JP4914945B1 - Immersion heater - Google Patents

Immersion heater Download PDF

Info

Publication number
JP4914945B1
JP4914945B1 JP2011174835A JP2011174835A JP4914945B1 JP 4914945 B1 JP4914945 B1 JP 4914945B1 JP 2011174835 A JP2011174835 A JP 2011174835A JP 2011174835 A JP2011174835 A JP 2011174835A JP 4914945 B1 JP4914945 B1 JP 4914945B1
Authority
JP
Japan
Prior art keywords
heating wire
immersion heater
heater
outer tube
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011174835A
Other languages
Japanese (ja)
Other versions
JP2013037985A (en
Inventor
信一 斎藤
勝洋 鈴木
学 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Metals and Chemical Co Ltd
Original Assignee
Japan Metals and Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Metals and Chemical Co Ltd filed Critical Japan Metals and Chemical Co Ltd
Priority to JP2011174835A priority Critical patent/JP4914945B1/en
Priority to CN 201110333693 priority patent/CN102932978A/en
Application granted granted Critical
Publication of JP4914945B1 publication Critical patent/JP4914945B1/en
Publication of JP2013037985A publication Critical patent/JP2013037985A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】実効出力が高く、コンパクトで取り扱いやすく、特に補助的ヒーターとして用いるに好適な浸漬ヒーターを提供すること。
【解決手段】絶縁性セラミックス製有底外筒チューブと該外筒チューブに収納されるコイル状電熱線とから構成される浸漬ヒーターであって、前記外筒チューブの発熱部の内壁面が、該発熱部の開口部側内径が底部側内径より大きいテーパー形状を有し、かつ、前記コイル状電熱線が、そのコイル側部が少なくとも発熱時に前記外筒チューブの発熱部の内壁面に接する形状を有し、該内壁に支持されることを特徴とする浸漬ヒーター。
【選択図】図1
An immersion heater is provided which has a high effective output, is compact and easy to handle, and is particularly suitable for use as an auxiliary heater.
An immersion heater comprising a bottomed outer tubular tube made of insulating ceramics and a coiled heating wire housed in the outer tubular tube, wherein an inner wall surface of a heat generating portion of the outer tubular tube comprises The heating portion has an inner diameter on the opening side larger than the inner diameter on the bottom side, and the coiled heating wire has a shape in which the coil side portion is in contact with the inner wall surface of the heating portion of the outer tube at least during heat generation. An immersion heater, characterized in that it is supported by the inner wall.
[Selection] Figure 1

Description

本発明は、アルミニウム、亜鉛等の非鉄金属溶湯中に投入し、溶湯を加熱する溶融金属用浸漬ヒーターに関し、特に補助的加熱源として好適に使用できるコンパクトな溶融金属用浸漬ヒーターに関する。   The present invention relates to a molten metal immersion heater that is charged into a non-ferrous metal molten metal such as aluminum or zinc and heats the molten metal, and more particularly to a compact molten metal immersion heater that can be suitably used as an auxiliary heating source.

アルミニウムや亜鉛などの非鉄金属溶湯を加熱保持するために用いられる非鉄金属溶湯保持炉は、炉内溶湯中に、セラミック等の耐火物製保護管(外筒チューブ)内に発熱体を装備した浸漬ヒーターを具えている。
このような浸漬ヒーターは、通電加熱により加熱される発熱体を溶湯との反応から保護しかつ溶湯と絶縁するため高い絶縁性を有するセラミックスチューブで構成されているのが一般的である。従来、窒化珪素などの耐熱性絶縁材に発熱体を収納したアルミニウム溶湯用浸漬ヒーターが知られている。セラミックスチューブ内に収納される発熱体は棒状ヒーターであったり、U字型ヒーターであったり、螺旋あるいはコイル状ヒーターであったりといった様々の形状のヒーターが知られている。ヒーター素材としては炭化ケイ素質や、ニクロム線やケイ化モリブデンのような金属発熱体等、様々の材料が使われる。
このような浸漬ヒーターとしては、上部を溶湯容器の上蓋に懸垂支持してその下部を溶湯中に浸漬して用いる直筒形ヒーターや、上記保持炉の溶湯容器の側壁を貫通させて容器内の底寄りに水平に架設して用いるものなどが知られている。こうした浸漬ヒーターは保持炉の一部を構成している。
Non-ferrous metal melt holding furnace used to heat and hold non-ferrous metal melts such as aluminum and zinc is immersed in the furnace melt with a heating element in a protective tube (outer tube) made of ceramic or other refractory. Has a heater.
Such an immersion heater is generally composed of a ceramic tube having high insulating properties in order to protect a heating element heated by electric heating from reaction with the molten metal and to insulate it from the molten metal. Conventionally, an immersion heater for molten aluminum in which a heating element is housed in a heat-resistant insulating material such as silicon nitride is known. Heaters having various shapes such as a rod-shaped heater, a U-shaped heater, a spiral or coil-shaped heater are known as the heating element housed in the ceramic tube. Various materials such as silicon carbide and metal heating elements such as nichrome wire and molybdenum silicide are used as the heater material.
As such an immersion heater, the upper part is suspended and supported on the upper lid of the molten metal container and the lower part is immersed in the molten metal, or the bottom of the container is penetrated through the side wall of the molten metal container of the holding furnace. Those that are installed horizontally on the side are known. Such an immersion heater forms part of a holding furnace.

これらの浸漬ヒーターは、熱源として比較的大きな電気容量が要求され、結果として比較的大きなサイズの浸漬ヒーターと大きな電源を必要としている。浸漬ヒーターの容量は、溶湯を保持する炉体の大きさと断熱性に大きく依存する。
すなわち、断熱性が劣り、熱容量が大きな炉体ほど、大きな容量のヒーターが必要となる。近年、炉体そのものの断熱性が向上し、徐々に、必要とされるヒーター容量も小さくなってきており、コンパクトで取り扱いやすい浸漬ヒーターが望まれている。
一方、保持炉やメッキ槽等においては、汲出し口などの開口部からの放熱による溶湯の温度低下を補うため、部分的に金属溶湯を加熱・保温する補助的な浸漬ヒーターが望まれている。
These immersion heaters require a relatively large electric capacity as a heat source, and as a result, require a relatively large size immersion heater and a large power source. The capacity of the immersion heater greatly depends on the size and heat insulation of the furnace body that holds the molten metal.
In other words, a furnace body with poor heat insulation and a large heat capacity requires a larger capacity heater. In recent years, the heat insulation of the furnace body itself has been improved, and the required heater capacity has been gradually reduced. Thus, a compact and easy to handle immersion heater is desired.
On the other hand, in a holding furnace, a plating tank, etc., an auxiliary immersion heater that partially heats and keeps the molten metal is desired in order to compensate for the temperature drop of the molten metal due to heat radiation from the opening such as the pumping port. .

コンパクトで取り扱いやすく、特に補助的な加熱に利用する浸漬ヒーターとしては、ヒーターのみを容易に移動できるコンパクトさ、かつ高出力であること、さらに電源として大きな変圧器が不要で、配線も容易であることが望ましい。さらに、ニーズに応じて、出力及び形状に柔軟に対応でき、安価に提供できることも重要である。
電源に関しては、100Vあるいは200Vの通常の電源を特別の変圧器等を用いずに、出力制御は例えばサイリスタのみで行うことができるようにすることが望ましい。ニクロム線や鉄クロムアルミ合金線のような一般的な金属電熱素線をコイル状にして絶縁性セラミックスチューブ内に収容した構成が上記目的に合致する。
Compact and easy to handle, especially as a submersible heater used for auxiliary heating, it is compact enough to easily move only the heater, has high output, does not require a large transformer as a power source, and is easy to wire It is desirable. Furthermore, it is also important that the output and shape can be flexibly accommodated according to needs and can be provided at low cost.
As for the power supply, it is desirable that the normal power supply of 100V or 200V can be controlled by, for example, only a thyristor without using a special transformer or the like. A structure in which a general metal electric heating element wire such as a nichrome wire or an iron chrome aluminum alloy wire is coiled and accommodated in an insulating ceramic tube meets the above purpose.

この種の浸漬ヒーターでは、電熱素線はチューブ内にコイル状に巻いて収納されているが、電熱素線自体の耐熱性、耐酸化性の制約から、電熱素線そのものの温度が上がりすぎると、ヒーター寿命が極端に短くなる、このため、この種の浸漬ヒーターではヒーター内部温度を計測し、許容される温度を超えないように電力負荷を抑制するようにしている。したがって、電熱素線で発生した熱が効率的に溶湯に伝達されないと、電熱素線の全抵抗値と最大負荷電圧から算出する設計出力容量より実際の使用環境ではかなり小さい出力しか負荷することができない。 この実環境で負荷できる出力容量を以後「実効出力」と記す。従来知られているこの種の浸漬ヒーターにはコンパクトで実効出力が高出力という要求に十分応えられるものは無かった。   In this type of immersion heater, the electric heating wire is housed in a coil in a tube, but if the temperature of the electric heating wire itself rises excessively due to restrictions on the heat resistance and oxidation resistance of the electric heating wire itself, The life of the heater becomes extremely short. For this reason, with this type of immersion heater, the heater internal temperature is measured, and the power load is controlled so as not to exceed the allowable temperature. Therefore, if the heat generated by the electric heating wire is not efficiently transferred to the molten metal, the actual output environment may load only a much smaller output than the design output capacity calculated from the total resistance value of the electric heating wire and the maximum load voltage. Can not. The output capacity that can be loaded in the actual environment is hereinafter referred to as “effective output”. There has been no known immersion heater of this type that can sufficiently meet the demand for a compact and effective output.

このような浸漬ヒーターとしては、例えば、特許文献1には耐熱性セラミックスチューブ内に高熱伝導性の粉末に発熱体を埋設して収納した浸漬ヒーターが提案されている。金属シース型ヒーターは同じ考え方で製作されているが、金属シース型では、金属シース内に電熱線と高熱伝導性の粉末を充填した後、金属シースを絞り、中に充填した粉末を圧密状態にして、電熱線で発生した熱の被加熱物への熱移動(伝熱効率)を向上させる目的を達成している。
また、特許文献2には外筒管が輻射効率の優れた導電性セラミックス材料により形成され、外筒自体に通電して発熱させる外筒管において発生した熱を、金属溶湯に直接放熱させ、効率よく該金属溶湯を加熱又は保温する浸漬ヒーターが提案されている。
As such an immersion heater, for example, Patent Document 1 proposes an immersion heater in which a heating element is embedded in a heat-resistant ceramic tube and stored in a highly heat conductive powder. The metal sheath type heater is manufactured in the same way, but in the metal sheath type, after filling the metal sheath with heating wire and high thermal conductivity powder, the metal sheath is squeezed, and the powder filled inside is compressed. Thus, the purpose of improving the heat transfer (heat transfer efficiency) of the heat generated by the heating wire to the object to be heated is achieved.
Further, in Patent Document 2, the outer tube is formed of a conductive ceramic material having excellent radiation efficiency, and heat generated in the outer tube that generates heat by energizing the outer tube itself is directly radiated to the molten metal, thereby improving efficiency. There has been proposed an immersion heater that heats or keeps the molten metal well.

特開平11−176564号公報Japanese Patent Laid-Open No. 11-176564 特開2008−269808号公報JP 2008-269808 A

しかしながら、特許文献1記載の浸漬ヒーターでは、シースに相当するチューブがセラミック製であるため、発熱体を埋設する粉末を圧密させることができず、粉体層は多くの気孔を含有した状態のまま存在し、粉末粒度及び充填率によっては逆に粉体層が保温材として働く場合もあり、伝熱効率を向上させるという目的を達することは容易ではない。また、特許文献2記載の浸漬ヒーターでは、導電性を有しかつ溶融金属溶湯に対して耐食性の高いセラミックス材料が無く、また、溶湯にも導電性があるので、感電事故を起こしやすく、現実的ではない。
本発明は、上記要求に応えるために、コンパクトで取り扱いやすく、特に補助的ヒーターとして用いるに好適な浸漬ヒーターを提供することを課題とする。
また、本発明は、アルミニウムや亜鉛等の非鉄鋳造部品の製造やメッキの安定操業に寄与できる、実効出力の高いコンパクトな浸漬ヒーターを安価に提供することを課題とする。
However, in the immersion heater described in Patent Document 1, since the tube corresponding to the sheath is made of ceramic, the powder in which the heating element is embedded cannot be consolidated, and the powder layer remains in a state containing many pores. However, depending on the powder particle size and filling rate, the powder layer may work as a heat insulating material, and it is not easy to achieve the purpose of improving the heat transfer efficiency. In addition, the immersion heater described in Patent Document 2 has no ceramic material that has conductivity and high corrosion resistance to the molten metal, and since the molten metal is also conductive, it is easy to cause an electric shock accident and is realistic. is not.
In order to meet the above requirements, an object of the present invention is to provide an immersion heater that is compact and easy to handle, and that is particularly suitable for use as an auxiliary heater.
Another object of the present invention is to provide a compact immersion heater with high effective output that can contribute to the production of non-ferrous cast parts such as aluminum and zinc and the stable operation of plating at low cost.

本発明者らは、絶縁性セラミックス製外筒チューブ(以下、単に「外筒チューブ」ということがある)とコイル状電熱線(以下、「電熱線コイル」ということがある)の形状、及び外筒チューブ内への電熱線コイルの収納方法に着目することにより、本発明の上記課題を解決するに至った。すなわち、本発明は、絶縁性セラミックス製有底外筒チューブと該外筒チューブに収納されるコイル状電熱線とから構成される浸漬ヒーターであって、前記外筒チューブの発熱部の内壁面が、該発熱部の開口部側内径が底部側内径より大きいテーパー形状を有し、かつ、前記コイル状電熱線が、そのコイル側部が少なくとも発熱時に前記外筒チューブの発熱部の内壁面に接する形状を有し、該内壁に支持されることを特徴とする浸漬ヒーターに関する。   The present inventors have disclosed the shape of an insulating ceramic outer tube (hereinafter sometimes simply referred to as “outer tube”) and the shape of a coiled heating wire (hereinafter also referred to as “heating wire coil”), and the outside. By paying attention to the method of storing the heating wire coil in the tubular tube, the above-mentioned problems of the present invention have been solved. That is, the present invention is an immersion heater composed of an insulating ceramic bottomed outer tube and a coiled heating wire housed in the outer tube, and the inner wall surface of the heat generating portion of the outer tube is The heating portion has an inner diameter on the opening side larger than the inner diameter on the bottom side, and the coiled heating wire is in contact with the inner wall surface of the heating portion of the outer tube at least when the coil side portion generates heat. The present invention relates to an immersion heater having a shape and being supported by the inner wall.

本発明により、コンパクトで取り扱いやすく、特に補助的ヒーターとして用いるに好適な浸漬ヒーターを提供することができる。
また、本発明により、アルミニウムや亜鉛等の非鉄鋳造部品の製造やメッキの安定操業に寄与できる、実効出力の高い浸漬ヒーターを安価に提供することが可能となる。
According to the present invention, it is possible to provide an immersion heater that is compact and easy to handle and is particularly suitable for use as an auxiliary heater.
Further, according to the present invention, it is possible to provide an immersion heater with high effective output that can contribute to the production of non-ferrous cast parts such as aluminum and zinc and the stable operation of plating at low cost.

本発明の浸漬ヒーターの一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the immersion heater of this invention. 浸漬ヒーターの実効出力とヒーター内部温度との関係を示すグラフである。It is a graph which shows the relationship between the effective output of an immersion heater, and heater internal temperature.

従来の浸漬ヒーターは絶縁性セラミックス直管中に電熱線コイルが収納されている形状であるが、電熱線コイルの金属電熱素線の熱膨張率は外筒チューブを構成するセラミックスのそれよりも大きいため、該熱膨張率の差を考慮して、電熱線コイルの外径は外筒チューブの内径より小さくしておく必要があった。また、高温下では電熱線コイルが変形しやすいため、外筒チューブ内でコイル形状を保持する支持碍子やコイルの短絡を防ぐためのスペーサーが必要であり、さらに、外筒チューブの内径および電熱線コイルの外径は、製造上バラツキが生じやすいことから、外筒チューブに電熱線コイルを容易に収納できるように外筒チューブの内径より電熱線コイルの外径を数mm〜数十mm小さくした設計にせざるを得なかった。電熱線コイルの電熱素線において発生した熱は、外筒チューブを介して金属溶湯に伝わることになるが、このような場合、電熱線コイルと外筒チューブの間にできる隙間(空気層)が熱伝達を阻害し、伝熱効率を低下させていると考えられる。   The conventional immersion heater has a shape in which a heating wire coil is housed in an insulating ceramic straight tube, but the thermal expansion coefficient of the metal heating element wire of the heating wire coil is larger than that of the ceramic constituting the outer tube. Therefore, in consideration of the difference in coefficient of thermal expansion, the outer diameter of the heating wire coil needs to be smaller than the inner diameter of the outer tube. In addition, since the heating wire coil is easily deformed at high temperatures, a support insulator for holding the coil shape in the outer tube and a spacer for preventing the coil from being short-circuited are required. Further, the inner diameter of the outer tube and the heating wire are required. Since the outer diameter of the coil is likely to vary in manufacturing, the outer diameter of the heating wire coil is made several mm to several tens of mm smaller than the inner diameter of the outer tube so that the heating coil can be easily stored in the outer tube. I had to design. The heat generated in the heating wire of the heating wire coil is transferred to the molten metal through the outer tube. In such a case, there is a gap (air layer) formed between the heating wire coil and the outer tube. It is thought that heat transfer is inhibited and heat transfer efficiency is lowered.

本発明者らは電熱線コイルと外筒チューブの内壁面との間の隙間を可能な限り狭くなるよう試作を繰返し、この隙間を小さくすることが伝熱効率を向上させるために有効であることを確認した。しかしながら、電熱線コイルと外筒チューブ内壁との間の隙間を小さくして伝熱効率を向上させるためには、高度なセラミックス加工と高精度な電熱素線のコイル巻加工が必要であるため大幅なコストアップとなる。そこで、本発明者らは、高度な加工を要しないでこの間隙を可能な限り小さくする方法について検討し、本発明に到達した。   The inventors have repeated trial production so that the gap between the heating wire coil and the inner wall surface of the outer tube is as small as possible, and it is effective to reduce the gap to improve the heat transfer efficiency. confirmed. However, in order to improve the heat transfer efficiency by reducing the gap between the heating wire coil and the inner wall of the outer tube, it is necessary to perform advanced ceramic processing and highly accurate coiling of the heating wire. Cost increases. Accordingly, the present inventors have studied a method for reducing this gap as much as possible without requiring advanced processing, and have reached the present invention.

すなわち、本発明は、絶縁性セラミックス製有底外筒チューブと該外筒チューブに収納されるコイル状電熱線とから構成される浸漬ヒーターであって、前記外筒チューブの発熱部の内壁面が、該発熱部の開口部側内径が底部側内径より大きいテーパー形状を有し、かつ、前記コイル状電熱線が、そのコイル側部が少なくとも発熱時に前記外筒チューブの発熱部の内壁面に接する形状を有し、該内壁に支持されることを特徴とする浸漬ヒーターに関するものである。   That is, the present invention is an immersion heater composed of an insulating ceramic bottomed outer tube and a coiled heating wire housed in the outer tube, and the inner wall surface of the heat generating portion of the outer tube is The heating portion has an inner diameter on the opening side larger than the inner diameter on the bottom side, and the coiled heating wire is in contact with the inner wall surface of the heating portion of the outer tube at least when the coil side portion generates heat. The present invention relates to an immersion heater having a shape and being supported by the inner wall.

すなわち、電熱線コイルが収納される外筒チューブの発熱部の内壁面を該発熱部の開口部側内径が底部側内径より大きいテーパー形状とし、かつ電熱線コイルの外形を、外筒チューブの発熱部の内壁面に接する形態のテーパー形状とすることによって、外筒チューブ内径の製造上のばらつきを吸収でき、外筒チューブの内壁面と電熱線コイルを密着設置でき、かつ、外筒チューブ内壁のテーパーを利用して電熱線コイルの支持も実現できることとなった。このようにすることで、電熱線コイルの金属電熱素線と外筒チューブとの熱膨張率の差も、電熱線コイルが該外筒チューブのテーパー状内壁面に沿って上下動することにより吸収されている。   That is, the inner wall surface of the heat generating portion of the outer tube that accommodates the heating wire coil is tapered so that the inner diameter on the opening side of the heat generating portion is larger than the inner diameter on the bottom side, and the outer shape of the heating wire coil is the heat generation of the outer tube. By adopting a tapered shape in contact with the inner wall surface of the section, it is possible to absorb manufacturing variations in the inner diameter of the outer tube, closely contact the inner wall surface of the outer tube and the heating wire coil, and the inner wall of the outer tube It became possible to support the heating wire coil by using the taper. In this way, the difference in thermal expansion coefficient between the metal heating element wire of the heating wire coil and the outer tube is also absorbed by the heating wire coil moving up and down along the tapered inner wall surface of the outer tube. Has been.

本発明の浸漬ヒーターは、電熱線コイル側部が外筒チューブ発熱部内壁のテーパー面に接するものであればよい。電熱線コイルの「コイル側部」とは、ほぼ円錐あるいは円錐台形状の電熱線コイルを形成する金属電熱素線が構成する側部外表面をいい、「コイル側部が前記外筒チューブの発熱部の内壁面に接する」とは、少なくとも発熱時に、上記電熱線コイルの金属電熱素線で形成される側部外表面が外筒チューブの発熱部の内壁のテーパー面と接するようなテーパー形状を有することをいう。こうした側部外表面がテーパー形状を有する電熱線コイルは、例えば、外筒チューブの発熱部の内壁のテーパー角と同じ角度を有するマンドレルに金属素線を巻きつけることにより容易に製作できる。また、「少なくとも発熱時に接する」とは、発熱時に接していれば、発熱時以外の状態については特に制限はないことをいう。発熱時に電熱線コイルが外筒チューブのテーパー状内壁面に沿って上下動しうる点を考慮すれば、電熱線コイルは発熱時以外において、外筒チューブの発熱部の内壁面と部分的に接触する状態であってもよいからである。   The immersion heater of this invention should just be what the heating wire coil side part contact | connects the taper surface of an outer cylinder tube heat generating part inner wall. The “coil side” of the heating wire coil refers to the outer surface of the side portion formed by the metal heating wire forming the substantially conical or frustoconical heating wire coil, and “the coil side portion generates heat from the outer tube. `` Contacting the inner wall surface of the part '' means a taper shape such that the outer surface of the side part formed by the metal heating element wire of the heating wire coil contacts the tapered surface of the inner wall of the heating part of the outer tube at least during heat generation. It means having. Such a heating wire coil having a tapered outer side surface can be easily manufactured by, for example, winding a metal wire around a mandrel having the same angle as the taper angle of the inner wall of the heat generating portion of the outer tube. Further, “at least in contact with heat generation” means that there is no particular limitation on the state other than heat generation as long as it is in contact with heat generation. Considering the fact that the heating wire coil can move up and down along the tapered inner wall surface of the outer tube during heat generation, the heating wire coil is in partial contact with the inner wall surface of the heating portion of the outer tube when not generating heat. It is because it may be in the state to do.

図1は、本発明の浸漬ヒーターの一例を示す概略断面図である。本発明の浸漬ヒーターの一例を図1で詳細に説明する。
本発明の浸漬ヒーターは、有底の絶縁性セラミックス製外筒チューブaに電熱線ヒーターが収納されており、下部に発熱体である電熱線コイルdが収納されている発熱部γと、上部に電熱線コイルdに電気を供給するリード線bが収納されているリード部βで構成されている。浸漬ヒーターは、発熱部γの上端が溶湯の湯面より下側20mm以上の位置に設置され、非鉄金属溶湯に発熱部γを完全に浸漬させて使用される。浸漬ヒーターは垂直に設置するのが電熱線コイルを安定に支持するために望ましいが、45度程度あるいはそれ以下の角度で傾斜させて設置しても差し支えない。
FIG. 1 is a schematic sectional view showing an example of the immersion heater of the present invention. An example of the immersion heater of the present invention will be described in detail with reference to FIG.
In the immersion heater of the present invention, a heating wire heater is housed in a bottomed insulating ceramic outer tube a, and a heating wire γ in which a heating wire coil d as a heating element is housed in the lower portion, and an upper portion. The lead wire β is configured to include a lead wire b that supplies electricity to the heating wire coil d. The immersion heater is used in such a manner that the upper end of the heat generating portion γ is installed at a position 20 mm or more below the molten metal surface, and the heat generating portion γ is completely immersed in the non-ferrous metal melt. Although it is desirable to install the immersion heater vertically in order to stably support the heating wire coil, it may be installed at an angle of about 45 degrees or less.

発熱部γにおいては、絶縁性セラミックス製外筒チューブの開口側(上部)の内径が底側(下部)の内径より大きいテーパー形状とされている。テーパー形状は製作しようとする浸漬ヒーターの内径、及び発熱部γの長さによって最適の角度を設定することができる。本発明においては、テーパー角度(絶縁性セラミックス製外筒チューブの中心垂線と内壁面が形成する角度αの2倍)は小さいほうが、浸漬ヒーターのリード部の直径を小さくでき、ヒーターとしてコンパクトに製作できるが、1.0度未満の小さいテーパー角αでは、コイル状電熱線上端の外径と下端の内径の差が小さくなり、コイルの支持効果が無くなるため好ましくない。テーパー角度2αを大きく取ることに制限はないが、大きすぎるとリード部βの直径が大きくなりコンパクト性が失われ、またリード部βからの熱の散逸が激しくなるため、5度を超えるテーパー角は極めて特殊な場合に限定される。 本発明においては、テーパー角度2αは、1.0度〜5.0度が好ましく、1.0度〜3.0度がより好ましい。リード部βのセラミックス管形状は、発熱部γのテーパー管の延長としても良いが、浸漬ヒーターをコンパクトにするため、リード部は発熱体コイルを容易に挿入できる直径の直管形状とするのが好ましい。   In the heat generating part γ, the inner diameter of the insulating ceramic outer tube is tapered such that the inner diameter of the opening side (upper part) is larger than the inner diameter of the bottom side (lower part). The taper shape can be set at an optimum angle depending on the inner diameter of the immersion heater to be manufactured and the length of the heat generating portion γ. In the present invention, the smaller the taper angle (twice the angle α formed by the central vertical line of the insulating ceramic outer tube and the inner wall surface), the diameter of the lead part of the immersion heater can be reduced and the heater can be made compact. However, a small taper angle α of less than 1.0 degree is not preferable because the difference between the outer diameter at the upper end of the coiled heating wire and the inner diameter at the lower end becomes small and the effect of supporting the coil is lost. There is no limit to taking a large taper angle 2α, but if it is too large, the diameter of the lead part β will increase and the compactness will be lost, and heat dissipation from the lead part β will become severe, and the taper angle exceeding 5 degrees Is limited to very special cases. In the present invention, the taper angle 2α is preferably 1.0 degree to 5.0 degree, and more preferably 1.0 degree to 3.0 degree. The ceramic tube shape of the lead portion β may be an extension of the tapered tube of the heat generating portion γ, but in order to make the immersion heater compact, the lead portion should be a straight tube shape with a diameter that allows easy insertion of the heating element coil. preferable.

高温で絶縁抵抗の高い絶縁性セラミックスとしては、高温で高強度、高硬度、高耐食性を有するのみならず、高温で良好な熱伝導性を示し、更に、高温で良好な電気絶縁性を示すものを採用することができる。本発明においては、例えば、窒化珪素やサイアロン、窒化硼素等やそれらの複合セラミックスを用いることができる。特に窒化珪素は800℃以上の高温になっても絶縁抵抗の低下が少なく、アルミニウムや亜鉛等の非鉄金属溶湯に対する耐食性も優れ、耐熱衝撃性にも優れており、好適に用いることができる。   Insulating ceramics with high insulation resistance at high temperatures not only have high strength, high hardness, and high corrosion resistance at high temperatures, but also show good thermal conductivity at high temperatures, and good electrical insulation at high temperatures. Can be adopted. In the present invention, for example, silicon nitride, sialon, boron nitride or the like, or composite ceramics thereof can be used. In particular, silicon nitride has a small decrease in insulation resistance even at a high temperature of 800 ° C. or higher, has excellent corrosion resistance against non-ferrous metal melts such as aluminum and zinc, and has excellent thermal shock resistance, and can be suitably used.

発熱体である電熱線コイルの電熱素線は市販されているニクロム線や鉄クロムアルミ合金線等を用いることができ、更に、絶縁性皮膜を表面に形成させた電熱素線が最も好適に用いられる。また、電熱素線をコイル状に巻いた後に絶縁被覆を施しても良い。
電熱線コイルに負荷をかけ過ぎると、電熱素線の温度が過度に上昇し、寿命を短くしてしまう。これを防ぐため、浸漬ヒーター内部の発熱部に熱電対cを設置してヒーター出力を制御することが好ましい。
As the heating element wire of the heating wire coil that is a heating element, a commercially available nichrome wire or iron-chromium aluminum alloy wire can be used, and the heating element wire having an insulating film formed on the surface is most preferably used. It is done. Moreover, you may give an insulation coating, after winding an electrothermal element wire in a coil shape.
If too much load is applied to the heating wire coil, the temperature of the heating wire rises excessively and shortens the life. In order to prevent this, it is preferable to control the heater output by installing a thermocouple c in the heat generating part inside the immersion heater.

次に、実施例により本発明を具体的に説明する。
実施例1〜3、比較例1,2
200Vで8KWの容量の電熱素線を用いて、表1に示す形状の電熱線コイルを作成した。比較品としてテーパーのない通常のコイルも作成した。各ターン間の絶縁を確保するため、コイルに巻いた後、アルミナ系絶縁処理剤で絶縁処理をした。
電熱線コイルが収納される発熱部が電熱線コイルと同じテーパー角度を有する窒化ケイ素製チューブを製作し、前記の電熱線コイルを収納し、また、浸漬ヒーターの内部温度を計測するため浸漬ヒーター発熱部の中心に熱電対をセットした。
Next, the present invention will be described specifically by way of examples.
Examples 1 to 3, Comparative Examples 1 and 2
A heating wire coil having a shape shown in Table 1 was prepared using a heating wire having a capacity of 8 KW at 200V. As a comparative product, an ordinary coil without a taper was also made. In order to ensure insulation between turns, after being wound around a coil, insulation treatment was performed with an alumina-based insulation treatment agent.
A silicon nitride tube having the same taper angle as that of the heating wire coil is manufactured in the heating part in which the heating wire coil is stored, the heating wire coil is stored, and the immersion heater generates heat to measure the internal temperature of the immersion heater. A thermocouple was set at the center of the section.

ガスバーナー加熱式のルツボ炉を用い、アルミニウム金属を140kg溶解し、製作した浸漬ヒーターを溶湯中にセットした。 ガスバーナーで溶湯温度を700℃とし、溶湯全体が温度的に平衡状態になったところで、ガスバーナー加熱を停止し、浸漬ヒーターに通電した。浸漬ヒーターの内部に設置した熱電対の指示する温度とヒーター出力の関係を調べた。表1に示す本発明品1〜3であるテーパー型浸漬ヒーター3本(実施例1〜3)と、比較品1、2である直管型浸漬ヒーター2本(比較例1,2)について同じ試験を行った。その結果を図2に示す。表1には試験を行った浸漬ヒーターの諸元と各浸漬管の溶湯中への容積及び溶湯と接する伝熱面積及び溶湯温度700℃環境での浸漬ヒーター内部温度が1050℃となった時の、ヒーター出力とを比較して示す。   Using a gas burner heating type crucible furnace, 140 kg of aluminum metal was melted, and the produced immersion heater was set in the molten metal. The molten metal temperature was set to 700 ° C. with a gas burner, and when the entire molten metal reached a temperature equilibrium state, the gas burner heating was stopped and the immersion heater was energized. The relationship between the temperature indicated by the thermocouple installed inside the immersion heater and the heater output was investigated. The same applies to three taper type immersion heaters (Examples 1 to 3) which are the present invention products 1 to 3 shown in Table 1 and two straight tube type immersion heaters (Comparative Examples 1 and 2) which are comparative products 1 and 2. A test was conducted. The result is shown in FIG. Table 1 shows the specifications of the immersion heaters tested, the volume of each immersion tube into the molten metal, the heat transfer area in contact with the molten metal, and the internal temperature of the immersion heater in a 700 ° C molten metal environment. The heater output is shown in comparison.

Figure 0004914945
Figure 0004914945

図2及び表1からわかるように、本発明の浸漬ヒーター(実施例1〜3)は、溶湯中への浸漬容積及び溶湯接触面積がほぼ同等である比較例1(直管型浸漬ヒーター)に比べ、20%以上の大きな実効出力を負荷することができた。比較例1は高度な加工を施すことによって製作した浸漬ヒーターであり、通常は比較例2のような諸元となる。比較例2と実施例1〜3を比較すると、本発明品の容積が小さい、すなわちコンパクトであるにもかかわらず、50%以上大きな実効出力を出せることがわかる。   As can be seen from FIG. 2 and Table 1, the immersion heaters of the present invention (Examples 1 to 3) are similar to Comparative Example 1 (straight tube type immersion heater) in which the immersion volume in the molten metal and the contact area of the molten metal are substantially equal. In comparison, a large effective output of 20% or more could be loaded. Comparative Example 1 is an immersion heater manufactured by applying advanced processing, and usually has specifications as in Comparative Example 2. Comparing Comparative Example 2 and Examples 1 to 3, it can be seen that, although the volume of the present invention is small, that is, it is compact, a large effective output of 50% or more can be produced.

本発明の浸漬ヒーターは、アルミニウム、亜鉛等の非鉄金属溶湯中に投入し、溶湯を加熱する溶融金属用浸漬ヒーターとして使用でき、特に、実効出力が高く、コンパクトで取り扱いやすいことから、補助的ヒーターとして好適に使用することができる。   The immersion heater of the present invention can be used as an immersion heater for molten metal that is poured into a molten non-ferrous metal such as aluminum or zinc and heats the molten metal, and is particularly effective since it has a high effective output and is compact and easy to handle. Can be suitably used.

a 絶縁性セラミックス製有底外筒チューブ
b リード線
c 熱電対
d 電熱線コイル
e 固定金具
f 端子箱
α 絶縁性セラミックス外筒チューブの内壁面と外筒チューブの中心軸方向垂線とが形成する角度
β リード部
γ 発熱部
a Insulating ceramic bottomed outer tube b Lead wire c Thermocouple d Heating wire coil e Fixing bracket f Terminal box α Angle formed by the inner wall surface of the insulating ceramic outer tube and the central axis perpendicular to the outer tube β Lead part γ Heat generation part

Claims (2)

絶縁性セラミックス製有底外筒チューブと該外筒チューブに収納されるコイル状電熱線とから構成される浸漬ヒーターであって、前記外筒チューブの発熱部の内壁面が、該発熱部の開口部側内径が底部側内径より大きいテーパー形状を有し、かつ、前記コイル状電熱線が、そのコイル側部が少なくとも発熱時に前記外筒チューブの発熱部の内壁面に接する形状を有し、該内壁に支持されることを特徴とする浸漬ヒーター。   An immersion heater comprising a bottomed outer tubular tube made of an insulating ceramic and a coiled heating wire housed in the outer tubular tube, wherein the inner wall surface of the heat generating portion of the outer tube is an opening of the heat generating portion And the coil-shaped heating wire has a shape in which the coil side portion is in contact with the inner wall surface of the heat generating portion of the outer tube at least during heat generation, An immersion heater supported by an inner wall. 前記絶縁性セラミックス製有底外筒チューブの発熱部の内壁面のテーパー角度2αが1.0〜5.0度の範囲である請求項1記載の浸漬ヒーター。   The immersion heater according to claim 1, wherein the taper angle 2α of the inner wall surface of the heat generating portion of the bottomed outer tubular tube made of insulating ceramic is in the range of 1.0 to 5.0 degrees.
JP2011174835A 2011-08-10 2011-08-10 Immersion heater Active JP4914945B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011174835A JP4914945B1 (en) 2011-08-10 2011-08-10 Immersion heater
CN 201110333693 CN102932978A (en) 2011-08-10 2011-10-28 A dipping heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011174835A JP4914945B1 (en) 2011-08-10 2011-08-10 Immersion heater

Publications (2)

Publication Number Publication Date
JP4914945B1 true JP4914945B1 (en) 2012-04-11
JP2013037985A JP2013037985A (en) 2013-02-21

Family

ID=46170985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011174835A Active JP4914945B1 (en) 2011-08-10 2011-08-10 Immersion heater

Country Status (2)

Country Link
JP (1) JP4914945B1 (en)
CN (1) CN102932978A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6148972B2 (en) * 2013-12-03 2017-06-14 三井金属鉱業株式会社 Metal melt member, method for producing metal melt member, and metal melt holding furnace
CN104080215A (en) * 2014-07-02 2014-10-01 昆山特丰机电设备有限公司 Non-ferrous metal solution heating bar
CN105491700A (en) * 2015-10-13 2016-04-13 常州市武进顶峰铜业有限公司 Cast-aluminum heater
JP6131378B1 (en) * 2016-12-09 2017-05-17 三井金属鉱業株式会社 Heater tube for immersion in molten metal
CN108275661B (en) * 2018-01-16 2019-12-20 华北水利水电大学 Method for improving internal temperature uniformity of cubic boron nitride single crystal/polycrystalline synthesis rod
CN111246606A (en) * 2020-01-13 2020-06-05 上海交通大学 Immersion type aluminum alloy melt heating rod
CN111447703B (en) * 2020-03-02 2021-12-24 上海交通大学 Immersion type energy-saving aluminum alloy melt heater

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0214793U (en) * 1988-07-13 1990-01-30
JPH0996311A (en) * 1995-10-02 1997-04-08 Kubota Corp Spherical bearing structure
JPH09185983A (en) * 1995-12-28 1997-07-15 Hamamatsu Heat Tec Kk Immersion heater for molten metal
JPH11100620A (en) * 1997-09-25 1999-04-13 Showa Alum Corp Apparatus for refining metal
JP2005142033A (en) * 2003-11-06 2005-06-02 Osaka Gas Co Ltd Immersion heater tube

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0214793U (en) * 1988-07-13 1990-01-30
JPH0996311A (en) * 1995-10-02 1997-04-08 Kubota Corp Spherical bearing structure
JPH09185983A (en) * 1995-12-28 1997-07-15 Hamamatsu Heat Tec Kk Immersion heater for molten metal
JPH11100620A (en) * 1997-09-25 1999-04-13 Showa Alum Corp Apparatus for refining metal
JP2005142033A (en) * 2003-11-06 2005-06-02 Osaka Gas Co Ltd Immersion heater tube

Also Published As

Publication number Publication date
CN102932978A (en) 2013-02-13
JP2013037985A (en) 2013-02-21

Similar Documents

Publication Publication Date Title
JP4914945B1 (en) Immersion heater
JP4585606B2 (en) Continuous casting method and nozzle heating device
CN102427621B (en) Immersive electrical heating pipe for melting and insulating aluminum/zinc metal
JP5745588B2 (en) Induction furnace crucible
JPH07190362A (en) Ceramic glowing plug
US3293412A (en) Electrically heated furnace for molten metal
CN204594214U (en) Rectilinear dipping is molten protects all-in-one oven
JP6107193B2 (en) Optical fiber drawing furnace
CN202310153U (en) Immersion electric heating tube for aluminum/zinc melting and heat insulation
TW201512111A (en) Method and apparatus for glass sheet manufacturing including an induction heated enclosure
US1158972A (en) Electric furnace.
WO2019235474A1 (en) Immersion heater for non-ferrous molten metal
CN210046198U (en) High-frequency electric furnace preheating device for welding robot to weld thick-wall weldment
CN102802293A (en) Induction coil without needing to be cooled
RU110174U1 (en) HEATING UNIT FOR TUBULAR ELECTRIC RESISTANCE FURNACES
JP5686467B2 (en) Substrate processing apparatus and semiconductor device manufacturing method
JP5309282B2 (en) Induction heating melting device
RU167500U1 (en) Tubular heater
CN206160726U (en) Aluminum alloy melts stove
JPH0217437Y2 (en)
WO2012053046A1 (en) Immersion heater
BAROT et al. Energy Efficient and Sustainable Design and Development of Muffle Furnace for Melting Alloys
CN2912884Y (en) Electric iron heating head with gap-free entity structure
JP3058138U (en) Immersion heater
JP7250388B1 (en) Immersion heater

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120123

R150 Certificate of patent or registration of utility model

Ref document number: 4914945

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250