joined together at the melt-bonding joint 45.

このように、誘電発熱体2を収容した溶着部位が、溶着前から接している構成とすることで、溶着後に良好なシール性が得られる。ここで本実施の形態では、誘電発熱体2を収容した溶着部位が、アッパー部材4とロアー部材5で溶着前から接している凹凸組み合わせ構造内に設けられ、更に、アッパー部材4とロアー部材5の間には加圧距離としての隙間6が生じる構造としている。このようにアッパー部材4とロアー部材5の間に加圧距離を設けることで、加圧時の加圧距離である隙間6が減ずるに従って、誘電発熱体2によって溶融した熱可塑性樹脂がアッパー部材4とロアー部材5の接合面で溶着する。この際、溶融した熱可塑性樹脂がアッパー部材4とロアー部材5で形成された閉鎖空間内の残存空間と、アッパー部材4の突出部4aとロアー部材5の嵌合凹部5aとが嵌合したときに生じる隙間空間に流入して、誘電発熱体2の周囲には溶融した熱可塑性樹脂による溶融接着接合部45が形成される。そして、この溶融接着接合部45の大きさは、誘電発熱体2に加わるエネルギ量と、加圧距離によって変化する。言い換えれば、誘電発熱体2に加わるエネルギ量と、加圧距離によって溶着状態を調整することができる。   Thus, the sealing part which accommodated the dielectric heating element 2 is set as the structure which contact | connected before welding, and favorable sealing performance is obtained after welding. Here, in the present embodiment, the welded part that accommodates the dielectric heating element 2 is provided in the uneven combination structure in which the upper member 4 and the lower member 5 are in contact with each other before welding, and the upper member 4 and the lower member 5 are further provided. A gap 6 as a pressurizing distance is generated between them. By providing a pressing distance between the upper member 4 and the lower member 5 in this way, the thermoplastic resin melted by the dielectric heating element 2 is reduced as the gap 6 that is the pressing distance at the time of pressing decreases. And welded at the joint surface of the lower member 5. At this time, when the molten thermoplastic resin is fitted into the remaining space in the closed space formed by the upper member 4 and the lower member 5, the protrusion 4 a of the upper member 4 and the fitting recess 5 a of the lower member 5 Then, a melt-bonded joint portion 45 made of a molten thermoplastic resin is formed around the dielectric heating element 2. The size of the melt-bonded joint 45 changes depending on the amount of energy applied to the dielectric heating element 2 and the pressing distance. In other words, the welding state can be adjusted by the amount of energy applied to the dielectric heating element 2 and the pressing distance.

また、発熱体10を熱硬化性樹脂のバインダー20を使用して一体化することで、温度上昇に伴って熱硬化性樹脂が硬化進行する為、熱可塑性樹脂によって一体化した時に生ずる昇温による誘電発熱体2の形状変化に比べて形状の変化を小さく抑制することが可能となり、溶着部位に対する溶融性能を一定の範囲内に保持することができ、所望の溶融状態が得られやすくなる。   Further, by integrating the heating element 10 by using the thermosetting resin binder 20, the thermosetting resin progresses as the temperature rises. Compared to the shape change of the dielectric heating element 2, the change in shape can be suppressed to be small, the melting performance for the welded portion can be maintained within a certain range, and a desired molten state can be easily obtained.

上記実施の形態のマイクロ波誘電加熱接合体は、自動車部品、自動車外部品の油圧制御が必要な部品の油圧制御ブロック、燃料電池のセパレータ等、多層の樹脂部品を固定して組み立てる成形品、インテークマニホールド、リザーバタンク等のように多数回の繰り返し溶着をしている成形品、複数の配管やホースをまとめてインテークマニホールドのように分岐させ、分割・接合する成形品、異種材料の接合が必要な部品の溶着に使用できる。
また、上記実施の形態では、誘電発熱体2を1列配設する事例で説明したが、2列以上誘電発熱体2を配設してもよい。
The microwave dielectric heating assembly of the above-mentioned embodiment is a molded product or intake that fixes and assembles multilayer resin parts such as automobile parts, hydraulic control blocks of parts that require hydraulic control of parts outside the automobile, fuel cell separators, etc. Molded products that are repeatedly welded many times, such as manifolds and reservoir tanks, etc., molded products that divide and join multiple pipes and hoses together like an intake manifold, and need to join dissimilar materials Can be used for welding parts.
In the above embodiment, the case where the dielectric heating elements 2 are arranged in one row has been described. However, two or more rows of dielectric heating elements 2 may be arranged.

1 成型体
2 誘電発熱体
4 アッパー部材
4a 突出部
4b 突出内空部
5 ロアー部材
5a 嵌合凹部
5b 嵌合凹部内空部
45 溶融接着接合部
10 発熱体
20 バインダー
DESCRIPTION OF SYMBOLS 1 Molding body 2 Dielectric heating element 4 Upper member 4a Protruding part 4b Protruding inner space 5 Lower member 5a Fitting recessed part 5b Fitting recessed part inner space 45 Melt-bonding joint 10 Heating element 20 Binder

Claims (1)

