JP5957919B2 - Failure diagnosis method for internal combustion engine supercharging assist device and internal combustion engine supercharging assist system - Google Patents

Failure diagnosis method for internal combustion engine supercharging assist device and internal combustion engine supercharging assist system Download PDF

Info

Publication number
JP5957919B2
JP5957919B2 JP2012021673A JP2012021673A JP5957919B2 JP 5957919 B2 JP5957919 B2 JP 5957919B2 JP 2012021673 A JP2012021673 A JP 2012021673A JP 2012021673 A JP2012021673 A JP 2012021673A JP 5957919 B2 JP5957919 B2 JP 5957919B2
Authority
JP
Japan
Prior art keywords
air
supercharging
flow path
compressed air
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012021673A
Other languages
Japanese (ja)
Other versions
JP2013160111A (en
Inventor
和成 山本
和成 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2012021673A priority Critical patent/JP5957919B2/en
Publication of JP2013160111A publication Critical patent/JP2013160111A/en
Application granted granted Critical
Publication of JP5957919B2 publication Critical patent/JP5957919B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Supercharger (AREA)

Description

本発明は、ターボ式過給システムと内燃機関の過渡運転時に発生するターボラグによる空気量の不足を補うために、予め貯蔵した圧縮空気を気筒内に導入する過給補助システムを備えた内燃機関の過給補助システムの故障診断方法及び内燃機関の過給補助システムに関する。   The present invention relates to an internal combustion engine having a supercharging assist system that introduces compressed air stored in advance into a cylinder in order to compensate for a shortage of air amount due to a turbo lag generated during transient operation of the turbocharging system and the internal combustion engine. The present invention relates to a failure diagnosis method for a supercharging assist system and a supercharging assist system for an internal combustion engine.

自動車等の車両に搭載される内燃機関(エンジン)には、図11に示すようなターボ式過給システム1が用いられているが、このターボ式過給システム1は、エンジン本体11の吸気マニホールド11aに接続された吸気通路12と、排気マニホールド11bに接続された排気通路13を有して構成され、更に、エアクリーナー14の下流側でかつインタークーラー16の上流側の吸気通路12にターボ式過給器(ターボチャージャ)15のコンプレッサ15aが設けられ、排気通路13にターボ式過給器15のタービン15bが設けられている。   A turbo-type supercharging system 1 as shown in FIG. 11 is used for an internal combustion engine (engine) mounted on a vehicle such as an automobile. This turbo-type supercharging system 1 is an intake manifold of an engine body 11. The intake passage 12 is connected to the exhaust manifold 11b, and the exhaust passage 13 is connected to the exhaust manifold 11b. The turbocharger is connected to the intake passage 12 downstream of the air cleaner 14 and upstream of the intercooler 16. A compressor 15 a of a charger (turbocharger) 15 is provided, and a turbine 15 b of the turbo-type supercharger 15 is provided in the exhaust passage 13.

このターボ式過給器15は、1本の羽根の両端に2つの羽根車が備えられ、その一方(タービン15b側)に排気ガスGを流して羽根車を回転させ、これにより回転するもう一方(コンプレッサ15a側)の羽根車で吸気した空気Aを圧縮する。言い換えると、タービン15bを用いて排気ガスGから取り出した仕事をコンプレッサ15aが使い、空気Aを圧縮する。これにより、従来に比べて高い圧力の空気Aを筒内に導入できるため、筒内に導入される空気量を多くすることができる。従って、このターボ式過給器15を用いたターボ式過給システム1では、より多くの空気Aを筒内に導入できるため、トルクの向上、排気ガスの有害物質の低減を図ることができる。   The turbocharger 15 is provided with two impellers at both ends of one blade, and the exhaust gas G is supplied to one of them (the turbine 15b side) to rotate the impeller, thereby rotating the other. The air A taken in by the impeller on the compressor 15a side is compressed. In other words, the compressor 15a uses the work extracted from the exhaust gas G by using the turbine 15b to compress the air A. Thereby, since the air A of a high pressure compared with the past can be introduce | transduced in a cylinder, the air quantity introduce | transduced in a cylinder can be increased. Therefore, in the turbocharger system 1 using the turbocharger 15, since more air A can be introduced into the cylinder, it is possible to improve torque and reduce exhaust gas harmful substances.

しかしながら、このターボ式過給システム1による過給では、要求される空気量を筒内にターボ式過給器15が導入できるようになるまでの間に時間差が生じ、いわゆるターボラグが発生するという短所がある。このターボラグは、排気ガスGの圧力を利用してタービン15bを回転させて、その回転でコンプレッサ15bを作動させて空気Aを圧縮し、その空気Aを筒内(シリンダ内)に送り込み燃焼を行い、その排気ガスGで更にタービン15bを回転するというサイクルを繰り返して、筒内に導入する空気量を増加させるターボ式過給システム1では必ず発生する現象であり、特に過渡運転時に起きる。   However, the turbocharging by the turbocharging system 1 has a disadvantage in that a so-called turbo lag is generated due to a time difference before the turbocharger 15 can be introduced into the cylinder with the required amount of air. There is. The turbo lag rotates the turbine 15b using the pressure of the exhaust gas G, and the compressor 15b is operated by the rotation to compress the air A. The air A is sent into the cylinder (inside the cylinder) and burned. This is a phenomenon that must occur in the turbocharger system 1 in which the cycle of further rotating the turbine 15b with the exhaust gas G is repeated to increase the amount of air introduced into the cylinder, and particularly occurs during transient operation.

過渡運転時では、図12に示すように、エンジン回転速度の増加にともない、必要となる空気量bも増加するが、このターボラグが発生すると、必要となる空気量bを確保できなくなる。このとき、推移するエンジン回転速度および負荷(アクセル開度)に応じて必要となる燃料量Bに対して必要な空気量bが増加するが、この空気量bに対して実際に供給される空気量cが斜線部分だけ少なくなってしまう。その結果、空気量cが少ないことにより燃焼可能な燃料量Cが減少して内燃機関の出力が低下し、また、EGRをかけられないことによりNOxが増加して排気性能が悪化する。   At the time of transient operation, as shown in FIG. 12, as the engine rotational speed increases, the required air amount b also increases. However, when this turbo lag occurs, the required air amount b cannot be secured. At this time, the required air amount b increases with respect to the required fuel amount B according to the changing engine speed and load (accelerator opening), but the air actually supplied to this air amount b. The amount c is reduced by the hatched portion. As a result, when the amount of air c is small, the combustible fuel amount C decreases and the output of the internal combustion engine decreases, and when EGR cannot be applied, NOx increases and exhaust performance deteriorates.

このターボラグによる出力、排気性能の悪化に対する対策として、エンジン回転速度および負荷(アクセル開度)が急激に変化する時に、この変化と同時に、図13に示すように、スーパーチャージャ又はエアコンプレッサ17等を用いて予め圧縮空気タンク18に貯蔵した圧縮空気Acを、流路切替装置(切替バルブ)20により空気吸入通路12aから過給補助通路19に切り替えて吸気通路12に導入して過渡運転時の空気量の不足を補う過給補助システム10がある。   As a countermeasure against the deterioration of the output and exhaust performance due to the turbo lag, when the engine speed and load (accelerator opening) change rapidly, simultaneously with this change, as shown in FIG. The compressed air Ac previously used and stored in the compressed air tank 18 is switched from the air suction passage 12a to the supercharging auxiliary passage 19 by the flow path switching device (switching valve) 20 and introduced into the intake passage 12 to be air during transient operation. There is a supercharging assistance system 10 that compensates for the lack of quantity.

この過給補助システムとしては、例えば、吸気通路に接続した過給気通路と、所定の圧力の過給気を貯蔵し、該過給気を過給気通路に送出する過給気タンクと、過給気通路に設けられ、機関運転状態に応じて開閉する過給弁と、過給気通路を接続した部位よりも上流の吸気通路に設けられて吸気の逆流を防止する逆流防止弁とを含んで構成される内燃機関の過給装置が提案されている(例えば、特許文献1参照)。   As this supercharging assist system, for example, a supercharging air passage connected to the intake air passage, a supercharging air tank that stores supercharging air of a predetermined pressure, and sends the supercharging air to the supercharging air passage; A supercharging valve that is provided in the supercharging air passage and opens and closes according to the engine operating state; and a backflow prevention valve that is provided in the intake air passage upstream of the portion where the supercharging air passage is connected to prevent the backflow of the intake air. A supercharging device for an internal combustion engine configured to include it has been proposed (see, for example, Patent Document 1).

この過給補助により、過給補助を行わない場合に比べて、過給器のタービン側が回収するエントロピーが増加するため、過給器の応答性が向上し、これにより、ターボラグを改善でき、発進性能の向上と、排気ガスの有害成分の低減が可能となる。なお、過給補助の時に、圧縮空気が、吸気通路の上流側、即ち、エアクリーナー側へと逆流するのを防止するために、逆流防止用のバルブ(逆流防止弁)を吸気経路中に設置する必要がある。また、図13の構成では、流路切替装置20に過給補助の開始と終了を制御する機能と共に、この圧縮空気の逆流防止の機能を持たせている。   With this supercharging assistance, the entropy recovered by the turbine side of the supercharger is increased compared with the case where supercharging assistance is not performed, so that the responsiveness of the supercharger is improved, thereby improving the turbo lag and starting. It is possible to improve performance and reduce harmful components of exhaust gas. In order to prevent the compressed air from flowing back to the upstream side of the intake passage, that is, the air cleaner side during supercharging assistance, a backflow prevention valve (backflow prevention valve) is installed in the intake passage. There is a need to. In the configuration of FIG. 13, the flow path switching device 20 has a function of controlling the start and end of supercharging assistance and a function of preventing the backflow of compressed air.

この流路切替装置20は、過給補助システム10において、要となる重要な装置であるため、この流路切替装置20の現状を把握すると共に、故障が生じた際には、その故障内容を把握することが重要となる。   Since the flow path switching device 20 is an important device that is essential in the supercharging assist system 10, the current state of the flow path switching device 20 is grasped, and when a failure occurs, the details of the failure are displayed. It is important to understand.

特開2011−208644号公報JP 2011-208644 A

本発明は、上記の状況を鑑みてなされたものであり、その目的は、ターボ式過給システムと予め貯蔵した圧縮空気を気筒内に導入する過給補助システムを備えた内燃機関において、既存のセンサからの検出情報で、過給補助システムの流路切替装置の故障の有無とその故障状態を容易に診断できる内燃機関の過給補助システムの故障診断方法及び内燃機関の過給補助システムを提供することにある。   The present invention has been made in view of the above situation, and an object of the present invention is to provide an existing internal combustion engine including a turbocharging system and a supercharging assist system that introduces prestored compressed air into a cylinder. Provided is a failure diagnosis method for an internal combustion engine supercharging assist system and a supercharging assist system for an internal combustion engine that can easily diagnose whether or not the flow switching device of the supercharging assist system is faulty and its failure state based on detection information from a sensor. There is to do.

上記のような目的を達成するための本発明の内燃機関の過給補助システムの故障診断方法は、ターボ式過給システムと、流路切替装置により空気吸入通路から過給補助通路に切り替えて予め圧縮空気タンクに貯蔵された圧縮空気を気筒内に供給する過給補助システムとを備えた内燃機関の過給補助システムの故障診断方法において、前記流路切替装置の切り替え状況と、前記圧縮空気タンクの内部圧力の推移と、前記空気吸入通路における空気の移動の有無の検出結果とから、前記流路切替装置の故障状態を判断することを特徴とする方法である。   In order to achieve the above object, a failure diagnosis method for a supercharging assist system of an internal combustion engine according to the present invention is performed by switching from an air intake passage to a supercharging assist passage by a turbo-type supercharging system and a flow switching device in advance. In a failure diagnosis method for a supercharging assist system of an internal combustion engine comprising a supercharging assist system for supplying compressed air stored in a compressed air tank into a cylinder, the switching status of the flow path switching device, and the compressed air tank The failure state of the flow path switching device is determined from the transition of the internal pressure of the air and the detection result of the presence or absence of air movement in the air intake passage.

この方法によれば、過給補助システムの故障診断のために新たなセンサを設けることなく、流路切替装置の故障の有無と流路切替装置と過給補助システムの故障状態を容易に診断することができる。   According to this method, it is possible to easily diagnose the presence / absence of a failure of the flow switching device and the failure state of the flow switching device and the supercharging assist system without providing a new sensor for failure diagnosis of the supercharging assist system. be able to.

上記の内燃機関の過給補助システムの故障診断方法で、過給補助実施状態において、前記内部圧力が低下しない場合は、前記流路切替装置が非過給補助状態で固まり、空気吸入通路からしか気筒内に空気を供給できない第1故障状態にあると判断する第1判断と、過給補助実施状態において、前記内部圧力が低下しており、且つ、前記空気吸入通路における空気の移動が検出される場合は、前記流路切替装置が切り替え途中状態で固まり、前記空気吸入通路からの空気と前記圧縮空気タンクの圧縮空気との両方が気筒内に供給されている第2故障状態にあると判断する第2判断と、過給補助終了後において、前記空気吸入通路における空気の移動が検出されない場合は、前記流路切替装置が過給補助状態で固まり、前記過給補助通路からしか気筒内に空気を供給できない第3故障状態にあると判断する第3判断と、過給補助終了後において、前記圧縮空気タンクに圧縮空気を貯蔵する際に、前記空気吸入通路における空気の移動が検出されるが、前記内部圧力が上昇しない場合は、前記第2故障状態にあると判断する第4判断と、過給補助終了後において、前記圧縮空気タンクに圧縮空気を貯蔵する際に、前記空気吸入通路における空気の移動が検出され、且つ、前記内部圧力が上昇するが予め設定された目標圧力まで予め設定された時間内に達しない場合は、空気漏れである第4故障状態にあると判断する第5判断のいずれか一つ又は幾つかの組み合わせ又は全部を行う。 If the internal pressure does not decrease in the supercharging assisting state in the above-described internal combustion engine supercharging assist system failure diagnosis method, the flow path switching device is solidified in the nonsupercharging assisting state, and only from the air intake passage. In the first determination that it is determined that there is a first failure state in which air cannot be supplied into the cylinder, and in the supercharging assist execution state, the internal pressure has decreased, and the movement of air in the air intake passage is detected. The flow path switching device is solidified in the middle of switching, and is determined to be in a second failure state in which both air from the air intake passage and compressed air in the compressed air tank are supplied into the cylinder. After the second determination to be performed and when the supercharging assistance is finished, if the movement of air in the air intake passage is not detected, the flow path switching device is solidified in the supercharging assistance state, and only from the supercharging assistance passage A third judgment determines that the third fault condition can not supply air into the cylinder, after the boost assistance ended, when storing compressed air into the compressed air tank, the movement of air in the air intake passage When the internal pressure does not increase, a fourth determination that determines that the second failure state is present, and after storing the compressed air in the compressed air tank after the completion of supercharging assistance , If the movement of air in the air intake passage is detected and the internal pressure increases but does not reach the preset target pressure within the preset time, it is in the fourth failure state that is an air leak. Any one or some combination or all of the fifth judgments to be judged are performed.

この方法によれば、過給補助システムで重要な役割を果たしている流路切替装置の故障の有無のみならず、流路切替装置と過給補助システムの故障状態を詳細に把握することができる。   According to this method, it is possible to grasp in detail the failure state of the flow path switching device and the supercharging assist system as well as whether or not the flow path switching device plays an important role in the supercharging assist system.

そして、上記の目的を達成するための内燃機関の過給補助システムは、ターボ式過給システムと、流路切替装置により空気吸入通路から過給補助通路に切り替えて予め圧縮空気タンクに貯蔵された圧縮空気を気筒内に供給する過給補助システムと、過給補助を制御する制御装置とを備えた内燃機関の過給補助システムにおいて、前記制御装置が、前記流路切替装置の切り替え状況と、前記圧縮空気タンクの内部圧力の推移と、前記空気吸入通路に配置された吸気量センサによる空気の移動の有無の検出結果とから、前記流路切替装置の故障状態を判断する制御を行うように構成される。   An internal combustion engine supercharging assist system for achieving the above object is stored in a compressed air tank in advance by switching from an air suction passage to a supercharging assist passage by a turbo-type supercharging system and a flow path switching device. In a supercharging assistance system for an internal combustion engine comprising a supercharging assistance system for supplying compressed air into a cylinder and a control device for controlling supercharging assistance, the control device is configured to switch the flow path switching device; Control is performed to determine the failure state of the flow path switching device from the transition of the internal pressure of the compressed air tank and the detection result of the presence or absence of air movement by the intake air amount sensor disposed in the air intake passage. Composed.

この構成によれば、過給補助システムの故障診断のために新たなセンサを設けることなく、流路切替装置の故障の有無と流路切替装置と過給補助システムの故障状態を容易に診断することができる。   According to this configuration, it is possible to easily diagnose the presence or absence of the flow path switching device and the failure state of the flow path switching device and the supercharging assist system without providing a new sensor for failure diagnosis of the supercharging assist system. be able to.

上記の内燃機関の過給補助システムで、過給補助実施状態において、前記内部圧力が低下しない場合は、前記流路切替装置が非過給補助状態で固まり、空気吸入通路からしか気筒内に空気を供給できない第1故障状態にあると判断する第1判断と、過給補助実施状態において、前記内部圧力が低下しており、且つ、前記吸気量センサにより空気の移動が検出される場合は、前記流路切替装置が切り替え途中状態で固まり、前記空気吸入通路からの空気と前記圧縮空気タンクの圧縮空気との両方が気筒内に供給されている第2故障状態にあると判断する第2判断と、過給補助終了後において、前記吸気量センサにより空気の移動が検出されない場合は、前記流路切替装置が過給補助状態で固まり、前記過給補助通路からしか気筒内に空気を供給できない第3故障状態にあると判断する第3判断と、過給補助終了後において、前記圧縮空気タンクに圧縮空気を貯蔵する際に、前記吸気量センサにより空気の移動が検出されるが、前記内部圧力が上昇しない場合は、前記第2故障状態にあると判断する第4判断と、過給補助終了後において、前記圧縮空気タンクに圧縮空気を貯蔵する際に、前記吸気量センサで空気の移動が検出され、且つ、前記内部圧力が上昇するが予め設定された目標圧力まで予め設定された時間内に達しない場合は、空気漏れである第4故障状態にあると判断する第5判断のいずれか一つ又は幾つかの組み合わせ又は全部を行う制御を行うように、前記制御装置が構成される。 In the supercharging assist system for an internal combustion engine, when the internal pressure does not decrease in the supercharging assisting state, the flow path switching device is solidified in the nonsupercharging assisting state, and air is introduced into the cylinder only from the air intake passage. In the first determination that it is determined that there is a first failure state that cannot be supplied, and in the supercharging assist execution state, when the internal pressure is reduced and the movement of air is detected by the intake air amount sensor, A second determination for determining that the flow path switching device is solidified in the middle of switching and is in a second failure state in which both air from the air intake passage and compressed air in the compressed air tank are supplied into the cylinder. If no air movement is detected by the intake air amount sensor after supercharging assistance is completed, the flow path switching device is solidified in the supercharging assistance state, and air is supplied into the cylinder only from the supercharging assistance passage. A third judgment determines that the third fault condition that can not, after the boost assistance ended, when storing compressed air into the compressed air tank, by the intake air quantity sensor but movement of the air is detected, When the internal pressure does not increase, a fourth determination is made to determine that the second failure state is present, and an air intake sensor is used to store compressed air in the compressed air tank after supercharging assistance is completed. And when the internal pressure rises but does not reach the preset target pressure within the preset time, the fifth judgment is judged to be in the fourth failure state that is air leakage. The control device is configured to perform control to perform any one or some combination or all of the above.

この構成によれば、過給補助システムで重要な役割を果たしている流路切替装置の故障の有無のみならず、流路切替装置と過給補助システムの故障状態を詳細に把握することができる。   According to this configuration, it is possible to grasp in detail the failure state of the flow path switching device and the supercharging assist system as well as whether or not the flow path switching device plays an important role in the supercharging assist system.

本発明に係る内燃機関の過給補助システムの故障診断方法及び内燃機関の過給補助システムによれば、ターボ式過給システムと、予め貯蔵された圧縮空気を気筒内に供給する過給補助システムとを備えた内燃機関において、流路切替装置の切り替え状況と、圧縮空気タンクの内部圧力の推移と、空気吸入通路における空気の移動の有無の検出結果という、標準的に備わっているセンサからの情報で流路切替装置の故障の有無と、流路切替装置と過給補助システムの故障状態を容易に判断することができる。   According to the failure diagnosis method for an internal combustion engine supercharging assist system and the internal combustion engine supercharging assist system according to the present invention, a turbocharging system and a supercharging assist system that supplies prestored compressed air into a cylinder. From the standard sensors, such as the switching status of the flow path switching device, the transition of the internal pressure of the compressed air tank, and the detection result of the presence or absence of air movement in the air intake passage It is possible to easily determine the presence or absence of a failure of the flow path switching device and the failure state of the flow path switching device and the supercharging assist system from the information.

本発明の実施の形態の内燃機関の過給補助システムの構成を示す図で、非過給補助状態を示す。It is a figure which shows the structure of the supercharging assistance system of the internal combustion engine of embodiment of this invention, and shows a non-supercharging assistance state. 図1の内燃機関の過給補助システムにおける過給補助状態を示す図である。It is a figure which shows the supercharging assistance state in the supercharging assistance system of the internal combustion engine of FIG. 本発明の実施の形態の内燃機関の過給補助システムの故障診断方法の制御フローの一例を示す図である。It is a figure which shows an example of the control flow of the failure diagnosis method of the supercharging assistance system of the internal combustion engine of embodiment of this invention. 流路切替装置の構成を示す図で、第1流路と第3流路が連通している状態を示す図である。It is a figure which shows the structure of a flow-path switching apparatus, and is a figure which shows the state which the 1st flow path and the 3rd flow path are connecting. 流路切替装置の構成を示す図で、第2流路と第3流路が連通している状態を示す図である。It is a figure which shows the structure of a flow-path switching apparatus, and is a figure which shows the state which the 2nd flow path and the 3rd flow path are connecting. 流路切替装置の流路切替を行う空気シリンダの構成を示す図である。It is a figure which shows the structure of the air cylinder which performs flow path switching of a flow path switching apparatus. 流路切替装置で第1流路と第3流路が連通している待機状態における空気シリンダの各弁の開閉状態を示す図である。It is a figure which shows the open / close state of each valve | bulb of an air cylinder in the standby state in which the 1st flow path and the 3rd flow path are connecting with a flow-path switching apparatus. 流路切替装置で第1流路と第3流路を遮断し、第2流路と第3流路を連通させる途中における空気シリンダの各弁の開閉状態を示す図である。It is a figure which shows the open / close state of each valve | bulb of an air cylinder in the middle of making the 1st flow path and the 3rd flow path shut off by the flow path switching device, and making the 2nd flow path and the 3rd flow path communicate. 流路切替装置で第2流路と第3流路が連通している待機状態における空気シリンダの各弁の開閉状態を示す図である。It is a figure which shows the open / close state of each valve | bulb of an air cylinder in the standby state in which the 2nd flow path and the 3rd flow path are connecting with a flow-path switching apparatus. 流路切替装置で第2流路と第3流路を遮断し、第1流路と第3流路を連通させる途中における空気シリンダの各弁の開閉状態を示す図である。It is a figure which shows the opening-and-closing state of each valve of an air cylinder in the middle of making the 2nd flow path and the 3rd flow path shut off by the flow path switching device, and making the 1st flow path and the 3rd flow path communicate. 単段の過給システムを備えた内燃機関の構成を模式的に示す図である。It is a figure which shows typically the structure of the internal combustion engine provided with the single stage supercharging system. 過給システムを備えた内燃機関のエンジン回転数に対する燃料噴射量と空気量を示す図である。It is a figure which shows the fuel injection quantity and air quantity with respect to the engine speed of an internal combustion engine provided with the supercharging system. 単段の過給システムと過給補助システムを備えた内燃機関の構成を模式的に示す図である。It is a figure which shows typically the structure of the internal combustion engine provided with the single stage supercharging system and the supercharging assistance system.

以下、本発明に係る実施の形態の内燃機関の過給補助システムの故障診断方法及び内燃機関の過給補助システムについて、図面を参照しながら説明する。   Hereinafter, a failure diagnosis method for an internal combustion engine supercharging assist system and an internal combustion engine supercharging assist system according to an embodiment of the present invention will be described with reference to the drawings.

図1及び図2に示すように、本発明の実施の形態の内燃機関の過給補助システム10を備えた内燃機関(エンジン)は、エンジン本体11の吸気マニホールド11aに接続された吸気通路12と、排気マニホールド11bに接続された排気通路13を有して構成され。更に、エアクリーナー14の下流側でかつインタークーラー16の上流側の吸気通路12にターボチャージャ(ターボ式過給器)15のコンプレッサ15aが設けられ、排気通路13にターボチャージャ15のタービン15bが設けられ、ターボ式過給システム1を構成している。   As shown in FIGS. 1 and 2, an internal combustion engine (engine) including an internal combustion engine supercharging assist system 10 according to an embodiment of the present invention includes an intake passage 12 connected to an intake manifold 11 a of an engine body 11, and an intake passage 12. The exhaust passage 13 is connected to the exhaust manifold 11b. Further, a compressor 15 a of a turbocharger (turbo supercharger) 15 is provided in the intake passage 12 downstream of the air cleaner 14 and upstream of the intercooler 16, and a turbine 15 b of the turbocharger 15 is provided in the exhaust passage 13. The turbo-type supercharging system 1 is configured.

この内燃機関の過給補助システム10では、過渡運転時に、ターボラグによる空気量不足に対応して圧縮空気Acを吸気通路12に供給するために、圧縮空気Acを生成するコンプレッサ17とこの圧縮空気Acを貯蔵する圧縮空気タンク18を設けた過給補助通路19が、吸気通路12に流路切替装置(切り替えバルブ)20を介して接続される。この流路切替装置20により、内燃機関の過渡運転時に、空気吸入通路12aから過給補助通路19に切り替えて、この過給補助通路19から圧縮空気Acを吸気通路12に供給する過給補助を行う。なお、この圧縮空気タンク18には内部圧力Piを測定するための圧力センサ51が設けられている。また、空気吸入通路12aには、空気Aの流量を測定するための吸気量センサ(MAFセンサ)52が設けられている。   In the supercharging assist system 10 for the internal combustion engine, in order to supply the compressed air Ac to the intake passage 12 in response to a shortage of the air amount due to the turbo lag during the transient operation, the compressor 17 that generates the compressed air Ac and the compressed air Ac A supercharging auxiliary passage 19 provided with a compressed air tank 18 for storing the refrigerant is connected to the intake passage 12 via a flow switching device (switching valve) 20. By this flow path switching device 20, during the transient operation of the internal combustion engine, the supercharging assistance for switching the air intake passage 12 a to the supercharging auxiliary passage 19 and supplying the compressed air Ac from the supercharging auxiliary passage 19 to the intake passage 12 is performed. Do. The compressed air tank 18 is provided with a pressure sensor 51 for measuring the internal pressure Pi. The air intake passage 12a is provided with an intake air amount sensor (MAF sensor) 52 for measuring the flow rate of the air A.

つまり、この内燃機関は、ターボチャージャ15を有するターボ式過給システム1と、流路切替装置20により空気吸入通路12aから過給補助通路19に切り替えて予め圧縮空気タンク18に貯蔵された圧縮空気Acを気筒内に供給する過給補助システム10とを備えて構成される。   In other words, the internal combustion engine includes the turbocharger system 1 having the turbocharger 15 and the compressed air stored in the compressed air tank 18 in advance by switching from the air intake passage 12a to the supercharging auxiliary passage 19 by the flow path switching device 20. And a supercharging assist system 10 for supplying Ac into the cylinder.

そして、流路切替装置20としては、msecオーダーの極めて短時間で流路を切り替える必要があるために、図4及び図5に示すようなシャッター方式の切替バルブを用いる。この流路切替装置20は、空気吸入通路12aに接続される第1流路21と、過給補助通路19に接続される第2流路22と、エンジン本体11側の吸気通路12に接続される第3流路23を有するケース24と、このケース24内をX1−X2方向にスライドして、第1流路21と第3流路23との間と、第2流路22と第3流路23との間を遮断又は連通するシャッター部材25を備えて構成する。   The flow path switching device 20 uses a shutter-type switching valve as shown in FIGS. 4 and 5 because it is necessary to switch the flow path in an extremely short time on the order of msec. The flow path switching device 20 is connected to a first flow path 21 connected to the air intake passage 12a, a second flow path 22 connected to the supercharging auxiliary passage 19, and an intake passage 12 on the engine body 11 side. A case 24 having a third flow path 23, and sliding in the case 24 in the X1-X2 direction, between the first flow path 21 and the third flow path 23, the second flow path 22 and the third flow path. A shutter member 25 that blocks or communicates with the flow path 23 is provided.

このシャッター部材25には、連通用貫通穴25aが設けられており、このシャッター部材25は空気シリンダ(エアシリンダ)30のロッド31の伸縮により、X1−X2方向に移動する。つまり、このシャッター部材25を圧縮空気Acで駆動される空気シリンダ30によってスライドさせるように構成する。図4に示すようにX1方向に移動した場合は、第1流路21と第3流路23の間が連通し、第2流路22と第3流路23の間が遮断される。一方、図5に示すようにX2方向に移動した場合は、第1流路21と第3流路23の間が遮断され、第2流路22と第3流路23の間が連通する。この構成の流路切替装置20を用いることにより、流路を著しく高速で切り替えることができる。   The shutter member 25 is provided with a through hole 25a for communication. The shutter member 25 moves in the X1-X2 direction by the expansion and contraction of the rod 31 of the air cylinder (air cylinder) 30. That is, the shutter member 25 is configured to be slid by the air cylinder 30 driven by the compressed air Ac. When moving in the X1 direction as shown in FIG. 4, the first flow path 21 and the third flow path 23 communicate with each other, and the second flow path 22 and the third flow path 23 are blocked. On the other hand, when moving in the X2 direction as shown in FIG. 5, the first flow path 21 and the third flow path 23 are blocked, and the second flow path 22 and the third flow path 23 communicate with each other. By using the flow path switching device 20 having this configuration, the flow path can be switched at a significantly high speed.

そして、過給補助システム10の流路切替装置20のシャッター部材25を移動させる空気シリンダ30は、図6に示すように構成される。つまり、空気シリンダ30は、第1空気室32aと第2空気室32bの間に、ロッド31に固定されている受圧部材33が配置されている。また、第1空気室32aに連通する第1連通路34aと圧縮空気タンク40を連通する第1空気供給通路41aとの間に第1空気供給弁35aが配置され、第2空気室32bに連通する第2連通路34bと圧縮空気タンク40を連通する第2空気供給通路41bとの間に第2空気供給弁35bが配置されている。更に、第1連通路34aを大気に開放する第1大気開放弁36aが配置され、第2連通路34bを大気に開放する第2大気開放弁36bが配置されている。これらの第1空気供給弁35a、第2空気供給弁35b、第1大気開放弁36a、及び第2大気開放弁36bは、電磁弁で形成され、開閉制御される。   And the air cylinder 30 which moves the shutter member 25 of the flow-path switching apparatus 20 of the supercharging assistance system 10 is comprised as shown in FIG. That is, in the air cylinder 30, the pressure receiving member 33 fixed to the rod 31 is disposed between the first air chamber 32a and the second air chamber 32b. A first air supply valve 35a is disposed between the first communication passage 34a communicating with the first air chamber 32a and the first air supply passage 41a communicating with the compressed air tank 40, and communicates with the second air chamber 32b. The second air supply valve 35b is disposed between the second communication passage 34b that communicates with the second air supply passage 41b that communicates with the compressed air tank 40. Furthermore, a first atmosphere release valve 36a that opens the first communication path 34a to the atmosphere is disposed, and a second atmosphere release valve 36b that opens the second communication path 34b to the atmosphere is disposed. The first air supply valve 35a, the second air supply valve 35b, the first atmosphere release valve 36a, and the second atmosphere release valve 36b are formed by electromagnetic valves and are controlled to be opened and closed.

次に、この空気シリンダ30による、シャッター部材25の移動と第1流路21と第2流路22との切り替えに関して説明する。流路切替装置20の流路の切り替えは図7〜図10に示すような空気シリンダ30の弁操作により行われる。   Next, the movement of the shutter member 25 and the switching between the first flow path 21 and the second flow path 22 by the air cylinder 30 will be described. Switching of the flow path of the flow path switching device 20 is performed by a valve operation of the air cylinder 30 as shown in FIGS.

図7は、第1流路21と第3流路23の間が連通し、空気吸入通路12aからの空気を吸気通路12に供給しているときの待機状態、即ち、非過給補助状態である第1ステップ状態を示す。この非過給補助状態では、第1空気供給弁35a、第2空気供給弁35b、第2大気開放弁36bを閉弁し、第1大気開放弁36aのみを開弁している。これにより、第1空気室32aの圧縮空気Acを大気に開放し、第1空気室32aの圧力を大気圧にして、切替時のロッド31の切り替得動作を円滑して、過給補助開始時に流路切替装置20が空気吸入通路12a側の第1流路21から過給補助通路19側の第2流路22に切り替える際の第1切替速度を高める。   FIG. 7 shows a standby state when the first flow path 21 and the third flow path 23 communicate with each other and the air from the air intake passage 12a is supplied to the intake passage 12, that is, a non-supercharging assist state. A certain first step state is shown. In the non-supercharging assist state, the first air supply valve 35a, the second air supply valve 35b, and the second atmosphere release valve 36b are closed, and only the first atmosphere release valve 36a is opened. As a result, the compressed air Ac in the first air chamber 32a is opened to the atmosphere, the pressure in the first air chamber 32a is set to atmospheric pressure, the switching operation of the rod 31 at the time of switching is smoothly performed, and supercharging assistance is started. The flow rate switching device 20 increases the first switching speed when switching from the first flow path 21 on the air intake passage 12a side to the second flow path 22 on the supercharging auxiliary passage 19 side.

図8は、過給補助の開始に際して、第1流路21と第3流路23の間を遮断し、第2流路22と第3流路23との間を連通させるためのシャッター部材25の移動時の空気シリンダ30の第2ステップ状態を示す。この第2ステップ状態では、第1空気供給弁35a、第2大気開放弁36bを閉弁し、第2空気供給弁35b、第1大気開放弁36aを開弁して、圧縮空気タンク40の圧縮空気Acを第2空気室32bに供給して流路切替装置20のシャッター部材25を高速の第1切替速度でX2方向に移動させる。   FIG. 8 shows a shutter member 25 for blocking between the first flow path 21 and the third flow path 23 and communicating between the second flow path 22 and the third flow path 23 at the start of supercharging assistance. The 2nd step state of the air cylinder 30 at the time of movement is shown. In this second step state, the first air supply valve 35a and the second atmosphere release valve 36b are closed, the second air supply valve 35b and the first atmosphere release valve 36a are opened, and the compressed air tank 40 is compressed. Air Ac is supplied to the second air chamber 32b, and the shutter member 25 of the flow path switching device 20 is moved in the X2 direction at a high first switching speed.

図9は、第1流路21と第3流路23の間を遮断し、第2流路22と第3流路23との間を連通させた後で、過給補助通路19から圧縮空気Acを吸気通路12に供給している過給補助状態における空気シリンダ30の第3ステップ状態を示す。この第3ステップ状態は、流路切替装置20のシャッター部材25の高速移動完了の後であるが、次の開始前の状態への切り替えに迅速に対応できるように、第1空気供給弁35a、第2空気供給弁35b、第1大気開放弁36aを閉弁し、第2大気開放弁36bを開弁して、空気シリンダ30内の第2空気室32bの圧縮空気Acを大気に開放し、第2空気室32bの圧力を大気圧にしている。   FIG. 9 shows a state where the first flow path 21 and the third flow path 23 are blocked and the second flow path 22 and the third flow path 23 are communicated with each other, and then the compressed air is supplied from the supercharging auxiliary passage 19. The 3rd step state of the air cylinder 30 in the supercharging assistance state which is supplying Ac to the intake passage 12 is shown. This third step state is after completion of the high-speed movement of the shutter member 25 of the flow path switching device 20, but the first air supply valve 35a, so as to be able to respond quickly to the state before the next start. The second air supply valve 35b and the first atmosphere release valve 36a are closed, the second atmosphere release valve 36b is opened, and the compressed air Ac in the second air chamber 32b in the air cylinder 30 is released to the atmosphere. The pressure of the second air chamber 32b is set to atmospheric pressure.

図10は、過給補助の終了に際して、第2流路22と第3流路23の間を遮断し、第1流路21と第3流路23との間を連通させるためのシャッター部材25の移動時の空気シリンダ30の第4ステップ状態を示す。この第4ステップ状態では、第2空気供給弁35b、第1大気開放弁36aを閉弁し、第1空気供給弁35a、第2大気開放弁36bを開弁して、圧縮空気タンク40の圧縮空気Acを第1空気室32aに供給して流路切替装置20のシャッター部材25を高速の第2切替速度でX1方向に移動させる。   FIG. 10 shows a shutter member 25 for shutting off the second flow path 22 and the third flow path 23 and communicating between the first flow path 21 and the third flow path 23 when the supercharging assistance ends. The 4th step state of the air cylinder 30 at the time of movement is shown. In the fourth step state, the second air supply valve 35b and the first atmosphere release valve 36a are closed, the first air supply valve 35a and the second atmosphere release valve 36b are opened, and the compressed air tank 40 is compressed. Air Ac is supplied to the first air chamber 32a, and the shutter member 25 of the flow path switching device 20 is moved in the X1 direction at a high second switching speed.

そして、図10の第4ステップ状態により、シャッター部材25がX1方向への移動を完了すると、図7の第1ステップ状態に戻り、第1流路21と第3流路23の間が連通し、空気吸入通路12aからの空気を吸気通路12に供給しているときの空気シリンダ30の待機状態となる。この図7〜図10の一連の空気シリンダ30のバルブ操作を繰り返すことで、過給補助を繰り返し行うことができる。この図7〜図10の一連の空気シリンダ30のバルブ操作により、迅速にシャッター部材25をX1−X2方向に移動して、流路切替装置20の流路を切り替えることができる。   Then, when the shutter member 25 completes the movement in the X1 direction in the fourth step state of FIG. 10, the state returns to the first step state of FIG. 7, and the first flow path 21 and the third flow path 23 communicate with each other. When the air from the air intake passage 12a is being supplied to the intake passage 12, the air cylinder 30 enters a standby state. The supercharging assistance can be repeatedly performed by repeating the valve operation of the series of air cylinders 30 in FIGS. By the valve operation of the series of air cylinders 30 in FIGS. 7 to 10, the shutter member 25 can be quickly moved in the X1-X2 direction to switch the flow path of the flow path switching device 20.

次に、この内燃機関の過給補助システムの故障診断方法について説明する。この故障診断方法は、ターボチャージャ15と流路切替装置20等の制御、即ち、ターボ式過給システム1と過給補助システム10の操作を行う制御装置50aによって行われる。この制御装置50aは、内燃機関の全般を制御するECU(エンジンコントロールユニット)と呼ばれるエンジン制御装置50に組み込まれて構成される。   Next, a failure diagnosis method for the supercharging assist system of the internal combustion engine will be described. This failure diagnosis method is performed by the control device 50 a that controls the turbocharger 15 and the flow path switching device 20, that is, operates the turbo-type supercharging system 1 and the supercharging assist system 10. The control device 50a is built in an engine control device 50 called an ECU (Engine Control Unit) that controls the entire internal combustion engine.

この故障診断方法では、流路切替装置20の切り替え状況と、図1及び図2に示すように、圧縮空気タンク18に設けられた圧力センサ51で検出される内部圧力Piの推移と、空気吸入通路12aに設けられた吸気量センサ52で検出される空気の移動の有無の検出結果とから、流路切替装置20の故障の有無と、流路切替装置20及び過給補助システム10の故障状態を判断する。   In this failure diagnosis method, the switching state of the flow path switching device 20, the transition of the internal pressure Pi detected by the pressure sensor 51 provided in the compressed air tank 18, and the air suction as shown in FIGS. From the detection result of the presence or absence of air movement detected by the intake air amount sensor 52 provided in the passage 12a, the presence or absence of failure of the flow path switching device 20 and the failure state of the flow path switching device 20 and the supercharging assist system 10 Judging.

この故障診断方法は、図3に示すような制御フローに基づいて行うことができる。この図3の制御フローが上位の制御フローに呼ばれてスタートすると、ステップS11で、過給補助実施状態か否かを判定する。つまり、流路切替装置20が、図1の非過給補助状態から図2の過給補助状態に移行しているか否かを判定する。   This failure diagnosis method can be performed based on a control flow as shown in FIG. When the control flow of FIG. 3 is called by the upper control flow and starts, it is determined in step S11 whether or not it is in the supercharging assist execution state. That is, it is determined whether or not the flow path switching device 20 has shifted from the non-supercharging assist state of FIG. 1 to the supercharging assist state of FIG.

このステップS11の判定で、過給補助実施状態であれば(YES)、ステップS12に行き、圧縮空気タンク18の内部圧力Piが低下しているか否かを判定する。つまり、圧縮空気タンク18に貯蔵された圧縮空気Acが吸気通路12又は空気吸入通路12a等に供給されている又は空気漏れであるか否かを判定する。   If it is determined in step S11 that the supercharging assisting state is set (YES), the process goes to step S12 to determine whether or not the internal pressure Pi of the compressed air tank 18 is reduced. That is, it is determined whether or not the compressed air Ac stored in the compressed air tank 18 is supplied to the intake passage 12 or the air intake passage 12a, or is an air leak.

このステップS12の判定で、内部圧力Piが低下していない場合は(NO)、過給補助実施状態であるにもかかわらず、圧縮空気タンク18に貯蔵された圧縮空気Acが気筒内に供給されていないと判断できるので、ステップS41に行き、流路切替装置20が非過給補助状態で固まり、圧縮空気Acが吸気通路12に流れず、空気吸入通路12aからしか気筒内に空気Aを供給できない第1故障状態にあると判断する第1判断を行う。そして、リターンに行き、上位の制御フローに戻る。   If the internal pressure Pi does not decrease in the determination of step S12 (NO), the compressed air Ac stored in the compressed air tank 18 is supplied into the cylinder despite the supercharging assist execution state. Therefore, the flow switching device 20 is solidified in the non-supercharging assist state, the compressed air Ac does not flow into the intake passage 12, and the air A is supplied into the cylinder only from the air intake passage 12a. A first determination is made to determine that the first failure state is not possible. Then, return to return to the upper control flow.

ステップS12の判定で内部圧力Piが低下している場合は(YES)、ステップS13に行き、吸気量センサ52により空気の移動が検出されるか否かを判定し、空気の移動が検出される場合は(YES)、過給補助実施状態であるにもかかわらず、空気吸入通路12aと過給補助通路19とが完全に切り替わっておらず、空気吸入通路12aの空気Aが移動していると判断できるので、ステップS42に行き、流路切替装置20が切り替え途中状態で固まり、空気吸入通路12aからの空気Aと圧縮空気タンク18の圧縮空気Acとの両方が気筒内に供給されている第2故障状態にあると判断する第2判断を行う。そして、リターンに行き、上位の制御フローに戻る。   If the internal pressure Pi has decreased in the determination in step S12 (YES), the process goes to step S13, where it is determined whether the air movement is detected by the intake air amount sensor 52, and the air movement is detected. In this case (YES), the air suction passage 12a and the supercharging assistance passage 19 are not completely switched in spite of the supercharging assistance implementation state, and the air A in the air suction passage 12a is moving. Since it can be determined, the process goes to step S42, the flow path switching device 20 is solidified in the middle of switching, and both the air A from the air intake passage 12a and the compressed air Ac of the compressed air tank 18 are supplied into the cylinder. 2. A second determination is made to determine that there is a failure state. Then, return to return to the upper control flow.

ステップS13の判定で空気の移動が検出されない場合は(NO)、特に故障していないとして、リターンに行き、上位の制御フローに戻る。   If no air movement is detected in the determination in step S13 (NO), it is determined that no failure has occurred and the process returns to the upper control flow.

ステップS11の判定で、過給補助実施状態でないと判定された場合は(NO)、ステップS14に行き、過給補助実施直後か否かを判定する。つまり、流路切替装置20が、図2の過給補助状態から図1の過給補助状態に移行した直後か否かを判定する。この判定で過給補助実施直後である場合は(YES)、ステップS15に行き、吸気量センサ52により空気の移動が検出されるか否かを判定し、即ち、空気吸入通路12aからの空気Aが気筒に導入されているか否かを判定し、空気の移動が検出されない場合は(NO)、ステップS43に行き、流路切替装置20が過給補助状態で固まり、過給補助通路19からしか気筒内に空気Aを供給できない第3故障状態にあると判断する第3判断を行う。そして、リターンに行き、上位の制御フローに戻る。 ステップS15の判定で空気の移動が検出される場合は(YES)、ステップS16に行き、内部圧力Piが上昇しているか否かを判定し、即ち、圧縮空気タンク18からの圧縮空気Acの気筒側への漏出がないか否かを判定し、上昇していない場合は(NO)、ステップS44に行き、流路切替装置20が切り替え途中状態で固まり、空気吸入通路12aからの空気Aと圧縮空気タンク18の圧縮空気Acとの両方が気筒内に供給されている第2故障状態にあると判断する第4判断を行う。そして、リターンに行き、上位の制御フローに戻る。   If it is determined in step S11 that it is not in the supercharging assistance execution state (NO), the process goes to step S14 to determine whether it is immediately after supercharging assistance is implemented. That is, it is determined whether or not the flow path switching device 20 has just shifted from the supercharging assistance state of FIG. 2 to the supercharging assistance state of FIG. If this determination is immediately after supercharging assistance is performed (YES), the process goes to step S15 to determine whether or not air movement is detected by the intake air amount sensor 52, that is, the air A from the air intake passage 12a. Is determined to be introduced into the cylinder, and if no air movement is detected (NO), the process goes to step S43, where the flow path switching device 20 is solidified in the supercharging assisting state, and only from the supercharging assisting passage 19. A third determination is made to determine that there is a third failure state in which air A cannot be supplied into the cylinder. Then, return to return to the upper control flow. If air movement is detected in the determination in step S15 (YES), the process goes to step S16 to determine whether or not the internal pressure Pi has increased, that is, the cylinder of the compressed air Ac from the compressed air tank 18 If it has not risen (NO), the process goes to step S44, where the flow path switching device 20 is solidified in the middle of switching and compressed with the air A from the air intake passage 12a. A fourth determination is made to determine that both the compressed air Ac and the compressed air Ac in the air tank 18 are being supplied into the cylinder. Then, return to return to the upper control flow.

ステップS16の判定で、内部圧力Piが上昇している場合は(YES)、ステップS17に行き、内部圧力Piが予め設定された目標圧力Ptまで予め設定された所定時間内に達するか否かを判定し、即ち、圧縮空気タンク18と過給補助通路19に空気漏れがないか否かを判定し、所定時間内に達しない場合は(NO)、ステップS45に行き、シール不良により圧縮空気Aがどこかに漏れている空気漏れである第4故障状態にあると判断する第5判断を行う。そして、リターンに行き、上位の制御フローに戻る。   If it is determined in step S16 that the internal pressure Pi is increasing (YES), the process goes to step S17 to determine whether the internal pressure Pi reaches a preset target pressure Pt within a preset time. In other words, it is determined whether there is no air leak in the compressed air tank 18 and the supercharging auxiliary passage 19, and if it does not reach within a predetermined time (NO), the process goes to step S45, and the compressed air A is detected due to a seal failure A fifth determination is made to determine that there is a fourth failure state in which air leaks somewhere. Then, return to return to the upper control flow.

ステップS17の判定で、内部圧力Piが予め設定された目標圧力Ptまで予め設定された所定時間内に達した場合は(YES)、特に、故障していないとして、リターンに行き、上位の制御フローに戻る。   If it is determined in step S17 that the internal pressure Pi has reached the preset target pressure Pt within a preset time (YES), it is determined that no failure has occurred, and the process returns to the upper control flow. Return to.

この図3の制御フローを繰り返し実施することで、過給補助実施状態において、内部圧力Piが低下しない場合は、流路切替装置20が非過給補助状態で固まり、空気吸入通路12aからしか気筒内に空気Aを供給できない第1故障状態と判断する第1判断と、過給補助実施状態において、内部圧力Piが低下しており、且つ、吸気量センサ52により空気の移動が検出される場合は、流路切替装置20が切り替え途中状態で固まり、空気吸入通路12aからの空気Aと圧縮空気タンク18の圧縮空気Acとの両方が気筒内に供給されている第2故障状態と判断する第2判断を行うことができる。   By repeatedly performing the control flow of FIG. 3, when the internal pressure Pi does not decrease in the supercharging assistance execution state, the flow path switching device 20 is solidified in the non-supercharging assistance state, and the cylinder is only introduced from the air intake passage 12a. When the internal pressure Pi is decreased and the movement of the air is detected by the intake air amount sensor 52 in the first determination for determining the first failure state in which the air A cannot be supplied to the inside and the supercharging assist execution state Is determined to be a second failure state in which the flow path switching device 20 is solidified in the middle of switching and both the air A from the air intake passage 12a and the compressed air Ac in the compressed air tank 18 are supplied into the cylinder. Two judgments can be made.

また、過給補助終了後において、吸気量センサ52により空気の移動が検出されない場合は、流路切替装置20が過給補助状態で固まり、過給補助通路19からしか気筒内に空気Aを供給できない第3故障状態と判断する第3判断と、過給補助終了後において、吸気量センサ52により空気の移動が検出されるが、内部圧力Piが上昇しない場合は、第2故障状態と判断する第4判断と、過給補助終了後において、吸気量センサ52で空気の移動が検出され、且つ、内部圧力Piが上昇するが予め設定された目標圧力Ptまで予め設定された時間内に達しない場合は、空気漏れである第4故障状態と判断する第5判断を行うことができる。   In addition, when air movement is not detected by the intake air amount sensor 52 after the completion of the supercharging assistance, the flow path switching device 20 is solidified in the supercharging assistance state, and the air A is supplied into the cylinder only from the supercharging assistance passage 19. The third determination that determines the third failure state that cannot be performed, and the movement of air is detected by the intake air amount sensor 52 after the completion of the supercharging assistance, but if the internal pressure Pi does not increase, the second failure state is determined. After the fourth determination and the completion of supercharging assistance, the movement of air is detected by the intake air amount sensor 52, and the internal pressure Pi increases but does not reach the preset target pressure Pt within the preset time. In this case, a fifth determination can be made to determine the fourth failure state that is an air leak.

そして、第1から第4の故障状態のいずれかになっていると判断した場合には、「故障が発生している」ことと、必要に応じて「故障状態(第1から第4故障状態のいずれであるか)」を、ディスプレイ上に表示したり、音声通知したりして、内燃機関を搭載した車両を運転するドライバーなどの使用者に知らせるように構成する。   When it is determined that any one of the first to fourth failure states has occurred, “failure has occurred” and if necessary, “failure state (first to fourth failure states) Is displayed on a display or by voice notification to inform a user such as a driver driving a vehicle equipped with an internal combustion engine.

上記の構成の内燃機関の過給補助システムの故障診断方法及び内燃機関の過給補助システム10によれば、ターボ式過給システム1と、予め貯蔵された圧縮空気Acを気筒内に供給する過給補助システム10とを備えた内燃機関において、流路切替装置20の切り替え状況と、圧縮空気タンク18の内部圧力Piの推移と、空気吸入通路12aにおける空気の移動の有無の検出結果という、標準的に備わっているセンサ51、52からの情報で流路切替装置20の故障の有無と、流路切替装置20と過給補助システム10の故障状態を容易に判断することができる。   According to the failure diagnosis method for the supercharging assist system of the internal combustion engine and the supercharging assist system 10 for the internal combustion engine configured as described above, the turbocharging system 1 and the supercharging system that supplies the compressed air Ac stored in advance into the cylinder. In an internal combustion engine equipped with the auxiliary supply system 10, the standard state of the switching state of the flow path switching device 20, the transition of the internal pressure Pi of the compressed air tank 18, and the detection result of the presence or absence of air movement in the air intake passage 12a. Therefore, it is possible to easily determine whether or not the flow path switching device 20 has failed and the failure status of the flow path switching device 20 and the supercharging assist system 10 from the information from the sensors 51 and 52 that are provided.

本発明の内燃機関の過給補助システムの故障診断方法及び内燃機関の過給補助システムによれば、流路切替装置の切り替え状況と、圧縮空気タンクの内部圧力の推移と、空気吸入通路における空気の移動の有無の検出結果という、標準的に備わっているセンサからの情報で流路切替装置の故障状態と、過給補助システムの故障状態を容易に判断することができるので、数多くの車両に搭載する内燃機関等に利用できる。   According to the internal combustion engine supercharging assist system failure diagnosis method and internal combustion engine supercharging assist system according to the present invention, the switching state of the flow path switching device, the transition of the internal pressure of the compressed air tank, and the air in the air intake passage Because it is possible to easily determine the failure status of the flow path switching device and the failure status of the supercharging assist system based on the information from the standard sensor that is the detection result of the presence or absence of movement of It can be used for the internal combustion engine etc.

1 ターボ式過給システム
10 過給補助システム
11 エンジン本体
12 吸気通路
12a 空気吸入通路
13 排気通路
15 ターボチャージャ(ターボ式過給器)
17 コンプレッサ(圧縮空気用)
18 圧縮空気タンク
19 過給補助通路
20 流路切替装置(切り替えバルブ)
21 第1流路
22 第2流路
23 第3流路
24 ケース
25 シャッター部材
30 空気シリンダ(エアシリンダ)
50 エンジン制御装置(ECU)
50a 制御装置
51 圧力センサ
52 吸気量センサ(MAFセンサ)
A 空気
Ac 圧縮空気
G 排気ガス
Pi 内部圧力
Pt 目標圧力
DESCRIPTION OF SYMBOLS 1 Turbo type supercharging system 10 Supercharging assistance system 11 Engine main body 12 Intake passage 12a Air intake passage 13 Exhaust passage 15 Turbocharger (turbo type supercharger)
17 Compressor (for compressed air)
18 Compressed air tank 19 Supercharging auxiliary passage 20 Flow path switching device (switching valve)
21 First flow path 22 Second flow path 23 Third flow path 24 Case 25 Shutter member 30 Air cylinder (air cylinder)
50 Engine control unit (ECU)
50a Control device 51 Pressure sensor 52 Intake air amount sensor (MAF sensor)
A Air Ac Compressed air G Exhaust gas Pi Internal pressure Pt Target pressure

Claims (4)

ターボ式過給システムと、流路切替装置により空気吸入通路から過給補助通路に切り替えて予め圧縮空気タンクに貯蔵された圧縮空気を気筒内に供給する過給補助システムとを備えた内燃機関の過給補助システムの故障診断方法において、
前記流路切替装置の切り替え状況と、前記圧縮空気タンクの内部圧力の推移と、前記空気吸入通路における空気の移動の有無の検出結果とから、前記流路切替装置の故障状態を判断することを特徴とする内燃機関の過給補助システムの故障診断方法。
An internal combustion engine comprising a turbo-type supercharging system and a supercharging auxiliary system that switches compressed air stored in a compressed air tank in advance into a cylinder by switching from an air suction passage to a supercharging auxiliary passage by a flow switching device. In the method of diagnosing the supercharging assistance system
Determining the failure state of the flow path switching device from the switching status of the flow path switching device, the transition of the internal pressure of the compressed air tank, and the detection result of the presence or absence of air movement in the air suction passage. A failure diagnosis method for an internal combustion engine supercharging assist system.
過給補助実施状態において、前記内部圧力が低下しない場合は、前記流路切替装置が非過給補助状態で固まり、空気吸入通路からしか気筒内に空気を供給できない第1故障状態にあると判断する第1判断と、
過給補助実施状態において、前記内部圧力が低下しており、且つ、前記空気吸入通路における空気の移動が検出される場合は、前記流路切替装置が切り替え途中状態で固まり、前記空気吸入通路からの空気と前記圧縮空気タンクの圧縮空気との両方が気筒内に供給されている第2故障状態にあると判断する第2判断と、
過給補助終了後において、前記圧縮空気タンクに圧縮空気を貯蔵する際に、前記空気吸入通路における空気の移動が検出されない場合は、前記流路切替装置が過給補助状態で固まり、前記過給補助通路からしか気筒内に空気を供給できない第3故障状態にあると判断する第3判断と、
過給補助終了後において、前記空気吸入通路における空気の移動が検出されるが、前記内部圧力が上昇しない場合は、前記第2故障状態にあると判断する第4判断と、
過給補助終了後において、前記圧縮空気タンクに圧縮空気を貯蔵する際に、前記空気吸入通路における空気の移動が検出され、且つ、前記内部圧力が上昇するが予め設定された目標圧力まで予め設定された時間内に達しない場合は、空気漏れである第4故障状態にあると判断する第5判断のいずれか一つ又は幾つかの組み合わせ又は全部を行うことを特徴とする請求項1に記載の内燃機関の過給補助システムの故障診断方法。
When the internal pressure does not decrease in the supercharging assisting state, it is determined that the flow path switching device is solidified in the nonsupercharging assisting state and is in a first failure state in which air can be supplied into the cylinder only from the air intake passage. A first decision to
In the supercharging assistance execution state, when the internal pressure is reduced and the movement of air in the air suction passage is detected, the flow path switching device is solidified in the middle of switching, and the air suction passage A second determination for determining that the second failure state in which both of the compressed air and the compressed air in the compressed air tank are supplied into the cylinder;
When the compressed air is stored in the compressed air tank after the supercharging assistance is completed, if the movement of the air in the air intake passage is not detected, the flow path switching device is solidified in the supercharging assistance state, and the supercharging is performed. A third determination for determining that the vehicle is in a third failure state in which air can be supplied only into the cylinder from the auxiliary passage;
A fourth determination for determining that the second failure state exists when the movement of the air in the air intake passage is detected after the supercharging assistance is ended, but the internal pressure does not increase;
After the supercharging assistance is completed, when storing the compressed air in the compressed air tank, the movement of the air in the air intake passage is detected, and the internal pressure rises, but the preset target pressure is preset. 2. The method according to claim 1, wherein if the predetermined time is not reached, any one or some combination or all of the fifth judgments for judging that the fourth fault state is an air leak are performed. Fault diagnosis method for a supercharging assist system of an internal combustion engine.
ターボ式過給システムと、流路切替装置により空気吸入通路から過給補助通路に切り替えて予め圧縮空気タンクに貯蔵された圧縮空気を気筒内に供給する過給補助システムと、過給補助を制御する制御装置とを備えた内燃機関の過給補助システムにおいて、
前記制御装置が、前記流路切替装置の切り替え状況と、前記圧縮空気タンクの内部圧力の推移と、前記空気吸入通路に配置された吸気量センサによる空気の移動の有無の検出結果とから、前記流路切替装置の故障状態を判断する制御を行うように構成されたことを特徴とする内燃機関の過給補助システム。
A turbo-type supercharging system, a supercharging auxiliary system that switches compressed air stored in the compressed air tank in advance into the cylinder by switching from the air intake passage to the supercharging auxiliary passage by the flow path switching device, and supercharging assistance are controlled. A supercharging assist system for an internal combustion engine, comprising:
From the switching status of the flow path switching device, the transition of the internal pressure of the compressed air tank, and the detection result of the presence or absence of air movement by the intake air amount sensor disposed in the air suction passage, the control device, A supercharging assist system for an internal combustion engine configured to perform control for determining a failure state of a flow path switching device.
過給補助実施状態において、前記内部圧力が低下しない場合は、前記流路切替装置が非過給補助状態で固まり、空気吸入通路からしか気筒内に空気を供給できない第1故障状態にあると判断する第1判断と、
過給補助実施状態において、前記内部圧力が低下しており、且つ、前記吸気量センサにより空気の移動が検出される場合は、前記流路切替装置が切り替え途中状態で固まり、前記空気吸入通路からの空気と前記圧縮空気タンクの圧縮空気との両方が気筒内に供給されている第2故障状態にあると判断する第2判断と、
過給補助終了後において、前記吸気量センサにより空気の移動が検出されない場合は、前記流路切替装置が過給補助状態で固まり、前記過給補助通路からしか気筒内に空気を供給できない第3故障状態にあると判断する第3判断と、
過給補助終了後において、前記圧縮空気タンクに圧縮空気を貯蔵する際に、前記吸気量センサにより空気の移動が検出されるが、前記内部圧力が上昇しない場合は、前記第2故障状態にあると判断する第4判断と、
過給補助終了後において、前記圧縮空気タンクに圧縮空気を貯蔵する際に、前記吸気量センサで空気の移動が検出され、且つ、前記内部圧力が上昇するが予め設定された目標圧力まで予め設定された時間内に達しない場合は、空気漏れである第4故障状態にあると判断する第5判断のいずれか一つ又は幾つかの組み合わせ又は全部を行う制御を行うように、前記制御装置が構成されたことを特徴とする請求項3に記載の内燃機関の過給補助システム。
When the internal pressure does not decrease in the supercharging assisting state, it is determined that the flow path switching device is solidified in the nonsupercharging assisting state and is in a first failure state in which air can be supplied into the cylinder only from the air intake passage. A first decision to
In the supercharging assistance execution state, when the internal pressure is reduced and the movement of air is detected by the intake air amount sensor, the flow path switching device is solidified in the middle of switching, and the air intake passage A second determination for determining that the second failure state in which both of the compressed air and the compressed air in the compressed air tank are supplied into the cylinder;
If the movement of air is not detected by the intake air amount sensor after the supercharging assistance is completed, the flow path switching device is solidified in the supercharging assistance state, and air can be supplied into the cylinder only from the supercharging assistance passage. A third determination to determine that there is a failure condition;
After the supercharging assistance, when the compressed air is stored in the compressed air tank, the intake air amount sensor detects the movement of air, but the internal pressure is not increased, the second failure state is present. A fourth judgment to judge,
When the compressed air is stored in the compressed air tank after completion of supercharging assistance, the movement of air is detected by the intake air amount sensor, and the internal pressure rises, but the preset target pressure is preset. The control device performs control to perform any one, some combination, or all of the fifth determinations that determine that the fourth failure state is an air leak. The supercharging assist system for an internal combustion engine according to claim 3, wherein the supercharging assist system is configured.
JP2012021673A 2012-02-03 2012-02-03 Failure diagnosis method for internal combustion engine supercharging assist device and internal combustion engine supercharging assist system Expired - Fee Related JP5957919B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012021673A JP5957919B2 (en) 2012-02-03 2012-02-03 Failure diagnosis method for internal combustion engine supercharging assist device and internal combustion engine supercharging assist system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012021673A JP5957919B2 (en) 2012-02-03 2012-02-03 Failure diagnosis method for internal combustion engine supercharging assist device and internal combustion engine supercharging assist system

Publications (2)

Publication Number Publication Date
JP2013160111A JP2013160111A (en) 2013-08-19
JP5957919B2 true JP5957919B2 (en) 2016-07-27

Family

ID=49172581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012021673A Expired - Fee Related JP5957919B2 (en) 2012-02-03 2012-02-03 Failure diagnosis method for internal combustion engine supercharging assist device and internal combustion engine supercharging assist system

Country Status (1)

Country Link
JP (1) JP5957919B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3969314B2 (en) * 2003-01-30 2007-09-05 日産自動車株式会社 Turbocharger
JP2009167963A (en) * 2008-01-18 2009-07-30 Toyota Motor Corp Abnormality determination device for internal combustion engine
JP2011094589A (en) * 2009-11-02 2011-05-12 Isuzu Motors Ltd Vehicle mounted with internal combustion engine, and method for controlling the same

Also Published As

Publication number Publication date
JP2013160111A (en) 2013-08-19

Similar Documents

Publication Publication Date Title
JP4883221B2 (en) Control valve abnormality determination device for internal combustion engine
KR101490959B1 (en) Control mehtod of turbochager
JP2006336553A (en) Abnormality diagnosing device for evaporation gas purge system
JP2010180781A (en) Control device for internal combustion engine with supercharger
KR102024738B1 (en) Apparatus and method for diagnosing failure of bypass valve
EP2674597A1 (en) Control device for internal combustion engine
JP2009287409A (en) Exhaust temperature detection device of engine with turbocharger and its deterioration diagnostic system
JP2008138621A (en) Exhaust gas throttle valve failure diagnosis device of internal combustion engine
JP2007009877A (en) Abnormality diagnostic device for supercharging pressure control system
JP2009167963A (en) Abnormality determination device for internal combustion engine
JP2014020227A (en) Device for estimating state of waste gate valve
JP4872809B2 (en) 2-stage turbo system
JP6384429B2 (en) Fault diagnosis system for ozone supply equipment
JP5957919B2 (en) Failure diagnosis method for internal combustion engine supercharging assist device and internal combustion engine supercharging assist system
JP4518045B2 (en) Control device for an internal combustion engine with a supercharger
JP5982841B2 (en) Internal combustion engine supercharging assistance device failure countermeasure method and internal combustion engine supercharging assistance system
JP2004308595A (en) Evaporated fuel processing device and diagnostic device for the same
JP2001132550A (en) Gas fuel engine
KR20160077560A (en) System and method for controlling a limphome mode using electronic waste gate
JP3407479B2 (en) Diagnostic device for boost pressure sensor
JP5742484B2 (en) Supercharging assist method for internal combustion engine and internal combustion engine
US10648401B2 (en) Engine system and method for controlling same
JP2007016606A (en) Troubleshooting device for secondary air supply device
JP6449661B2 (en) Internal combustion engine negative pressure system
KR20130001371A (en) Method and apparatus for diagnosing leakage intake system two stage turbo charger engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160606

R150 Certificate of patent or registration of utility model

Ref document number: 5957919

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees