JP5926103B2 - Operation start method of electromagnetic pump for liquid metal - Google Patents

Operation start method of electromagnetic pump for liquid metal Download PDF

Info

Publication number
JP5926103B2
JP5926103B2 JP2012093446A JP2012093446A JP5926103B2 JP 5926103 B2 JP5926103 B2 JP 5926103B2 JP 2012093446 A JP2012093446 A JP 2012093446A JP 2012093446 A JP2012093446 A JP 2012093446A JP 5926103 B2 JP5926103 B2 JP 5926103B2
Authority
JP
Japan
Prior art keywords
liquid metal
pump
side duct
electromagnetic pump
inductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012093446A
Other languages
Japanese (ja)
Other versions
JP2013220442A (en
Inventor
三浦 邦明
邦明 三浦
和彦 萩谷
和彦 萩谷
陸浩 冨田
陸浩 冨田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sukegawa Electric Co Ltd
Original Assignee
Sukegawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sukegawa Electric Co Ltd filed Critical Sukegawa Electric Co Ltd
Priority to JP2012093446A priority Critical patent/JP5926103B2/en
Publication of JP2013220442A publication Critical patent/JP2013220442A/en
Application granted granted Critical
Publication of JP5926103B2 publication Critical patent/JP5926103B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)

Description

本発明は、原子力利用分野で使用されるナトリウム等の液体金属を搬送するために使用される液体金属用電磁ポンプの運転を開始する方法に関し、特に誘導子を含む電磁ポンプ本体を液体金属に浸漬し、同液体金属を汲み出す方式のいわゆる浸漬型液体金属用電磁ポンプにおいて、誘導子を保護するケースやダクトの熱応力を緩和し、それらの破損を防止することが出来る浸漬型液体金属用電磁ポンプの運転開始方法に関する。 The present invention relates to a method for starting operation of an electromagnetic pump for liquid metal used to transport a liquid metal such as sodium used in the field of nuclear power, and more particularly, an electromagnetic pump body including an inductor is immersed in the liquid metal. However, in the so-called immersion liquid metal electromagnetic pump that pumps out the same liquid metal, the electromagnetic stress for the immersion liquid metal that can relieve the thermal stress of the case and duct that protects the inductor and prevent them from being damaged. The present invention relates to a method for starting operation of a pump .

例えば原子力利用分野で使用されるナトリウム等を搬送するために、電磁誘導作用により液体金属に推力を与えて搬送する液体金属用電磁ポンプが利用されている。このような液体金属用電磁ポンプは、磁性体製のヨークにコイルを巻いた誘導子により筒状のダクト内部に移動磁界を発生させて液体金属に推力を与え、供給する形式の誘導形電磁ポンプが主流である。   For example, in order to transport sodium or the like used in the nuclear power application field, an electromagnetic pump for liquid metal is used which transports by applying a thrust to the liquid metal by electromagnetic induction. Such an electromagnetic pump for liquid metal is an induction type electromagnetic pump of a type in which a moving magnetic field is generated in a cylindrical duct by an inductor in which a coil is wound around a yoke made of a magnetic material, and thrust is supplied to the liquid metal to supply it. Is the mainstream.

このような誘導形電磁ポンプは、例えば特開2006−341281号公報に記載されている。液体金属が流れる管状のダクトの外周に、移動磁界を発生するためのヨークにコイルを巻いた誘導子を配置し、誘導子により発生した磁界の磁路となる磁性体のコアを管状のダクト内部に配置している。コアは耐熱性及び耐蝕性を有する筒状の保護管により覆われている。従って、液体金属の流路は管状のダクトと保護管との間に形成される環状部分となる。これによりこの種の電磁ポンプは環状流路形電磁ポンプと呼ばれている。このうち特に電磁ポンプの誘導子を含む本体を液体金属に浸漬し、同液体金属を汲み出す方式のものは、浸漬型液体金属用電磁ポンプと呼ばれている。   Such an induction type electromagnetic pump is described in, for example, Japanese Patent Application Laid-Open No. 2006-341281. An inductor having a coil wound around a yoke for generating a moving magnetic field is arranged on the outer periphery of a tubular duct through which liquid metal flows, and a magnetic core serving as a magnetic path of the magnetic field generated by the inductor is disposed inside the tubular duct. Is arranged. The core is covered with a cylindrical protective tube having heat resistance and corrosion resistance. Accordingly, the liquid metal flow path is an annular portion formed between the tubular duct and the protective tube. Therefore, this type of electromagnetic pump is called an annular flow type electromagnetic pump. Of these, the type that immerses the main body including the inductor of the electromagnetic pump in a liquid metal and pumps out the liquid metal is called an immersion type liquid metal electromagnetic pump.

図2は、この浸漬型液体金属用電磁ポンプの従来例である。このタイプの液体金属用電磁ポンプ4は誘導子5をステンレス鋼等の耐熱性及び耐蝕性を有する材料からなる保護ケース11の中に収納し、電磁ポンプ4のほぼ全体が液体金属槽10の中の液体金属12に浸漬している。保護ケース11の下端中央に液体金属を導入する孔があり、この部分にポンプ側ダクト1の下端が密に接合し、液体金属入口17が開口している。このポンプ側ダクト1の液体金属入口17からポンプ側ダクト1内に液体金属槽10の中の液体金属12を汲み上げ、これを給湯側ダクト1’を通して目的の位置に供給する。給湯側ダクト1’の外周には保温のためのヒータ9’と保温材18が設けられている。   FIG. 2 shows a conventional example of this submersible liquid metal electromagnetic pump. In this type of liquid metal electromagnetic pump 4, the inductor 5 is housed in a protective case 11 made of a material having heat resistance and corrosion resistance such as stainless steel, and almost the entire electromagnetic pump 4 is contained in the liquid metal tank 10. It is immersed in the liquid metal 12. There is a hole through which liquid metal is introduced at the center of the lower end of the protective case 11, and the lower end of the pump side duct 1 is closely joined to this portion, and the liquid metal inlet 17 is opened. The liquid metal 12 in the liquid metal tank 10 is pumped into the pump side duct 1 from the liquid metal inlet 17 of the pump side duct 1 and supplied to the target position through the hot water supply side duct 1 '. On the outer periphery of the hot water supply side duct 1 ′, a heater 9 ′ and a heat insulating material 18 for heat insulation are provided.

ポンプ側ダクト1の誘導子5を設けた部分の内部には、この誘導子5で発生した磁界を通し、同誘導子5と共に磁路を形成するための磁性体製のコア2が収納されている。このコア2は、ステンレス鋼等の耐熱性及び耐蝕性を有する材料からなる保護管3の中に収納され、保護管3とコア2との間には、マグネシア粉末等の充填材8が充填されている。このコア2を収納した保護管3はその両端に放射状に設けられたスペーサ15、16によりポンプ側ダクト1の中に保持される。   Inside the portion of the pump side duct 1 where the inductor 5 is provided, a magnetic core 2 is housed for passing a magnetic field generated by the inductor 5 and forming a magnetic path with the inductor 5. Yes. The core 2 is housed in a protective tube 3 made of a material having heat resistance and corrosion resistance, such as stainless steel, and a filler 8 such as magnesia powder is filled between the protective tube 3 and the core 2. ing. The protective tube 3 containing the core 2 is held in the pump-side duct 1 by spacers 15 and 16 provided radially at both ends thereof.

このような浸漬型液体金属用電磁ポンプの課題としては、液体金属の凝固・収縮後の再溶解時に液体金属槽10の中の液体金属12が膨張し、浸漬型電磁ポンプが押し上げられ、液体金属槽10や浸漬型電磁ポンプが破損してしまうことである。図2に示すように、液体金属槽10の中の液体金属12が膨張し、その液面が符合eで示すように押し上げられ、二点鎖線で示したような状態となる。   The problem of such an immersion liquid metal electromagnetic pump is that the liquid metal 12 in the liquid metal tank 10 expands at the time of remelting after solidification and contraction of the liquid metal, and the immersion type electromagnetic pump is pushed up. The tank 10 and the submersible electromagnetic pump are damaged. As shown in FIG. 2, the liquid metal 12 in the liquid metal tank 10 expands, and its liquid surface is pushed up as indicated by the symbol e, resulting in a state as indicated by a two-dot chain line.

例えば、供給する液体金属が液体金属ナトリウムの場合、溶融金属槽10にはオーステナイト系ステンレス鋼が使われ、ナトリウムの融点まで昇温した時にオーステナイト系ステンレス鋼に生じる室温20℃からの熱ひずみεは、ナトリウムの融点が98℃としたとき、次の計算式からε=0.41%となる。
ε=(ρna−ρsus)×ΔT=0.41%
ρna=Naの熱膨張係数=71×10−6 (1/℃)
ρsus=オーステナイト系ステンレス鋼の熱膨張係数=18×10−6 (1/℃)
ΔT=ナトリウムの融点と室温との温度差(℃)
For example, when the liquid metal to be supplied is liquid metal sodium, austenitic stainless steel is used for the molten metal tank 10, and the thermal strain ε from room temperature 20 ° C. generated in the austenitic stainless steel when the temperature is raised to the melting point of sodium is When the melting point of sodium is 98 ° C., ε = 0.41% from the following calculation formula.
ε = (ρ na −ρ sus ) × ΔT = 0.41%
ρ na = thermal expansion coefficient of Na = 71 × 10 −6 (1 / ° C.)
ρ sus = thermal expansion coefficient of austenitic stainless steel = 18 × 10 −6 (1 / ° C.)
ΔT = temperature difference between the melting point of sodium and room temperature (° C)

一般的な金属の降伏ひずみ(塑性が始まるひずみ)は0.2%であり、単純計算では前記熱ひずみε=0.41%においてオーステナイト系ステンレス鋼は塑性域に入っており、強度上容器の破損が考えられる。例えば、0.2%の熱ひずみに対する応力σを計算してみると、JIS等の圧力容器の構造規格が規定しているオーステナイト系ステンレス鋼(SUS 304TP)の許容応力=129N/mm(40℃)以上になってしまう。
σ=ε×E=386N/mm>許容応力129N/mm
E=ヤング率=1.93×10N/mm (50℃)
The yield strain (strain at which plasticity starts) of a general metal is 0.2%, and in a simple calculation, the austenitic stainless steel is in the plastic region at the thermal strain ε = 0.41%. Possible damage. For example, when calculating the stress σ with respect to 0.2% thermal strain, the allowable stress of austenitic stainless steel (SUS 304TP) specified by the structural standards of pressure vessels such as JIS = 129 N / mm 2 (40 ℃) or more.
σ = ε × E = 386 N / mm 2 > allowable stress 129 N / mm 2
E = Young's modulus = 1.93 × 10 5 N / mm 2 (50 ° C.)

