JP5949827B2 - エネルギー管理システム - Google Patents

エネルギー管理システム Download PDF

Info

Publication number
JP5949827B2
JP5949827B2 JP2014083677A JP2014083677A JP5949827B2 JP 5949827 B2 JP5949827 B2 JP 5949827B2 JP 2014083677 A JP2014083677 A JP 2014083677A JP 2014083677 A JP2014083677 A JP 2014083677A JP 5949827 B2 JP5949827 B2 JP 5949827B2
Authority
JP
Japan
Prior art keywords
unit
attribute
energy
output
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014083677A
Other languages
English (en)
Other versions
JP2015204020A (ja
Inventor
公二 出町
公二 出町
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP2014083677A priority Critical patent/JP5949827B2/ja
Priority to EP15779404.1A priority patent/EP3133452B1/en
Priority to US15/303,839 priority patent/US10693318B2/en
Priority to PCT/JP2015/058800 priority patent/WO2015159652A1/ja
Publication of JP2015204020A publication Critical patent/JP2015204020A/ja
Application granted granted Critical
Publication of JP5949827B2 publication Critical patent/JP5949827B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B15/00Systems controlled by a computer
    • G05B15/02Systems controlled by a computer electric
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00006Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment
    • H02J13/00016Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using a wired telecommunication network or a data transmission bus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/20Smart grids as enabling technology in buildings sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/30State monitoring, e.g. fault, temperature monitoring, insulator monitoring, corona discharge
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/12Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment
    • Y04S40/124Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment using wired telecommunication networks or data transmission busses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/20Information technology specific aspects, e.g. CAD, simulation, modelling, system security

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Testing And Monitoring For Control Systems (AREA)

Description

本発明は、エネルギー管理システムに関する。
プラント(生産装置)の操業時のエネルギー効率を向上させる効果が大きい手段のひとつは、プラント建設に先立ちエネルギー効率が最大になるようなプラントおよびオートメーション・システムの設計を行うことである。このエネルギー効率の最適化設計を行うためには、仮想的なプラント・モデルを活用したシミュレーションが欠かせない。
なお、エネルギー関連システムに関連する技術として、特許文献1には、「エネルギー効率に関連するデータ」のうち「エネルギー消費データ」を収集し保存するデータ保持手段を有するエネルギー管理システムが示されている。また、特許文献2には、電力モニタからデータを収集しそれらをグループ化する機能を有するエネルギー監視システムが示されている。また、特許文献3には、プラントに関連するデータ群を「ユニット」に対応付けて管理するプラント情報管理装置が示されている。
特開2010−271826号公報 特許第4747756号公報 特許第5029632号公報
しかしながら、多くのプラントは、複雑な構造を持っており、複数の製造業者から納入される多くの種類の要素から構成されているため、複雑で多様なプラントに対応して柔軟にシミュレーションを行うことが困難であった。
例えば、特許文献1に記載の技術では、「エネルギー消費データ」以外の「エネルギーの入力の情報」、「エネルギーの出力の情報」などについては言及されておらず、複雑で多様なプラントに対応することは困難である。また、特許文献2に記載の技術では、電力モニタから収集したデータをグループ化することで電力モニタの追加や変更が容易になったとしても、電力モニタからのデータ収集のみでは複雑で多様なプラントに対応することは困難である。また、特許文献3に記載の技術では、プラントに関連するデータ群を「ユニット」に対応付けて管理するが、この「ユニット」はデータを提示する目的に限定して使用されており、複雑で多様なプラントに対応して、エネルギー効率の監視、シミュレーション、または最適化を行うことは困難である。
本発明は、このような事情に鑑みてなされたもので、複雑で多様なプラント(生産装置)に対応して、エネルギー効率の監視、シミュレーション、または最適化を行うことができるエネルギー管理システムを提供することを目的の一つとする。
上記課題を解決するために、本発明の一態様は、生産装置のエネルギー効率に関連する情報を収集する収集部と、前記生産装置の構成要素のエネルギー効率に関連する情報を規定の規則に基づいてモデル化したモデル化単位を用いることにより、前記収集部が収集した前記エネルギー効率に関連する情報に基づいて、前記生産装置による生産活動におけるエネルギー効率の監視、シミュレーション、及び最適化のいずれかを行う処理部と、を備えることを特徴とするエネルギー管理システムである。
また、本発明の一態様は、上記エネルギー管理システムにおいて、前記処理部が、階層的にモデル化した前記モデル化単位を用いることにより、前記収集部が収集した前記エネルギー効率に関連する情報に基づいて、前記生産装置による生産活動におけるエネルギー効率の監視、シミュレーション、及び最適化のいずれかを行う、ことを特徴とする。
また、本発明の一態様は、上記エネルギー管理システムにおいて、前記モデル化単位が、前記生産装置の特定の構成要素のエネルギー効率に関連する構造、機能、又は性能に関する情報を規定の規則に基づいてモデル化したものである、ことを特徴とする。
また、本発明の一態様は、上記エネルギー管理システムにおいて、前記モデル化単位が、前記モデル化単位の特徴又は状態を示す属性として、前記モデル化単位への入力に関する入力属性、前記モデル化単位からの出力に関する出力属性、又は前記モデル化単位への入力から出力までの間の消費に関する消費属性を有する、ことを特徴とする。
また、本発明の一態様は、上記エネルギー管理システムにおいて、前記モデル化単位が、前記モデル化単位の特徴と状態を示す属性として、物流に関する入力属性、出力属性、又は消費属性を含む属性群と、エネルギーの流れに関する入力属性、出力属性、又は消費属性を含む属性群と、を有する、ことを特徴とする。
また、本発明の一態様は、上記エネルギー管理システムにおいて、前記モデル化単位が、前記モデル化単位の特徴と状態を示す属性として、前記モデル化単位への流入量と前記モデル化単位からの流出量との差分を示す蓄積量を示す情報が含まれる蓄積属性をさらに有する、ことを特徴とする。
また、本発明の一態様は、上記エネルギー管理システムにおいて、前記モデル化単位が、前記モデル化単位の特徴と状態を示す属性として、前記モデル化単位へ入力された物の流入量と前記モデル化単位から出力された物の流出量との差分を示す物の蓄積量を示す情報が含まれる物流に関する蓄積属性と、前記モデル化単位へ入力されたエネルギーの流入量と前記モデル化単位から出力されたエネルギーの流出量との差分を示すエネルギーの蓄積量を示す情報が含まれるエネルギーの流れに関する蓄積属性と、を有する、ことを特徴とする。
また、本発明の一態様は、上記エネルギー管理システムにおいて、前記モデル化単位が有する属性には、前記モデル化単位へ入力される対象の流れの種類ごとに、当該流れの種類を示す情報と流れの量を示す情報とが関連付けられた情報が含まれる、ことを特徴とする。
また、本発明の一態様は、上記エネルギー管理システムにおいて、前記モデル化単位へ入力される対象がエネルギーの場合、前記モデル化単位が有するエネルギーの流れに関する属性には、前記流れの種類を示す情報として、電気エネルギー、熱エネルギー、位置エネルギー、又は運動エネルギーを示す情報が含まれる、ことを特徴とする。
また、本発明の一態様は、上記エネルギー管理システムにおいて、前記モデル化単位が有する属性には、前記流れの量を示す情報として、単位時間毎の前記流れの量を示す情報が含まれる、ことを特徴とする。
また、本発明の一態様は、上記エネルギー管理システムにおいて、前記モデル化単位は、前記生産装置へ入力される部分をモデル化した入力部と、前記生産装置から出力される部分をモデル化した出力部と、前記生産装置への入力から出力までの間で消費される部分をモデル化した消費部と、を有する、ことを特徴とする。
また、本発明の一態様は、上記エネルギー管理システムにおいて、前記モデル化単位が有する属性には、前記モデル化単位へ入力される対象の流れの種類ごとに、当該流れの種類を示す情報と流れの量を示す情報とが関連付けられた情報が含まれ、前記処理部が、第1の前記モデル化単位の前記出力部が、前記出力部の前記出力属性と同一の前記流れの種類が含まれる前記入力属性を有する第2の前記モデル化単位の前記入力部へ接続されて結合された複数の前記モデル化単位を用いることにより、前記収集部が収集した前記エネルギー効率に関連する情報に基づいて、前記生産装置による生産活動におけるエネルギー効率の監視、シミュレーション、及び最適化のいずれかを行う、ことを特徴とする。
また、本発明の一態様は、上記エネルギー管理システムにおいて、前記結合された複数の前記モデル化単位を一つにまとめて上位のモデル化単位とし、前記上位のモデル化単位内において前記結合された複数の前記モデル化単位の間で接続がされていない前記入力部、前記出力部、または前記消費部が、前記上位のモデル化単位の前記入力部、前記出力部、または前記消費部に接続され、前記上位のモデル化単位の前記入力部、前記出力部、及び前記消費部のそれぞれに対応する前記入力属性、前記出力属性、及び前記消費属性を、それぞれに接続された前記入力部、前記出力部、及び前記消費部に対応する前記入力属性、前記出力属性、及び前記消費属性とする、ことを特徴とする。
また、本発明の一態様は、上記エネルギー管理システムにおいて、前記上位のモデル化単位内において前記結合された複数の前記モデル化単位の間で接続がされていない前記入力部、前記出力部、または前記消費部のそれぞれが複数ある場合、複数ある前記入力部、前記出力部、または前記消費部のそれぞれに対応する属性ごとにまとめて、前記上位のモデル化単位のそれぞれの属性とする、ことを特徴とする。
また、本発明の一態様は、上記エネルギー管理システムにおいて、前記モデル化単位へ入力される対象が物の場合、前記モデル化単位が有する物流に関する属性には、当該物の種類に対応した単位量あたりのエネルギーを示す単位見なしエネルギーの情報が含まれ、前記処理部が、前記モデル化単位の物流に関する入力属性に含まれる前記単位見なしエネルギーを、上流として結合されたモデル化単位の物流に関する出力属性に含まれる前記単位見なしエネルギーの値、または予め定められた前記単位見なしエネルギーの値とし、前記モデル化単位の物流に関する出力属性に含まれる前記単位見なしエネルギーの値を、前記モデル化単位の物流に関する入力属性、エネルギーの流れに関する入力属性、及びエネルギーの流れに関する出力属性に基づいて算出する、ことを特徴とする。
また、本発明の一態様は、上記エネルギー管理システムにおいて、前記処理部が、前記出力属性に含まれる前記単位見なしエネルギーの値を、以下の数式1を用いて算出する、ことを特徴とする。
Figure 0005949827
また、本発明の一態様は、上記エネルギー管理システムにおいて、前記モデル化単位が複数の物流に関する前記出力属性に対応する出力部を有する場合、前記処理部が、前記モデル化単位における総単位見なしエネルギーを、複数の前記出力属性のそれぞれにおける物流の流出量に比例して配分した値を、複数の前記出力属性のそれぞれに含まれる前記単位見なしエネルギーの値とする、ことを特徴とする。
また、本発明の一態様は、上記エネルギー管理システムにおいて、前記モデル化単位の属性が、前記モデル化単位の他の属性から算出される見なしエネルギー効率を属性として有する、ことを特徴とする。
また、本発明の一態様は、上記エネルギー管理システムにおいて、前記処理部が、前記見なしエネルギー効率を、以下の数式2により算出する、ことを特徴とする。
Figure 0005949827
また、本発明の一態様は、上記エネルギー管理システムにおいて、前記モデル化単位が、前記モデル化単位から出力される対象の流出量の目標値を示す目標生産量と、前記モデル化単位から出力される対象の種類ごとの流出量の目標比率を示す目標出力組合せ比率と、前記モデル化単位へ入力される対象の種類ごとの目標比率を示す目標入力組合せ比率、のうち少なくともひとつの情報を含む属性を、前記モデル化単位の特徴又は状態を示す属性として有する、ことを特徴とする。
また、本発明の一態様は、エネルギー管理システムにおけるエネルギー管理方法であって、生産装置のエネルギー効率に関連する情報を収集し、前記生産装置の構成要素のエネルギー効率に関連する情報を規定の規則に基づいてモデル化したモデル化単位を用いることにより、前記収集した前記エネルギー効率に関連する情報に基づいて、前記生産装置による生産活動におけるエネルギー効率の監視、シミュレーション、及び最適化のいずれかを行う、ことを特徴するエネルギー管理方法である。
また、本発明の一態様は、コンピュータに、生産装置のエネルギー効率に関連する情報を収集するステップと、前記生産装置の構成要素のエネルギー効率に関連する情報を規定の規則に基づいてモデル化したモデル化単位を用いることにより、前記収集した前記エネルギー効率に関連する情報に基づいて、前記生産装置による生産活動におけるエネルギー効率の監視、シミュレーション、及び最適化のいずれかを行うステップと、を実行させるためのプログラムである。
本発明によれば、複雑で多様なプラント(生産装置)に対応して、エネルギー効率の監視、シミュレーション、または最適化を行うことができる。
本実施形態によるエネルギー管理システムの概略構成の一例を示す構成図である。 生産装置の一例の概略構成を示す構成図である。 生産装置の別の構成例を示す構成図である。 本実施形態によるエネルギー管理システムの処理の流れを示す流れ図である。 生産装置の構成要素をモデル化単位で表わす場合のイメージを示す模式図である。 モデル化単位の構成の第1例を示す図である。 モデル化単位が有する属性に含まれる情報の一例を示す図である。 モデル化単位が有する属性に含まれる流れの量を示す情報の一例を示す図である。 モデル化単位の構成の第2例を示す図である。 モデル化単位の構成の第3例を示す図である。 モデル化単位の構成の第4例を示す図である。 モデル化単位の構成の第5例を示す図である。 モデル化単位の構成の第6例を示す図である。 モデル化単位の構成の第7例を示す図である。 モデル化単位の構成の第8例を示す図である。
以下、図面を参照して、本発明の実施の形態について説明する。
<エネルギー管理システム1の概略構成>
図1は、本実施形態によるエネルギー管理システム1の概略構成の一例を示す構成図である。エネルギー管理システム1は、生産装置100(プラント)のエネルギー効率に関連するデータを収集する手段と、そのデータを保持する手段と、そのデータを解析する手段を有し、生産活動におけるエネルギー効率の監視、シミュレーション、最適化のいずれかを含む機能を実現する。
この図に示す例では、エネルギー管理システム1は、管理対象の生産装置100の状態やエネルギーの流れなど、生産装置100のエネルギー効率に関する要素を測定するためのセンサ群200と、そのセンサ群200から得られる生産装置100の情報を処理する情報処理装置300と、センサ群200と情報処理装置300とを接続する通信ネットワーク5を備えている。
生産装置100は、例えば、化学等の工業プラント、ガス田や油田等の井戸元やその周辺を管理制御するプラント、水力・火力・原子力等の発電を管理制御するプラント、太陽光や風力等の環境発電を管理制御するプラント、上下水やダム等を管理制御するプラント等である。
センサ群200には、生産装置100内に設置された測定機器または移動可能な測定機器などの複数のフィールド機器が含まれる。このフィールド機器としては、例えば、流量計や温度センサ等のセンサ機器、流量制御弁や開閉弁等のバルブ機器、ファンやモータ等のアクチュエータ機器、プラント内の状況や対象物を撮影するカメラやビデオ等の撮像機器、プラント内の異音等を収集したり警報音等を発したりするマイクやスピーカ等の音響機器、各機器の位置情報を出力する位置検出機器、その他の機器を適用できる。
通信ネットワーク5は、4−20mAの電流信号、その電流信号に重畳したデジタル信号、フィールドバス通信などのデジタル信号、またはISA100.11aやWireless HART(登録商標)などの工業用無線通信、などによる通信網である。
情報処理装置300は、通信装置310と、情報記憶装置320と、中央情報処理装置330と、情報入出力装置340とを備えている。
通信装置310(収集部)は、通信ネットワーク5を介してセンサ群200の情報を取得する。例えば、通信装置310は、センサ群200が検出した生産装置100のエネルギー効率に関する情報を、センサ群200から収集する。
情報記憶装置320は、RAM(Random Access Memory)、EEPROM(Electrically Erasable Programmable Read−Only Memory)、フラッシュROM、HDD(Hard Disk Drive)等の記録媒体またはこれらの組合せを用いて構成され、通信装置310が収集した情報を記憶する。
中央情報処理装置330(処理部)は、通信装置310が収集した情報を解析して加工する。例えば、中央情報処理装置330は、生産装置100の特定の構成要素のエネルギー効率に関連する情報を規定の規則に基づいてモデル化したモデル化単位を用いることにより、通信装置310が収集した情報に基づいて、生産装置100による生産活動におけるエネルギー効率の監視、シミュレーション、または最適化を行う。ここで、中央情報処理装置330は、例えば、生産装置100の特定の構成要素のエネルギー効率に関連する構造、機能、及び性能に関する情報を規定の規則に基づいてモデル化したモデル化単位を用いる。
なお、このモデル化単位について詳しくは、後述する。
情報入出力装置340は、使用者から入力された情報の受け付ける入力部と、必要な情報を使用者に提供する出力部とを備えている。ここで、この出力部とは、表示情報を表示する表示部であってもよい。例えば、情報入出力装置340は、入力部と表示部とが一体となったタッチパネルとして構成されている。
<生産装置100の一例>
図2は、生産装置100の一例の概略構成を示す構成図である。
ここでは、図2を参照して、エネルギー管理システム1の管理対象となる生産装置100の一例として、火力発電装置100Aについて説明する。
火力発電装置100Aは、ボイラー110により発生した蒸気でタービン120を回し電力を生成するボイラー110は、燃料ポンプ140を経由して供給される燃料(a)を燃焼させて得られる熱を利用して、バルブ130を経由して供給される水(b)を蒸気(e)に変換する。ここで、燃料ポンプ140は電力(d)により動作する。また、バルブ130は電力(d)により動作するエアポンプ150から供給される空気圧(エア(c))により動作する。
なお、バルブ130、燃料ポンプ140、及びエアポンプ150をボイラー110の一部として含めてもよい。その場合、バルブ130、燃料ポンプ140、及びエアポンプ150を含むボイラー110の構成をボイラー110Aとすると、火力発電装置100Aの構成を、図3に示すようにタービン120とボイラー110Aとを備えた構成として単純化して表すことができる。この場合、ボイラー110への入力が燃料(a)、電力(d)、水(b)となり、ボイラー110からの出力が蒸気(e)となる。また、タービン120への入力が蒸気(e)となり、タービン120からの出力が電力(f)となる。また、火力発電装置100Aをひとつの構成として考えると、火力発電装置100Aへの入力が燃料(a)、電力(d)、水(b)となり、火力発電装置100A出力が電力(f)となる。なお、蒸気(e)は、火力発電装置100A内部のエネルギーの授受として外部からは意識されない。
<エネルギー管理システム1の処理の動作>
図4は、本実施形態によるエネルギー管理システム1の処理の流れを示す流れ図である。
まず、情報処理装置300の通信装置310は、センサ群200が検出した生産装置100のエネルギー効率に関連するデータ(情報)を、通信ネットワーク5を介してセンサ群200から収集する(ステップS10:データ収集)。
ここで、生産装置100のエネルギー効率に関する情報とは、図3に示す火力発電装置100Aを例とすると、例えば、火力発電装置100Aへ入力される燃料、電力、水に関する情報、火力発電装置100Aから出力される電力に関する情報、火力発電装置100A内部でエネルギーが消費される蒸気に関する情報などである。
次に、情報記憶装置320は、通信装置310が取得した生産装置100のエネルギー効率に関連するデータ(情報)を記憶する(ステップS20:データ保持)。そして、中央情報処理装置330は、通信装置310が収集した生産装置100のエネルギー効率に関連するデータ(情報)を情報記憶装置320から読み出し、読み出したデータに基づいて、生産装置100による生産活動におけるエネルギー効率の監視、シミュレーション、または最適化を行う(ステップS30:データ解析)。このとき、中央情報処理装置330は、生産装置100の構成要素のエネルギー効率に関連する構造、機能、又は性能に関する情報を規定の規則に基づいてモデル化したモデル化単位を用いる。
<モデル化単位の説明>
次に、生産装置100を構成する構成要素のエネルギー効率に関連するデータ(情報)を規定の規則に基づいてモデル化したモデル化単位について説明する。
図5は、生産装置100の構成要素をモデル化単位で表わす場合のイメージを示す模式図である。多くの生産装置100は、複雑な構造を持っており、複数の製造業者から納入される多くの種類の構成要素に基づいて構成されている。そこで、エネルギー管理システム1は、これらの構成要素を階層的にモデル化することにより、モデル化したモデル化単位ごとにエネルギー効率に関連するデータを階層的に表す。
例えば、図5に示すように、生産装置100には構成要素1及び構成要素2が含まれ、構成要素1にはさらに構成要素1−1及び構成要素1−2が含まれ、構成要素2にはさらに構成要素2−1及び構成要素2−2が含まれているとする。このとき、本実施形態によるエネルギー管理システム1では、生産装置100の各構成要素のエネルギー効率に関連するデータを規定の規則に基づいてモデル化したモデル化単位を用いて、仮想的な生産装置(仮想生産装置100X)として表現する。ここでは、仮想生産装置100Xには、モデル化単位1及びモデル化単位2が含まれ、モデル化単位1にはさらにモデル化単位1−1及びモデル化単位1−2が含まれ、モデル化単位2にはさらにモデル化単位2−1及びモデル化単位2−2が含まれている。このように、エネルギー管理システム1では、生産装置100の各構成要素のエネルギー効率に関連するデータがモデル化単位を用いて階層的に表される。これにより、エネルギー管理システム1は、複雑で多様な生産装置100に対応して、エネルギー効率の監視、シミュレーション、または最適化を行うことができる。
なお、モデル化する構成要素は、生産装置100を構成する構成要素のうちの一部であってもよいし全部であってもよい。例えば、生産装置100を構成する構成要素のうちの特定の構成要素についてモデル化してもよい。
次に、モデル化単位の構成例について説明する。
(モデル化単位の第1例)
図6は、モデル化単位の構成の第1例を示す図である。
この図に示すモデル化単位500aは、本実施形態によるモデル化単位の基本的な構成例である。モデル化単位500aは、生産装置100へ入力される部分をモデル化した入力部510と、生産装置100から出力される部分をモデル化した出力部520と、生産装置100への入力から出力までの間で消費される部分をモデル化した消費部530とを有する。なお、生産装置100への入力から出力までの間で消費される部分とは、生産装置100への入力から出力までの間の消費によって生産装置100から出力される部分を含む。例えば、この消費属性は、モデル化単位500aへの入力から出力までの間で有効に活用されずに消費される部分に関する属性としてもよい。
つまり、モデル化単位500aでは、生産装置100の構成要素の流れの構造を、入力部510から出力部520又は消費部530への流れの構造として表す。
また、モデル化単位500aは、入力部510に対応して、モデル化単位500aへの入力に関する入力属性を有する。また、モデル化単位500aは、出力部520に対応して、モデル化単位500aからの出力に関する出力属性を有する。また、モデル化単位500aは、消費部530に対応して、モデル化単位500aへの入力から出力までの間の消費に関する消費属性を有する。これらの入力属性、出力属性、及び消費属性は、モデル化単位500aの特徴又は状態を示す属性であって、生産装置100の構成要素の機能や性能に基づいて定まる。
このように、生産装置100の構成要素に関して、入力部510から出力部520又は消費部530への流れの構造と、入力属性、出力属性、及び消費属性とを用いてモデル化したモデル化単位500aとして表すことができる。
なお、モデル化単位500aが有する属性には、モデル化単位500aへ入力される対象の流れの種類ごとに、流れの種類を示す情報と流れの量を示す情報とが関連付けられた情報が含まれる。
図7は、モデル化単位500aが有する属性に含まれる情報の一例を示す図である。図示するように、入力属性、出力属性、及び消費属性のそれぞれには、流れの種類を示す情報と流れの量を示す情報とが関連付けられた情報が含まれる。
なお、モデル化単位500aが有する属性には、流れの量を示す情報として、単位時間毎の流れの量を示す情報が含まれてもよい。
図8は、モデル化単位500aが有する属性に含まれる流れの量を示す情報の一例を示す図である。図示するように、流れの量を示す情報には、時間帯を示す情報(「時間帯−1」、「時間帯−2」、「時間帯−3」、・・・)と、各時間帯の流れの量を示す情報(「流量−1」、「流量−2」、「流量−3」、・・・)と、が関連付けられており、時間帯(単位時間)ごとの流量が保持される。
これにより、エネルギー管理システム1は、流量の時間的な変化を取り扱えるようになり、流量の時間的な変化を考慮して生産装置100の構成要素をモデル化することができる。
(モデル化単位の第2例)
図9は、モデル化単位の構成の第2例を示す図である。
この図9に示すモデル化単位500bは、図6に示すモデル化単位500aの構成を用いて、生産装置100の物流及びエネルギーの流れに関してモデル化した例を示している。モデル化単位500bは、物流に関する入力部511、出力部521、及び消費部531と、エネルギーの流れに関する入力部512、出力部522、及び消費部532と、を有する。
また、モデル化単位500bは、物流に関する属性群として、物流に関する入力部511と、出力部521と、消費部531とのそれぞれに対応して、物流の入力属性と、物流の出力属性と、物流の消費属性と、を有する。また、モデル化単位500bは、エネルギーの流れに関する属性群として、エネルギーの流れに関する入力部512と、出力部522と、消費部532とのそれぞれに対応して、エネルギーの入力属性と、エネルギーの出力属性と、エネルギーの消費属性と、を有する。
このように、生産装置100の物流及びエネルギーの流れに関してモデル化して表すことができる。なお、このモデル化単位500bでは、物流に関する入力部511から出力部521又は消費部531への流れ、及びエネルギーに関する入力部512から出力部522又は消費部532への流れととともに、物流に関する入力部511からエネルギーに関する出力部522又は消費部532への流れ、又はエネルギーに関する入力部512から物流に関する出力部521又は消費部531への流れも含まれてもよい。
また、モデル化単位500bが有する属性には、モデル化単位500bへ入力される対象である物及びエネルギーごとに、図7または図8を参照して説明した流れの種類を示す情報と流れの量を示す情報とが関連付けられた情報が含まれる。例えば、物流の入力属性、物流の出力属性、及び物流の消費属性のそれぞれには、物流の種類を示す情報と物流の量を示す情報とが関連付けられた情報が含まれる。また、エネルギーの入力属性、エネルギーの出力属性、及びエネルギーの消費属性のそれぞれには、エネルギーの流れの種類を示す情報とエネルギーの流れの量を示す情報とが関連付けられた情報が含まれる。
例えば、エネルギーの流れの種類には、電気エネルギー、熱エネルギー、位置エネルギー、又は運動エネルギーなどがある。例えば、モデル化単位500bへ入力される対象がエネルギーの場合には、モデル化単位500bが有するエネルギーの流れに関する属性には、エネルギーの流れの種類を示す情報として、電気エネルギー、熱エネルギー、位置エネルギー、又は運動エネルギーを示す情報が含まれる。
(モデル化単位の第3例)
図10は、モデル化単位の構成の第3例を示す図である。
この図10に示すモデル化単位500cは、生産装置100への入力と生産装置100からの出力との差分(すなわち、生産装置100内で蓄積される部分)をモデル化した蓄積部をさらに有する点が、図9に示すモデル化単位500bに対して異なる。例えば、モデル化単位500cは、物流に関する入力部511、出力部521、消費部531、及び蓄積部541と、エネルギーの流れに関する入力部512、出力部522、消費部532、及び蓄積部542と、を有する。
また、モデル化単位500cは、物流に関する属性群として、物流の入力属性と、物流の出力属性と、物流の消費属性と、物流に関する蓄積部541に対応した物流の蓄積属性と、を有する。
例えば、物流の蓄積属性には、モデル化単位500cへ入力された物の流入量とモデル化単位500cから出力された物の流出量との差分を示す物の蓄積量を示す情報が含まれる。なお、物の流入量は、物流に関する入力部511に入力された物の量である。また、物の流出量は、物流に関する出力部521及び消費部531から出力された物の量である。
また、モデル化単位500cは、エネルギーに関する属性群として、エネルギーの入力属性と、エネルギーの出力属性と、エネルギーの消費属性と、エネルギーの流れに関する蓄積部542に対応するエネルギーの蓄積属性と、を有する。
ここで、エネルギーの蓄積属性には、モデル化単位500cへ入力されたエネルギーの流入量とモデル化単位500cから出力されたエネルギーの流出量との差分を示すエネルギーの蓄積量を示す情報が含まれる。なお、エネルギーの流入量は、エネルギーの流れに関する入力部512に入力されたエネルギーの量である。また、エネルギーの流出量は、エネルギーの流れに関する出力部521及び消費部531から出力されたエネルギーの量である。
このように、生産装置100の物流及びエネルギーの流れに関して、生産装置100内における物の蓄積及びエネルギーの蓄積も考慮してモデル化することができる。
(モデル化単位の第4例)
図11は、モデル化単位の構成の第4例を示す図である。
この図11に示す例は、生産装置100を、結合された複数のモデル化単位を用いてモデル化した例である。ここでは、モデル化単位(1)550と、モデル化単位(2)560と、モデル化単位(3)570と、モデル化単位(4)580と、モデル化単位(5)590と、が結合されたモデル化単位群の例を示している。各モデル単位は、少なくとも入力部及び出力部を有している。この図では、各モデル化単位の間で接続されている入力部及び出力部を示しており、その他の入力部、出力部、消費部などの図示を省略している。
モデル化単位(1)550の出力部551は、モデル化単位(3)570の入力部571と、モデル化単位(4)580の入力部581とに接続されている。出力部551には、モデル化単位(1)550の物流に関する出力属性が対応付けられており、入力部571及び入力部581にはそれぞれのモデル化単位の物流に関する入力属性が対応付けられている。また、出力部551の出力属性、入力部571の入力属性、及び入力部581の入力属性には、それぞれ同じ物流の種類(ここでは、「種類−A」)を示す情報が含まれる。
モデル化単位(1)550の出力部552は、モデル化単位(3)570の入力部573と、モデル化単位(4)580の入力部583とに接続されている。出力部552には、モデル化単位(1)550のエネルギーの流れに関する出力属性が対応付けられており、入力部573及び入力部583にはそれぞれのモデル化単位のエネルギーの流れに関する入力属性が対応付けられている。また、出力部552の出力属性、入力部573の入力属性、及び入力部583の入力属性には、それぞれ同じエネルギーの流れの種類(ここでは、「種類−a)を示す情報が含まれる。
モデル化単位(2)560の出力部561は、モデル化単位(3)570の入力部572に接続されている。出力部561には、モデル化単位(2)560の物流に関する出力属性が対応付けられており、入力部572にはモデル化単位(3)570の物流に関する入力属性が対応付けられている。また、出力部561の出力属性及び入力部572の入力属性には、それぞれ同じ物流の種類(ここでは、「種類−B)を示す情報が含まれる。
モデル化単位(2)560の出力部562及びモデル化単位(3)570の出力部578は、モデル化単位(3)570の入力部574に接続されている。出力部562には、モデル化単位(2)560のエネルギーの流れに関する出力属性が対応付けられている。また、出力部578には、モデル化単位(3)570のエネルギーの流れに関する出力属性が対応付けられており、入力部574には、モデル化単位(3)570のエネルギーの流れに関する入力属性が対応付けられている。また、出力部562の出力属性、出力部578の出力属性、及び入力部574の入力属性には、それぞれ同じエネルギーの流れの種類(ここでは、「種類−b)を示す情報が含まれる。
モデル化単位(3)570の出力部575は、モデル化単位(4)580の入力部582に接続されている。出力部575には、モデル化単位(3)570の物流に関する出力属性が対応付けられており、入力部582にはモデル化単位(4)580の物流に関する入力属性が対応付けられている。また、出力部575の出力属性及び入力部582の入力属性には、それぞれ同じ物流の種類(ここでは、「種類−C」)を示す情報が含まれる。
モデル化単位(3)570の出力部576は、モデル化単位(5)590の入力部591に接続されている。出力部576には、モデル化単位(3)570の物流に関する出力属性が対応付けられており、入力部591にはモデル化単位(5)590の物流に関する入力属性が対応付けられている。また、出力部576の出力属性及び入力部591の入力属性には、それぞれ同じ物流の種類(ここでは、「種類−D」)を示す情報が含まれる。
モデル化単位(3)570の出力部577は、モデル化単位(4)580の入力部584と、モデル化単位(5)590の入力部592とに接続されている。出力部577には、モデル化単位(3)570のエネルギーの流れに関する出力属性が対応付けられており、入力部584及び入力部592にはそれぞれのモデル化単位のエネルギーの流れに関する入力属性が対応付けられている。また、出力部577の出力属性、入力部584の入力属性、及び入力部592の入力属性には、それぞれ同じエネルギーの流れの種類(ここでは、「種類−c)を示す情報が含まれる。
このように、モデル化単位の第4例では、あるモデル化単位(第1のモデル化単位)の出力部を、当該出力部の出力属性と同一の流れの種類が含まれる入力属性を有する他のモデル化単位(第2のモデル化単位)の入力部へ接続することにより、複数のモデル化単位を結合する。これにより、生産装置100の物流及びエネルギーの流れに関して、上述の複数の結合されたモデル化単位でモデル化して表すことができる。
そして、中央情報処理装置330は、上述の複数の結合されたモデル化単位を用いることにより、収集したエネルギー効率に関連する情報に基づいて、生産装置100による生産活動におけるエネルギー効率の監視、シミュレーション、及び最適化のいずれかを行うことができる。
(モデル化単位の第5例)
図12は、モデル化単位の構成の第5例を示す図である。
この図12に示す例は、生産装置100を、階層化したモデル化単位でモデル化した例である。ここでは、結合されたモデル化単位(6)610と、モデル化単位(7)620と、を一つにまとめて上位のモデル化単位(8)600として表す例を示している。
モデル化単位(6)610と、モデル化単位(7)620とは、例えば、図9に示すモデル化単位500bに相当する。モデル化単位(6)610の物流に関する入力部611、出力部612、及び消費部613と、モデル化単位(7)620の物流に関する入力部621、出力部622、及び消費部623とのそれぞれは、図9に示すモデル化単位500bの物流に関する入力部511、出力部521、及び消費部531に相当する。また、モデル化単位(6)610のエネルギーの流れに関する入力部614、出力部615、及び消費部616と、モデル化単位(7)620の物流に関する入力部624、出力部625、及び消費部626とのそれぞれは、図9に示すモデル化単位500bのエネルギーの流れに関する入力部512、出力部522、及び消費部532に相当する。
また、モデル化単位(6)610と、モデル化単位(7)620とは、例えば、図11を参照して説明した第4例のように同一の流れの種類の出力部と入力部とが接続されており、結合されたモデル化単位である。
ここでは、物流に関して、モデル化単位(6)610の出力部612は、モデル化単位(7)620の入力部621に接続されている。また、エネルギーの流れに関して、モデル化単位(6)610の消費部616は、モデル化単位(7)620の入力部624に接続されている。
また、上位のモデル化単位(8)600内において結合された複数のモデル化単位の間で接続がされていない入力部、出力部、または消費部が、上位のモデル化単位(8)600の入力部、出力部、または消費部に接続される。また、上位のモデル化単位(8)600の入力部、出力部、及び消費部のそれぞれに対応する入力属性、出力属性、及び消費属性を、それぞれに接続された入力部、出力部、及び消費部に対応する入力属性、出力属性、及び消費属性とする。
図12に示す例では、モデル化単位(6)610の物流に関する入力部611及び消費部613と、エネルギーの流れに関する入力部614及び出力部615とは、モデル化単位(7)620に接続されておらず、上位のモデル化単位(8)600の入力部、出力部、及び消費部のいずれかに接続される。また、モデル化単位(7)620の物流に関する出力部622及び消費部623と、エネルギーの流れに関する出力部625及び消費部626とは、モデル化単位(6)610に接続されておらず、上位のモデル化単位(8)600の入力部、出力部、及び消費部のいずれかに接続される。
具体的には、モデル化単位(6)610の物流に関する入力部611は、上位のモデル化単位(8)600の入力部601に接続されている。そして、上位のモデル化単位(8)600の入力部601に対応する入力属性は、モデル化単位(6)610の入力部611に対応する物流に関する入力属性となる。
また、モデル化単位(6)610のエネルギーの流れに関する入力部614は、上位のモデル化単位(8)600の入力部604に接続されている。そして、上位のモデル化単位(8)600の入力部604に対応する入力属性は、モデル化単位(6)610の入力部614に対応するエネルギーの流れに関する入力属性となる。
また、モデル化単位(7)620の物流に関する出力部622は、上位のモデル化単位(8)600の出力部602に接続されている。そして、上位のモデル化単位(8)600の出力部602に対応する出力属性は、モデル化単位(7)620の出力部622に対応する物流に関する出力属性となる。
また、モデル化単位(7)620のエネルギーの流れに関する消費部626は、上位のモデル化単位(8)600の消費部606に接続されている。そして、上位のモデル化単位(8)600の消費部606に対応する消費属性は、モデル化単位(7)620の消費部626に対応するエネルギーの流れに関する消費属性となる。
なお、上位のモデル化単位(8)600内において、結合された複数のモデル化単位の間で接続がされていない入力部、出力部、または消費部のそれぞれが複数ある場合、複数ある入力部、出力部、または消費部のそれぞれに対応する属性ごとにまとめて、上位のモデル化単位(8)600のそれぞれの属性とする。
図12に示す例では、モデル化単位(6)610の物流に関する消費部613と、モデル化単位(7)620の物流に関する消費部623とは、上位のモデル化単位(8)600の消費部603に接続される。そして、上位のモデル化単位(8)600の消費部603に対応する消費属性は、消費部613に対応する物流に関する消費属性と、消費部623に対応する物流に関する消費属性とをまとめた消費属性となる。
また、モデル化単位(6)610のエネルギーの流れに関する出力部615と、モデル化単位(7)620のエネルギーの流れに関する出力部625とは、上位のモデル化単位(8)600の出力部605に接続される。そして、上位のモデル化単位(8)600の出力部605に対応する出力属性は、出力部615に対応するエネルギーの流れに関する、出力属性と、出力部625に対応するエネルギーの流れに関する、出力属性とをまとめた、出力属性となる。
このように、モデル化単位の第5例では、生産装置100の物流及びエネルギーの流れに関して、階層化したモデル化単位でモデル化して表すことができる。よって、非常に複雑な構造、且つ多くの種類の構成要素に基づいて構成された生産装置100を、階層的にモデル化することができる。
そして、中央情報処理装置330は、階層化した複数の結合されたモデル化単位を用いることにより、収集したエネルギー効率に関連する情報に基づいて、生産装置100による生産活動におけるエネルギー効率の監視、シミュレーション、及び最適化のいずれかを行うことができる。
(モデル化単位の第6例)
モデル化単位へ入力される対象が物の場合、モデル化単位が有する物流に関する属性に、当該物の種類に対応した単位量あたりのエネルギーを示す単位見なしエネルギーの情報が含まれるようにしてもよい。
図13は、モデル化単位の構成の第6例を示す図である。この図13に示す例は、上述した第4例または第5例のように、結合された複数のモデル化単位を含む例である。図示するように、モデル化単位(9)630とモデル化単位(10)640は結合されており、モデル化単位(9)630は、モデル化単位(10)640の上流のモデル化単位である。例えば、モデル化単位(9)630は、図12のモデル化単位(6)610に相当するが、物流に関する出力部632のみを図示しており、その他の入力部、出力部、及び消費部などの図示を省略している。また、モデル化単位(10)640は、図12のモデル化単位(7)620に相当し、物流に関する入力部641、出力部642、及び消費部643と、エネルギーの流れに関する入力部644、出力部645、及び消費部646と、を有する。
モデル化単位(9)630の出力部632は、モデル化単位(10)640の入力部641に接続されている。
ここで、モデル化単位(10)640の入力部641に対応する物流に関する入力属性に含まれる単位見なしエネルギーを、上流として結合されたモデル化単位(9)630の出力部632に対応する物流に関する出力属性に含まれる単位見なしエネルギーの値とする。なお、モデル化単位(10)640の入力部641に対応する物流に関する入力属性に含まれる単位見なしエネルギーを、予め定められた単位見なしエネルギーの値としてもよい。
そして、中央情報処理装置330は、モデル化単位(10)640の出力部642に対応する物流に関する出力属性に含まれる単位見なしエネルギーの値を、モデル化単位(10)640の入力部641に対応する物流に関する入力属性、入力部644に対応するエネルギーの流れに関する入力属性、及び出力部645に対応するエネルギーの流れに関する出力属性に基づいて算出する。
例えば、中央情報処理装置330は、以下に示す数式1を用いて、モデル化単位(10)640の出力部642に対応する物流に関する出力属性に含まれる単位見なしエネルギーの値を算出する。
Figure 0005949827
なお、モデル化単位(10)640が複数の物流に関する出力属性に対応する出力部を有する場合には、中央情報処理装置330は、モデル化単位(10)640における総単位見なしエネルギーを、複数の出力属性のそれぞれにおける物流の流出量に比例して配分した値を、複数の出力属性のそれぞれに含まれる単位見なしエネルギーの値としてもよい。ここで、モデル化単位(10)640における総単位見なしエネルギーとは、例えば、上述の数式1により算出される、モデル化単位(10)640の全体の物流に関する出力属性に含まれる単位見なしエネルギーの値である。
(モデル化単位の第7例)
図14は、モデル化単位の構成の第7例を示す図である。
この図14に示すモデル化単位650は、例えば、図9に示すモデル化単位500bに相当する。モデル化単位650は、物流に関する入力部651、出力部652、及び消費部653と、エネルギーの流れに関する入力部654、出力部655、及び消費部656と、を有する。この第7例では、モデル化単位650が有する属性は、モデル化単位650が有する他の属性から算出される見なしエネルギー効率を属性として有する。
例えば、中央情報処理装置330は、以下に示す数式2を用いて、上述の見なしエネルギー効率を算出する。
Figure 0005949827
(モデル化単位の第8例)
図15は、モデル化単位の構成の第8例を示す図である。
この図15に示すモデル化単位660は、例えば、図9に示すモデル化単位500bに相当する。モデル化単位660は、物流に関する入力部661、出力部662、及び消費部663と、エネルギーの流れに関する入力部664、出力部665、及び消費部666と、を有する。この第8例では、モデル化単位660は、モデル化単位660から出力される対象の流出量の目標値を示す目標生産量と、モデル化単位660から出力される対象の種類ごとの流出量の目標比率を示す目標出力組合せ比率と、モデル化単位660へ入力される対象の種類ごとの目標比率を示す目標入力組合せ比率、のうち少なくともひとつの情報を含む属性(動作モード属性)を有する。このように、モデル化単位660に動作モード属性を持たせることにより、目標生産量の調整や休止状態への移行などの生産設備の操業モード(動作モード)を制御してエネルギー消費を低減させることができるため、エネルギー効率の向上を図ることができる。
