JP5921188B2 - Method for producing silica-based particles having an ultraviolet shielding effect, silica-based particles obtained from the method, and a cosmetic comprising the silica-based particles - Google Patents

Method for producing silica-based particles having an ultraviolet shielding effect, silica-based particles obtained from the method, and a cosmetic comprising the silica-based particles Download PDF

Info

Publication number
JP5921188B2
JP5921188B2 JP2011289347A JP2011289347A JP5921188B2 JP 5921188 B2 JP5921188 B2 JP 5921188B2 JP 2011289347 A JP2011289347 A JP 2011289347A JP 2011289347 A JP2011289347 A JP 2011289347A JP 5921188 B2 JP5921188 B2 JP 5921188B2
Authority
JP
Japan
Prior art keywords
silica
particles
particle
based particles
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011289347A
Other languages
Japanese (ja)
Other versions
JP2013136493A (en
Inventor
康敬 三好
康敬 三好
直幸 榎本
直幸 榎本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
Catalysts and Chemicals Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Catalysts and Chemicals Industries Co Ltd filed Critical Catalysts and Chemicals Industries Co Ltd
Priority to JP2011289347A priority Critical patent/JP5921188B2/en
Publication of JP2013136493A publication Critical patent/JP2013136493A/en
Application granted granted Critical
Publication of JP5921188B2 publication Critical patent/JP5921188B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cosmetics (AREA)
  • Silicon Compounds (AREA)

Description

本発明は、紫外線遮蔽効果を有するシリカ系粒子の製造方法に関するものである。さらに、本発明は、該方法から得られる紫外線遮蔽効果を有するシリカ系粒子並びに該シリカ系粒子を配合してなる化粧料に関するものである。   The present invention relates to a method for producing silica-based particles having an ultraviolet shielding effect. Furthermore, this invention relates to the cosmetics formed by mix | blending the silica type particle | grains which have the ultraviolet-ray shielding effect obtained from this method, and this silica type particle | grain.

従来、紫外線遮蔽剤には、ベンゾフェノン系、ケイ皮酸系、安息香酸系などの有機系紫外線遮蔽剤と、二酸化チタン、酸化亜鉛、酸化セリウム、酸化鉄などの無機系紫外線遮蔽剤とがあることが知られている。   Conventionally, UV screening agents include organic UV screening agents such as benzophenone, cinnamic acid, and benzoic acid, and inorganic UV screening agents such as titanium dioxide, zinc oxide, cerium oxide, and iron oxide. It has been known.

ここで、有機系紫外線遮蔽剤は、皮膚を隠蔽することなく紫外線を効率よく遮蔽することができるが、皮膚への刺激その他で人体に悪影響を及ぼす可能性があるので、化粧料中に多量に配合することはできなかった。また、有機系紫外線遮蔽剤は、紫外線を吸収することにより分解する性質をもっているため、紫外線遮蔽効果が経時的に減少する問題があった。   Here, the organic UV screening agent can efficiently block UV rays without masking the skin, but it may cause adverse effects on the human body due to irritation to the skin and so on. It could not be blended. Further, since the organic ultraviolet shielding agent has a property of decomposing by absorbing ultraviolet rays, there is a problem that the ultraviolet shielding effect decreases with time.

一方、無機系紫外線遮蔽剤は、それ自身の分解や皮膚への刺激などの問題は少ないが、隠蔽力が高いため、これを皮膚に塗布した際、塗布膜の透明性の低下をもたらすことがあるので、化粧料中に多量に配合することは難しかった。   On the other hand, inorganic UV screening agents have few problems such as degradation of themselves and irritation to the skin, but because of their high hiding power, when applied to the skin, this may lead to a decrease in the transparency of the coating film. Because of this, it was difficult to add a large amount to cosmetics.

また、前記無機紫外線遮蔽剤として二酸化チタン、酸化亜鉛、酸化セリウム、酸化鉄などの金属酸化物を使用し、これを微粒子状や薄片状にすると、塗布膜の透明性の低下が抑えられることが知られている。しかしながら、微粒子状のものを使用したとしても、これらが凝集することなく均一に分散した化粧料を得るのは非常に困難であり、化粧膜の透明性の低下を抑える効果は必ずしも十分ではなかった。また、微粒子上のものが凝集することにより、紫外線遮蔽効果が十分に発揮されなかったり、あるいは皮膚上での延展性などの使用感が悪くなったりすることがある。さらには、前記無機紫外線遮蔽剤の多くは、光触媒活性を有していることが知られており、結果として該光触媒活性の作用により、化粧料において併用される美容剤などの有効成分やその他の油剤を変質・分解し、化粧料の変色や変臭をもたらすという問題があった。   In addition, when a metal oxide such as titanium dioxide, zinc oxide, cerium oxide, iron oxide or the like is used as the inorganic ultraviolet shielding agent, and this is made into fine particles or flakes, a decrease in transparency of the coating film can be suppressed. Are known. However, even if fine particles are used, it is very difficult to obtain a cosmetic in which they are uniformly dispersed without agglomeration, and the effect of suppressing a decrease in the transparency of the cosmetic film is not always sufficient. . In addition, aggregation on the fine particles may not sufficiently exhibit the ultraviolet shielding effect, or may deteriorate the feeling of use such as spreadability on the skin. Furthermore, many of the inorganic ultraviolet screening agents are known to have photocatalytic activity, and as a result, active ingredients such as cosmetic agents used in cosmetics and other ingredients due to the action of the photocatalytic activity. There was a problem that the oil agent was denatured and decomposed to cause discoloration and odor of cosmetics.

そこで、従来においては、紫外線遮蔽剤としての金属酸化物微粒子をシリカ基材などと組み合わせて使用する方法が少なからず提案されている。
たとえば、特許文献1には、平均粒径が1〜50μの球状シリカゲルの細孔部および表面に、一次粒子径が50〜200A(5〜20nm)の酸化亜鉛、酸化チタン、酸化セリウムから選ばれた少なくとも1種の金属酸化物が担持され、かつ被覆された粒子の形状も球状である金属酸化物担持シリカが開示されている。しかしながら、この金属酸化物担持シリカは、酸化亜鉛、酸化チタン、酸化セリウムから選ばれた少なくとも1種の金属酸化物の微粒子が分散された水性コロイドゾルを添加し、凝集させたあと、これを乾燥する方法にて製造されている。このようにして得られた前記金属酸化物担持シリカは、前記金属酸化物の微粒子が少なからず凝集した状態で前記シリカゲルの表面にも担持されている。
Therefore, in the past, a number of methods have been proposed in which metal oxide fine particles as an ultraviolet shielding agent are used in combination with a silica substrate.
For example, Patent Document 1 selects zinc oxide, titanium oxide, and cerium oxide having a primary particle diameter of 50 to 200 A (5 to 20 nm) on the pores and surfaces of spherical silica gel having an average particle diameter of 1 to 50 μm. Also disclosed is a metal oxide-supported silica in which at least one metal oxide is supported and the shape of the coated particles is spherical. However, this metal oxide-supported silica is added with an aqueous colloidal sol in which fine particles of at least one metal oxide selected from zinc oxide, titanium oxide, and cerium oxide are dispersed, and then agglomerated and then dried. It is manufactured by the method. The metal oxide-supported silica thus obtained is also supported on the surface of the silica gel in a state where the fine particles of the metal oxide are aggregated.

また、特許文献2には、シリカゾル(シリカ粒子径:100nm以下)中にチタン、亜鉛、セリウム、鉄などの金属または金属化合物の微粒子(一次粒子径:0.01〜0.5μm)を分散させた状態で水熱処理することにより、結晶性遊離珪酸の含有量が10%未満のシリカによって該金属または金属化合物の微粒子を内包して複合されたシリカを基材とする複合化粒子、さらにはこのようにして得られた鱗片板状の複合化粒子が開示されている。しかしながら、前記金属酸化物微粒子は、その全てがシリカ基材の中に内包されるわけではなく、シリカ基材(鱗片板状シリカ基材)の表面に付着しているものが少なからず存在する。   In Patent Document 2, fine particles (primary particle diameter: 0.01 to 0.5 μm) of a metal or a metal compound such as titanium, zinc, cerium, and iron are dispersed in silica sol (silica particle diameter: 100 nm or less). By carrying out a hydrothermal treatment in the state, the composite particles based on silica, in which the metal or metal compound fine particles are encapsulated with silica having a crystalline free silicic acid content of less than 10%, and further The scaly plate-like composite particles thus obtained are disclosed. However, not all of the metal oxide fine particles are encapsulated in the silica base material, and there are not a few particles adhering to the surface of the silica base material (scale plate-like silica base material).

また、特許文献3には、一次粒子の平均粒子径が0.001〜0.3μmである粒子がその形状を保持したまま凝集してなる母粒子と、該母粒子内に分散・固定化された平均粒子径が0.001〜0.1μmの子粒子(TiO2、ZnO、CeO2などの成分から構成される)よりなる紫外線遮蔽性複合微粒子が開示されている。さらに、この特許文献3には、前記母粒子原料と前記子粒子原料とを含む混合液を噴霧乾燥(原料物質の熱分解を含む)させて前記紫外線遮蔽性複合微粒子を製造する方法が開示されている。しかしながら、このようにして得られた紫外線遮蔽性複合微粒子においても、前記子粒子原料の全てが前記母粒子の中に内包されているわけではなく、該母粒子の表面に露出しているものも少なからず存在している。また、前記子粒子原料と前記母粒子原料とでは、混合液中での安定性が異なり、結果として前記噴霧乾燥工程における濃縮安定性や凝集性なども異なるため、前記子粒子の全てが前記母粒子内に均一に分散しているとは言えなかった。そのため、前記紫外線遮蔽性複合微粒子においては、前記子粒子が前記母粒子内に均一に分散している場合に想定される紫外線遮蔽効果や粒子の透明性と同等の効果を得ることは難しかった。   Patent Document 3 discloses a mother particle in which particles having an average primary particle diameter of 0.001 to 0.3 μm are aggregated while maintaining the shape thereof, and is dispersed and immobilized in the mother particle. In addition, ultraviolet shielding composite fine particles composed of child particles (composed of components such as TiO 2, ZnO, CeO 2) having an average particle diameter of 0.001 to 0.1 μm are disclosed. Further, Patent Document 3 discloses a method for producing the ultraviolet shielding composite fine particles by spray-drying (including thermal decomposition of a raw material) a mixed liquid containing the mother particle raw material and the child particle raw material. ing. However, even in the ultraviolet shielding composite fine particles obtained in this way, not all of the child particle raw materials are included in the mother particles, and those exposed on the surface of the mother particles are also included. There are not a few. In addition, the child particle raw material and the mother particle raw material have different stability in the mixed solution, and as a result, the concentration stability and cohesiveness in the spray drying process are also different. It could not be said that the particles were uniformly dispersed in the particles. Therefore, in the ultraviolet shielding composite fine particles, it is difficult to obtain an ultraviolet shielding effect assumed when the child particles are uniformly dispersed in the mother particles and an effect equivalent to the transparency of the particles.

特開平6−127932号公報Japanese Patent Laid-Open No. 6-127932 特開平11−11927号公報Japanese Patent Laid-Open No. 11-11927 特許第2631963号公報Japanese Patent No. 2631963

本発明は、上記のような従来技術における問題点を鑑みてなされたものである。すなわち、本発明における第一の課題は、紫外線遮蔽効果を有する、粒子径が100〜1000nmのシリカ系粒子の製造方法、さらに詳しくは粒子径が100〜1000nmの多孔質シリカ系粒子の細孔内に紫外線遮蔽効果を有する金属元素の水酸化物および/または酸化物を沈着・固定化してなるシリカ系粒子の製造方法を提供することにある。また、本発明における第二の課題は、該方法から得られたシリカ系粒子であって、紫外線遮蔽効果と透明性を兼ね備え、しかも光触媒活性が低いシリカ系粒子(このシリカ系粒子においては、内部に、紫外線遮蔽効果を備えたチタニウム酸化物などが含まれるため、一部、光触媒活性を示すものがある。)を提供することにある。さらに、本発明における第三の課題は、該シリカ系粒子を配合してなる化粧料、特にサンスクリーン化粧料を提供することにある。   The present invention has been made in view of the above-described problems in the prior art. That is, the first problem in the present invention is a method for producing silica-based particles having an ultraviolet ray shielding effect and having a particle size of 100 to 1000 nm, and more specifically, in the pores of porous silica-based particles having a particle size of 100 to 1000 nm. Another object of the present invention is to provide a method for producing silica-based particles obtained by depositing and fixing metal element hydroxides and / or oxides having an ultraviolet shielding effect. The second problem in the present invention is silica-based particles obtained from the method, which have both ultraviolet shielding effect and transparency and low photocatalytic activity (in this silica-based particles, In other words, some of them exhibit photocatalytic activity because titanium oxide or the like having an ultraviolet shielding effect is included. Furthermore, the third object of the present invention is to provide a cosmetic, particularly a sunscreen cosmetic, comprising the silica-based particles.