しかし、熱応力は、ひずみ制御型の応力なので多少許容応力の割増が認められている。熱応力に対する許容応力は、ASMEsectionIIIや発電用原子力設備に関する技術基準を定める省令501号等より簡単な計算式(ANSIのPower Piping規格)で求められる許容応力Sをも超えてしまう(米国規格は、psi単位系であるがJIS規格値を代入)。
=f×(1.25S+0.25S)=1.0×(1.25×129+0.25×122)=191.75N/mm
=常温時の許容応力=129N/mm(40℃)
=高温時の許容応力=122N/mm(100℃)
f=熱サイクル数で決まる係数=1.0(7000回以下の場合)
However, since the thermal stress is a strain control type stress, a slight increase in allowable stress is recognized. Allowable stress against thermal stresses, would also exceed the allowable stress S A obtained by a simple calculation from equation Ordinance 501 No. like defining the technical standards for ASMEsectionIII and generators for nuclear power equipment (ANSI of Power Piping Standard) (US Standard , Psi unit system but substitute JIS standard value).
S A = f × (1.25S c + 0.25S h ) = 1.0 × (1.25 × 129 + 0.25 × 122) = 191.75 N / mm 2
S c = Allowable stress at normal temperature = 129 N / mm 2 (40 ° C.)
S h = Allowable stress at high temperature = 122 N / mm 2 (100 ° C.)
f = coefficient determined by the number of thermal cycles = 1.0 (in the case of 7000 times or less)

特開2009−688号公報JP 2009-688 A 特開2009−689号公報JP 2009-689 A 特開2002−34673号公報JP 2002-34673 A 特開平06−328229号公報Japanese Patent Laid-Open No. 06-328229 特開平05−42358号公報JP 05-42358 A

本発明はこのような従来の浸漬型液体金属用電磁ポンプにおける課題に鑑み、液体金属の凝固・収縮後の再溶解時に液体金属槽10の中の液体金属12が膨張することにより、特にポンプ側ダクト1の液体金属入口17と液体金属槽10の底面との間の部分で生じる液体金属の膨張に伴う電磁ポンプに発生する熱応力、熱歪みを緩和し、電磁ポンプの破損を防止することを目的とする。   In view of the problems in the conventional electromagnetic pump for submerged liquid metal, the present invention expands the liquid metal 12 in the liquid metal tank 10 at the time of remelting after the solidification and contraction of the liquid metal. To alleviate thermal stress and thermal distortion generated in the electromagnetic pump accompanying the expansion of the liquid metal generated in the portion between the liquid metal inlet 17 of the duct 1 and the bottom surface of the liquid metal tank 10, and prevent the electromagnetic pump from being damaged. Objective.

本発明では、前記目的を達成するため、誘導子5の内側に、ポンプ側ダクト1を囲むように巻いたマイクロヒータ等のヒータ9を設ける。そして液体金属12が凝固し、収縮した後、再び加熱して溶解する時にまず最初にこのヒータ9に電力を通電し、発熱することで、ポンプ側ダクト1の内部の凝固金属を最初に溶解する。   In the present invention, in order to achieve the above object, a heater 9 such as a micro heater wound around the pump side duct 1 is provided inside the inductor 5. When the liquid metal 12 is solidified and contracts and then heated and melted again, the heater 9 is first energized to generate heat, so that the solidified metal inside the pump-side duct 1 is melted first. .

すなわち、本発明による液体金属用電磁ポンプの運転開始方法は、液体金属を通す筒状のポンプ側ダクト1の外周に同ポンプ側ダクト1の中に移動磁界を発生させる誘導子5を設け、この誘導子5を保護ケース11で覆い、これら保護ケース11、誘導子5及びポンプ側ダクト1を液体金属12の中に浸漬する。そして、誘導子5の内側に、ポンプ側ダクト1を囲むように巻いたマイクロヒータ等のヒータ9を設ける。そして液体金属12が凝固し、収縮した後、再び加熱して溶解する時にまずこのヒータ9に電力を通電し、発熱することで、液体金属12の中に浸漬したポンプ側ダクト1の内部の凝固金属を最初に溶解する。 That is, in the operation start method of the liquid metal electromagnetic pump according to the present invention, an inductor 5 for generating a moving magnetic field in the pump side duct 1 is provided on the outer periphery of the cylindrical pump side duct 1 through which the liquid metal passes. inductor 5 has covered with a protective casing 11 is immersed these protective case 11, inductor 5 and the pump-side duct 1 in the liquid metal 12. A heater 9 such as a micro heater wound around the pump-side duct 1 is provided inside the inductor 5. Then, after the liquid metal 12 is solidified and contracted, when it is heated and melted again, the heater 9 is first energized to generate heat, thereby solidifying the inside of the pump-side duct 1 immersed in the liquid metal 12. The metal is first dissolved.

アルカリ金属は、柔らかいこともあって完全弾塑性体(応力度−歪み関係において、歪み0.2%以下では弾性体として直線的な変化を示すが、それを越える歪みでは応力度が一定値で歪みだけが大きくなる性質を持つ材料)に近い特性を有する。このため歪み0.2%を越えると自らが変形し、伸びてしまう。従って、図2の様に液体金属槽10の中に液体金属12の熱膨張を吸収する空間、すなわち液面より上に空間があって、且つアルカリ金属の歪み0.2%の時の応力(耐力)に相当する圧力で押しても壊れない液体金属槽10であれば、液体金属12はその膨張時に図2で符合e及び二点鎖線で示すように前記の熱膨張を吸収する空間へ膨らむ。この状態では電磁ポンプ4には過大な熱応力が掛からず、液体金属槽10が壊れることはない。特に、摂氏単位で融点の40%程度の温度以上になるとクリープ特性(荷重が掛かったままでいると伸びだす特性)が働き、少ない圧力(熱歪みが小さく相当圧力が小さい)で伸び出し、常温時よりも小さい圧力で伸び出し、より安全側になる。従って理論上液体金属槽10がアルカリ金属の0.2%歪みの応力(耐力)に相当する圧力に耐えれば、液体金属は液体金属槽10の中でその液面より上に盛り上がるだけで液体金属槽10が壊れることはない。   Alkali metal is soft and may be a perfect elasto-plastic body (in the stress-strain relationship, it shows a linear change as an elastic body when the strain is 0.2% or less, but with a strain exceeding that, the stress level is a constant value. It has a characteristic close to that of a material having the property that only strain increases. For this reason, if the strain exceeds 0.2%, it deforms and stretches itself. Therefore, as shown in FIG. 2, there is a space in the liquid metal tank 10 that absorbs the thermal expansion of the liquid metal 12, that is, a space above the liquid surface, and the stress when the strain of the alkali metal is 0.2% ( In the case of the liquid metal tank 10 that is not broken even when pressed with a pressure corresponding to (proof strength), the liquid metal 12 swells to a space that absorbs the thermal expansion as indicated by a symbol e and a two-dot chain line in FIG. In this state, excessive heat stress is not applied to the electromagnetic pump 4, and the liquid metal tank 10 is not broken. In particular, when the temperature exceeds about 40% of the melting point in degrees Celsius, creep characteristics (characteristics that expand when the load is applied) work, and it expands with low pressure (low thermal strain and corresponding pressure is small). It expands with less pressure and becomes safer. Accordingly, if the liquid metal tank 10 theoretically withstands a pressure corresponding to a stress (proof stress) of 0.2% strain of alkali metal, the liquid metal is simply raised above the liquid level in the liquid metal tank 10. The tank 10 is not broken.

しかしながら、液体金属槽10に電磁ポンプ4を入れた場合、液体金属槽10内の液体金属12の均一な予熱が出来ず、温度むらが生じ易い(温度分布が付きやすい)。このため、液体金属12の凝固・収縮後の再溶解時に液体金属12を吸い上げる部分、すなわちダクト1の液体金属入口17と液体金属槽10の底面との隙間tの部分の凝固金属が最初に溶け出すと、電磁ポンプ4が押し上げられ、電磁ポンプ4やそのコア2の部分に過大な応力が発生し損傷する場合がある。   However, when the electromagnetic pump 4 is put in the liquid metal tank 10, the liquid metal 12 in the liquid metal tank 10 cannot be preheated uniformly, and temperature unevenness is likely to occur (temperature distribution is easily attached). For this reason, the solid metal in the portion that sucks up the liquid metal 12 during remelting after the solidification and contraction of the liquid metal 12, that is, the portion of the gap t between the liquid metal inlet 17 of the duct 1 and the bottom surface of the liquid metal tank 10 is first melted. When it comes out, the electromagnetic pump 4 is pushed up, and an excessive stress may be generated and damaged in the electromagnetic pump 4 and the core 2 portion.

そこで、誘導子5の内側に、液体金属12の中に浸漬されたポンプ側ダクト1を囲むように巻いたマイクロヒータ等のヒータ9を設ける。そして液体金属12が凝固し、収縮した後、再び加熱して溶解する時にまずこのヒータ9に電力を通電し、発熱することで、液体金属12の中に浸漬されたポンプ側ダクト1の内部の凝固金属を最初に溶解させる。これにより液体金属槽10の底面と電磁ポンプ4の下端との間にある液体金属12が溶解し、膨張しても、電磁ポンプ4に加わる膨張力をポンプ側ダクト1の中の溶解した液体金属12を通して上側に逃がすことが出来る。こうすることで電磁ポンプ4を構成する保護ケース11、ポンプ側ダクト1、コア2やその保護管3に生じる熱応力、熱歪みを低減する。 Therefore, a heater 9 such as a micro heater wound around the pump-side duct 1 immersed in the liquid metal 12 is provided inside the inductor 5. When the liquid metal 12 is solidified and contracted and then heated and melted again, the heater 9 is first energized to generate heat, thereby generating heat inside the pump-side duct 1 immersed in the liquid metal 12 . The solidified metal is first dissolved. Thereby, even if the liquid metal 12 between the bottom surface of the liquid metal tank 10 and the lower end of the electromagnetic pump 4 is dissolved and expanded, the expansion force applied to the electromagnetic pump 4 is dissolved in the pump-side duct 1. 12 can escape upward. By doing so, thermal stress and thermal distortion generated in the protective case 11, the pump-side duct 1, the core 2 and the protective tube 3 constituting the electromagnetic pump 4 are reduced.

以上説明した通り、本発明による液体金属用電磁ポンプの運転開始方法では、液体金属12の凝固・収縮後の再溶解時に液体金属12を吸い上げる部分、すなわちポンプ側ダクト1の液体金属入口17と液体金属槽10の底面との間の部分の液体金属12が溶け出しても、液体金属の溶解時の膨張力が予め先行して溶解したポンプ側ダクト1内の液体金属12を通して逃がされ、電磁ポンプ4やそのコア2の部分に過大な応力が発生せず、それが損傷するのを防止する効果がある。 As described above, in the operation start method of the liquid metal electromagnetic pump according to the present invention, the portion that sucks up the liquid metal 12 when the liquid metal 12 is remelted after solidification and contraction, that is, the liquid metal inlet 17 and the liquid of the pump side duct 1. Even if the liquid metal 12 in the portion between the bottom surface of the metal tank 10 melts, the expansion force at the time of melting the liquid metal is released through the liquid metal 12 in the pump side duct 1 which has been melted in advance, and electromagnetic Excessive stress is not generated in the pump 4 and the core 2 portion, and the pump 4 and the core 2 are prevented from being damaged.

本発明による運転開始方法の一実施例に使用する浸漬型の液体金属用電磁ポンプのを示す断面図である。It is sectional drawing which shows the example of the electromagnetic pump for liquid metals used for one Example of the operation start method by this invention. 浸漬型の液体金属用電磁ポンプの従来例を示す断面図である。It is sectional drawing which shows the prior art example of the immersion type electromagnetic pump for liquid metals.

本発明では、誘導子5の内側に、ポンプ側ダクト1を囲むように巻いたマイクロヒータ等のヒータ9を設け、液体金属12が凝固し、収縮した後、再び加熱して溶解する時にまず最初にこのヒータ9に電力を通電し、発熱することで、ポンプ側ダクト1の内部の凝固金属を最初に溶解させるようにした。
以下、本発明を実施するための最良の形態について、実施例をあげて詳細に説明する。
In the present invention, a heater 9 such as a microheater wound around the pump-side duct 1 is provided inside the inductor 5, and the liquid metal 12 is solidified and contracted and then heated and melted again. The heater 9 is energized to generate heat, so that the solidified metal inside the pump-side duct 1 is first dissolved.
Hereinafter, the best mode for carrying out the present invention will be described in detail with reference to examples.

図1は、本発明による運転開始方法の一実施例に使用する浸漬型の液体金属用誘導電磁ポンプのである。この液体金属用誘導電磁ポンプの構成は基本的に図2により前述した従来の電磁ポンプと同じであり、同じ部分は同じ符号を付してある。
この浸漬型の液体金属用電磁ポンプは、電磁ポンプ4のほぼ全体を液体金属12の中に浸漬して使用する。誘導子5に通電していない運転休止時は、ポンプ側ダクト1の中にある液体金属の液面が液体金属槽10側の液体金属12の液面と同じ高さである。
Figure 1 is an example of a submerged liquid metal for induction electromagnetic pump for use in an embodiment of the operation starting method according to the invention. The configuration of this liquid metal induction electromagnetic pump is basically the same as that of the conventional electromagnetic pump described above with reference to FIG. 2, and the same parts are denoted by the same reference numerals.
This immersion-type electromagnetic pump for liquid metal is used by immersing almost the entire electromagnetic pump 4 in the liquid metal 12. When the operation is stopped when the inductor 5 is not energized, the liquid level of the liquid metal in the pump-side duct 1 is the same level as the liquid level of the liquid metal 12 on the liquid metal tank 10 side.

ポンプ側ダクト1は、ステンレス鋼等の耐熱性、耐蝕性のある材料で作られている。このポンプ側ダクト1の周囲には、液体金属槽10の蓋となる部材から吊り下げられた磁性体製のヨーク6にコイル7を巻回した誘導子5が配置されている。この誘導子5と前記ポンプ側ダクト1の外周側は、ステンレス鋼等の耐熱性及び耐蝕性を有する材料からなる保護ケース11の中に収納されている。この保護ケース11の下端中央に孔があり、この孔にポンプ側ダクト1の下端が密に接合されている。ポンプ側ダクト1の下端が液体金属入口17として液体金属槽10の底面に向けて開口している。   The pump side duct 1 is made of a heat resistant and corrosion resistant material such as stainless steel. Around the pump-side duct 1 is disposed an inductor 5 in which a coil 7 is wound around a magnetic yoke 6 suspended from a member serving as a lid of the liquid metal tank 10. The outer periphery side of the inductor 5 and the pump side duct 1 is housed in a protective case 11 made of a material having heat resistance and corrosion resistance such as stainless steel. There is a hole in the center of the lower end of the protective case 11, and the lower end of the pump side duct 1 is closely joined to the hole. The lower end of the pump-side duct 1 opens as a liquid metal inlet 17 toward the bottom surface of the liquid metal tank 10.

誘導子5は、ポンプ側ダクト1を囲むように縦に設けられたヨーク6に3相電源と接続できるコイルを縦に配列して巻回したもので、縦型3相リニアモータ構造を有している。従ってコイルは3の倍数だけ巻回されている。この誘導子5の全体が前記保護ケース11により覆われている。   The inductor 5 has a vertical three-phase linear motor structure in which a coil that can be connected to a three-phase power source is vertically arranged and wound around a yoke 6 that is vertically provided so as to surround the pump-side duct 1. ing. Therefore, the coil is wound by a multiple of three. The entire inductor 5 is covered with the protective case 11.

さらに、この誘導子5の内側には、ポンプ側ダクト1を囲むように巻いたマイクロヒータ等のヒータ9が設けられている。液体金属12が凝固し、収縮した後、再び加熱して溶解する時にまず最初にこのヒータ9に電力を通電し、発熱することで、ポンプ側ダクト1の内部の凝固金属を最初に溶解する。これにより液体金属槽10の底面と電磁ポンプ4の下端との間にある凝固金属の膨張により電磁ポンプ4に加わる膨張力をポンプ側ダクト1の中の溶解した液体金属12を通して上側に逃がし、電磁ポンプ4を構成する保護ケース11、ポンプ側ダクト1、コア2やその保護管3に生じる熱応力、熱歪みを低減する。   Further, a heater 9 such as a micro heater wound around the pump-side duct 1 is provided inside the inductor 5. When the liquid metal 12 is solidified and contracted and then heated and melted again, the heater 9 is first energized to generate heat, so that the solidified metal inside the pump-side duct 1 is first melted. As a result, the expansion force applied to the electromagnetic pump 4 due to the expansion of the solidified metal between the bottom surface of the liquid metal tank 10 and the lower end of the electromagnetic pump 4 is released upward through the dissolved liquid metal 12 in the pump side duct 1, Thermal stress and thermal distortion generated in the protective case 11, the pump side duct 1, the core 2 and the protective pipe 3 constituting the pump 4 are reduced.

この誘導子5の位置に対応して前記ポンプ側ダクト1の中には、磁性体製の円柱体からなるコア2が配置されている。このコア2は、上下両端が閉じられたステンレス鋼等の耐熱性、耐蝕性のある材料からなる円筒形の保護管3の中に収納されており、ポンプ側ダクト1内の液体金属と直接接触しない。この保護管3とコア2との間には、アルミナ、マグネシア等のセラミックからなる繊維状或いは粉末状の充填材8が充填されている。保護管3は、その上下両端に放射状に延びたスペーサ15、16によりポンプ側ダクト1の中に保持され、コア2がポンプ側ダクト1と中心軸が一致するように保持される。   Corresponding to the position of the inductor 5, a core 2 made of a magnetic cylinder is disposed in the pump-side duct 1. This core 2 is housed in a cylindrical protective tube 3 made of a heat-resistant and corrosion-resistant material such as stainless steel whose upper and lower ends are closed, and is in direct contact with the liquid metal in the pump-side duct 1. do not do. Filled between the protective tube 3 and the core 2 is a fibrous or powder filler 8 made of ceramic such as alumina or magnesia. The protective tube 3 is held in the pump-side duct 1 by spacers 15 and 16 extending radially at both upper and lower ends thereof, and the core 2 is held so that the central axis coincides with the pump-side duct 1.

ポンプ側ダクト1はその上端側において給湯側ダクト1’と接続されている。この給湯側ダクト1’の周囲にシーズヒータ等からなるヒータ線9’が巻回され、給湯側ダクト1’の内部が液体金属の融点以上の温度に加熱される。このヒータ線9’が巻回された給湯側ダクト1’の周囲が耐熱性と断熱性を有する保温材18で囲まれている。   The pump side duct 1 is connected to the hot water supply side duct 1 ′ at the upper end side. A heater wire 9 'made of a sheathed heater or the like is wound around the hot water supply side duct 1', and the inside of the hot water supply side duct 1 'is heated to a temperature equal to or higher than the melting point of the liquid metal. The hot water supply side duct 1 ′ around which the heater wire 9 ′ is wound is surrounded by a heat insulating material 18 having heat resistance and heat insulation.

前記保護ケース11の下端面は、その中心部である液体金属入口17からその周辺部に向けて次第に高くなるようなテーパーが形成されている。この保護ケース11の下端面のテーパーは、液体金属12が凝固し、収縮した後、再び加熱して溶解する時に液体金属12が保護ケース11の下端面に沿って滑りやすくするためである。これにより、液体金属槽10の底面と電磁ポンプ4の下端との間にある凝固金属の膨張により電磁ポンプ4に加わる力を保護ケース11の外側に逃がし、電磁ポンプ4を構成する保護ケース11、ポンプ側ダクト1、コア2やその保護管3に生じる熱応力、熱歪みを低減する。このような液体金属12の滑り効果を有効にするために保護ケース11の下端面のテーパー角θは10゜以上とする。   The lower end surface of the protective case 11 is formed with a taper that gradually increases from the liquid metal inlet 17 that is the central portion toward the peripheral portion. The taper of the lower end surface of the protective case 11 is to make the liquid metal 12 slip easily along the lower end surface of the protective case 11 when the liquid metal 12 solidifies and contracts and then is heated and melted again. Thereby, the force applied to the electromagnetic pump 4 due to the expansion of the solidified metal between the bottom surface of the liquid metal tank 10 and the lower end of the electromagnetic pump 4 is released to the outside of the protective case 11, and the protective case 11 constituting the electromagnetic pump 4, Thermal stress and thermal distortion generated in the pump-side duct 1, the core 2 and the protective tube 3 are reduced. In order to make the sliding effect of the liquid metal 12 effective, the taper angle θ of the lower end surface of the protective case 11 is set to 10 ° or more.

アルカリ金属とオーステナイト系ステンレス鋼との熱膨張差で、0.2%の歪みが生じる温度は表1の通りになる。これ以上の温度になると、アルカリ金属は0.2%耐力に相当する内圧で容器を押し広げながら、自ら変形してゆき、さらに浸漬型電磁ポンプを押し上げようとする。従って、この内圧に耐える体金属槽であり、浸漬型電磁ポンプでなければならない。   Table 1 shows the temperature at which 0.2% strain occurs due to the difference in thermal expansion between the alkali metal and the austenitic stainless steel. At a temperature higher than this, the alkali metal deforms itself while expanding the container with an internal pressure corresponding to 0.2% proof stress, and further tries to push up the immersion electromagnetic pump. Therefore, it is a body metal tank that can withstand this internal pressure, and must be an immersion type electromagnetic pump.

Figure 0005926103
Figure 0005926103

浸漬型電磁ポンプが液体金属槽10の中に収納されると、その液体金属入口17と液体金属槽10の底面との隙間tがフィン効果で温度が上がらなくなってしまい、常温の部分が生じてしまう。常温のアルカリ金属の0.2%耐力はほぼ2倍になり、更に強度が必要になる。これでは容器の板厚が2倍に厚くなってしまう。更に、浸漬型電磁ポンプを取り付ける上蓋も2倍に厚くするか、ベローズを入れて浸漬型電磁ポンプがアルカリ金属の熱膨張で浮き上がる量を吸収する等のコストの掛かる設計になってしまう。これらを避けるため、隙間tを適切な値にしてやる必要がある。   When the immersion type electromagnetic pump is housed in the liquid metal tank 10, the gap t between the liquid metal inlet 17 and the bottom surface of the liquid metal tank 10 does not increase in temperature due to the fin effect, and a room temperature portion is generated. End up. The 0.2% yield strength of alkali metals at room temperature is almost doubled, and further strength is required. This doubles the thickness of the container. In addition, the upper lid to which the immersion type electromagnetic pump is attached is also doubled in thickness, or a bellows is inserted to absorb the amount that the immersion type electromagnetic pump floats due to the thermal expansion of the alkali metal. In order to avoid these, it is necessary to set the gap t to an appropriate value.

電磁ポンプ4の下端から液体金属槽10の底面までの隙間(距離)tは、液体金属槽10の呼び径DA(A呼称)に対して次の通りとする。
t≦0.0006D+0.6114D−40(mm)
これは液体金属12が凝固し、収縮した後、再び加熱して溶解する時に液体金属槽10の底面と電磁ポンプ4の下端との間にある凝固金属の膨張により電磁ポンプ4を構成する保護ケース11、ポンプ側ダクト1、コア2やその保護管3に生じる熱応力、熱歪みでそれらが破損しない限度として解析により決定された。具体的には、液体金属槽10の呼び径DA(A呼称)に対して前記隙間tを次の表2の値以下とする。
The gap (distance) t from the lower end of the electromagnetic pump 4 to the bottom surface of the liquid metal tank 10 is as follows with respect to the nominal diameter DA (A name) of the liquid metal tank 10.
t ≦ 0.0006D 2 + 0.6114D-40 (mm)
This is a protective case that constitutes the electromagnetic pump 4 by the expansion of the solidified metal between the bottom surface of the liquid metal tank 10 and the lower end of the electromagnetic pump 4 when the liquid metal 12 is solidified and contracted and then heated and melted again. 11. It was determined by analysis as a limit that the heat stress and thermal strain generated in the pump side duct 1, the core 2 and the protective tube 3 thereof are not damaged. Specifically, the gap t is set to be equal to or smaller than the value in the following Table 2 with respect to the nominal diameter DA (A name) of the liquid metal tank 10.

Figure 0005926103
Figure 0005926103

しかし、前記隙間tを小さくすればするほど、電磁ポンプ4で液体金属12を汲み上げるとき、液体金属槽10の底面に沈積している不純物も一緒に汲み上げてしまうことになる。そこで、液体金属槽10の底面に邪魔板13を設け、この邪魔板13の上面と前記電磁ポンプ4の下端との間の隙間tを前述の値以下とする。邪魔板13を支持脚14により液体金属槽10の底面から所要の高さに保持し、この邪魔板13により液体金属槽10の底面を実質上かさ上げしている。この邪魔板13はポンプ側ダクト1から液体金属12をドレンしたときに、ドレンと一緒に排出された不純物が邪魔板13上に停滞しないように中心から周辺に向かって低くなるような笠形のテーパーをつけておく。   However, the smaller the gap t is, the more the impurities deposited on the bottom surface of the liquid metal tank 10 are pumped together when the liquid metal 12 is pumped by the electromagnetic pump 4. Therefore, the baffle plate 13 is provided on the bottom surface of the liquid metal tank 10, and the gap t between the upper surface of the baffle plate 13 and the lower end of the electromagnetic pump 4 is set to the above-described value or less. The baffle plate 13 is held at a required height from the bottom surface of the liquid metal tank 10 by the support legs 14, and the bottom surface of the liquid metal tank 10 is substantially raised by the baffle plate 13. This baffle plate 13 has a cap-shaped taper so that when the liquid metal 12 is drained from the pump side duct 1, impurities discharged together with the drain are lowered from the center toward the periphery so as not to stay on the baffle plate 13. Keep on.

本発明は、例えば原子力利用技術分野、放射線利用技術等で使用されるナトリウム等の導電性液体の搬送手段として利用される導電性液体用誘導電磁ポンプに適用することが出来る。   The present invention can be applied to an inductive electromagnetic pump for a conductive liquid used as a means for transporting a conductive liquid such as sodium, which is used in, for example, the field of nuclear energy utilization technology and radiation utilization technology.

1 ポンプ側ダクト
1’ 給湯側ダクト
4 電磁ポンプ
5 誘導子
10 液体金属槽
12 液体金属
17 液体金属入口
DESCRIPTION OF SYMBOLS 1 Pump side duct 1 'Hot water supply side duct 4 Electromagnetic pump 5 Inductor 10 Liquid metal tank 12 Liquid metal 17 Liquid metal inlet

Claims (1)

液体金属を通す筒状のポンプ側ダクト(1)の外周に、同ポンプ側ダクト(1)の中に移動磁界を発生させて同ポンプ側ダクト(1)内の液体金属に推力を与える誘導子(5)を設け、この誘導子(5)を保護ケース(11)で覆い、これら保護ケース(11)、誘導子(5)及びポンプ側ダクト(1)を液体金属(12)の中に浸漬した液体金属用電磁ポンプを運転開始する方法において、誘導子(5)の内側に、ポンプ側ダクト(1)を囲むように巻いたヒータ(9)を設け、液体金属(12)が凝固し、収縮した後、再び加熱して溶解する時にまずこのヒータ(9)に電力を通電し、発熱することで、液体金属(12)の中に浸漬したポンプ側ダクト(1)の内部の凝固金属を最初に溶解することを特徴とする液体金属用電磁ポンプの運転開始方法。 An inductor that generates a moving magnetic field in the pump-side duct (1) on the outer periphery of the cylindrical pump-side duct (1) through which the liquid metal passes and gives thrust to the liquid metal in the pump-side duct (1) (5) is provided, not covered by this inductor (5) the protective case (11), these protective case (11), inductor (5) and the pump-side duct (1) into the liquid metal (12) In the method of starting operation of the immersed liquid metal electromagnetic pump, a heater (9) wound around the pump side duct (1 ) is provided inside the inductor (5), and the liquid metal (12) is solidified. After shrinking, when heated and melted again, the heater (9) is first energized to generate heat, thereby generating solidified metal inside the pump side duct (1) immersed in the liquid metal (12). Of electromagnetic pump for liquid metal, characterized by first dissolving Rolling start method.
JP2012093446A 2012-04-17 2012-04-17 Operation start method of electromagnetic pump for liquid metal Active JP5926103B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012093446A JP5926103B2 (en) 2012-04-17 2012-04-17 Operation start method of electromagnetic pump for liquid metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012093446A JP5926103B2 (en) 2012-04-17 2012-04-17 Operation start method of electromagnetic pump for liquid metal

Publications (2)

Publication Number Publication Date
JP2013220442A JP2013220442A (en) 2013-10-28
JP5926103B2 true JP5926103B2 (en) 2016-05-25

Family

ID=49591807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012093446A Active JP5926103B2 (en) 2012-04-17 2012-04-17 Operation start method of electromagnetic pump for liquid metal

Country Status (1)

Country Link
JP (1) JP5926103B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6518524B2 (en) * 2015-06-15 2019-05-22 助川電気工業株式会社 Electromagnetic pump for molten metal water heater

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4212592A (en) * 1978-10-31 1980-07-15 General Electric Company Electromagnetic pump for molten metals
JPH05285638A (en) * 1992-04-07 1993-11-02 Toshiba Mach Co Ltd Duct of electro magnetic pump
JP4989329B2 (en) * 2007-06-19 2012-08-01 助川電気工業株式会社 Molten metal electromagnetic pump and operation method thereof
JP5113612B2 (en) * 2008-04-28 2013-01-09 助川電気工業株式会社 Induction electromagnetic pump for molten metal
JP5075002B2 (en) * 2008-04-30 2012-11-14 助川電気工業株式会社 Electromagnetic pump for molten metal
JP4920061B2 (en) * 2009-06-23 2012-04-18 助川電気工業株式会社 Electromagnetic pump for molten metal and its operation method

Also Published As

Publication number Publication date
JP2013220442A (en) 2013-10-28

Similar Documents

Publication Publication Date Title
JP5543108B2 (en) Pressurizing device in primary cooling system of pressurized water reactor and method of making the pressurizing device
US20110011750A1 (en) Electric Induction Heating and Stirring of an Electrically Conductive Material in a Containment Vessel
JP4585606B2 (en) Continuous casting method and nozzle heating device
JP2015145871A (en) Device for irradiation of samples in core or at periphery of core of reactor
RU2664073C2 (en) Induction furnace and method for treating metal waste to be stored
JP4914945B1 (en) Immersion heater
JP5926103B2 (en) Operation start method of electromagnetic pump for liquid metal
JP4989329B2 (en) Molten metal electromagnetic pump and operation method thereof
JP5925027B2 (en) Electromagnetic pump for liquid metal
JP5745588B2 (en) Induction furnace crucible
JP4828963B2 (en) Core melt cooling device, reactor containment vessel, and method of installing core melt cooling device
JP5914127B2 (en) Liquid metal transfer device using electromagnetic pump for liquid metal
CN204594214U (en) Rectilinear dipping is molten protects all-in-one oven
JP4994972B2 (en) Electromagnetic pump for molten metal
JPWO2016185624A1 (en) Molten metal holding furnace
CN103363809B (en) Liquid metal vacuum extraction device and extraction method thereof
KR20210079952A (en) Heating and Cooling Combined System for Liquid Metal Cooled Nuclear Reactor Based on Induction Heating
CN209968446U (en) Fixed point device based on temperature control high-precision salt bath thermostatic bath
JP4989338B2 (en) Inductive circulation gas discharge device for molten metal
JP2017161132A (en) Crucible for induction heating furnace
JP2007253230A (en) High-frequency induction heating device for die casting machine
JP5113612B2 (en) Induction electromagnetic pump for molten metal
JP2019178863A (en) Heater protection pipe for molten metal holding furnace
KR101714017B1 (en) Heater for nitrogen gas
JP5993286B2 (en) Molten metal supply apparatus and driving method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160418

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160421

R150 Certificate of patent or registration of utility model

Ref document number: 5926103

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250