熱可塑性樹脂を母材とするロアー部材とアッパー部材が、マイクロ波によって発熱する誘電発熱体によって溶融し、加圧することで前記ロアー部材とアッパー部材が溶着するマイクロ波誘電加熱接合体において、
前記ロアー部材と前記アッパー部材の溶着前の溶着部位を、前記加圧方向に移動する凹凸組み合わせ構造とし、
前記ロアー部材の嵌合凹部には、前記嵌合凹部の底面に形成した凹形状の嵌合凹部内空部を有し、
また、前記アッパー部材の突出部には、前記突出部の先端面から前記突出部内部に向かって形成した凹形状の突出内空部を有し、
前記突出部と嵌合凹部は、加圧方向に対して前記突出部の先端面と前記嵌合凹部の底面が接した状態で嵌合し、前記突出内空部と前記嵌合凹部内空部によって閉鎖空間が形成され、前記閉鎖空間内に収容された前記誘電発熱体の発熱により前記ロアー部材と前記アッパー部材が溶融され、
また、前記誘導発熱体にはPTC特性を有する材料が用いられることを特徴とするマイクロ波誘電加熱接合体。
In the microwave dielectric heating joined body in which the lower member and the upper member having a thermoplastic resin as a base material are melted by a dielectric heating element that generates heat by microwaves and the lower member and the upper member are welded by pressurization,
The welding part before welding of the lower member and the upper member has an uneven combination structure that moves in the pressing direction,
The fitting concave portion of the lower member has a concave fitting concave portion formed in the bottom surface of the fitting concave portion,
Further, the protruding portion of the upper member has a concave protruding inner space formed from the front end surface of the protruding portion toward the inside of the protruding portion,
The protrusion and the fitting recess are fitted in a state where the front end surface of the protrusion and the bottom surface of the fitting recess are in contact with the pressing direction, and the protrusion inner space and the fitting recess inner space A closed space is formed, and the lower member and the upper member are melted by heat generated by the dielectric heating element accommodated in the closed space,
In addition, the induction heating element is made of a material having PTC characteristics .
JP2013252984A 2013-12-06 2013-12-06 Microwave dielectric heating assembly Expired - Fee Related JP5958972B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013252984A JP5958972B2 (en) 2013-12-06 2013-12-06 Microwave dielectric heating assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013252984A JP5958972B2 (en) 2013-12-06 2013-12-06 Microwave dielectric heating assembly

Publications (2)

Publication Number Publication Date
JP2015110287A JP2015110287A (en) 2015-06-18
JP5958972B2 true JP5958972B2 (en) 2016-08-02

Family

ID=53525593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013252984A Expired - Fee Related JP5958972B2 (en) 2013-12-06 2013-12-06 Microwave dielectric heating assembly

Country Status (1)

Country Link
JP (1) JP5958972B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6501702B2 (en) * 2015-12-11 2019-04-17 アイシン化工株式会社 Microwave dielectric heating weldment and welding method thereby

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63236626A (en) * 1987-03-25 1988-10-03 Daihatsu Motor Co Ltd Manufacture for parts of suction air system
AU656016B2 (en) * 1991-07-03 1995-01-19 Minnesota Mining And Manufacturing Company Microwave activatable adhesive article and method of use
US5400460A (en) * 1992-07-02 1995-03-28 Minnesota Mining And Manufacturing Company Microwaveable adhesive article and method of use
JP2732376B2 (en) * 1995-11-08 1998-03-30 東亜高級継手バルブ製造株式会社 Bonding method of plate-shaped resin material
JP5586410B2 (en) * 2010-10-13 2014-09-10 アイシン化工株式会社 Microwave heating element and welding method using the same
JP5709731B2 (en) * 2011-11-17 2015-04-30 アイシン化工株式会社 Microwave resin welded body and welding method using the same

Also Published As

Publication number Publication date
JP2015110287A (en) 2015-06-18

Similar Documents

Publication Publication Date Title
KR101983613B1 (en) Method for bonding a thermoplastic polymer to a thermosetting polymer component
KR100870811B1 (en) Resin welded body and manufacturing method thereof
US10298729B2 (en) Connector and method of manufacturing the same
JP6006822B2 (en) Resin member
JP5988902B2 (en) Microwave dielectric welded body and welding method using microwave dielectric welded body
CN105917145A (en) Method for producing an electronic module having an interlockingly connected housing part element
JP5958972B2 (en) Microwave dielectric heating assembly
US9827515B2 (en) Conductive filter element and filter device having a filter element
JP5709731B2 (en) Microwave resin welded body and welding method using the same
JP5586410B2 (en) Microwave heating element and welding method using the same
WO2016140097A1 (en) Joining method, joined-structure production method, and joined structure
JP6964502B2 (en) How to join composite materials
KR102211294B1 (en) Connecting method for plastic pipe and connecting structure therefor
JP5615124B2 (en) Resin valve body and manufacturing method thereof
ES2946239T3 (en) Joining method for thermoplastic elements
KR102193936B1 (en) Connecting method for plastic pipe and connecting structure therefor
JP6993271B2 (en) Manufacturing method of resin parts
US10600557B2 (en) Reactor having air discharge paths
US10781926B2 (en) Valve body and method for producing the valve body
JP6153505B2 (en) Microwave dielectric heating element and welding method using the same
JP6501702B2 (en) Microwave dielectric heating weldment and welding method thereby
JP6669510B2 (en) Method for housing wiring and piping material in hollow cylinder and hollow cylinder structure
JP6563829B2 (en) Hollow cylinder structure manufacturing method, hollow cylinder structure and hollow cylinder structure
JP2004058581A (en) Method for laser welding of resin member
JPH08270871A (en) Electric fusion connection member with non-heating zone

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160615

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160615

R150 Certificate of patent or registration of utility model

Ref document number: 5958972

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees