JP5954279B2 - Rotating electric machine - Google Patents

Rotating electric machine Download PDF

Info

Publication number
JP5954279B2
JP5954279B2 JP2013176725A JP2013176725A JP5954279B2 JP 5954279 B2 JP5954279 B2 JP 5954279B2 JP 2013176725 A JP2013176725 A JP 2013176725A JP 2013176725 A JP2013176725 A JP 2013176725A JP 5954279 B2 JP5954279 B2 JP 5954279B2
Authority
JP
Japan
Prior art keywords
rotor core
magnetic flux
magnetic pole
rotor
permanent magnets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013176725A
Other languages
Japanese (ja)
Other versions
JP2015047009A (en
Inventor
岩切 満
満 岩切
正伸 柿原
正伸 柿原
賢輔 中園
賢輔 中園
原田 学
学 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP2013176725A priority Critical patent/JP5954279B2/en
Priority to CN201420486247.4U priority patent/CN204304642U/en
Publication of JP2015047009A publication Critical patent/JP2015047009A/en
Application granted granted Critical
Publication of JP5954279B2 publication Critical patent/JP5954279B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Description

開示の実施形態は、回転電機に関する。   The disclosed embodiment relates to a rotating electrical machine.

例えば特許文献1には、矩形形状の永久磁石が放射状に等間隔でロータコアに配置された電動機が記載されている。   For example, Patent Document 1 describes an electric motor in which rectangular permanent magnets are radially arranged on a rotor core at equal intervals.

特開2010−4722号公報JP 2010-4722 A

上記従来技術では、ロータコアの外周面が円筒面状である。このため、永久磁石の径方向外側の端面とロータコアの外周面との隙間を介した磁極間の漏れ磁束が増大し、有効磁束の減少により出力の低下を招くという問題がある。   In the above prior art, the outer peripheral surface of the rotor core is cylindrical. For this reason, there is a problem in that the leakage magnetic flux between the magnetic poles through the gap between the radially outer end face of the permanent magnet and the outer peripheral face of the rotor core increases, and the output decreases due to the reduction of the effective magnetic flux.

本発明はこのような問題点に鑑みてなされたものであり、有効磁束を増大することで高出力化が可能な回転電機を提供することを目的とする。   The present invention has been made in view of such problems, and an object of the present invention is to provide a rotating electrical machine capable of increasing the output by increasing the effective magnetic flux.

上記課題を解決するため、本発明の一の観点によれば、固定子と回転子とを備え、前記回転子は、径方向及び軸方向を備えた略円筒状の回転子鉄心と、前記回転子鉄心に埋め込まれた複数の永久磁石と、を有する回転電機であって、前記回転子鉄心は、前記径方向の外周面に直線状に形成された平坦部と、円周方向に等間隔に配置された複数の磁極部と、前記複数の磁極部の前記径方向の内側にそれぞれ設けられた複数の空隙と、を有し、前記複数の永久磁石は、前記円周方向に隣り合う前記永久磁石の同じ磁極同士が互いに対向するように前記回転子鉄心に放射状に配置され、前記平坦部は、前記円周方向に隣り合う前記磁極部の間に位置し、かつ、前記永久磁石と同数形成され、各々が前記永久磁石と同じ角度に位置し、前記複数の空隙のそれぞれの、前記軸方向に直交する断面における断面形状は、略五角形であり、前記空隙は、周方向両側に位置して前記永久磁石の磁束発生面である側面とそれぞれ対向して前記径方向に配置され、前記回転子の前記径方向内側への漏洩磁束を低減するための、前記五角形のうちの2辺を構成する磁石対向面と、前記磁石対向面に接続して前記径方向外側にそれぞれ位置し、前記永久磁石の磁束を前記磁極部の前記径方向外側へ導くための、前記五角形のうちの2辺を構成する磁束ガイド面と、を有する回転電機が適用される。
In order to solve the above problems, according to one aspect of the present invention, a stator and a rotor are provided, and the rotor includes a substantially cylindrical rotor core having a radial direction and an axial direction, and the rotation. A rotating electric machine having a plurality of permanent magnets embedded in a core of the core, the rotor core having a flat portion formed linearly on the radially outer peripheral surface and at equal intervals in the circumferential direction A plurality of magnetic pole portions arranged, and a plurality of gaps respectively provided inside the radial direction of the plurality of magnetic pole portions, wherein the plurality of permanent magnets are adjacent to each other in the circumferential direction. The same magnetic poles of the magnets are radially arranged on the rotor core so as to face each other, and the flat portions are located between the magnetic pole portions adjacent to each other in the circumferential direction and are formed in the same number as the permanent magnets. And each of the plurality of gaps is located at the same angle as the permanent magnet. Each of the cross-sectional shapes in a cross section orthogonal to the axial direction is substantially pentagonal, and the air gaps are located on both sides in the circumferential direction and face the side surfaces that are the magnetic flux generation surfaces of the permanent magnets in the radial direction. A magnet-facing surface that forms two sides of the pentagon, and is connected to the magnet-facing surface to reduce the magnetic flux leakage to the radially inner side of the rotor, A rotating electrical machine having a magnetic flux guide surface that forms two sides of the pentagon for positioning and guiding the magnetic flux of the permanent magnet to the radially outer side of the magnetic pole portion is applied.

また上記課題を解決するため、本発明の別の観点によれば、固定子と回転子とを備え、前記回転子は、径方向及び軸方向を備えた略円筒状の回転子鉄心と、前記回転子鉄心に埋め込まれた複数の永久磁石と、を有し、前記回転子鉄心は、円周方向に等間隔に配置された複数の磁極部と、前記複数の磁極部の前記径方向の内側にそれぞれ設けられた複数の空隙と、を有し、前記複数の永久磁石は、前記円周方向に隣り合う前記永久磁石の同じ磁極同士が互いに対向するように前記回転子鉄心に放射状に配置され、前記複数の空隙のそれぞれの、前記軸方向に直交する断面における断面形状は、略五角形であり、前記空隙は、周方向両側に位置して前記永久磁石の磁束発生面である側面とそれぞれ対向して前記径方向に配置され、前記回転子の前記径方向内側への漏洩磁束を低減するための、前記五角形のうちの2辺を構成する磁石対向面と、前記磁石対向面に接続して前記径方向外側にそれぞれ位置し、前記永久磁石の磁束を前記磁極部の前記径方向外側へ導くための、前記五角形のうちの2辺を構成する磁束ガイド面と、を有する回転電機であって、前記回転子鉄心のうち、前記円周方向に隣り合う前記磁極部の間に位置する、前記永久磁石の前記径方向外側の部位の外周面を、直線状に形成され、かつ各々が前記永久磁石と同じ角度に位置する、前記永久磁石と同数の平坦部とするとともに、前記空隙の前記磁束ガイド面の前記径方向外側に位置する、前記平坦部以外の前記磁極部の外周面を、円筒面部とした回転電機が適用される。 In order to solve the above-described problem, according to another aspect of the present invention, a stator and a rotor are provided, and the rotor includes a substantially cylindrical rotor core having a radial direction and an axial direction; A plurality of permanent magnets embedded in the rotor core, and the rotor core includes a plurality of magnetic pole portions arranged at equal intervals in a circumferential direction, and a radially inner side of the plurality of magnetic pole portions. And the plurality of permanent magnets are arranged radially on the rotor core such that the same magnetic poles of the permanent magnets adjacent in the circumferential direction face each other. The cross-sectional shape of each of the plurality of air gaps in a cross section perpendicular to the axial direction is substantially pentagonal, and the air gaps are located on both sides in the circumferential direction and face the side surfaces that are magnetic flux generation surfaces of the permanent magnets. Arranged in the radial direction and in front of the rotor A magnet facing surface that constitutes two sides of the pentagon and a magnetic flux of the permanent magnet connected to the magnet facing surface and positioned on the radially outer side to reduce magnetic flux leakage to the radially inner side. A magnetic flux guide surface constituting two sides of the pentagon for guiding the magnetic pole portion to the outside in the radial direction, and adjacent to the circumferential direction of the rotor core. The outer peripheral surface of the radially outer portion of the permanent magnet, which is located between the matching magnetic pole portions, is formed in a straight line , and each is located at the same angle as the permanent magnet. A rotating electrical machine in which the outer peripheral surface of the magnetic pole portion other than the flat portion, which is a flat portion and located on the radially outer side of the magnetic flux guide surface of the gap, is a cylindrical surface portion is applied.

本発明によれば、有効磁束を増大することで回転電機の高出力化が可能になる。   According to the present invention, it is possible to increase the output of the rotating electrical machine by increasing the effective magnetic flux.

実施形態の回転電機の軸方向に垂直な横断面図である。It is a cross-sectional view perpendicular to the axial direction of the rotating electrical machine of the embodiment. 比較例1の回転子鉄心における永久磁石の周りの磁束密度分布を表す説明図、及び実施形態の回転子鉄心における永久磁石の周りの磁束密度分布を表す説明図である。It is explanatory drawing showing magnetic flux density distribution around the permanent magnet in the rotor core of the comparative example 1, and explanatory drawing showing magnetic flux density distribution around the permanent magnet in the rotor core of embodiment. 比較例1の回転子鉄心の表面の磁束密度分布、及び実施形態の回転子鉄心の表面の磁束密度分布を表すグラフである。It is a graph showing the magnetic flux density distribution of the surface of the rotor core of the comparative example 1, and the magnetic flux density distribution of the surface of the rotor core of embodiment. 比較例2の回転子鉄心を表す説明図である。6 is an explanatory diagram illustrating a rotor core of Comparative Example 2. FIG. 実施形態、比較例1及び比較例2について行ったモータ性能のシミュレーション結果の一例を表す図である。It is a figure showing an example of the simulation result of the motor performance performed about embodiment, the comparative example 1, and the comparative example 2. FIG. 永久磁石を径方向に垂直な方向に配置した場合の回転子鉄心を表す横断面図である。It is a transverse cross section showing a rotor core at the time of arranging a permanent magnet in the direction perpendicular to the diameter direction. 永久磁石を径方向に垂直な方向に配置した場合の回転子鉄心の永久磁石の周りの磁束密度分布を表す説明図である。It is explanatory drawing showing magnetic flux density distribution around the permanent magnet of a rotor core at the time of arrange | positioning a permanent magnet in the direction perpendicular | vertical to a radial direction. かしめ部を形成した場合の回転子鉄心の横断面図である。It is a cross-sectional view of a rotor core when a caulking portion is formed. 永久磁石の半径方向外側に空隙を設けた場合の回転子鉄心の一部分を表す横断面図である。It is a transverse cross section showing a part of rotor core at the time of providing a space in the radial direction outside of a permanent magnet.

以下、一実施の形態について図面を参照しつつ説明する。   Hereinafter, an embodiment will be described with reference to the drawings.

<回転電機の構成>
まず、図1を用いて本実施形態の回転電機の構成について説明する。図1に示すように、回転電機1は、図示しない電機子巻線を有する電機子である固定子2と、永久磁石11を有する界磁である回転子3とを備え、回転子3を固定子2の内側に配置したインナーロータ型のモータである。より詳細には、回転電機1は、回転子3の内部に上記永久磁石11を備えたIPM(Interior Permanent Magnet)モータである。回転子3は、中心を貫通したシャフト4に固定されている。
<Configuration of rotating electrical machine>
First, the configuration of the rotating electrical machine of the present embodiment will be described with reference to FIG. As shown in FIG. 1, the rotating electrical machine 1 includes a stator 2 that is an armature having an armature winding (not shown) and a rotor 3 that is a field having a permanent magnet 11, and fixes the rotor 3. This is an inner rotor type motor arranged inside the child 2. More specifically, the rotating electrical machine 1 is an IPM (Interior Permanent Magnet) motor including the permanent magnet 11 inside the rotor 3. The rotor 3 is fixed to a shaft 4 penetrating the center.

<回転子の構成>
回転子3は、固定子2の内周面とギャップを介し対向配置されている。この回転子3は、回転子鉄心5と、回転子鉄心5に埋め込まれた複数(この例では10。但し10以外でもよい)の上記永久磁石11とを備えている。回転子鉄心5は、複数枚の電磁鋼板を軸方向に積層固定した積層体構造を有している。
<Configuration of rotor>
The rotor 3 is disposed opposite to the inner peripheral surface of the stator 2 via a gap. The rotor 3 includes a rotor core 5 and a plurality of permanent magnets 11 (10 in this example, but may be other than 10) embedded in the rotor core 5. The rotor core 5 has a laminated structure in which a plurality of electromagnetic steel plates are laminated and fixed in the axial direction.

回転子鉄心5は、円周方向に等間隔に配置された複数(この例では10)の磁極部8と、シャフト4に連結される円筒部9とを有する。円周方向に隣り合う磁極部8の間には、永久磁石11が配置される。回転子鉄心5は略円筒状であるが、その外周面(径方向の外周面)には平坦部6が形成されている。平坦部6は、例えば外周面をDカットすることにより形成される。平坦部6は、永久磁石11と同数(この例では10)形成され、各々が永久磁石11と同じ角度に位置する。つまり、平坦部6は円周方向に隣り合う磁極部8の間に位置することになる。回転子鉄心5の外周面では、平坦部6と平坦部6以外の円筒面部7とが周方向に交互に配置されている。   The rotor core 5 has a plurality (10 in this example) of magnetic pole portions 8 arranged at equal intervals in the circumferential direction and a cylindrical portion 9 connected to the shaft 4. A permanent magnet 11 is disposed between the magnetic pole portions 8 adjacent to each other in the circumferential direction. Although the rotor core 5 is substantially cylindrical, a flat portion 6 is formed on the outer peripheral surface (the outer peripheral surface in the radial direction). The flat part 6 is formed, for example, by D-cutting the outer peripheral surface. The flat portions 6 are formed in the same number (10 in this example) as the permanent magnets 11, and each is positioned at the same angle as the permanent magnets 11. That is, the flat part 6 is located between the magnetic pole parts 8 adjacent in the circumferential direction. On the outer peripheral surface of the rotor core 5, the flat portions 6 and the cylindrical surface portions 7 other than the flat portions 6 are alternately arranged in the circumferential direction.

永久磁石11は、回転子鉄心5の軸方向に直方体形状に形成され、軸方向と直交する断面は半径方向に長い矩形状を有する。各永久磁石11は、回転子鉄心5に設けられた軸方向の貫通孔10に挿入されて固定される。その結果、複数の永久磁石11は、半径方向外側端を回転子鉄心5の平坦部6に対向させた姿勢で放射状に配置される。   The permanent magnet 11 is formed in a rectangular parallelepiped shape in the axial direction of the rotor core 5, and a cross section orthogonal to the axial direction has a rectangular shape that is long in the radial direction. Each permanent magnet 11 is inserted and fixed in an axial through hole 10 provided in the rotor core 5. As a result, the plurality of permanent magnets 11 are radially arranged in a posture in which the radially outer end faces the flat portion 6 of the rotor core 5.

各永久磁石11は、回転子鉄心5の半径方向及び軸方向と直交する方向(略円周方向)に磁化されている。複数の永久磁石11は、円周方向に隣り合う永久磁石11の同じ磁極同士が互いに対向するように配置される。つまり、複数の永久磁石11は、ある磁極部8でN極を互いに向かい合わせ、その隣りの磁極部8でS極を互いに向かい合わせるように配置される。永久磁石11のN極が向かい合った磁極部8はN極となり、永久磁石11のS極が向かい合った磁極部8はS極となる。N極となる磁極部8からS極となる磁極部8に向かう磁束が固定子2のコイル巻線(電機子巻線)と鎖交し、回転子3の回転トルクを発生させる。   Each permanent magnet 11 is magnetized in a direction (substantially circumferential direction) perpendicular to the radial direction and the axial direction of the rotor core 5. The plurality of permanent magnets 11 are arranged such that the same magnetic poles of the permanent magnets 11 adjacent in the circumferential direction face each other. That is, the plurality of permanent magnets 11 are arranged so that the N poles face each other at a certain magnetic pole portion 8 and the S poles face each other at the adjacent magnetic pole portion 8. The magnetic pole portion 8 facing the N pole of the permanent magnet 11 is an N pole, and the magnetic pole portion 8 facing the S pole of the permanent magnet 11 is an S pole. A magnetic flux directed from the magnetic pole portion 8 serving as the N pole to the magnetic pole portion 8 serving as the S pole is linked to the coil winding (armature winding) of the stator 2, thereby generating the rotational torque of the rotor 3.

回転子鉄心5の隣り合う永久磁石11の間の半径方向内側には、回転子鉄心5を軸方向に貫通する空隙12が設けられている。空隙12は、この例では軸方向と直交する横断面形状が略五角形状であり、永久磁石11の磁束発生面である側面と対向する半径方向の磁石対向面12aと、磁石対向面12aに接続した半径方向外側の磁束ガイド面12bとを有している。空隙12の磁石対向面12aは、永久磁石11の磁束発生面との間に狭い間隙を有し、且つ略平行である。空隙12は、磁束ガイド面12bにより、N極となる磁極部8における永久磁石11の磁束を回転子3の外周側に誘導する一方、磁石対向面12aにより、隣り合う2つの永久磁石11の間の回転子3の内径側への漏洩磁束を低減する。   On the radially inner side between the adjacent permanent magnets 11 of the rotor core 5, a gap 12 that penetrates the rotor core 5 in the axial direction is provided. In this example, the air gap 12 has a substantially pentagonal cross-sectional shape orthogonal to the axial direction, and is connected to the magnet facing surface 12a in the radial direction facing the side surface that is the magnetic flux generating surface of the permanent magnet 11 and the magnet facing surface 12a. And a radially outer magnetic flux guide surface 12b. The magnet facing surface 12a of the air gap 12 has a narrow gap with the magnetic flux generating surface of the permanent magnet 11, and is substantially parallel. The air gap 12 guides the magnetic flux of the permanent magnet 11 in the magnetic pole portion 8 serving as the N pole to the outer peripheral side of the rotor 3 by the magnetic flux guide surface 12b, and between the two adjacent permanent magnets 11 by the magnet facing surface 12a. The leakage magnetic flux to the inner diameter side of the rotor 3 is reduced.

<回転子鉄心における永久磁石周りの磁束密度分布>
比較例1及び本実施形態の回転子鉄心5における永久磁石11の周りの磁束密度分布を図2(a)及び図2(b)に示す。比較例1の回転子鉄心5は、外周面に平坦部が形成されておらず、円筒面13となっている。
<Flux density distribution around the permanent magnet in the rotor core>
FIG. 2A and FIG. 2B show the magnetic flux density distribution around the permanent magnet 11 in the comparative example 1 and the rotor core 5 of the present embodiment. The rotor core 5 of Comparative Example 1 has a cylindrical surface 13 with no flat portion formed on the outer peripheral surface.

図2(a)に示すように、比較例1では、回転子鉄心5の外周面が円筒面13となっている。このため、永久磁石11の半径方向外側の端面11aと円筒面13との隙間14が大きくなる。特に、円筒面13が外側に膨らむ形状であることから、永久磁石11の中央部(円周方向における中央部)に向けて隙間14が増大する。その結果、磁極部8間の漏れ磁束Mの流路面積が大きくなり、漏れ磁束Mが多くなる。   As shown in FIG. 2A, in Comparative Example 1, the outer peripheral surface of the rotor core 5 is a cylindrical surface 13. For this reason, the gap 14 between the end surface 11a on the radially outer side of the permanent magnet 11 and the cylindrical surface 13 is increased. In particular, since the cylindrical surface 13 has a shape that swells outward, the gap 14 increases toward the center of the permanent magnet 11 (the center in the circumferential direction). As a result, the flow area of the leakage magnetic flux M between the magnetic pole portions 8 is increased, and the leakage magnetic flux M is increased.

これに対し、本実施形態では、図2(b)に示すように、回転子鉄心5の外周面に平坦部6が形成されている。この平坦部6により、外周面と永久磁石11の端面11aとの隙間14を小さくできると共に、隙間14の厚みを均一にすることができる。その結果、磁極部8間の漏れ磁束Mの流路面積を比較例1に比べて小さくすることができ、隙間14の部分が磁気飽和し易くなる。したがって、漏れ磁束Mを減少できる。なお、平坦部6が、回転子鉄心の径方向の外周面と永久磁石の径方向外側の端面との間の厚みを円周方向にほぼ均一とする手段の一例に相当する。   On the other hand, in this embodiment, as shown in FIG.2 (b), the flat part 6 is formed in the outer peripheral surface of the rotor core 5. As shown in FIG. With this flat portion 6, the gap 14 between the outer peripheral surface and the end face 11 a of the permanent magnet 11 can be reduced, and the thickness of the gap 14 can be made uniform. As a result, the flow path area of the leakage magnetic flux M between the magnetic pole portions 8 can be reduced as compared with the first comparative example, and the gap 14 portion is easily magnetically saturated. Therefore, the leakage magnetic flux M can be reduced. The flat portion 6 corresponds to an example of means for making the thickness between the outer peripheral surface in the radial direction of the rotor core and the end surface on the outer side in the radial direction of the permanent magnet substantially uniform in the circumferential direction.

<実施形態の効果>
以上説明したように、本実施形態の回転電機1では、回転子鉄心5の径方向の外周面に平坦部6が形成される。平坦部6の形成部分では、当該平坦部6を設けない場合に比べて回転子鉄心5の外周面を径方向内側に位置させることができる。つまり、平坦部6を、回転子鉄心5内における漏れ磁束Mの流路となる部分(磁極部8同士の間)に対応して形成することにより、当該漏れ磁束Mの流路面積を減少させて、磁気飽和し易くすることができる。その結果、回転子鉄心5が円筒状である上記比較例1に比べて回転子鉄心5内での漏れ磁束Mを減少することができる。したがって、永久磁石11の有効磁束を増大し、回転電機1を高出力化することができる。
<Effect of embodiment>
As described above, in the rotating electrical machine 1 of the present embodiment, the flat portion 6 is formed on the outer circumferential surface of the rotor core 5 in the radial direction. In the portion where the flat portion 6 is formed, the outer peripheral surface of the rotor core 5 can be positioned radially inward compared to the case where the flat portion 6 is not provided. That is, by forming the flat portion 6 corresponding to the portion (between the magnetic pole portions 8) that becomes the flow path of the leakage magnetic flux M in the rotor core 5, the flow passage area of the leakage magnetic flux M is reduced. Thus, magnetic saturation can be facilitated. As a result, the leakage magnetic flux M in the rotor core 5 can be reduced as compared with the first comparative example in which the rotor core 5 is cylindrical. Therefore, the effective magnetic flux of the permanent magnet 11 can be increased, and the rotary electric machine 1 can be increased in output.

また、比較例1の場合には、回転子鉄心5の表面の磁束密度分布は、図3に示すように、磁極部8(中心位置=角度18°)を中心とした略台形状(若しくは略矩形状)の分布となり、コギングトルクの脈動を発生させ、騒音、振動等の要因となる。本実施形態では、上記構成により回転子鉄心5の表面の磁束密度分布は、図3に示すように、磁極部8(中心位置=角度18°)を中心とした正弦波形状に近い分布となる。これにより、コギングトルクの脈動を低減でき、騒音、振動等を低減できる。   In the case of Comparative Example 1, the magnetic flux density distribution on the surface of the rotor core 5 is substantially trapezoidal (or substantially centered on the magnetic pole portion 8 (center position = angle 18 °) as shown in FIG. (Rectangular shape) distribution, causing pulsation of cogging torque, which causes noise, vibration, and the like. In the present embodiment, with the above configuration, the magnetic flux density distribution on the surface of the rotor core 5 is close to a sinusoidal shape centered on the magnetic pole portion 8 (center position = angle 18 °), as shown in FIG. . Thereby, pulsation of cogging torque can be reduced, and noise, vibration, and the like can be reduced.

また、磁極部8間の漏れ磁束を防止するために、例えば図4に示すように、回転子鉄心5における永久磁石11の半径方向外側を空隙15とする構造が考えられる。この比較例2の場合には、磁極部8の付け根16に応力が集中するので、回転子鉄心5の強度を確保するために磁極部8の付け根16を太くする(永久磁石11の間隔を大きくする)必要があり、その結果、回転子鉄心5の内径側への漏れ磁束が増大するという問題がある。本実施形態では、永久磁石11の外周側に鉄心が存在するので、回転子鉄心5の強度を確保できる。その結果、比較例2に比べて永久磁石11の間隔を小さくすることができるので、内径側への漏れ磁束を減少することができる。したがって、有効磁束を増大し、回転電機1を高出力化することができる。   Further, in order to prevent leakage magnetic flux between the magnetic pole portions 8, for example, as shown in FIG. In the case of this comparative example 2, since stress concentrates on the base 16 of the magnetic pole part 8, the base 16 of the magnetic pole part 8 is thickened (the interval between the permanent magnets 11 is increased) in order to ensure the strength of the rotor core 5. As a result, there is a problem that the leakage magnetic flux toward the inner diameter side of the rotor core 5 increases. In the present embodiment, since the iron core exists on the outer peripheral side of the permanent magnet 11, the strength of the rotor core 5 can be ensured. As a result, since the interval between the permanent magnets 11 can be reduced as compared with the comparative example 2, the leakage magnetic flux toward the inner diameter side can be reduced. Therefore, the effective magnetic flux can be increased and the rotating electrical machine 1 can be increased in output.

また、本実施形態では特に、複数の永久磁石11は、円周方向に隣り合う永久磁石11の同じ磁極同士が互いに対向するように回転子鉄心5に放射状に配置され、平坦部6は、永久磁石11と同数形成され、各々が永久磁石11と同じ角度に位置する。このような放射状の配置構成とすることにより、永久磁石11の投入量を増大し、磁束を磁極部8に集中させることができる。   In the present embodiment, in particular, the plurality of permanent magnets 11 are radially arranged on the rotor core 5 so that the same magnetic poles of the permanent magnets 11 adjacent to each other in the circumferential direction face each other, and the flat portion 6 is made permanent. The same number as the magnet 11 is formed, and each is located at the same angle as the permanent magnet 11. By adopting such a radial arrangement configuration, the input amount of the permanent magnet 11 can be increased, and the magnetic flux can be concentrated on the magnetic pole portion 8.

なお、本願発明者等が本実施形態、比較例1及び比較例2のモータについて行ったモータ性能のシミュレーション結果の一例を図5に示す。図5に示すように、モータトルク定数は、比較例1の場合を100%としたとき、比較例2で97.8%、本実施形態で103.3%となり、本実施形態の構成によってモータトルク定数を最も大きくできることが分かる。また、コギングトルクは、定格トルク比で示すと比較例1で0.73%、比較例2で0.88%、本実施形態で0.52%となり、本実施形態の構成によってコギングトルクを大幅に低減できることが分かる。   In addition, an example of the simulation result of the motor performance which this inventor etc. performed about the motor of this embodiment, the comparative example 1, and the comparative example 2 is shown in FIG. As shown in FIG. 5, the motor torque constant is 97.8% in Comparative Example 2 and 103.3% in the present embodiment when the case of Comparative Example 1 is 100%. It can be seen that the torque constant can be maximized. Further, the cogging torque is 0.73% in Comparative Example 1, 0.88% in Comparative Example 2, and 0.52% in the present embodiment when expressed in the rated torque ratio, and the cogging torque is greatly increased by the configuration of the present embodiment. It can be seen that it can be reduced.

<変形例>
なお、開示の実施形態は、上記に限られるものではなく、その趣旨及び技術的思想を逸脱しない範囲内で種々の変形が可能である。以下、そのような変形例を説明する。
<Modification>
The disclosed embodiments are not limited to the above, and various modifications can be made without departing from the spirit and technical idea thereof. Hereinafter, such modifications will be described.

(1)回転子鉄心に永久磁石を径方向と垂直な向きに配置した場合
上記実施形態では、回転子鉄心5に複数の永久磁石11が放射状に配置される場合を一例として説明したが、例えば図6に示すように、各永久磁石11が径方向に対して垂直な方向に延びるように配置されてもよい。
(1) When the permanent magnets are arranged on the rotor core in the direction perpendicular to the radial direction In the above embodiment, the case where the plurality of permanent magnets 11 are arranged radially on the rotor core 5 has been described as an example. As shown in FIG. 6, each permanent magnet 11 may be arranged to extend in a direction perpendicular to the radial direction.

図6に示すように、回転子鉄心5は複数(この例では4。但し4以外でもよい)の永久磁石11を備える。複数の永久磁石11は、回転子鉄心5の周方向に沿った配列で径方向に垂直となるように配置されている。各永久磁石11は、回転子鉄心5の半径方向に磁化されている。複数の永久磁石11は、ある磁極部8でN極、隣りの磁極部8でS極となるように、交互に配置される。つまり回転子鉄心5は、永久磁石11と同数(この例では4)の磁極部8を有する。また、回転子鉄心5の外周面には、永久磁石11と同数(この例では4)の平坦部6が形成され、平坦部6と円筒面部7とが周方向に交互に配置されている。各平坦部6は、周方向に隣り合う永久磁石11の間に位置する。   As shown in FIG. 6, the rotor core 5 includes a plurality of permanent magnets 11 (4 in this example, but may be other than 4). The plurality of permanent magnets 11 are arranged so as to be perpendicular to the radial direction in an array along the circumferential direction of the rotor core 5. Each permanent magnet 11 is magnetized in the radial direction of the rotor core 5. The plurality of permanent magnets 11 are alternately arranged so that a certain magnetic pole portion 8 has an N pole and an adjacent magnetic pole portion 8 has an S pole. That is, the rotor core 5 has the same number (4 in this example) of magnetic pole portions 8 as the permanent magnets 11. Further, the same number (4 in this example) of flat portions 6 as the permanent magnets 11 are formed on the outer peripheral surface of the rotor core 5, and the flat portions 6 and the cylindrical surface portions 7 are alternately arranged in the circumferential direction. Each flat part 6 is located between the permanent magnets 11 adjacent in the circumferential direction.

本変形例では、永久磁石11が径方向に垂直な方向となるように回転子鉄心5に配置される。このような永久磁石11の配置構成では、図7に示すように、回転子鉄心5の円周方向に隣り合う永久磁石11の間の隙間14を介して磁極部8間に漏れ磁束Mが生じる。したがって、本変形例のように各平坦部6を隣り合う永久磁石11の間にそれぞれ位置するように形成することで、漏れ磁束Mの流路面積を小さくして磁気飽和し易くでき、磁極部8間の漏れ磁束Mを効果的に減少することができる。また、回転子鉄心5の表面の磁束密度分布を正弦波形状に近似できることによる、コギングトルクの低減効果も得ることができる。   In this modification, the permanent magnet 11 is arranged on the rotor core 5 so as to be in a direction perpendicular to the radial direction. In such an arrangement configuration of the permanent magnets 11, as shown in FIG. 7, the leakage magnetic flux M is generated between the magnetic pole portions 8 through the gaps 14 between the permanent magnets 11 adjacent in the circumferential direction of the rotor core 5. . Therefore, by forming each flat portion 6 so as to be positioned between the adjacent permanent magnets 11 as in the present modification, the flow area of the leakage magnetic flux M can be reduced and the magnetic saturation can be easily achieved. The leakage magnetic flux M between the eight can be effectively reduced. In addition, the cogging torque can be reduced because the magnetic flux density distribution on the surface of the rotor core 5 can be approximated to a sinusoidal shape.

(2)回転子鉄心の電磁鋼板をかしめ固定する場合
前述のように、回転子鉄心5は複数枚の電磁鋼板を軸方向に積層固定した積層体構造を有している。本変形例では、この積層した電磁鋼板の固定にかしめを用いる。本変形例における回転子鉄心5の一例を図8に示す。
(2) Case where the electromagnetic steel plate of the rotor core is caulked and fixed As described above, the rotor core 5 has a laminated structure in which a plurality of electromagnetic steel plates are laminated and fixed in the axial direction. In this modification, caulking is used to fix the laminated electrical steel sheets. An example of the rotor core 5 in this modification is shown in FIG.

図8に示すように、回転子3の回転子鉄心5は、各磁極部8にかしめ部17を備える。かしめ部17は、径方向に沿って形成されている。このかしめ部17によって、回転子鉄心5を構成する軸方向に積層した複数枚の電磁鋼板が固定されている。本変形例のその他の構成は上記実施形態と同様であり、図8において図1に付した符号と同一の符号は同一の要素を示す。   As shown in FIG. 8, the rotor core 5 of the rotor 3 includes a caulking portion 17 in each magnetic pole portion 8. The caulking portion 17 is formed along the radial direction. A plurality of electromagnetic steel plates laminated in the axial direction constituting the rotor core 5 are fixed by the caulking portion 17. Other configurations of the present modification are the same as those of the above-described embodiment, and the same reference numerals as those in FIG. 1 in FIG. 8 indicate the same elements.

図示は省略するが、各磁極部8における永久磁石11の磁束の向きは大まかに径方向に沿った向き(放射状の向き)となる。したがって、本変形例のようにかしめ部17を径方向に沿って形成することにより、磁束の流れの妨げとなるのを回避し、有効磁束の低下を最小限に抑えることができる。   Although illustration is omitted, the direction of the magnetic flux of the permanent magnet 11 in each magnetic pole portion 8 is roughly the direction along the radial direction (radial direction). Therefore, by forming the caulking portion 17 along the radial direction as in the present modification, it is possible to avoid obstructing the flow of the magnetic flux and to minimize the decrease in the effective magnetic flux.

(3)永久磁石の半径方向外側に空隙を設ける場合
上記実施形態では、回転子鉄心5の永久磁石11の位置の外周面を平坦部6とすることにより、回転子鉄心5の外周面と永久磁石11の半径方向外側の端面11aとの間の厚みを均一にしたが、厚みを均一にする手段はこれに限定されない。例えば図9に示すように、回転子鉄心5内における永久磁石11の半径方向外側に外周面に開口しない空隙を設けることにより、回転子鉄心5の外周面と永久磁石11の端面11aとの間の厚みを均一してもよい。
(3) In the case where a gap is provided on the outer side in the radial direction of the permanent magnet In the above embodiment, the outer peripheral surface of the rotor core 5 at the position of the permanent magnet 11 is the flat portion 6, so that the outer peripheral surface of the rotor core 5 is made permanent. Although the thickness between the end surface 11a on the radially outer side of the magnet 11 is made uniform, the means for making the thickness uniform is not limited to this. For example, as shown in FIG. 9, by providing a gap that does not open on the outer peripheral surface on the radially outer side of the permanent magnet 11 in the rotor core 5, the gap between the outer peripheral surface of the rotor core 5 and the end surface 11 a of the permanent magnet 11 is provided. The thickness may be uniform.

図9に示すように、回転子鉄心5は外周面に平坦部6がなく円筒面13となっている。本変形例では、永久磁石11の半径方向外側の部分に略三日月状の空隙18が形成されている。この空隙18は、永久磁石11が挿入される貫通孔10の径方向外側部分を外周側に膨らんだ三日月状とすることで形成される。   As shown in FIG. 9, the rotor core 5 has a cylindrical surface 13 without the flat portion 6 on the outer peripheral surface. In this modification, a substantially crescent-shaped air gap 18 is formed in the radially outer portion of the permanent magnet 11. The air gap 18 is formed by forming a radially outer portion of the through hole 10 into which the permanent magnet 11 is inserted into a crescent shape that bulges to the outer peripheral side.

これにより、回転子鉄心5の外周面と永久磁石11の端面11aとの隙間14を小さくできると共に、隙間14の厚みを均一にすることができる。その結果、前述の実施形態と同様に、磁極部8間の漏れ磁束Mを減少できる。したがって、有効磁束を増大し、回転電機を高出力化することができる。なお、空隙18が、回転子鉄心の径方向の外周面と永久磁石の径方向外側の端面との間の厚みを円周方向にほぼ均一とする手段の一例に相当する。   Thereby, the gap 14 between the outer peripheral surface of the rotor core 5 and the end surface 11a of the permanent magnet 11 can be reduced, and the thickness of the gap 14 can be made uniform. As a result, the leakage magnetic flux M between the magnetic pole portions 8 can be reduced as in the above-described embodiment. Therefore, it is possible to increase the effective magnetic flux and increase the output of the rotating electrical machine. The air gap 18 corresponds to an example of means for making the thickness between the outer peripheral surface in the radial direction of the rotor core and the end surface on the outer side in the radial direction of the permanent magnet substantially uniform in the circumferential direction.

(4)その他
以上では、回転電機1がモータである場合を一例として説明したが、本実施形態は、回転電機1が発電機である場合にも適用することができる。
(4) Others Although the case where the rotating electrical machine 1 is a motor has been described above as an example, the present embodiment can also be applied when the rotating electrical machine 1 is a generator.

また、回転電機1は電機子を固定子2とし、界磁を回転子3とした場合を一例として説明したが、本実施形態は、電機子を回転子とし、界磁を固定子とした回転電機の場合にも適用することができる。   Further, the rotary electric machine 1 has been described by taking as an example the case where the armature is the stator 2 and the field is the rotor 3, but in the present embodiment, the rotation is performed using the armature as the rotor and the field as the stator. It can also be applied to the case of an electric machine.

また、以上既に述べた以外にも、上記実施形態や各変形例による手法を適宜組み合わせて利用しても良い。   In addition to those already described above, the methods according to the above-described embodiments and modifications may be used in appropriate combination.

その他、一々例示はしないが、上記実施形態や各変形例は、その趣旨を逸脱しない範囲内において、種々の変更が加えられて実施されるものである。   In addition, although not illustrated one by one, the above-mentioned embodiment and each modification are implemented with various modifications within a range not departing from the gist thereof.

1 回転電機
2 固定子
3 回転子
5 回転子鉄心
6 平坦部(厚みを円周方向にほぼ均一とする手段)
7 円筒面部
8 磁極部
11 永久磁石
14 漏れ磁束の流路部分
17 かしめ部
18 空隙(厚みを円周方向にほぼ均一とする手段)
DESCRIPTION OF SYMBOLS 1 Rotating electrical machine 2 Stator 3 Rotor 5 Rotor core 6 Flat part (means to make thickness substantially uniform in circumferential direction)
7 Cylindrical surface portion 8 Magnetic pole portion 11 Permanent magnet 14 Leakage magnetic flux passage portion 17 Caulking portion 18 Air gap (means for making the thickness substantially uniform in the circumferential direction)

Claims (3)

固定子と回転子とを備え、
前記回転子は、
径方向及び軸方向を備えた略円筒状の回転子鉄心と、
前記回転子鉄心に埋め込まれた複数の永久磁石と、
を有する回転電機であって、
前記回転子鉄心は、
前記径方向の外周面に直線状に形成された平坦部と、
円周方向に等間隔に配置された複数の磁極部と、
前記複数の磁極部の前記径方向の内側にそれぞれ設けられた複数の空隙と、
を有し、
前記複数の永久磁石は、
前記円周方向に隣り合う前記永久磁石の同じ磁極同士が互いに対向するように前記回転子鉄心に放射状に配置され、
前記平坦部は、
前記円周方向に隣り合う前記磁極部の間に位置し、かつ、前記永久磁石と同数形成され、各々が前記永久磁石と同じ角度に位置し、
前記複数の空隙のそれぞれの、前記軸方向に直交する断面における断面形状は、略五角形であり、
前記空隙は、
周方向両側に位置して前記永久磁石の磁束発生面である側面とそれぞれ対向して前記径方向に配置され、前記回転子の前記径方向内側への漏洩磁束を低減するための、前記五角形のうちの2辺を構成する磁石対向面と、
前記磁石対向面に接続して前記径方向外側にそれぞれ位置し、前記永久磁石の磁束を前記磁極部の前記径方向外側へ導くための、前記五角形のうちの2辺を構成する磁束ガイド面と、
を有する
ことを特徴とする回転電機。
A stator and a rotor,
The rotor is
A substantially cylindrical rotor core having a radial direction and an axial direction;
A plurality of permanent magnets embedded in the rotor core;
A rotating electric machine having
The rotor core is
A flat portion formed linearly on the radially outer peripheral surface;
A plurality of magnetic pole portions arranged at equal intervals in the circumferential direction;
A plurality of gaps respectively provided inside the radial direction of the plurality of magnetic pole portions;
Have
The plurality of permanent magnets are:
The same magnetic poles of the permanent magnets adjacent in the circumferential direction are arranged radially on the rotor core so as to face each other,
The flat portion is
Located between the magnetic pole portions adjacent in the circumferential direction, and formed in the same number as the permanent magnet, each positioned at the same angle as the permanent magnet,
Each of the plurality of voids has a substantially pentagonal cross-sectional shape in a cross section orthogonal to the axial direction,
The void is
The pentagonal shape is disposed on both sides in the circumferential direction so as to face the side surfaces that are the magnetic flux generation surfaces of the permanent magnets and is arranged in the radial direction to reduce the leakage magnetic flux to the inner side in the radial direction of the rotor. A magnet facing surface constituting two of the sides;
A magnetic flux guide surface that is connected to the magnet facing surface and is positioned on the radially outer side, and that guides the magnetic flux of the permanent magnet to the radially outer side of the magnetic pole portion and that forms two sides of the pentagon, ,
A rotating electric machine comprising:
固定子と回転子とを備え、
前記回転子は、
径方向及び軸方向を備えた略円筒状の回転子鉄心と、
前記回転子鉄心に埋め込まれた複数の永久磁石と、
を有し、
前記回転子鉄心は、
円周方向に等間隔に配置された複数の磁極部と、
前記複数の磁極部の前記径方向の内側にそれぞれ設けられた複数の空隙と、
を有し、
前記複数の永久磁石は、
前記円周方向に隣り合う前記永久磁石の同じ磁極同士が互いに対向するように前記回転子鉄心に放射状に配置され、
前記複数の空隙のそれぞれの、前記軸方向に直交する断面における断面形状は、略五角形であり、
前記空隙は、
周方向両側に位置して前記永久磁石の磁束発生面である側面とそれぞれ対向して前記径方向に配置され、前記回転子の前記径方向内側への漏洩磁束を低減するための、前記五角形のうちの2辺を構成する磁石対向面と、
前記磁石対向面に接続して前記径方向外側にそれぞれ位置し、前記永久磁石の磁束を前記磁極部の前記径方向外側へ導くための、前記五角形のうちの2辺を構成する磁束ガイド面と、
を有する回転電機であって、
前記回転子鉄心のうち、
前記円周方向に隣り合う前記磁極部の間に位置する、前記永久磁石の前記径方向外側の部位の外周面を、直線状に形成され、かつ各々が前記永久磁石と同じ角度に位置する、前記永久磁石と同数の平坦部とするとともに、
前記空隙の前記磁束ガイド面の前記径方向外側に位置する、前記平坦部以外の前記磁極部の外周面を、円筒面部とした
ことを特徴とする回転電機。
A stator and a rotor,
The rotor is
A substantially cylindrical rotor core having a radial direction and an axial direction;
A plurality of permanent magnets embedded in the rotor core;
Have
The rotor core is
A plurality of magnetic pole portions arranged at equal intervals in the circumferential direction;
A plurality of gaps respectively provided inside the radial direction of the plurality of magnetic pole portions;
Have
The plurality of permanent magnets are:
The same magnetic poles of the permanent magnets adjacent in the circumferential direction are arranged radially on the rotor core so as to face each other,
Each of the plurality of voids has a substantially pentagonal cross-sectional shape in a cross section orthogonal to the axial direction,
The void is
The pentagonal shape is disposed on both sides in the circumferential direction so as to face the side surfaces that are the magnetic flux generation surfaces of the permanent magnets and is arranged in the radial direction to reduce the leakage magnetic flux to the inner side in the radial direction of the rotor. A magnet facing surface constituting two of the sides;
A magnetic flux guide surface that is connected to the magnet facing surface and is positioned on the radially outer side, and that guides the magnetic flux of the permanent magnet to the radially outer side of the magnetic pole portion and that forms two sides of the pentagon, ,
A rotating electric machine having
Of the rotor core,
The outer peripheral surface of the radially outer portion of the permanent magnet, which is located between the magnetic pole portions adjacent in the circumferential direction, is formed linearly , and each is positioned at the same angle as the permanent magnet. With the same number of flat portions as the permanent magnets,
A rotating electrical machine characterized in that an outer peripheral surface of the magnetic pole portion other than the flat portion, which is located on the radially outer side of the magnetic flux guide surface of the gap, is a cylindrical surface portion.
前記回転子鉄心は、
複数の電磁鋼板が積層して構成され、前記磁極部に前記径方向に沿って形成されたかしめ部を有する
ことを特徴とする請求項1又は2に記載の回転電機。
The rotor core is
3. The rotating electrical machine according to claim 1, wherein a plurality of electromagnetic steel plates are laminated and have a caulking portion formed along the radial direction at the magnetic pole portion.
JP2013176725A 2013-08-28 2013-08-28 Rotating electric machine Active JP5954279B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013176725A JP5954279B2 (en) 2013-08-28 2013-08-28 Rotating electric machine
CN201420486247.4U CN204304642U (en) 2013-08-28 2014-08-26 Electric rotating machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013176725A JP5954279B2 (en) 2013-08-28 2013-08-28 Rotating electric machine