<活用例>
次に、本実施形態によるエネルギー管理システム1の活用例について説明する。
(活用例1)プラント及びそのオートメーション・システムの最適設計のためのシミュレーション
生産装置100(プラント)の操業時のエネルギー効率を向上させる最も効果が大きい手段のひとつは、プラント建設に先立ちエネルギー効率が最大になるようなプラントおよびオートメーション・システムの設計を行うことである。このエネルギー効率の最適化設計を行うためには、仮想的なプラント・モデルを活用したシミュレーションが欠かせない。多くのプラントは、複雑な構造を持っており、複数の製造業者から納入された多くの種類の要素から構成されている。
エネルギー管理システム1は、複雑な構造を持つ多くの種類の構成要素を階層的にモデル化し、各部分ごとのエネルギー関連データを階層的に表すことができる。例えば、エネルギー管理システム1は、モデル化単位(例えば、図6または図9のモデル化単位の第1例または第2例参照)を用いて生産装置100をモデル化するとともに、さらに、結合された複数のモデル化単位(例えば図11のモデル化単位の第4例参照)、または、結合された複数のモデル化単位を上位のモデル化単位として階層的にモデル化したモデル化単位(例えば図12のモデル化単位の第5例参照)を用いて、生産装置100をモデル化する。
また、モデル化単位は、入力属性、出力属性、及び消費属性を有する(例えば図6のモデル化単位の第1例参照)。例えば、モデル化単位は、物流に関わる属性群とエネルギーの流れに関わる属性群を有する(例えば図9のモデル化単位の第2例参照)。また、各属性は、流れの種類を示す情報と流れの量を示す情報を含み(例えば図7及び図8参照)、流れの種類ごとに構成される(例えば図11のモデル化単位の第4例参照)。これにより、複数の製造業者の異なる種類の構成要素であってもそのエネルギー関連データを統一的に表すことができる。
このように、本実施形態によるエネルギー管理システム1は、入力属性、出力属性、及び消費属性という一般性のある構造を持つモデル化単位を階層的に組み合わせてモデル化を行うため、生産装置100の様々な構成要素を階層的にモデル化する際の自由度が高い。したがって、エネルギー管理システム1は、自由度の高いモデル化手法を活用して、複雑で多様な生産装置100(プラント)に対応して柔軟にシミュレーションを行うことができる。
(活用例2)プラント操業時の高いエネルギー効率を実現するためのプラント施工時の最適な調達
生産装置100(プラント)の構成要素を調達する際、同一の機能であっても異なるエネルギー消費特性をもつ構成要素を選択可能な場合がある。この場合、本実施形態によるエネルギー管理システム1は、モデル化単位によってそれぞれの構成要素の選択肢の特性を、入力属性、出力属性、及び消費属性と、各属性に含まれる流れの種類を示す情報及び流れの量を示す情報とを用いて統一的に表すことにより(例えば図、6、7、8、9、11参照)、容易にその特性を比較したりその情報を用いてシミュレーションを行ったりすることが可能になる。
例えば、複数の製造業者から、モデル化単位で用いる構成要素の特性の表現方法に統一してその製品の情報を提供されるようにすることで、エネルギー効率を最大化するプラント設計や調達をより効率的に行うことができるようになる。また、このような情報が電子的な手段によって提供されるようにすることで、情報処理技術の活用がより容易になる。
(活用例3)プラント試運転時及びプラント操業時のエネルギー効率の監視
生産装置100(プラント)における生産プロセスでは、電力や熱などの直接的なエネルギーによって原料や材料が製品に変換されたり、逆に燃料の燃焼や原料の化学反応によって熱エネルギーや電気エネルギーが生成されたりする。このため、エネルギー効率を測定し監視するためには、物流とエネルギーの流れの両方を相互間の変換も含めて把握する必要がある。実施形態によるエネルギー管理システム1は、物流とエネルギーの流れを統一的に扱える(例えば、図9のモデル化単位の第2例参照)ため、エネルギーの収支をより広い範囲で把握することができる。
また、エネルギー効率の最適化を検討する場合には、階層化されたモデル化単位の生産システム全体のエネルギー効率を監視するだけでなく、下位レベルのエネルギー効率を把握して改善すべき箇所の特定や改善の効果の確認などを行う必要がある。生産システムのエネルギー効率は一般的には、生産プロセスによって得られる価値と、その価値を産み出すために使用されたエネルギーの比で表すことができる。しかし、産み出される価値はそれぞれの生産プロセスに毎に異なるため、それらの異なった複数の生産プロセスに対して共通のエネルギー効率の指標を用いてそれらの比較を行うことが困難である。
本実施形態によるエネルギー管理システム1は、物流(原材料)に関する属性に対して、上流工程のモデル化単位の出力属性から下流工程のモデル化単位の入力属性へと引継がれる単位見なしエネルギーを用いて、原材料をエネルギーに換算して、エネルギーの比でエネルギー効率を評価することが可能である(例えば、図13のモデル化単位の第6例参照)。これにより、複数の異なるモデル化単位に共通のエネルギー効率の指標を適用することが可能となり、モデル化単位間のエネルギー効率の比較や改善施策の効果の比較が可能となる。
(活用例4)プラント試運転時及びプラント操業時のエネルギー効率の最適化のためのシミュレーション
生産装置100(プラント)の生産プロセスでは、そのプロセスに原材料が入力されてからエネルギーが出力となって現れるまでの間に時間遅延が発生することが一般的である。このようなプロセスにおいてエネルギーの流れと物流をモデル化するためには、上述の時間遅延による遅れを蓄積要素として表す必要がある。また、それぞれの工程のエネルギー効率を最大化するために、複数の工程間で操業スケジュールを調整したり同期させたりする場合がある。この場合には、タンクやストアなどの原材料などの物を蓄積する機能と、蓄電池や蓄熱装置などのエネルギーを蓄積する機能とをモデル化するために、蓄積要素として表す必要がある。
本実施形態によるエネルギー管理システム1は、モデル化単位の属性として、物及びエネルギーの蓄積要素を表すことができる(例えば、図10のモデル化単位の第3例参照)ため、上述の時間遅延の遅れや蓄積機能がある生産装置100をモデル化することが可能となり、これらを用いて高度なエネルギー効率の最適化のシミュレーションを行うことが可能となる。
なお、エネルギー効率向上の手法の一つとして、無駄に消費されていたエネルギーや原材料を生産プロセスにおいて再利用する方法がある。このようなエネルギー効率の改善をモデル化してシミュレーションできるようにすることも重要である。
本実施形態によるエネルギー管理システム1は、ひとつのモデル化単位の消費部を別のモデル化単位の入力部に接続することにより結合された複数のモデル化単位を用いて、このようなエネルギーと原材料の再利用をモデル化することが可能である(例えば、図11のモデル化単位の第4例参照)。また、エネルギー管理システム1は、結合された複数のモデル化単位をまとめて上位のモデル化単位として扱う(例えば、図12のモデル化単位の第5例参照)ことにより、再利用された原材料やエネルギーが上位のモデル化単位では消費属性としては扱われず、再利用をモデル化して扱うことが可能となる。
また、別のエネルギー効率向上の手法として、目標生産量の調整や休止状態への移行などの生産設備の操業モード(動作モード)を制御して、エネルギー消費を低減させる方法がある。本実施形態によるエネルギー管理システム1は、モデル化単位に動作モード属性を持たせる(例えば、図15のモデル化単位の第8例参照)ことにより、このような操業モードの制御によるエネルギー効率の最適化のシミュレーションが可能になる。
以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成は上述の実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。例えば、上述の実施形態において説明した各機能は、任意に組み合わせることができる。
なお、上述した実施形態における情報処理装置300が備える各部の一部または全部の機能、をコンピュータで実現するようにしてもよい。例えば、上述した実施形態によるエネルギー管理システム1は、生産活動におけるエネルギー効率の監視、シミュレーション、最適化のいずれかを含む機能を実現するコンピュータ・ベースのエネルギー管理システムとしてもよい。その場合、上述の機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって上述の機能を実現してもよい。なお、ここでいう「コンピュータシステム」とは、情報処理装置300に内蔵されたコンピュータシステムであってOSや周辺機器等のハードウェアを含むものとする。
また、「コンピュータシステム」は、WWWシステムを利用している場合であれば、ホームページ提供環境(あるいは表示環境)も含むものとする。
また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD−ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含んでもよい。また上記プログラムは、前述した機能の一部を実現するためのものであってもよく、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであってもよい。
また、上述した実施形態における情報処理装置300の一部、または全部を、LSI(Large Scale Integration)等の集積回路として実現してもよい。測定管理装置20またはフィールド機器40の各機能ブロックは個別にプロセッサ化してもよいし、一部、または全部を集積してプロセッサ化してもよい。また、集積回路化の手法はLSIに限らず専用回路、または汎用プロセッサで実現してもよい。また、半導体技術の進歩によりLSIに代替する集積回路化の技術が出現した場合、当該技術による集積回路を用いてもよい。
1 エネルギー管理システム、5 通信ネットワーク、100 生産装置、100A 火力発電所、110、110A ボイラー、120 タービン、130 バルブ、140 燃料ポンプ、150 エアポンプ、200 センサ群、300 情報処理装置、310 通信装置、320 情報記憶装置、330 中央情報処理装置、340 情報入出力装置、500、500a、500b、500c、550、560、570、580、590、600、610、620、630、640、650、660 モデル化単位

Claims (13)

  1. 生産装置のエネルギー効率に関連する情報を収集する収集部と、
    前記生産装置の構成要素のエネルギー効率に関連する情報を規定の規則に基づいてモデル化したモデル化単位を用いることにより、前記収集部が収集した前記エネルギー効率に関連する情報に基づいて、前記生産装置による生産活動におけるエネルギー効率の監視、シミュレーション、及び最適化のいずれかを行う処理部と、
    を備え
    前記モデル化単位は、
    前記モデル化単位の特徴又は状態を示す属性として、前記モデル化単位への入力に関する入力属性、前記モデル化単位からの出力に関する出力属性、又は前記モデル化単位への入力から出力までの間の消費に関する消費属性を有し、
    前記モデル化単位の特徴と状態を示す属性として、物流に関する入力属性、出力属性、又は消費属性を含む属性群と、エネルギーの流れに関する入力属性、出力属性、又は消費属性を含む属性群と、を有し、
    前記モデル化単位の特徴と状態を示す属性として、前記モデル化単位へ入力された物の流入量と前記モデル化単位から出力された物の流出量との差分を示す物の蓄積量を示す情報が含まれる物流に関する蓄積属性と、前記モデル化単位へ入力されたエネルギーの流入量と前記モデル化単位から出力されたエネルギーの流出量との差分を示すエネルギーの蓄積量を示す情報が含まれるエネルギーの流れに関する蓄積属性と、を有する、
    ことを特徴とするエネルギー管理システム。
  2. 前記処理部は、
    階層的にモデル化した前記モデル化単位を用いることにより、前記収集部が収集した前記エネルギー効率に関連する情報に基づいて、前記生産装置による生産活動におけるエネルギー効率の監視、シミュレーション、及び最適化のいずれかを行う、
    ことを特徴とする請求項1に記載のエネルギー管理システム。
  3. 前記モデル化単位は、前記生産装置の特定の構成要素のエネルギー効率に関連する構造、機能、又は性能に関する情報を規定の規則に基づいてモデル化したものである、
    ことを特徴とする請求項1または2に記載のエネルギー管理システム。
  4. 前記モデル化単位が有する属性には、
    前記モデル化単位へ入力される対象の流れの種類ごとに、当該流れの種類を示す情報と流れの量を示す情報とが関連付けられた情報が含まれる、
    ことを特徴とする請求項1から3のいずれか一項に記載のエネルギー管理システム。
  5. 前記モデル化単位へ入力される対象がエネルギーの場合、
    前記モデル化単位が有するエネルギーの流れに関する属性には、
    前記流れの種類を示す情報として、電気エネルギー、熱エネルギー、位置エネルギー、又は運動エネルギーを示す情報が含まれる、
    ことを特徴とする請求項4に記載のエネルギー管理システム。
  6. 前記モデル化単位が有する属性には、
    前記流れの量を示す情報として、単位時間毎の前記流れの量を示す情報が含まれる、
    ことを特徴とする請求項4または5に記載のエネルギー管理システム。
  7. 生産装置のエネルギー効率に関連する情報を収集する収集部と、
    前記生産装置の構成要素のエネルギー効率に関連する情報を規定の規則に基づいてモデル化したモデル化単位を用いることにより、前記収集部が収集した前記エネルギー効率に関連する情報に基づいて、前記生産装置による生産活動におけるエネルギー効率の監視、シミュレーション、及び最適化のいずれかを行う処理部と、
    を備え、
    前記モデル化単位は、
    前記生産装置へ入力される部分をモデル化した入力部と、前記生産装置から出力される部分をモデル化した出力部と、前記生産装置への入力から出力までの間で消費される部分をモデル化した消費部と、を有し、
    前記モデル化単位の特徴又は状態を示す属性として、前記モデル化単位への入力に関する入力属性、前記モデル化単位からの出力に関する出力属性、又は前記モデル化単位への入力から出力までの間の消費に関する消費属性を有し、
    前記モデル化単位が有する属性には、
    前記モデル化単位へ入力される対象の流れの種類ごとに、当該流れの種類を示す情報と流れの量を示す情報とが関連付けられた情報が含まれ、
    前記処理部は、
    第1の前記モデル化単位の前記出力部が、前記出力部の前記出力属性と同一の前記流れの種類が含まれる前記入力属性を有する第2の前記モデル化単位の前記入力部へ接続されて結合された複数の前記モデル化単位を用いることにより、前記収集部が収集した前記エネルギー効率に関連する情報に基づいて、前記生産装置による生産活動におけるエネルギー効率の監視、シミュレーション、及び最適化のいずれかを行い、
    前記結合された複数の前記モデル化単位を一つにまとめて上位のモデル化単位とし、
    前記上位のモデル化単位内において前記結合された複数の前記モデル化単位の間で接続がされていない前記入力部、前記出力部、または前記消費部が、前記上位のモデル化単位の前記入力部、前記出力部、または前記消費部に接続され、
    前記上位のモデル化単位の前記入力部、前記出力部、及び前記消費部のそれぞれに対応する前記入力属性、前記出力属性、及び前記消費属性を、それぞれに接続された前記入力部、前記出力部、及び前記消費部に対応する前記入力属性、前記出力属性、及び前記消費属性とする、
    ことを特徴とするエネルギー管理システム。
  8. 前記上位のモデル化単位内において前記結合された複数の前記モデル化単位の間で接続がされていない前記入力部、前記出力部、または前記消費部のそれぞれが複数ある場合、複数ある前記入力部、前記出力部、または前記消費部のそれぞれに対応する属性ごとにまとめて、前記上位のモデル化単位のそれぞれの属性とする、
    ことを特徴とする請求項7に記載のエネルギー管理システム。
  9. 前記モデル化単位へ入力される対象が物の場合、
    前記モデル化単位が有する物流に関する属性には、当該物の種類に対応した単位量あたりのエネルギーを示す単位見なしエネルギーの情報が含まれ、
    前記処理部は、
    前記モデル化単位の物流に関する入力属性に含まれる前記単位見なしエネルギーを、上流として結合されたモデル化単位の物流に関する出力属性に含まれる前記単位見なしエネルギーの値、または予め定められた前記単位見なしエネルギーの値とし、前記モデル化単位の物流に関する出力属性に含まれる前記単位見なしエネルギーの値を、前記モデル化単位の物流に関する入力属性、エネルギーの流れに関する入力属性、及びエネルギーの流れに関する出力属性に基づいて算出する、
    ことを特徴とする請求項7または8に記載のエネルギー管理システム。
  10. 前記処理部は、
    前記出力属性に含まれる前記単位見なしエネルギーの値を、以下の数式1を用いて算出する、
    ことを特徴とする、請求項9に記載のエネルギー管理システム。
    Figure 0005949827
  11. 前記モデル化単位が複数の物流に関する前記出力属性に対応する出力部を有する場合、
    前記処理部は、
    前記モデル化単位における総単位見なしエネルギーを、複数の前記出力属性のそれぞれにおける物流の流出量に比例して配分した値を、複数の前記出力属性のそれぞれに含まれる前記単位見なしエネルギーの値とする、
    ことを特徴とする請求項10に記載のエネルギー管理システム。
  12. 生産装置のエネルギー効率に関連する情報を収集する収集部と、
    前記生産装置の構成要素のエネルギー効率に関連する情報を規定の規則に基づいてモデル化したモデル化単位を用いることにより、前記収集部が収集した前記エネルギー効率に関連する情報に基づいて、前記生産装置による生産活動におけるエネルギー効率の監視、シミュレーション、及び最適化のいずれかを行う処理部と、
    を備え、
    前記モデル化単位は、
    前記モデル化単位の特徴又は状態を示す属性として、前記モデル化単位への入力に関する入力属性、前記モデル化単位からの出力に関する出力属性、又は前記モデル化単位への入力から出力までの間の消費に関する消費属性を有し、
    前記モデル化単位の特徴と状態を示す属性として、物流に関する入力属性、出力属性、又は消費属性を含む属性群と、エネルギーの流れに関する入力属性、出力属性、又は消費属性を含む属性群と、を有し、
    前記モデル化単位の属性は、
    前記モデル化単位の他の属性から算出される見なしエネルギー効率を属性として有し、
    前記処理部は、
    前記見なしエネルギー効率を、以下の数式2により算出する、
    ことを特徴とするエネルギー管理システム。
    Figure 0005949827
  13. 生産装置のエネルギー効率に関連する情報を収集する収集部と、
    前記生産装置の構成要素のエネルギー効率に関連する情報を規定の規則に基づいてモデル化したモデル化単位を用いることにより、前記収集部が収集した前記エネルギー効率に関連する情報に基づいて、前記生産装置による生産活動におけるエネルギー効率の監視、シミュレーション、及び最適化のいずれかを行う処理部と、
    を備え、
    前記モデル化単位は、
    前記モデル化単位の特徴又は状態を示す属性として、前記モデル化単位への入力に関する入力属性、前記モデル化単位からの出力に関する出力属性、又は前記モデル化単位への入力から出力までの間の消費に関する消費属性を有し、
    前記モデル化単位から出力される対象の流出量の目標値を示す目標生産量と、前記モデル化単位から出力される対象の種類ごとの流出量の目標比率を示す目標出力組合せ比率と、前記モデル化単位へ入力される対象の種類ごとの目標比率を示す目標入力組合せ比率、のうち少なくともひとつの情報を含む属性を、前記モデル化単位の特徴又は状態を示す属性として有する、
    ことを特徴とするエネルギー管理システム。
JP2014083677A 2014-04-15 2014-04-15 エネルギー管理システム Active JP5949827B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014083677A JP5949827B2 (ja) 2014-04-15 2014-04-15 エネルギー管理システム
EP15779404.1A EP3133452B1 (en) 2014-04-15 2015-03-24 Energy management system
US15/303,839 US10693318B2 (en) 2014-04-15 2015-03-24 Energy management system, energy management method, and program
PCT/JP2015/058800 WO2015159652A1 (ja) 2014-04-15 2015-03-24 エネルギー管理システム、エネルギー管理方法、およびプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014083677A JP5949827B2 (ja) 2014-04-15 2014-04-15 エネルギー管理システム

Publications (2)

Publication Number Publication Date
JP2015204020A JP2015204020A (ja) 2015-11-16
JP5949827B2 true JP5949827B2 (ja) 2016-07-13

Family

ID=54323865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014083677A Active JP5949827B2 (ja) 2014-04-15 2014-04-15 エネルギー管理システム

Country Status (4)

Country Link
US (1) US10693318B2 (ja)
EP (1) EP3133452B1 (ja)
JP (1) JP5949827B2 (ja)
WO (1) WO2015159652A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6926443B2 (ja) 2016-11-01 2021-08-25 ヤマハ株式会社 情報表示装置、情報表示方法およびプログラム
US10832354B2 (en) * 2016-11-29 2020-11-10 Rockwell Automation Technologies Inc. Energy key performance indicators for the industrial marketplace
CN118095802A (zh) * 2024-04-26 2024-05-28 国网浙江省电力有限公司营销服务中心 一种多流融合的制造工业***分层建模方法及***

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3426405B2 (ja) * 1994-06-28 2003-07-14 株式会社神戸製鋼所 シーケンスプログラム作成装置
US20020010563A1 (en) * 1999-06-15 2002-01-24 S. Michael Ratteree Method for achieving and verifying increased productivity in an industrial process
SE522691C3 (sv) * 2002-06-12 2004-04-07 Abb Ab Dynamisk on-line-optimering av produktionsprocesser
JP4747756B2 (ja) 2005-09-20 2011-08-17 横河電機株式会社 エネルギー監視システム
US8055474B1 (en) * 2006-05-16 2011-11-08 Red X Holdings Llc Diagnostic systems and methods
US20100036693A1 (en) * 2008-08-08 2010-02-11 Microsoft Corporation Flow tracking of environmental substances
JP5029632B2 (ja) 2009-03-03 2012-09-19 横河電機株式会社 プラント情報管理装置およびプラント情報管理方法
US8321187B2 (en) * 2009-04-24 2012-11-27 Rockwell Automation Technologies, Inc. Process simulation utilizing component-specific consumption data
JP5333845B2 (ja) 2009-05-20 2013-11-06 横河電機株式会社 エネルギー管理システム
JP2011248614A (ja) * 2010-05-26 2011-12-08 Hitachi Ltd 生産ラインの用役ロス量評価システムおよび方法
JP5522684B2 (ja) * 2010-07-30 2014-06-18 一般財団法人電力中央研究所 地熱発電プラントの熱効率解析方法及び性能評価方法並びに熱効率解析プログラム及び性能評価プログラム
JP5872561B2 (ja) * 2011-08-26 2016-03-01 株式会社日立製作所 予測型逐次計算装置
WO2013093794A2 (en) * 2011-12-23 2013-06-27 International Business Machines Corporation Energy allocation system
US9977847B2 (en) * 2013-10-24 2018-05-22 Sap Se Efficient forecasting for hierarchical energy systems
US10380705B2 (en) * 2013-10-30 2019-08-13 Carrier Corporation System and method for modeling of target infrastructure for energy management in distributed-facilities

Also Published As

Publication number Publication date
US10693318B2 (en) 2020-06-23
JP2015204020A (ja) 2015-11-16
US20170256986A1 (en) 2017-09-07
EP3133452A1 (en) 2017-02-22
WO2015159652A1 (ja) 2015-10-22
EP3133452B1 (en) 2021-09-08
EP3133452A4 (en) 2017-12-27

Similar Documents

Publication Publication Date Title
Hossain et al. A belief rule based expert system for datacenter PUE prediction under uncertainty
Thiede Environmental sustainability of cyber physical production systems
JP6292076B2 (ja) 時系列予測アンサンブル
Deng et al. Model predictive control of central chiller plant with thermal energy storage via dynamic programming and mixed-integer linear programming
Tham et al. Sensing-driven energy purchasing in smart grid cyber-physical system
CN102770847A (zh) 优化数据中心内的功耗
Wang et al. Event-driven optimal control of central air-conditioning systems: Event-space establishment
Ghaffari et al. Modeling, control, and stability analysis of heterogeneous thermostatically controlled load populations using partial differential equations
CN103513632A (zh) 能源管理***
Wang et al. AlphaBuilding ResCommunity: A multi-agent virtual testbed for community-level load coordination
US20160283844A1 (en) Load predictor for a cooling system
Chou et al. Big data analytics and cloud computing for sustainable building energy efficiency
Zhang et al. Reduced-order modeling of aggregated thermostatic loads with demand response
JP5949827B2 (ja) エネルギー管理システム
US11262089B2 (en) Data center management systems and methods for compute density efficiency measurements
Zaraket et al. An occupant-based energy consumption model for user-focused design of residential buildings
Elsheikh et al. Simulating complex energy systems with modelica: A primary evaluation
JP6086875B2 (ja) 発電量予測装置および発電量予測方法
Ahmed et al. Data communication and analytics for smart grid systems
Soetedjo et al. An embedded platform for testbed implementation of multi-agent system in building energy management system
Tamilarasu et al. Reinforced demand side management for educational institution with incorporation of user’s comfort
Petri et al. Cloud supported building data analytics
Antal et al. MoSiCS: Modeling, simulation and optimization of complex systems–A case study on energy efficient datacenters
CN107886209A (zh) 信息处理***
Park et al. Topological characterization of an evolving product structure network: A case study of generational smartphone products

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160523

R150 Certificate of patent or registration of utility model

Ref document number: 5949827

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250