Publications (2)

Publication Number Publication Date
JP2015047009A JP2015047009A (en) 2015-03-12
JP5954279B2 true JP5954279B2 (en) 2016-07-20

Family

ID=52672086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013176725A Active JP5954279B2 (en) 2013-08-28 2013-08-28 Rotating electric machine

Country Status (2)

Country Link
JP (1) JP5954279B2 (en)
CN (1) CN204304642U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017111174A1 (en) 2017-05-22 2018-11-22 Hiwin Mikrosystem Corp. Interior permanent magnet motor

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI625029B (en) * 2017-04-26 2018-05-21 大銀微系統股份有限公司 Interior-permanent-magnet motor
CN108964307A (en) * 2017-05-18 2018-12-07 大银微***股份有限公司 Built-in permanent magnet motor
CN117411211A (en) * 2019-08-26 2024-01-16 日本电产株式会社 Permanent magnet embedded motor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001211582A (en) * 2000-01-26 2001-08-03 Fujitsu General Ltd Permanent magnet motor
ITBO20050437A1 (en) * 2005-06-30 2007-01-01 Spal Automotive Srl ROTOR FOR ELECTRIC MACHINE
JP4815204B2 (en) * 2005-12-01 2011-11-16 アイチエレック株式会社 Permanent magnet rotating machine and compressor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017111174A1 (en) 2017-05-22 2018-11-22 Hiwin Mikrosystem Corp. Interior permanent magnet motor

Also Published As

Publication number Publication date
CN204304642U (en) 2015-04-29
JP2015047009A (en) 2015-03-12

Similar Documents

Publication Publication Date Title
JP5774081B2 (en) Rotating electric machine
JP5762569B2 (en) Rotor of embedded permanent magnet motor and compressor, blower and refrigeration air conditioner using the same
JP5709907B2 (en) Permanent magnet embedded rotary electric machine for vehicles
JP5329902B2 (en) Rotor structure of rotating electrical machine
JP5855680B2 (en) Electric equipment equipped with an electric motor
JP5677584B2 (en) Rotor, compressor and refrigeration air conditioner for embedded permanent magnet motor
JP2013021776A (en) Rotary electric machine
KR100624381B1 (en) Rotor for interior permanent magnet synchronous motor and method for manufacturing the rotor
WO2014115436A1 (en) Permanent-magnet-type rotating electric mechanism
US20140210296A1 (en) Rotor for permanent magnet type motor, method of manufacturing rotor for permanent magnet type motor, and permanent magnet type motor
JP5958439B2 (en) Rotor and rotating electric machine using the same
JP5511921B2 (en) Electric motor, blower and compressor
WO2016047078A1 (en) Permanent magnet type rotor and permanent magnet type synchronous rotary electric machine
JP5755338B2 (en) Permanent magnet embedded electric motor and compressor
JP2013021775A (en) Rotary electric machine
JP5954279B2 (en) Rotating electric machine
JP2011015458A (en) Permanent magnet type rotary electric machine, and elevator device using the same
JP4855747B2 (en) Permanent magnet type reluctance rotating electric machine
JP2017184571A (en) Permanent magnet type rotary electric machine
WO2017212575A1 (en) Permanent magnet motor
JP2015050803A (en) Rotary electric machine
JP5264551B2 (en) Electric motor, blower and compressor
JP5959616B2 (en) Rotor, compressor and refrigeration air conditioner for embedded permanent magnet motor
JP2008199846A (en) Permanent magnet type electric rotating machine
JP6079132B2 (en) Embedded magnet rotor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160530

R150 Certificate of patent or registration of utility model

Ref document number: 5954279

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150