本発明者らは、上記の製造方法における問題点を解決することを目的として鋭意研究を重ねた結果、粒子内に特定の細孔径を有する多孔質シリカ系粒子に、特定の金属元素を含む金属含有溶液を粒子内の毛管作用により含浸させた後、乾燥、焼成して前記粒子の細孔内に前記金属元素の水酸化物および/または酸化物を沈着・固定化させ、さらにこの操作を繰り返し行って、紫外線遮蔽効果を有するシリカ系粒子を製造すればよいことを見出し、本発明を完成するに至った。   As a result of intensive studies aimed at solving the problems in the above production method, the present inventors have found that a porous silica-based particle having a specific pore diameter in the particle contains a metal containing a specific metal element. The impregnated solution is impregnated by capillary action in the particles, dried and fired to deposit and fix the metal element hydroxide and / or oxide in the pores of the particles, and this operation is repeated. It was found that silica-based particles having an ultraviolet shielding effect may be produced, and the present invention has been completed.

本発明に係るシリカ系粒子の製造方法は、紫外線遮蔽効果を有する、粒子径が100〜1000nmのシリカ系粒子の製造方法であって、
(1)粒子内に細孔径が2〜100nmの範囲にある細孔群を有し、さらにその細孔容積が0.05〜2.0ml/gの範囲にあり、しかも粒子径が100〜1000nmの範囲にある多孔質シリカ系粒子に、チタニウム、亜鉛、セリウム、および鉄から選ばれた1種または2種以上の金属元素を含む金属含有溶液を粒子内の毛管作用により含浸させ、次いで
(2)前記(1)に記載の含浸操作で得られたシリカ系粒子を100〜800℃の温度で加熱して前記金属元素の水酸化物または酸化物を細孔内に沈着・固定化させ、さらに
(3)前記(2)に記載の加熱操作で得られたシリカ系粒子を、再び前記(1)に記載の含浸操作と前記(2)に記載の加熱操作に供して前記金属元素の水酸化物および/または酸化物を前記細孔内に沈着・固定化させる
ことを特徴としている。
The method for producing silica-based particles according to the present invention is a method for producing silica-based particles having an ultraviolet ray shielding effect and having a particle diameter of 100 to 1000 nm,
(1) It has a pore group having a pore diameter in the range of 2 to 100 nm in the particles, and further has a pore volume in the range of 0.05 to 2.0 ml / g, and further has a particle diameter of 100 to 1000 nm. The porous silica-based particles in the range of 1) are impregnated with a metal-containing solution containing one or more metal elements selected from titanium, zinc, cerium, and iron by capillary action in the particles, and then (2 ) The silica-based particles obtained by the impregnation operation described in (1) above are heated at a temperature of 100 to 800 ° C. to deposit and fix the metal element hydroxide or oxide in the pores, (3) The silica-based particles obtained by the heating operation described in (2) are again subjected to the impregnation operation described in (1) and the heating operation described in (2) above, and the metal element is hydroxylated. Depositing and solidifying substances and / or oxides in the pores It is characterized in that is of.

前記(3)に記載の含浸操作および加熱操作(加熱乾燥操作)を、前記金属元素の水酸化物および/または酸化物が前記細孔内に所定量、沈着・固定化するまで繰り返し行うことが好ましい。   The impregnation operation and the heating operation (heat drying operation) described in (3) are repeated until a predetermined amount of the metal element hydroxide and / or oxide is deposited and immobilized in the pores. preferable.

また、前記(3)に記載の含浸操作および加熱操作(加熱焼成操作)から得られたシリカ系粒子を、さらに900〜1100の温度で焼成して粒子表面に存在するシリカ成分を焼結させることにより該粒子の表面を封止することが好ましい。   Moreover, the silica component obtained from the impregnation operation and the heating operation (heating and baking operation) described in (3) is further fired at a temperature of 900 to 1100 to sinter the silica component present on the particle surface. It is preferable to seal the surface of the particles.

さらに、前記(3)に記載の含浸操作および加熱操作(加熱焼成操作)から得られたシリカ系粒子を、さらに下記一般式(I)で表される有機珪素化合物および/または珪酸と混合したのち、該化合物を水熱処理して、前記シリカ系粒子の表面をシリカ成分で被覆することにより該粒子の表面を封止することが好ましい。   Further, after mixing the silica-based particles obtained from the impregnation operation and heating operation (heating and baking operation) described in (3) above with an organosilicon compound and / or silicic acid represented by the following general formula (I) The surface of the particles is preferably sealed by hydrothermally treating the compound and coating the surface of the silica-based particles with a silica component.

Figure 0005921188
〔ただし、R1、R2はアルキル基、アリール基、ビニル基、アクリル基等の炭化水素基であり、nは0、1、2または3を表す。〕
Figure 0005921188
[Wherein R 1 and R 2 are hydrocarbon groups such as an alkyl group, an aryl group, a vinyl group and an acrylic group, and n represents 0, 1, 2 or 3. ]

前記多孔質シリカ系粒子は、平均粒子径が5〜300nmのシリカ系微粒子(一次粒子)を含む水分散液、または該シリカ系微粒子(一次粒子)を含む水分散液と酸性珪酸液との混合物を噴霧乾燥し、さらに得られた粒子群を分級してその粒子径を100〜1000nmの範囲としたものであることが好ましい。   The porous silica-based particles include an aqueous dispersion containing silica-based fine particles (primary particles) having an average particle diameter of 5 to 300 nm, or a mixture of an aqueous dispersion containing the silica-based fine particles (primary particles) and an acidic silicic acid solution. It is preferable to spray-dry the particles and classify the obtained particle group so that the particle diameter is in the range of 100 to 1000 nm.

また、前記多孔質シリカ系粒子内に存在する細孔群は、上記したシリカ系微粒子(一次粒子)の粒子間に形成される粒界ボイドであることが好ましい。
前記金属含有溶液は、前記金属元素の塩酸塩、硝酸塩、硫酸塩、オキシ硫酸塩、ペルオキソ化合物、アルコキシド化合物および/または有機金属錯体から選ばれる1種または2種以上の溶解性金属化合物を含む溶液であることが好ましい。
Moreover, it is preferable that the pore group which exists in the said porous silica type particle is a grain boundary void formed between the particle | grains of the above-mentioned silica type fine particle (primary particle).
The metal-containing solution is a solution containing one or more soluble metal compounds selected from hydrochloride, nitrate, sulfate, oxysulfate, peroxo compound, alkoxide compound and / or organometallic complex of the metal element. It is preferable that

また、前記金属含有溶液中に含まれる溶解性金属化合物の濃度は、酸化物換算基準で5〜40重量%の範囲にあることが好ましい。
さらに、前記含浸操作を、前記多孔質シリカ系粒子群を前記金属含有溶液中に浸漬することなく、該多孔質シリカ系粒子群に前記金属含有溶液を、該多孔質シリカ系粒子群の細孔容積に対して過不足ない量だけ散布しながら行うことが好ましい。
Moreover, it is preferable that the density | concentration of the soluble metal compound contained in the said metal containing solution exists in the range of 5 to 40 weight% on an oxide conversion standard.
Further, the impregnation operation is performed without immersing the porous silica-based particle group in the metal-containing solution, and the porous silica-based particle group is filled with the metal-containing solution and the pores of the porous silica-based particle group. It is preferable to carry out spraying in an amount not excessive or insufficient with respect to the volume.

本発明に係るシリカ系粒子は、粒子内に細孔径が2〜100nmの範囲にある細孔群を有し、さらにその細孔容積が0.05〜2.0ml/gの範囲にあり、しかも粒子径が100〜1000nmの範囲にある多孔質シリカ系粒子の細孔内部に、チタニウム、亜鉛、セリウムおよび鉄から選ばれた少なくとも1種の金属元素の水酸化物および/または酸化物を沈着・固定化してなる、紫外線遮蔽効果を有する、粒子径が100〜1000nmのシリカ系粒子であることを特徴としている。   The silica-based particle according to the present invention has a pore group having a pore diameter in the range of 2 to 100 nm in the particle, and further has a pore volume in the range of 0.05 to 2.0 ml / g, Depositing hydroxides and / or oxides of at least one metal element selected from titanium, zinc, cerium and iron inside the pores of porous silica-based particles having a particle diameter in the range of 100 to 1000 nm. It is characterized by being a silica-based particle having a particle diameter of 100 to 1000 nm that has an ultraviolet shielding effect and is fixed.

前記シリカ系粒子は、粒子表面に存在するシリカ成分を焼結させて該粒子の表面を封止したものであることが好ましい。
また、前記シリカ系粒子は、一般式(I)で表される有機珪素化合物および/または珪酸を水熱処理して得られるシリカ成分を粒子表面に被覆させて該粒子の表面を封止したものであることが好ましい。
The silica-based particles are preferably those in which the silica component present on the particle surface is sintered to seal the surface of the particle.
In addition, the silica-based particles are prepared by coating the particle surface with a silica component obtained by hydrothermal treatment of an organosilicon compound represented by the general formula (I) and / or silicic acid, and sealing the surface of the particles. Preferably there is.

Figure 0005921188
〔ただし、R1、R2はアルキル基、アリール基、ビニル基、アクリル基等の炭化水素基であり、nは0、1、2または3を表す。〕
Figure 0005921188
[Wherein R 1 and R 2 are hydrocarbon groups such as an alkyl group, an aryl group, a vinyl group and an acrylic group, and n represents 0, 1, 2 or 3. ]

本発明に係る化粧料は、上記したシリカ系粒子を配合してなるものであることを特徴としている。また、前記化粧料は、サンスクリーン化粧料、メークアップ化粧料またはスキンケア化粧料であることが好ましい。   The cosmetic according to the present invention is characterized by comprising the above-described silica-based particles. The cosmetic is preferably a sunscreen cosmetic, a makeup cosmetic, or a skin care cosmetic.

本発明の製造方法によれば、粒子径が100〜1000nmの範囲にある多孔質シリカ系粒子の細孔内部に、チタニウム、亜鉛、セリウムおよび鉄から選ばれた少なくとも1種の金属元素の水酸化物および/または酸化物を沈着・固定化してなる、紫外線遮蔽効果を有する、粒子径が100〜1000nmのシリカ系粒子を容易に得ることができる。   According to the production method of the present invention, hydroxylation of at least one metal element selected from titanium, zinc, cerium, and iron inside the pores of porous silica-based particles having a particle diameter in the range of 100 to 1000 nm. Silica-based particles having an ultraviolet shielding effect and having a particle diameter of 100 to 1000 nm can be easily obtained by depositing and fixing substances and / or oxides.

また、本発明方法から得られるシリカ系粒子は、前記金属元素の水酸化物および/または酸化物(以下、「金属元素化合物」という場合もある。)が、前記多孔質シリカ系粒子の細孔内部に細孔径以下のサイズで存在しており、透明性が高いものであり、これを化粧料の原料として使用した場合には、紫外線遮蔽効果のほかに、化粧膜の使用感や見た目の透明感を損なわないなどの特性を備え、たとえ前記金属元素化合物が光触媒活性を有する場合であっても、該光触媒活性により生じる可能性がある皮膚へのダメージや化粧料に配合されるその他の有機系成分の分解を抑制することができる。   In addition, the silica-based particles obtained from the method of the present invention include hydroxides and / or oxides of the metal elements (hereinafter sometimes referred to as “metal element compounds”) as pores of the porous silica-based particles. It has a pore size below the inside and is highly transparent. When used as a raw material for cosmetics, in addition to the UV shielding effect, the feeling of use of the cosmetic film and the apparent transparency Even if the metal element compound has a photocatalytic activity, it has characteristics such as not impairing the feeling, damage to the skin that may occur due to the photocatalytic activity, and other organic compounds blended in cosmetics Decomposition of components can be suppressed.

図1は、シリカ微粒子(一次粒子)を含むシリカゾルを噴霧乾燥させて得られたシリカ系粒子(二次粒子)の断面概略図である。FIG. 1 is a schematic cross-sectional view of silica-based particles (secondary particles) obtained by spray-drying a silica sol containing silica fine particles (primary particles). 図2は、図1に示すシリカ系粒子(二次粒子)の細孔内部に、チタニウム、亜鉛、セリウムおよび鉄から選ばれた金属元素を含む金属含有溶液を粒子内の毛管作用により含浸させたシリカ系粒子(三次粒子)の断面概略図である。FIG. 2 shows that the metal-containing solution containing a metal element selected from titanium, zinc, cerium and iron is impregnated into the pores of the silica-based particles (secondary particles) shown in FIG. 1 by capillary action in the particles. It is a section schematic diagram of a silica system particle (tertiary particle). 図3は、図2に示すシリカ系粒子(三次粒子)を100〜800℃の温度で乾燥・焼成して前記金属元素の水酸化物または酸化物を細孔内に沈着・固定化させたシリカ系粒子(三次粒子)の断面概略図である。FIG. 3 shows silica in which the silica particles (tertiary particles) shown in FIG. 2 are dried and fired at a temperature of 100 to 800 ° C. to deposit and fix the metal element hydroxide or oxide in the pores. It is a section schematic diagram of system particles (tertiary particle). 図4は、図3に示すシリカ系粒子(三次粒子)を900〜1100℃の温度で焼成して、粒子表面に存在するシリカ成分を焼結させて該粒子の表面を封止したシリカ系粒子(四次粒子)の断面概略図である。なお、前記シリカ系粒子(三次粒子)の表面を、有機珪素化合物および/または珪酸の加水分解物からなるシリカ成分で被覆して封止したシリカ系粒子(四次粒子)の場合も、図4と同様な断面概略図となる。FIG. 4 shows silica-based particles obtained by firing the silica-based particles (tertiary particles) shown in FIG. 3 at a temperature of 900 to 1100 ° C. to sinter the silica component present on the particle surfaces and sealing the surfaces of the particles. It is a section schematic diagram of (quaternary particle). In the case of silica-based particles (quaternary particles) in which the surface of the silica-based particles (tertiary particles) is covered with a silica component composed of an organosilicon compound and / or a hydrolyzate of silicic acid and sealed (FIG. 4). It becomes a cross-sectional schematic similar to FIG.

以下、本発明に係るシリカ系粒子の製造方法について具体的に説明する。なお、本発明で使用される純水は、工業用水または蒸留水を陽イオン交換樹脂および陰イオン交換樹脂で処理したイオン交換水をいう。   Hereinafter, the method for producing silica-based particles according to the present invention will be specifically described. The pure water used in the present invention refers to ion-exchanged water obtained by treating industrial water or distilled water with a cation exchange resin and an anion exchange resin.

[シリカ系粒子の製造方法]
本発明に係るシリカ系粒子の製造方法は、
紫外線遮蔽効果を有する、粒子径が100〜1000nmのシリカ系粒子の製造方法であって、
(1)粒子内に細孔径が2〜100nmの範囲にある細孔群を有し、さらにその細孔容積が0.05〜2.0ml/gの範囲にあり、しかも粒子径が100〜1000nmの範囲にある多孔質シリカ系粒子に、チタニウム、亜鉛、セリウムおよび鉄から選ばれた1種または2種以上の金属元素を含む金属含有溶液を粒子内の毛管作用により含浸させ、次いで
(2)前記(1)に記載の含浸操作で得られたシリカ系粒子を100〜800℃の温度で加熱して前記金属元素の水酸化物または酸化物を細孔内に沈着・固定化させ、さらに
(3)前記(2)に記載の加熱操作で得られたシリカ系粒子を、再び前記(1)に記載の含浸操作と前記(2)に記載の加熱操作に供して前記金属元素の水酸化物および/または酸化物を前記細孔内に沈着・固定化させる
ことにより行うものである。
[Method for producing silica-based particles]
The method for producing silica-based particles according to the present invention includes:
A method for producing silica-based particles having an ultraviolet shielding effect and having a particle diameter of 100 to 1000 nm,
(1) It has a pore group having a pore diameter in the range of 2 to 100 nm in the particles, and further has a pore volume in the range of 0.05 to 2.0 ml / g, and further has a particle diameter of 100 to 1000 nm. The porous silica-based particles in the range of (1) are impregnated with a metal-containing solution containing one or more metal elements selected from titanium, zinc, cerium and iron by capillary action in the particles, and then (2) The silica-based particles obtained by the impregnation operation described in (1) above are heated at a temperature of 100 to 800 ° C. to deposit and fix the hydroxide or oxide of the metal element in the pores, 3) The silica particles obtained by the heating operation described in the above (2) are again subjected to the impregnation operation described in the above (1) and the heating operation described in the above (2). And / or deposit and fix oxides in the pores It is performed by causing.

以下、上記の製造方法の各工程について具体的に説明するが、その前に前記多孔質シリカ系粒子の調製方法について述べておきたい。しかしながら、本発明は、ここに記載の調製方法に限定されるものではない。   Hereinafter, each step of the above production method will be specifically described, but before that, it is desirable to describe a method for preparing the porous silica-based particles. However, the present invention is not limited to the preparation methods described herein.

多孔質シリカ系粒子の調製
この工程では、シリカ系微粒子(一次粒子)を含む水分散液、または該シリカ系微粒子(一次粒子)を含む水分散液と酸性珪酸液との混合物の固形分濃度を必要に応じて5〜50重量%に調整した後、これをスプレイドライヤーに供して、入口温度70〜400℃、出口温度40〜60℃の条件下で噴霧乾燥する。これにより、平均粒子径が100〜5000nmのシリカ系粒子(二次粒子)を得る。
Preparation of porous silica-based particles In this step, the solid content concentration of an aqueous dispersion containing silica-based fine particles (primary particles) or a mixture of an aqueous dispersion containing the silica-based fine particles (primary particles) and an acidic silicic acid solution is determined. After adjusting to 5 to 50 weight% as needed, this is used for a spray drier and spray-dried on the conditions of inlet temperature 70-400 degreeC and outlet temperature 40-60 degreeC. Thereby, silica-based particles (secondary particles) having an average particle diameter of 100 to 5000 nm are obtained.

前記シリカ系微粒子(一次粒子)を含む分散液としては、従来公知の方法で製造された市販品を利用することができる。しかし、本発明においては、平均粒子径が5〜300nm、好ましくは10〜100nmのシリカゾルなどを使用することが望ましい。前記平均粒子径が5nm未満であると、前記シリカ系粒子(二次粒子)の細孔径が2nm未満となるため、前記シリカ系粒子(二次粒子)の細孔内に前記金属含有溶液を含浸することが困難となり、粒子表面にも金属元素化合物が沈着・固定化することとなり、また、前記平均粒子径が300nmを超えると、前記シリカ系粒子(二次粒子)の細孔径が100nmを超えてしまい、該シリカ系粒子(二次粒子)の細孔内に沈着・固定化される前記金属元素化合物のサイズが大きくなりすぎて、紫外線遮蔽効果および透明性が低下してしまうので、好ましくない。   As the dispersion containing the silica-based fine particles (primary particles), a commercially available product manufactured by a conventionally known method can be used. However, in the present invention, it is desirable to use silica sol having an average particle diameter of 5 to 300 nm, preferably 10 to 100 nm. When the average particle diameter is less than 5 nm, the pore diameter of the silica-based particles (secondary particles) is less than 2 nm, so that the metal-containing solution is impregnated in the pores of the silica-based particles (secondary particles). It becomes difficult to deposit and fix the metal element compound on the particle surface, and when the average particle diameter exceeds 300 nm, the pore diameter of the silica-based particles (secondary particles) exceeds 100 nm. This is not preferable because the size of the metal element compound deposited and immobilized in the pores of the silica-based particles (secondary particles) becomes too large, and the ultraviolet shielding effect and transparency are deteriorated. .

このようなシリカ系微粒子分散液としては、例えば、平均粒子径が5nmのシリカゾル(日揮触媒化成(株)製、Cataloid SI−550)、平均粒子径が15nmのシリカゾル(日揮触媒化成(株)製、Cataloid S−20L)、平均粒子径が160nmのシリカ系微粒子を含むスラリー(日揮触媒化成(株)製、スフェリカスラリー160)などが挙げられる。なお、前記分散液は、水分散液であることが望ましいが、場合によっては、エタノール、プロパノール、ブタノールなどのアルコール類を含んでいてもよい。   Examples of such a silica-based fine particle dispersion include silica sol having an average particle size of 5 nm (manufactured by JGC Catalysts & Chemicals, Cataloid SI-550), silica sol having an average particle size of 15 nm (manufactured by JGC Catalysts and Chemicals). Cataloid S-20L), slurry containing silica-based fine particles having an average particle size of 160 nm (manufactured by JGC Catalysts & Chemicals Co., Ltd., Spherica slurry 160), and the like. The dispersion is preferably an aqueous dispersion, but in some cases may contain alcohols such as ethanol, propanol, and butanol.

なお、このシリカ系微粒子分散液としては、該分散液中に含まれるシリカ系微粒子の粒子径ができるだけ揃ったものを使用することが好ましい。これは、多孔質シリカ系粒子の内部に形成される細孔群は、粒子間の空隙(いわゆる粒界ボイド)に形成されるため、シリカ系微粒子の粒子径が揃っていれば、その細孔径も揃ったものが得られるからである。   As the silica-based fine particle dispersion, it is preferable to use a silica-based fine particle having the same particle diameter as possible. This is because pore groups formed inside porous silica-based particles are formed in voids between particles (so-called grain boundary voids). This is because a complete product can be obtained.

さらに、前記酸性珪酸水溶液としては、アルカリ金属珪酸塩、有機塩基の珪酸塩等の珪酸塩水溶液を陽イオン交換樹脂で処理して脱アルカリ(Naイオンの除去等)したものを使用することができる。ここで、前記珪酸塩としては、珪酸ナトリウム(水ガラス)、珪酸カリウム等のアルカリ金属珪酸塩、第4級アンモニウムシリケート等の有機塩基の珪酸塩などが挙げられる。この中でも、pHが2〜6、好ましくは2〜3の範囲にあり、珪素成分の含有量がSiO2換算基準で0.5〜10重量%、好ましくは3〜4重量%の範囲にある珪酸液の水溶液を使用することが好ましい。ここで、前記pHが2未満であると、陽イオン交換に要する処理時間が必要以上に長くなって経済的でなくなり、また前記pHが6を超えると、脱アルカリの度合いが低いため、得られる珪酸液の安定性が悪くなるので、好ましくない。さらに、前記含有量が0.5重量%未満であると、経済的に前記無機酸化物微粒子を得ることが難しくなり、また前記含有量が10重量%を超えると、珪酸液の安定性が悪くなるので、好ましくない。   Furthermore, as the acidic silicic acid aqueous solution, it is possible to use a solution obtained by treating a silicate aqueous solution such as an alkali metal silicate or an organic base silicate with a cation exchange resin to remove alkali (removing Na ions, etc.). . Examples of the silicate include alkali metal silicates such as sodium silicate (water glass) and potassium silicate, and silicates of organic bases such as quaternary ammonium silicate. Among these, a silicic acid solution having a pH of 2 to 6, preferably 2 to 3, and a silicon component content of 0.5 to 10% by weight, preferably 3 to 4% by weight, based on SiO 2 It is preferable to use an aqueous solution of Here, when the pH is less than 2, the treatment time required for cation exchange is unnecessarily long, and it is not economical, and when the pH exceeds 6, the degree of dealkalization is low, and thus obtained. This is not preferable because the stability of the silicic acid solution deteriorates. Furthermore, when the content is less than 0.5% by weight, it is difficult to obtain the inorganic oxide fine particles economically, and when the content exceeds 10% by weight, the stability of the silicic acid solution is poor. This is not preferable.

このような性状を有する珪酸液の水溶液としては、水ガラス(珪酸ナトリウム)を水で希釈した後、陽イオン交換樹脂で処理して脱アルカリしたものを使用することが好ましい。   As an aqueous solution of the silicic acid solution having such properties, it is preferable to use a solution obtained by diluting water glass (sodium silicate) with water and then treating it with a cation exchange resin to dealkalize.

このようにして得られるシリカ系粒子(二次粒子)は、前記シリカ系微粒子(一次粒子)の集合体であるため、該シリカ微粒子同士の粒界に空隙(いわゆる、粒界ボイド)が生じる。よって、このシリカ系粒子(二次粒子)の内部にはこの粒界ボイドに基づく細孔群が多数、形成されるため、多孔質となる。また、粒子内に形成された前記細孔群は、その殆どが前記シリカ系粒子(二次粒子)の外部に通じている。すなわち、オープンポアの状態にある。   Since the silica-based particles (secondary particles) thus obtained are aggregates of the silica-based fine particles (primary particles), voids (so-called grain boundary voids) are generated at the grain boundaries between the silica fine particles. Therefore, since a large number of pore groups based on the grain boundary voids are formed inside the silica-based particles (secondary particles), the particles are porous. Further, most of the pore groups formed in the particles communicate with the outside of the silica-based particles (secondary particles). That is, it is in an open pore state.

なお、ここで、前記シリカ系粒子(二次粒子)の平均粒子径が100nm未満であったり、あるいは該平均粒子径が5000nmを超えたりすると、本発明において必要とする粒子径100〜1000nmのシリカ系粒子の含有率が低すぎて、経済的ではなくなるので、好ましくない。   Here, when the average particle diameter of the silica-based particles (secondary particles) is less than 100 nm or the average particle diameter exceeds 5000 nm, silica having a particle diameter of 100 to 1000 nm required in the present invention is used. This is not preferable because the content of the system particles is too low to be economical.

多孔質シリカ系粒子の分級
この工程では、上記で得られたシリカ系粒子(二次粒子)を従来公知の分級装置(乾式分級装置または湿式分級装置)にかけて、100nm未満の粒子径を有するシリカ系粒子と、1000nmを超える粒子径を有するシリカ系粒子を分離して、粒子径が100〜1000nmのシリカ系粒子(二次粒子)を得る。このようにして所望の粒子径に調整されたシリカ系粒子(二次粒子)は、本発明の多孔質シリカ系粒子として用いることができる。しかし、この多孔質シリカ系粒子と同等またはほぼ同等の性状を有するものが市場から入手可能な場合(たとえば、エマルジョン法から得られる多孔質シリカ系粒子などを含む)には、それを使用してもよい。
Classification of porous silica-based particles In this step, the silica-based particles (secondary particles) obtained above are subjected to a conventionally known classification device (dry classification device or wet classification device) to obtain a silica-based particle having a particle diameter of less than 100 nm. The particles and silica-based particles having a particle diameter exceeding 1000 nm are separated to obtain silica-based particles (secondary particles) having a particle diameter of 100 to 1000 nm. Silica-based particles (secondary particles) thus adjusted to a desired particle diameter can be used as the porous silica-based particles of the present invention. However, if a product having the same or almost the same property as this porous silica-based particle is available on the market (for example, including porous silica-based particle obtained from the emulsion method), use it. Also good.

ここで、このようにして得られたシリカ系粒子(二次粒子)を本発明の多孔質シリカ系粒子として使用する場合、その粒子径が100nm未満であると、該シリカ系粒子(二次粒子)の流動性が著しく低いため、前記含浸操作の工程において、前記金属含有溶液を均一に含浸することが困難となり、延いては粒子表面にも金属元素化合物が沈着・固定化する場合があり、また前記粒子径が1000nmを超えると、粒子径が大きすぎて単位重量当たりの粒子個数が減少するため、これを化粧料などに配合して使用する際に、皮膚への紫外線遮蔽効果や透明性が低下する場合があるので、好ましくない。ただし、前記シリカ系粒子の分級操作の結果として、粒子径が100nm未満のもの、あるいは1000nmを超えるものが、その用途によっても異なるが、分級品の中に少量含まれていてもよいことは勿論である。   Here, when the silica-based particles (secondary particles) thus obtained are used as the porous silica-based particles of the present invention, if the particle diameter is less than 100 nm, the silica-based particles (secondary particles) ) Is remarkably low in fluidity, it becomes difficult to uniformly impregnate the metal-containing solution in the step of the impregnation operation, and thus the metal element compound may be deposited and immobilized on the particle surface. Further, when the particle diameter exceeds 1000 nm, the particle diameter is too large and the number of particles per unit weight is reduced. Is not preferred because it may decrease. However, as a result of the classification operation of the silica-based particles, particles having a particle diameter of less than 100 nm or more than 1000 nm may vary depending on the application, but may be contained in a small amount in the classified product. It is.

本発明シリカ系粒子の調製
次に、本発明に係るシリカ系粒子の製造方法について、上記の工程ごとに具体的に説明すれば、以下の通りである。
Preparation of Silica-Based Particles of the Present Invention Next, the method for producing silica-based particles according to the present invention will be specifically described for each of the above steps as follows.

工程(1)
この工程では、前記多孔質シリカ系粒子としては、粒子内に細孔径が2〜100nmの範囲にある細孔群を有し、さらにその細孔容積が0.05〜2.0ml/gの範囲にあり、しかも粒子径が100〜1000nmの範囲にあるものを使用する。
Process (1)
In this step, the porous silica-based particle has a pore group having a pore diameter in the range of 2 to 100 nm in the particle, and further has a pore volume in the range of 0.05 to 2.0 ml / g. And having a particle diameter in the range of 100 to 1000 nm.

ここで、前記粒子内に存在する細孔群の細孔径が2nm未満であると、一回の含浸操作で含浸できる前記金属含有溶液の量が少ないばかりでなく、前記粒子内に前記金属含有溶液を含浸することが困難となり、延いては粒子表面にも金属元素化合物が沈着・固定化する場合があり、また前記細孔径が100nmを超えると、前記粒子内に沈着・固定化される前記金属元素化合物の量が多くなってその固形サイズも大きくなるため、結果として紫外線遮蔽効果や透明性を低下させる場合があるので、好ましくない。   Here, when the pore diameter of the pore group existing in the particles is less than 2 nm, not only the amount of the metal-containing solution that can be impregnated by one impregnation operation is small, but also the metal-containing solution in the particles. In some cases, the metal element compound may be deposited and immobilized on the particle surface, and when the pore diameter exceeds 100 nm, the metal is deposited and immobilized in the particle. Since the amount of the elemental compound increases and the solid size also increases, the ultraviolet shielding effect and transparency may be lowered as a result, which is not preferable.

さらに、前記細孔容積が0.05ml/g未満であると、前記粒子内に沈着・固形化できる前記金属元素化合物の量が少なすぎるため、十分な紫外線遮蔽効果が得られず、また前記細孔容積が2.0ml/gを超えると、前記多孔質シリカ系粒子の粒子強度が著しく低いため、含浸操作などで粒子が崩壊することがあるので、好ましくない。また、前記粒子径からなるものを使用する理由は、上記したとおりである。   Furthermore, if the pore volume is less than 0.05 ml / g, the amount of the metal element compound that can be deposited and solidified in the particles is too small, so that a sufficient ultraviolet shielding effect cannot be obtained. When the pore volume exceeds 2.0 ml / g, the particle strength of the porous silica-based particles is remarkably low, so that the particles may be collapsed by an impregnation operation or the like, which is not preferable. The reason for using the particles having the particle diameter is as described above.

次に、この工程では、前記多孔質シリカ系粒子群の粉体に、チタニウム、亜鉛、セリウムおよび鉄から選ばれた1種または2種以上の金属元素を含む金属含有水溶液を散布して粒子内の毛管作用により含浸させる。この場合、前記多孔質シリカ系粒子群の粉体を掻き混ぜながら、前記金属含有溶液を粉体上に散布して、全ての粉体上に、前記金属含有溶液が降りかかるようにすることが望まれる。   Next, in this step, a metal-containing aqueous solution containing one or more metal elements selected from titanium, zinc, cerium and iron is sprayed on the powder of the porous silica-based particle group, and the inside of the particles is dispersed. Impregnation by capillary action. In this case, it is desirable to spray the metal-containing solution onto the powder while stirring the powder of the porous silica-based particle group so that the metal-containing solution falls on all the powder. It is.

前記金属含有溶液は、前記金属元素の塩酸塩、硝酸塩、硫酸塩、オキシ硫酸塩、ペルオキソ化合物、アルコキシド化合物および/または有機金属錯体などの溶解性金属化合物を含む溶液であることが好ましい。このような溶解性金属化合物としては、たとえば、前記塩酸塩としては、四塩化チタン、塩化亜鉛、塩化セリウム、塩化鉄などが挙げられ、前記硝酸塩としては、硝酸亜鉛、硝酸セリウム、硝酸鉄などが挙げられ、前記硫酸塩としては、硫酸チタン、硫酸亜鉛、硫酸セリウム、硫酸鉄などが挙げられ、また前記オキシ硫酸塩としては、オキシ硫酸チタンが挙げられる。さらに、前記ペルオキソ化合物としては、ペルオキソチタン酸が挙げられ、前記アルコキシド化合物としては、テトライソプロポキシチタン、テトラノルマルブチキシチタン、テトラキス(2−エチルヘキシルオキシ)チタン、ジイソプロポキシ・ビス(トリエタノールアミナト)チタン、ジノルマルブトキシ・ビス(トリエタノールアミナト)チタン、チタニウムイソプロポキシオクチレングリコレート、テトラエトキシ亜鉛、テトラノルマルプロポキシ亜鉛、テトライソプロポキシ亜鉛、テトラノルマルブトキシ亜鉛、テトライソブトキシ亜鉛、テトラ−t−ブトキシ亜鉛、また前記有機金属化合物としては、ジイソプロポキシ・ビス(アセチルアセトナト)チタン、テトラキス(アセチルアセトナト)チタン、ジ−2−エチルヘキソキシ・ビス(2−エチル−3−ヒドロキシヘキソキシ)チタン、ジヒドロキシ・ビス(ラクタト)チタンモノアンモニウム、ジヒドロキシ・ビス(ラクタト)チタン・ジアンモニウム、クエン酸亜鉛、酢酸亜鉛、乳酸亜鉛、アセチルアセトナト亜鉛、酢酸セリウム、アセチルアセトナトセリウム、クエン酸鉄、酢酸鉄、乳酸鉄、アセチルアセトナト鉄などが挙げられる。これらの中でも、四塩化チタン、オキシ硫酸チタン、塩化亜鉛、塩化セリウム、塩化鉄などを使用することが好ましい。なお、前記金属含有溶液は水溶液であることが望ましいが、場合によっては、エタノール、プロパノール、ブタノールなどのアルコール類を含んでいてもよい。   The metal-containing solution is preferably a solution containing a soluble metal compound such as hydrochloride, nitrate, sulfate, oxysulfate, peroxo compound, alkoxide compound and / or organometallic complex of the metal element. Examples of such soluble metal compounds include titanium tetrachloride, zinc chloride, cerium chloride, iron chloride and the like as the hydrochloride, and examples of the nitrate include zinc nitrate, cerium nitrate, and iron nitrate. Examples of the sulfate include titanium sulfate, zinc sulfate, cerium sulfate, and iron sulfate. Examples of the oxysulfate include titanium oxysulfate. Furthermore, examples of the peroxo compound include peroxotitanic acid, and examples of the alkoxide compound include tetraisopropoxy titanium, tetranormal butoxy titanium, tetrakis (2-ethylhexyloxy) titanium, diisopropoxy bis (triethanolamine). Minato) Titanium, Dinormalbutoxy bis (triethanolaminato) titanium, Titanium isopropoxyoctylene glycolate, Tetraethoxy zinc, Tetranormal propoxy zinc, Tetraisopropoxy zinc, Tetranormal butoxy zinc, Tetraisobutoxy zinc, Tetra -T-Butoxyzinc, and the organometallic compounds include diisopropoxy bis (acetylacetonato) titanium, tetrakis (acetylacetonato) titanium, di-2-ethylhexoxo・ Bis (2-ethyl-3-hydroxyhexoxy) titanium, dihydroxy bis (lactato) titanium monoammonium, dihydroxy bis (lactato) titanium diammonium, zinc citrate, zinc acetate, zinc lactate, zinc acetylacetonato Cerium acetate, acetylacetonatocerium, iron citrate, iron acetate, iron lactate, iron acetylacetonate and the like. Among these, it is preferable to use titanium tetrachloride, titanium oxysulfate, zinc chloride, cerium chloride, iron chloride and the like. The metal-containing solution is preferably an aqueous solution, but in some cases, may contain alcohols such as ethanol, propanol, and butanol.

また、前記金属含有溶液中に含まれる前記溶解性金属化合物の濃度は、その溶解性金属化合物の種類などによっても異なるが、酸化物換算基準で5〜40重量%の範囲にあることが好ましい。   Moreover, although the density | concentration of the said soluble metal compound contained in the said metal containing solution changes with kinds etc. of the soluble metal compound, it is preferable that it exists in the range of 5 to 40 weight% on an oxide conversion reference | standard.

ここで、前記溶解性金属化合物の濃度が5重量%未満であると、一回の含浸操作で含浸できる前記溶解性金属化合物の量が少ないため、十分な紫外線遮蔽効果を発現する量の前記金属元素化合物を沈着・固定化するために、多くの含浸操作が必要となるので経済的ではなくなり、また前記溶解性金属化合物の濃度が40重量%を超えると、前記金属含有溶液の粘度が著しく高くなるため、前記多孔質シリカ系粒子の細孔内に前記金属含有溶液が均一に含浸されなくなることがあるので、好ましくない。   Here, when the concentration of the soluble metal compound is less than 5% by weight, the amount of the soluble metal compound that can be impregnated by a single impregnation operation is small, so that the metal has an amount that exhibits a sufficient ultraviolet shielding effect. Since many impregnation operations are required to deposit and immobilize elemental compounds, it is not economical, and when the concentration of the soluble metal compound exceeds 40% by weight, the viscosity of the metal-containing solution is extremely high. Therefore, the metal-containing solution may not be uniformly impregnated in the pores of the porous silica particles, which is not preferable.

さらに、前記金属含有溶液の散布量は、使用される多孔質シリカ系粒子の細孔径や細孔容積、さらには前記溶解性金属化合物の種類や濃度などによっても異なるが、前記多孔質シリカ系粒子の細孔内が前記金属元素化合物でほぼ満たされるであろうと推測される値を超えない値から適宜、選択することが好ましい。ただし、一回あたりの溶液散布は、前記多孔質シリカ系粒子群の細孔容積に相当する量(粒子群1gあたりの細孔容積×粒子群の重量)を目安として行い、これを繰り返して行うことが望ましい。ここで、前記細孔容積を超える量で散布すると、前記金属元素化合物が粒子外部(表面部)に沈着・固定化してしまい、また前記細孔容積を下回る量で散布すると、前記金属元素化合物の所定量が粒子内部(表面部)に沈着・固定化するまで、前記含浸操作が何回も繰り返し行う必要が生じてしまうため、好ましくない。   Furthermore, the amount of the metal-containing solution sprayed varies depending on the pore diameter and pore volume of the porous silica-based particles used, and also the type and concentration of the soluble metal compound. It is preferable to select appropriately from the values not exceeding the value estimated that the inside of the pores will be almost filled with the metal element compound. However, the solution spraying per one time is performed by using the amount corresponding to the pore volume of the porous silica-based particle group (pore volume per 1 g of the particle group × weight of the particle group) as a guide, and this is repeated. It is desirable. Here, when sprayed in an amount exceeding the pore volume, the metal element compound is deposited and immobilized on the outside (surface portion) of the particle, and when sprayed in an amount less than the pore volume, It is not preferable because the impregnation operation needs to be repeated many times until a predetermined amount is deposited and fixed inside the particle (surface portion).

また、前記金属含有溶液の散布を一度に行おうとすると、記多孔質シリカ系粒子の細孔容積を超える量の前記金属含有溶液が散布されることとなるため、前記多孔質シリカ系粒子の表面にも前記金属元素化合物が沈着・固定化されるので、好ましくない。さらに、前記多孔質シリカ系粒子群の粉体を、前記金属含有溶液中に浸して行おうとしても、前記多孔質シリカ系粒子の細孔容積を超える量の前記金属含有溶液に浸漬されることとなるため、前記多孔質シリカ系粒子の表面にも前記金属元素化合物が沈着・固定化されるので、好ましくない。 Furthermore, when attempting the spraying of the metal-containing solution at a time, since the metal-containing solution in an amount exceeding the pore volume of the previous SL porous silica-based particles is to be sprayed, of the porous silica-based particles Since the metal element compound is deposited and immobilized on the surface, it is not preferable. Further, even if the powder of the porous silica-based particle group is immersed in the metal-containing solution, the powder is immersed in the metal-containing solution in an amount exceeding the pore volume of the porous silica-based particle. Therefore, the metal element compound is deposited and immobilized on the surface of the porous silica particles, which is not preferable.

工程(2)
この工程では、前記工程(1)に記載の含浸操作で得られたシリカ系粒子を100〜800℃の温度で加熱して前記金属元素の水酸化物および/または酸化物を細孔内に沈着・固定化させる。
Step (2)
In this step, the silica particles obtained by the impregnation operation described in the step (1) are heated at a temperature of 100 to 800 ° C. to deposit the metal element hydroxide and / or oxide in the pores.・ Immobilize.

前記シリカ系粒子の加熱は、前記含浸操作を繰り返して行う場合には、100〜300℃の比較的低い温度で行い、また前記含浸操作をその時点で終了させる場合には、300〜800℃の比較的高い温度で行うことが好ましい。なお、ここで、前者の加熱操作を「加熱乾燥操作」という場合があり、また後者の加熱操作を「加熱焼成操作」という場合がある。ただし、このように二つの操作を行わずに、前記溶解性金属化合物が分解して該金属元素の水酸化物や酸化物などに変換される一定の温度で加熱処理してもよいことは勿論である。また、前記加熱乾燥操作は1〜10時間、さらに前記加熱焼成操作は1〜5時間かけて行うことが好ましい。   The heating of the silica-based particles is performed at a relatively low temperature of 100 to 300 ° C. when the impregnation operation is repeated, and when the impregnation operation is terminated at that time, the heating of the silica-based particles is performed at 300 to 800 ° C. It is preferable to carry out at a relatively high temperature. Here, the former heating operation may be referred to as “heating drying operation”, and the latter heating operation may be referred to as “heating baking operation”. However, it is a matter of course that the heat treatment may be performed at a constant temperature at which the soluble metal compound is decomposed and converted into a hydroxide or oxide of the metal element without performing two operations in this way. It is. The heating and drying operation is preferably performed for 1 to 10 hours, and the heating and baking operation is preferably performed for 1 to 5 hours.

ここで、前記加熱温度が100℃未満であると、前記金属含有溶液の溶媒(たとえば、水)を蒸発させることが不十分となり、またたとえ十分な蒸発が可能であっても、そのためには長時間を要するので、経済的ではない。また、前記加熱温度が800℃を超えると、前記シリカ系粒子の粒子表面に存在するシリカ成分が焼結してしまう可能性があり、結果として繰り返し行われる含浸操作を行うことができなくなるので、好ましくない。   Here, if the heating temperature is less than 100 ° C., it is insufficient to evaporate the solvent (for example, water) of the metal-containing solution, and even if sufficient evaporation is possible, it is long for that purpose. It takes time and is not economical. Further, if the heating temperature exceeds 800 ° C., the silica component present on the surface of the silica-based particles may be sintered, and as a result, repeated impregnation operation cannot be performed. It is not preferable.

なお、前記の加熱乾燥時間や加熱焼成時間については、目安として記載したものであって、これらの時間に限定されるものではない。すなわち、上記の加熱温度(加熱乾燥温度および加熱焼成温度)との関係で、前記シリカ系粒子の細孔内に沈着した前記溶解性金属化合物が分解して該金属の水酸化物や酸化物などになるであろうと推測される時間から適宜、選択することが好ましい。   In addition, about the said heat drying time and heat baking time, it described as a standard, Comprising: It is not limited to these time. That is, in relation to the heating temperature (heat drying temperature and heat firing temperature), the soluble metal compound deposited in the pores of the silica-based particles is decomposed and the metal hydroxide, oxide, etc. It is preferable to select appropriately from the time estimated to be.

工程(3)
この工程では、前記工程(2)に記載の加熱操作で得られたシリカ系粒子を、再び前記工程(1)に記載の含浸操作と前記工程(2)に記載の加熱操作に供して前記金属元素の水酸化物および/または酸化物を前記細孔内に沈着・固定化させる。
Process (3)
In this step, the silica-based particles obtained by the heating operation described in the step (2) are again subjected to the impregnation operation described in the step (1) and the heating operation described in the step (2). Elemental hydroxides and / or oxides are deposited and immobilized in the pores.

すなわち、この工程は、前記シリカ系粒子の細孔内に前記金属元素の水酸化物および/または酸化物を所定量、沈着・固定化させるまで繰り返し行うことが好ましい。また、この繰り返し回数は、前記多孔質シリカ系粒子の細孔径や細孔容積、さらには前記溶解性金属化合物の種類や濃度などによっても異なるが、1〜10回であることが好ましい。   That is, this step is preferably repeated until a predetermined amount of the metal element hydroxide and / or oxide is deposited and fixed in the pores of the silica-based particles. The number of repetitions varies depending on the pore diameter and pore volume of the porous silica-based particles, and the type and concentration of the soluble metal compound, but is preferably 1 to 10 times.

シリカ系粒子の表面封止
前記工程(3)に記載の繰返操作から得られたシリカ系粒子(本発明品)が、光触媒活性を示したり、あるいは化粧料に配合する際に併用されるその他の有機系成分を変質・分解する可能性があったりする場合には、予めその粒子表面を封止しておくことが望ましい。その表面封止の方法としては、以下に示す2つの方法があるが、本発明は、これらの方法に限定されるものではない。
Surface sealing of silica-based particles Others used when silica-based particles (product of the present invention) obtained from the repetitive operation described in the above step (3) exhibit photocatalytic activity or are incorporated into cosmetics In the case where there is a possibility that the organic component may be altered or decomposed, it is desirable to seal the particle surface in advance. The surface sealing method includes the following two methods, but the present invention is not limited to these methods.

表面封止法1
前記工程(3)に記載の繰返操作から得られたシリカ系粒子を、さらに900〜1100℃の温度で焼成して粒子表面に存在するシリカ成分を焼結させることにより該粒子の表面を封止する。これにより、本発明に係るシリカ系粒子を上記のような場合でも問題なく使用することができる。さらに、紫外線遮蔽効果や透明性などにおいても、前記工程(3)で得られたシリカ系粒子と比べて遜色のないものである。
Surface sealing method 1
The silica-based particles obtained from the repetitive operation described in the step (3) are further baked at a temperature of 900 to 1100 ° C. to sinter the silica component present on the particle surface, thereby sealing the surface of the particles. Stop. Thereby, the silica-type particle | grains which concern on this invention can be used without a problem even in the above cases. Furthermore, the ultraviolet shielding effect and transparency are inferior to the silica-based particles obtained in the step (3).

ここで、前記焼成温度が900℃未満であると、粒子表面に存在するシリカ成分の焼結が不十分となり、また前記焼成温度が1100℃を超えると、隣接して存在するシリカ系粒子同士の焼結(すなわち、粒子同士が結合する)が起こる可能性があるので、好ましくない。   Here, if the firing temperature is less than 900 ° C., the sintering of the silica component existing on the particle surface becomes insufficient, and if the firing temperature exceeds 1100 ° C., the adjacent silica-based particles Sintering (that is, particles are bonded) may occur, which is not preferable.

表面封止法2
前記工程(3)に記載の繰返操作から得られたシリカ系粒子を、下記一般式(I)で表される有機珪素化合物および/または珪酸と混合したのち、該化合物を50〜350℃の温度で水熱処理して、前記シリカ系粒子の表面をシリカ成分で被覆することにより該粒子の表面を封止する。
Surface sealing method 2
After mixing the silica-based particles obtained from the repetitive operation described in the step (3) with an organosilicon compound represented by the following general formula (I) and / or silicic acid, the compound is mixed at 50 to 350 ° C. The surface of the particles is sealed by covering the surface of the silica-based particles with a silica component by hydrothermal treatment at a temperature.

Figure 0005921188
〔ただし、R1、R2はアルキル基、アリール基、ビニル基、アクリル基等の炭化水素基であり、nは0、1、2または3を表す。〕
Figure 0005921188
[Wherein R 1 and R 2 are hydrocarbon groups such as an alkyl group, an aryl group, a vinyl group and an acrylic group, and n represents 0, 1, 2 or 3. ]

この場合、前記水熱処理は、オートクレーブ中で行うことが好ましい。さらに、得られた表面被覆シリカ系粒子を乾燥して900〜1100℃の温度で焼成することがより好ましい。これにより、本発明に係るシリカ系粒子を上記のような場合でも問題なく使用することができる。さらに、紫外線遮蔽効果や透明性などにおいても、前記工程(3)で得られたシリカ系粒子と比べて遜色のないものである。   In this case, the hydrothermal treatment is preferably performed in an autoclave. Furthermore, it is more preferable that the obtained surface-coated silica-based particles are dried and fired at a temperature of 900 to 1100 ° C. Thereby, the silica-type particle | grains which concern on this invention can be used without a problem even in the above cases. Furthermore, the ultraviolet shielding effect and transparency are inferior to the silica-based particles obtained in the step (3).

ここで、前記水熱処理温度が50℃未満であると、前記シリカ系粒子の表面封止が不十分となり、また前記水熱処理温度が350℃を超えると、高圧反応容器が必要となるばかりでなく、不必要なエネルギーを供給することとなるので、好ましくない。   Here, when the hydrothermal treatment temperature is less than 50 ° C., the surface sealing of the silica-based particles becomes insufficient, and when the hydrothermal treatment temperature exceeds 350 ° C., not only a high-pressure reaction vessel is required. This is not preferable because unnecessary energy is supplied.

次に、本発明に係るシリカ系粒子および該シリカ系粒子を配合してなる化粧料について説明する。   Next, the silica-based particles according to the present invention and a cosmetic comprising the silica-based particles are described.

[シリカ系粒子]
本発明に係るシリカ系粒子は、粒子内に細孔径が2〜100nmの範囲にある細孔群を有し、さらにその細孔容積が0.05〜2.0ml/gの範囲にあり、しかも粒子径が100〜1000nmの範囲にある多孔質シリカ系粒子の細孔内部に、チタニウム、亜鉛、セリウムおよび鉄から選ばれた少なくとも1種の金属元素の水酸化物および/または酸化物を沈着・固定化してなる、紫外線遮蔽効果を有する、粒子径が100〜1000nmのシリカ系粒子である。
[Silica particles]
The silica-based particle according to the present invention has a pore group having a pore diameter in the range of 2 to 100 nm in the particle, and further has a pore volume in the range of 0.05 to 2.0 ml / g, Depositing hydroxides and / or oxides of at least one metal element selected from titanium, zinc, cerium and iron inside the pores of porous silica-based particles having a particle diameter in the range of 100 to 1000 nm. Silica-based particles having a UV-shielding effect and having a particle diameter of 100 to 1000 nm.

本発明で使用される多孔質シリカ系粒子の物理性状については、上記で述べたとおりである。また、前記多孔質シリカ系粒子の細孔内部に沈着・固定化された、チタニウム、亜鉛、セリウムおよび鉄から選ばれた少なくとも1種の金属元素の水酸化物および/または酸化物についても、上記したとおりであるので、ここではその説明を省略する。   The physical properties of the porous silica particles used in the present invention are as described above. Further, the hydroxide and / or oxide of at least one metal element selected from titanium, zinc, cerium and iron deposited and immobilized inside the pores of the porous silica-based particles is also described above. Therefore, the description thereof is omitted here.

上記の物理性状を備えたシリカ系粒子は、該粒子の細孔内部に、チタニウム、亜鉛、セリウムおよび鉄から選ばれた金属元素の水酸化物および/または酸化物が該粒子の細孔径以下のサイズで沈着・固定化されているので、十分な紫外線遮蔽効果と高い透明性を兼ね備えたものである。   The silica-based particles having the physical properties described above have a hydroxide and / or oxide of a metal element selected from titanium, zinc, cerium, and iron within the pores of the particles that are not larger than the pore diameter of the particles. Since it is deposited and fixed in size, it has both a sufficient UV shielding effect and high transparency.

さらに、前記シリカ系粒子は、粒子表面に存在するシリカ成分を焼結させて該粒子の表面を封止したものであるか、あるいは下記一般式(I)で表される有機珪素化合物および/または珪酸を水熱処理して得られるシリカ成分を粒子表面に被覆させて該粒子の表面を封止したものであることが好ましい。   Further, the silica-based particles are obtained by sintering a silica component present on the particle surface and sealing the surface of the particle, or an organosilicon compound represented by the following general formula (I) and / or It is preferable that the particle surface is coated with a silica component obtained by hydrothermal treatment of silicic acid to seal the surface of the particle.

Figure 0005921188
〔ただし、R1、R2はアルキル基、アリール基、ビニル基、アクリル基等の炭化水素基であり、nは0、1、2または3を表す。〕
Figure 0005921188
[Wherein R 1 and R 2 are hydrocarbon groups such as an alkyl group, an aryl group, a vinyl group and an acrylic group, and n represents 0, 1, 2 or 3. ]

これにより、前記シリカ系粒子が光触媒活性を示したり、あるいは化粧料に配合する際に併用されるその他の有機系成分を変質・分解する可能性があったりする場合であっても、問題なく使用することができるようになる。   As a result, even if the silica-based particles exhibit photocatalytic activity or may deteriorate or decompose other organic components used in combination with cosmetics, they can be used without problems. Will be able to.

[化粧料]
本発明に係る化粧料は、前記シリカ系粒子を、以下に述べる各種化粧料成分と配合して得られるものである。
[Cosmetics]
The cosmetic according to the present invention is obtained by blending the silica-based particles with various cosmetic ingredients described below.

このような本発明化粧料としては、サンスクリーン化粧料、メークアップ化粧料、スキンケア化粧料などが挙げられるが、必ずしもこれらに限定されるものではない。
前記シリカ系粒子を化粧料に配合する場合には、予め該粒子の表面を従来公知の一般的な方法で改質してから使用することもできる。この表面改質は、例えば、シリコーン処理、アルキルシラン処理、フッ素処理、ポリアクリル酸処理、ポリオレフィン処理、アミノ酸処理、水溶性高分子処理などの方法を用いて行うことができる。
Examples of the cosmetic of the present invention include sunscreen cosmetics, makeup cosmetics, skin care cosmetics, and the like, but are not necessarily limited thereto.
When the silica-based particles are blended in a cosmetic, the surface of the particles can be used after being modified by a conventionally known general method. This surface modification can be performed using methods such as silicone treatment, alkylsilane treatment, fluorine treatment, polyacrylic acid treatment, polyolefin treatment, amino acid treatment, and water-soluble polymer treatment.

本発明化粧料への前記シリカ系粒子の配合量は、調製すべき化粧料の種類や配合すべき化粧料成分等によっても異なるが、前記化粧料に対し1〜50重量%、好ましくは3〜20重量%の範囲にあることが好ましい。ここで、前記配合量が1重量%未満であると、十分な紫外線遮蔽効果が得られず、また前記配合量が50重量%を超えると、化粧料に求められる使用感や仕上り性を得るための調整が難しくなるので、好ましくない。   The blending amount of the silica particles in the cosmetic of the present invention varies depending on the type of cosmetic to be prepared, the cosmetic ingredients to be blended, etc., but is 1 to 50% by weight, preferably 3 to 3%. It is preferably in the range of 20% by weight. Here, when the blending amount is less than 1% by weight, a sufficient ultraviolet shielding effect cannot be obtained, and when the blending amount exceeds 50% by weight, a feeling of use and finish required for cosmetics are obtained. This is not preferable because it becomes difficult to adjust.

前記の各種化粧料成分としては、例えば、オリーブ油、ナタネ油、牛脂等の油脂類、ホホバ油、カルナバロウ、キャンデリラロウ、ミツロウ等のロウ類、パラフィン、スクワラン、合成及び植物性スクワラン、α−オレフィンオリゴマー、マイクロクリスタリンワックス、ペンタン、ヘキサン等の炭化水素類、ステアリン酸、ミリスチン酸、オレイン酸、α−ヒドロキシ酸等の脂肪酸類、イソステアリルアルコール、オクチルドデカノール、ラウリルアルコール、エタノール、イソプロパノール、ブチルアルコール、ミリスチルアルコール、セタノール、ステアリルアルコール、ベヘニルアルコール等のアルコール類、アルキルグリセリルエーテル類、ミリスチン酸イソプロピル、パルチミン酸イソプロピル、ステアリン酸エチル、オレイン酸エチル、ラウリル酸セチル、オレイン酸デシル等のエステル類、エチレングリコール、トリエチレングリコール、ポリエチレングリコール、プロピレングリコール、グリセリン、ジグリセリン等の多価アルコール類、ソルビトール、ブドウ糖、ショ糖、トレハロース等の糖類、メチルポリシロキサン、メチルハイドロジェンポリシロキサン、メチルフェニルシリコーン油、各種変性シリコーン油、環状ジメチルシリコン油等のシリコーン油、シリコーン系およびまたは他の有機化合物にて架橋させたシリコーンゲル、ノニオン系、カチオン系、アニオン系または両性の各種界面活性剤、パーフルオロポリエーテル等のフッ素油、アラビアガム、カラギーナン、寒天、キサンタンガム、ゼラチン、アルギン酸、グアーガム、アルブミン、プルラン、カルボキシビニルポリマー、セルロース及びその誘導体、ポリアクリル酸アミド、ポリアクリル酸ナトリウム、ポリビニルアルコール等の各種高分子、アニオン、カチオン、ノニアオン系各種界面活性剤類、動植物抽出物、アミノ酸及びペプチド類、ビタミン類、パラメトキシケイ皮酸オクチル等のケイ皮酸系、サリチル酸系、安息香酸エステル系、ウロカニン酸系、ベンゾフェノン系をはじめとした紫外線防御剤、殺菌・防腐剤、酸化防止剤、変性又は未変性の粘土鉱物、酢酸ブチル、アセトン、トルエン等の溶剤、各種粒子径、粒子径分布および形状を有する酸化チタン、酸化亜鉛、酸化アルミニウム、水酸化アルミニウム、ベンガラ、黄色酸化鉄、黒色酸化鉄、酸化セリウム、酸化ジルコニウム、シリカ、マイカ、タルク、セリサイト、窒化ホウ素、硫酸バリウム、パール光沢を有する雲母チタン、およびそれらの複合物、各種有機顔染料、水、香料などが挙げられる。   Examples of the various cosmetic ingredients include oils and fats such as olive oil, rapeseed oil and beef tallow, waxes such as jojoba oil, carnauba wax, candelilla wax and beeswax, paraffin, squalane, synthetic and vegetable squalane, and α-olefin. Oligomers, hydrocarbons such as microcrystalline wax, pentane, hexane, etc., fatty acids such as stearic acid, myristic acid, oleic acid, α-hydroxy acid, isostearyl alcohol, octyldodecanol, lauryl alcohol, ethanol, isopropanol, butyl alcohol , Myristyl alcohol, cetanol, stearyl alcohol, behenyl alcohol and other alcohols, alkyl glyceryl ethers, isopropyl myristate, isopropyl palmitate, ethyl stearate, oleic acid Esters such as ethyl, cetyl laurate, decyl oleate, polyhydric alcohols such as ethylene glycol, triethylene glycol, polyethylene glycol, propylene glycol, glycerin, diglycerin, saccharides such as sorbitol, glucose, sucrose, trehalose, Silicone gels such as methylpolysiloxane, methylhydrogenpolysiloxane, methylphenylsilicone oil, various modified silicone oils, cyclic dimethylsilicone oil, silicone-based and other organic compounds, nonion-based, cationic-based , Various anionic or amphoteric surfactants, fluorine oil such as perfluoropolyether, gum arabic, carrageenan, agar, xanthan gum, gelatin, alginic acid, guar gum, albumin, puller , Carboxyvinyl polymer, cellulose and its derivatives, various polymers such as polyacrylamide, sodium polyacrylate, polyvinyl alcohol, anions, cations, various nonionic surfactants, animal and plant extracts, amino acids and peptides, vitamins , Cinnamic acid such as octyl paramethoxycinnamate, salicylic acid, benzoate ester, urocanic acid, benzophenone, and other UV protection agents, bactericides / preservatives, antioxidants, modified or unmodified Clay mineral, solvent such as butyl acetate, acetone, toluene, titanium oxide, zinc oxide, aluminum oxide, aluminum hydroxide, bengara, yellow iron oxide, black iron oxide, cerium oxide with various particle sizes, particle size distribution and shape , Zirconium oxide, silica, mica, talc, cerisa DOO, boron nitride, barium sulfate, titanium mica with pearl luster, and composites thereof, various organic pigment or dye, water, perfume and the like.

ここで、前記の酸化チタンや酸化亜鉛等の無機化合物は、その表面に予めシリコン処理、フッ素処理、金属石鹸処理などを施したものを用いてもよい。
また、ポリアクリル酸メチル、ナイロン、シリコーン樹脂、シリコーンゴム、ポリエチレン、ポリエステル、ポリウレタンなどの樹脂粒子を含んでいてもよい。
Here, as the inorganic compound such as titanium oxide or zinc oxide, the surface thereof previously subjected to silicon treatment, fluorine treatment, metal soap treatment or the like may be used.
Moreover, resin particles such as polymethyl acrylate, nylon, silicone resin, silicone rubber, polyethylene, polyester, and polyurethane may be included.

さらに、美白効果を有する有効成分として、アルブチン、コウジ酸、ビタミンC、アスコルビン酸ナトリウム、アスコルビン酸リン酸エステルマグネシウム、ジ−パルチミン酸アスコルビル、アスコルビン酸グルコシド、その他のアスコルビン酸誘導体、プラセンタエキス、イオウ、油溶性甘草エキス、クワエキス等の植物抽出液、リノール酸、リノレイン酸、乳酸、トラネキサム酸などを含ませることができる。   Furthermore, as an active ingredient having a whitening effect, arbutin, kojic acid, vitamin C, sodium ascorbate, magnesium ascorbate phosphate, ascorbyl dipalmitate, ascorbyl glucoside, other ascorbic acid derivatives, placenta extract, sulfur, Plant extracts such as oil-soluble licorice extract and mulberry extract, linoleic acid, linolenic acid, lactic acid, tranexamic acid and the like can be included.

また、肌荒れ改善効果を有する有効成分として、ビタミンC、カロチノイド、フラボノイド、タンニン、カフェー誘導体、リグナン、サポニン、レチノイン酸及びレチノイン酸構造類縁体、N−アセチルグルコサミン、α−ヒドロキシ酸等の抗老化効果を有する有効成分、グリセリン、プロピレングリコール、1,3−ブチレングリコール等の多価アルコール類、混合異性化糖、トレハロース、プルラン等の糖類、ヒアルロン酸ナトリウム、コラーゲン、エラスチン、キチン・キトサン、コンドロイチン硫酸ナトリウム等の生体高分子類、アミノ酸、ベタイン、セラミド、スフィンゴ脂質、セラミド、コレステロール及びその誘導体、ε−アミノ化プロン酸、グリチルリチン酸、各種ビタミン類などを含ませることができる。   Anti-aging effects such as vitamin C, carotenoids, flavonoids, tannins, caffeine derivatives, lignans, saponins, retinoic acid and retinoic acid structural analogs, N-acetylglucosamine, α-hydroxy acids, etc. Active ingredients, polyhydric alcohols such as glycerin, propylene glycol, 1,3-butylene glycol, sugars such as mixed isomerized sugar, trehalose, pullulan, sodium hyaluronate, collagen, elastin, chitin / chitosan, chondroitin sulfate sodium Biopolymers such as amino acids, betaines, ceramides, sphingolipids, ceramides, cholesterol and derivatives thereof, ε-aminated proic acid, glycyrrhizic acid, various vitamins, and the like.

さらに、本発明においては、医薬部外品原料規格2006(発行:株式会社薬事日報社、平成18年6月16日)や、International Cosmetic Ingredient Dictionary and Handbook(発行:The Cosmetic, Toiletry, and Fragrance Association、Thirteenth Edition 2010)等に収載されている化粧料成分を特に制限なく使用することができる。   Furthermore, in the present invention, quasi-drug raw material standards 2006 (issued by Yakuji Nippo Co., Ltd., June 16, 2006) and International Cosmetic Ingredient Dictionary and Handbook (issued by The Cosmetic, Toiletry, and Fragrance Association) , Thirteenth Edition 2010), etc. can be used without particular limitation.

本発明による化粧料は、従来公知の一般的な方法で製造することができる。
このような方法で製造された化粧料は、粉末状、ケーキ状、ペンシル状、スティック状、クリーム状、ジェル状、ムース状、液状、クリーム状などの各種形態で使用され、さらに具体的に述べれば、石鹸、クレンジングフォーム、メーク落とし用クリーム等の洗浄用化粧料、保湿・肌荒れ防止、アクネ、角質ケア、マッサージ、しわ・たるみ対応、くすみ・くま対応、紫外線ケア、美白、抗酸化ケア用等のスキンケア化粧料、パウダーファンデーション、リキッドファンデーション、クリームファンデーション、ムースファンデーション、プレスドパウダー、化粧下地等のベースメークアップ化粧料、アイシャドウ、アイブロー、アイライナー、マスカラ、口紅等のポイントメークアップ化粧料、育毛用、フケ防止、かゆみ防止、洗浄用、コンディショニング・整髪、パーマネント・ウエーブ用、ヘアカラー・ヘアブリーチ用等のヘアケア化粧料、洗浄用、日焼け防止、手荒れ防止、スリミング用、血行改善用、かゆみ抑制、体臭防止、制汗、体毛ケア、リペラント用、ボディパウダー等のボディーケア化粧料、香水、オードパルファム、オードトワレ、オーデコロン、シャワーコロン等、練香水、ボディーロ−ション、バスオイル等のフレグランス化粧料、歯磨き、マウスウォッシュ等のオーラルケア製品などが挙げられる。
次に、本発明の実施例その他で採用された測定方法を具体的に述べれば、以下の通りである。
The cosmetic according to the present invention can be produced by a conventionally known general method.
The cosmetics produced by such a method are used in various forms such as powder, cake, pencil, stick, cream, gel, mousse, liquid, cream, and more specifically described. Washing cosmetics such as soap, cleansing foam, makeup remover, moisturizing / rough skin prevention, acne, keratin care, massage, wrinkle / sagging, dullness / bearing, UV care, whitening, antioxidant care, etc. Skincare cosmetics, powder foundation, liquid foundation, cream foundation, mousse foundation, pressed powder, base makeup cosmetics such as makeup base, eye shadow, eyebrow, eyeliner, mascara, lipstick, etc. point makeup cosmetics, For hair growth, anti-dandruff, itching, cleaning, co Hair care cosmetics such as conditioning, hair styling, permanent wave, hair color, hair bleach, etc., for washing, sun protection, hand roughening, slimming, blood circulation improvement, itching suppression, body odor prevention, antiperspirant, body hair care, For repellant, body care cosmetics such as body powder, perfume, eau de parfum, eau de toilette, eau de cologne, shower colon, fragrance cosmetics such as perfume, body lotion, bath oil, oral care products such as toothpaste, mouthwash, etc. Can be mentioned.
Next, the measurement methods employed in the examples and others of the present invention will be specifically described as follows.

[測定方法]
(1)シリカ系微粒子の平均粒子径
NaOH滴定法にてシリカ系微粒子の比表面積S(m2/g)を測定し、以下の式にて平均粒子径を算出する。
[Measuring method]
(1) Average particle diameter of silica-based fine particles The specific surface area S (m 2 / g) of silica-based fine particles is measured by the NaOH titration method, and the average particle diameter is calculated by the following formula.

Figure 0005921188
より、
Figure 0005921188
Than,

Figure 0005921188
上記の式で、Dは平均粒子径(nm)、Sは比表面積(m2/g)を表す。また、無定形シリカの真比重は2.2g/cm3とする。
Figure 0005921188
In the above formula, D represents an average particle diameter (nm), and S represents a specific surface area (m 2 / g). The true specific gravity of amorphous silica is 2.2 g / cm 3 .

(2)多孔質シリカ系粒子(およびシリカ系粒子)の平均粒子径
多孔質シリカ系粒子の粉体を40重量%のグリセリン含有水溶液に分散させてなるスラリー液(固形分濃度0.1〜5質量%)を調製し、これを超音波発生装置(iuch社製、US-2型)にかけて5分間、分散処理を施す。次いで、前記グリセリン水溶液を加えて濃度を調節した分散液より試料を取り、これをガラスセル(長さ10mm、幅10mm、高さ45cmのサイズ)に入れて、遠心沈降式粒度分布測定装置(堀場製作所製:CAPA−700)を用いて平均粒子径を測定する。
(2) Average particle diameter of porous silica-based particles (and silica-based particles) A slurry liquid (solid content concentration of 0.1 to 5) obtained by dispersing porous silica-based particles in a 40% by weight glycerin-containing aqueous solution. (Mass%) is prepared, and this is applied to an ultrasonic generator (US-2 type, manufactured by Iuch) and subjected to a dispersion treatment for 5 minutes. Next, a sample is taken from the dispersion whose concentration has been adjusted by adding the glycerin aqueous solution, and the sample is placed in a glass cell (size of 10 mm in length, 10 mm in width, and 45 cm in height). The average particle diameter is measured using Seiko Seisakusho: CAPA-700).

(3)多孔質シリカ系粒子内細孔群の細孔径
多孔質シリカ系粒子の粉体10gをルツボに取り、300℃で1時間乾燥後、デシケーターに入れて室温まで冷却した。ガラスセルに0.15g採取し、Belsorp miniII(日本ベル(株)製)を使用して真空脱気しながら試料に窒素ガスを吸着後、脱着させ、得られた吸着等温線から、BJH法により、細孔径(ピーク値)を算出した。
(3) Pore diameter of pore group in porous silica-based particles 10 g of porous silica-based particle powder was placed in a crucible, dried at 300 ° C. for 1 hour, then placed in a desiccator and cooled to room temperature. 0.15 g was sampled in a glass cell, adsorbed nitrogen gas to the sample while vacuum degassing using Belsorb mini II (manufactured by Nippon Bell Co., Ltd.), desorbed, and from the obtained adsorption isotherm, BJH method The pore diameter (peak value) was calculated.

(4)多孔質シリカ系粒子の細孔容積
多孔質シリカ系粒子の粉体10gをルツボに取り、105℃の温度で1時間乾燥後、デシケーターに入れて室温まで冷却する。次いで、よく洗浄したセルに1g試料を取り、窒素吸着装置(日揮触媒化成社製)を用いて窒素を吸着させ、以下の式から細孔容積を算出する。
(4) Porous volume of porous silica-based particles 10 g of porous silica-based particle powder is placed in a crucible, dried at a temperature of 105 ° C. for 1 hour, then placed in a desiccator and cooled to room temperature. Next, a 1 g sample is taken into a well-washed cell, nitrogen is adsorbed using a nitrogen adsorption device (manufactured by JGC Catalysts & Chemicals), and the pore volume is calculated from the following equation.

Figure 0005921188
上記の式で、Vは圧力735mmHgにおける標準状態の吸着量(ml)、Vcは圧力735mmHgにおけるセルブランクの容量(ml)、Wは試料の重量(g)を表す。また、窒素ガスと液体窒素の密度の比を0.001567とする。
Figure 0005921188
In the above formula, V is the adsorption amount (ml) in the standard state at a pressure of 735 mmHg, Vc is the cell blank capacity (ml) at a pressure of 735 mmHg, and W is the weight (g) of the sample. Further, the density ratio of nitrogen gas and liquid nitrogen is set to 0.001567.

(5)シリカ系粒子中の金属元素化合物の含有量
シリカ系粒子の粉体を誘導結合プラズマ発光分光分析装置(セイコー電子製SPS−1200A)を用いて、金属元素化合物の含有量を測定する。
(5) Content of metal element compound in silica-based particles The content of metal element compound is measured using a powder of silica-based particles using an inductively coupled plasma emission spectroscopic analyzer (SPS-1200A manufactured by Seiko Electronics).

(6)シリカ系粒子の比表面積
シリカ系粒子の粉体を磁性ルツボ(B−2型)に約30ml採取し、105℃の温度で2時間乾燥後、デシケーターに入れて室温まで冷却する。次に、サンプルを1g取り、全自動表面積測定装置(湯浅アイオニクス社製、マルチソーブ12型)を用いて、比表面積(m2/g)をBET法にて測定する。
(6) Specific surface area of silica-based particles About 30 ml of silica-based particle powder is collected in a magnetic crucible (type B-2), dried at a temperature of 105 ° C. for 2 hours, then placed in a desiccator and cooled to room temperature. Next, 1 g of a sample is taken, and the specific surface area (m 2 / g) is measured by the BET method using a fully automatic surface area measuring device (manufactured by Yuasa Ionics Co., Ltd., Multisorb 12 type).

(7)シリカ系粒子の分光透過率
シリカ系粒子の粉体を51重量%のグリセリン含有水溶液に分散させてなるスラリー液(固形分濃度0.005質量%)を調製し、これを超音波発生装置(iuch社製、US−2型)にかけて1時間、分散処理を施す。これをガラスセル(長さ10mm、幅10mm、高さ45cmのサイズ)に入れて、分光光度計(日立製作所製:U−2000)を用いて、波長300nm(UV−B領域)、350nm(UV−A領域)および550nm(可視光領域)における透過率を測定する。
(7) Spectral transmittance of silica-based particles A slurry liquid (solid content concentration 0.005% by mass) prepared by dispersing a powder of silica-based particles in a 51% by weight glycerin-containing aqueous solution is generated by ultrasonic generation. Dispersion treatment is performed for 1 hour on an apparatus (US-2 type, manufactured by Iuch). This is put in a glass cell (length 10 mm, width 10 mm, height 45 cm), and using a spectrophotometer (Hitachi: U-2000), a wavelength of 300 nm (UV-B region), 350 nm (UV -A region) and transmittance at 550 nm (visible light region).

(8)シリカ系粒子のサンセットイエロー退色率
シリカ系粒子の粉体を二酸化チタンとしての重量が0.0067gとなるよう採取し、0.02重量%のサンセットイエロー含有グリセリン溶液9.45gに加えた後、水を加えて10gとしたスラリー液(二酸化チタン濃度0.067重量%)を調製し、これを超音波発生装置(iuch社製、US−2型)にかけて1時間、分散処理を施す。これをガラスセル(長さ10mm、幅10mm、高さ45cmのサイズ)に入れて、波長365nmの紫外線を3時間照射する。紫外線照射前後の波長490nmにおける吸光度を、分光光度計(日立製作所製:U−2000)を用いて測定し、以下の式からサンセットイエロー退色率を算出する。
(8) Sunset yellow fading rate of silica-based particles The silica-based particle powder was sampled so that the weight as titanium dioxide was 0.0067 g, and the 0.02 wt% sunset yellow-containing glycerin solution was added to 9.45 g. After the addition, a slurry liquid (titanium dioxide concentration 0.067 wt%) was prepared by adding water to 10 g, and this was subjected to a dispersion treatment for 1 hour by applying it to an ultrasonic generator (US-2 type, manufactured by Iuch). Apply. This is put in a glass cell (length 10 mm, width 10 mm, height 45 cm) and irradiated with ultraviolet rays having a wavelength of 365 nm for 3 hours. Absorbance at a wavelength of 490 nm before and after UV irradiation is measured using a spectrophotometer (Hitachi: U-2000), and the sunset yellow fading rate is calculated from the following equation.

Figure 0005921188
上記の式で、A0は紫外線照射前の吸光度、A1は紫外線照射後の吸光度を表す。
Figure 0005921188
In the above formula, A 0 represents the absorbance before ultraviolet irradiation, and A 1 represents the absorbance after ultraviolet irradiation.

(9)シリカ系粒子中の崩壊粒子の有無
シリカ系粒子の粉体に、真空蒸着装置(JEOL社製、JFC−1200)を用いて、真空度8Paで40秒間、金蒸着処理を施した試料を作成する。次いで、走査型電子顕微鏡(JEOL社製:JSM−5600)を用いて、この試料を加速電圧15kVの条件下で、20,000倍のSEM写真を撮影する。また、シリカ系粒子の調製に使用した多孔質シリカ系粒子の粉体についても上記と同様の方法でSEM写真を撮影する。シリカ系粒子のSEM写真と多孔質シリカ系粒子のSEM写真を比較して、粒子形状を維持していない崩壊した粒子の有無を確認する。
(9) Presence / absence of disintegrated particles in silica-based particles Sample obtained by subjecting powder of silica-based particles to gold vapor deposition treatment at a vacuum degree of 8 Pa for 40 seconds using a vacuum vapor deposition apparatus (JFC-1200, manufactured by JEOL). Create Next, using a scanning electron microscope (manufactured by JEOL: JSM-5600), a 20,000 times SEM photograph of this sample is taken under the condition of an acceleration voltage of 15 kV. Further, an SEM photograph is taken for the powder of the porous silica particles used for the preparation of the silica particles by the same method as described above. The SEM photograph of the silica-based particles and the SEM photograph of the porous silica-based particles are compared to confirm the presence or absence of the collapsed particles that do not maintain the particle shape.

以下に、本発明を実施例に基づき具体的に説明する。しかし、本発明は、これらの実施例に記載された範囲に限定されるものではない。
[調製例1]
実施例1用の多孔質シリカ粒子の調製
噴霧乾燥工程
平均粒子径15nmのシリカ系微粒子を含むシリカゾル(日揮触媒化成(株)製、Cataloid S−20L、SiO2含有量20重量%)をスプレイドライヤー(NIRO社製、NIRO ATMIZER)に供して、入口温度240℃、出口温度55℃、噴霧速度1リットル/分の条件下で噴霧乾燥を行い、平均粒子径900nmの多孔質シリカ系粒子の噴霧乾燥粉体1Aを得た。
The present invention will be specifically described below based on examples. However, the present invention is not limited to the scope described in these examples.
[Preparation Example 1]
Preparation of porous silica particles for Example 1
Spray drying process A silica sol containing silica-based fine particles having an average particle diameter of 15 nm (manufactured by JGC Catalysts & Chemicals Co., Ltd., Cataloid S-20L, SiO2 content 20% by weight) was subjected to a spray dryer (NIRO, NIRO ATMIZER), Spray drying was performed under the conditions of an inlet temperature of 240 ° C., an outlet temperature of 55 ° C., and a spray rate of 1 liter / min to obtain a spray-dried powder 1A of porous silica-based particles having an average particle diameter of 900 nm.

分級工程
前記噴霧乾燥工程で得られた前記噴霧乾燥粉体1A240gに純水2160ccを加え、300rpmの回転速度で1時間攪拌して、固形分濃度10重量%の分散液(1)を調製した。
Classification step 2160 cc of pure water was added to 240 g of the spray-dried powder 1A obtained in the spray-drying step, and the mixture was stirred for 1 hour at a rotation speed of 300 rpm to prepare a dispersion (1) having a solid content concentration of 10% by weight.

次いで、得られた分散液(1)を、700ccの遠心缶4つにそれぞれ600gずつ採取し、遠心分離機(日立工機社製、CF7DII、ローター:RT3S3)を用いて、主として100nm以上の粒子径を有する粒子が沈降するように、室温にて3000rpmの回転速度(1871.5Gの遠心加速度に相当する)で97分間、遠心分離操作を行った。次に、主として100nm以下の粒子径を有する多孔質シリカ系粒子を含む上澄み液を静かに抜き取り、分離・除去した。さらに、得られた沈殿物(一部の沈殿液を含む)に、純水を加えて600ccとした後、1時間攪拌した。   Next, 600 g each of the obtained dispersion liquid (1) was collected in four 700 cc centrifuges, and particles of 100 nm or more were mainly used using a centrifuge (manufactured by Hitachi Koki Co., Ltd., CF7DII, rotor: RT3S3). Centrifugation was performed for 97 minutes at a rotational speed of 3000 rpm (corresponding to a centrifugal acceleration of 1871.5 G) at room temperature so that particles having a diameter settle. Next, the supernatant liquid containing mainly porous silica-based particles having a particle diameter of 100 nm or less was gently extracted, separated and removed. Further, pure water was added to the obtained precipitate (including a part of the precipitate) to make 600 cc, and the mixture was stirred for 1 hour.

次いで、再度、3000rpmの回転速度(1871.5Gの遠心加速度に相当する)で97分間、遠心分離操作を行った。次に、主として100nm以下の粒子径を有する多孔質シリカ系粒子を含む上澄み液を静かに抜き取り、分離・除去した。さらに、沈降液(または沈殿物)に純水を加えて600ccとした後、1時間攪拌した。   Subsequently, the centrifugal separation operation was performed again at a rotational speed of 3000 rpm (corresponding to a centrifugal acceleration of 1871.5 G) for 97 minutes. Next, the supernatant liquid containing mainly porous silica-based particles having a particle diameter of 100 nm or less was gently extracted, separated and removed. Further, pure water was added to the sedimented liquid (or precipitate) to make 600 cc, followed by stirring for 1 hour.

次いで、主として1000nmを超えた粒子径を有する粒子が沈降するように、室温にて1000rpmの回転速度(207.9Gの遠心加速度に相当する)で327秒間(5.5分間)、遠心分離操作を行った。次に、主として100〜1000nmの粒子径を有する多孔質シリカ系粒子を含む上澄み液を静かに抜き取り、主として100〜1000μmの粒子径を有する多孔質シリカ系粒子を含む沈殿液(または沈殿物)を分離・除去した。これにより、主として100〜1000nmの粒子径を有する多孔質シリカ系粒子を含む分散液(2)を得た。   Next, the centrifugation operation was performed at room temperature for 327 seconds (5.5 minutes) at a rotational speed of 1000 rpm (corresponding to a centrifugal acceleration of 207.9 G) so that particles having a particle diameter exceeding 1000 nm mainly settled. went. Next, the supernatant liquid containing porous silica-based particles mainly having a particle diameter of 100 to 1000 nm is gently extracted, and a precipitation liquid (or precipitate) mainly containing porous silica-based particles having a particle diameter of 100 to 1000 μm is obtained. Separated and removed. As a result, a dispersion (2) containing porous silica-based particles mainly having a particle diameter of 100 to 1000 nm was obtained.

次いで、得られた分散液(2)を、120℃の温度で16時間乾燥した。次に、この乾燥粉体をミキサーにかけて凝集物を解砕して、多孔質シリカ系粒子2Aを得た。
このようにして得られた多孔質シリカ系粒子2Aについて、平均粒子径、細孔径および細孔容積を上記の測定方法でそれぞれ測定した。その結果を表1に示す。
Subsequently, the obtained dispersion liquid (2) was dried at a temperature of 120 ° C. for 16 hours. Next, the agglomerate was crushed by applying this dry powder to a mixer to obtain porous silica-based particles 2A.
With respect to the porous silica-based particles 2A thus obtained, the average particle diameter, pore diameter, and pore volume were measured by the above measurement methods. The results are shown in Table 1.

[調製例2]
実施例2〜6用の多孔質シリカ系粒子の調製
表1に示す日揮触媒化成(株)製や日本アエロジル(株)製のシリカ系微粒子を含むシリカ系微粒子分散液や酸性珪酸水溶液(SiO2換算基準シリカ成分を5重量%含む)からなる噴霧用原料を用いて、調製例1に示す「実施例1用の多孔質シリカ系粒子の調製」の場合と同様に噴霧乾燥して、噴霧乾燥粉体1B〜1Fを得た。
[Preparation Example 2]
Preparation of porous silica-based particles for Examples 2 to 6 Silica-based fine particle dispersions and acidic silicic acid aqueous solutions (SiO 2 ) containing silica-based fine particles manufactured by JGC Catalysts & Chemicals and Nippon Aerosil Co., Ltd. shown in Table 1 Using a spray raw material comprising 5% by weight of a conversion reference silica component), spray drying is performed in the same manner as in “Preparation of porous silica-based particles for Example 1” shown in Preparation Example 1, and spray drying is performed. Powders 1B to 1F were obtained.

このようにして得られた噴霧乾燥粉体1A〜1Fについて、多孔質シリカ系粒子の調製実施例−1の場合と同様に、平均粒子径を測定した。その結果を表1に示す。
次に、得られた噴霧乾燥粉体1A〜1Fを、表2に示す分級条件としたこと以外は、調製例1に示す「実施例1用の多孔質シリカ系粒子の調製」の場合と同様に分級操作を行い、多孔質シリカ系粒子2B〜2Fを得た。
For the spray-dried powders 1A to 1F thus obtained, the average particle diameter was measured in the same manner as in Preparation Example-1 for porous silica-based particles. The results are shown in Table 1.
Next, except that the obtained spray-dried powders 1A to 1F were classified as shown in Table 2, the same as the case of “Preparation of porous silica-based particles for Example 1” shown in Preparation Example 1. The porous silica-based particles 2B to 2F were obtained.

このようにして得られた多孔質シリカ系粒子2B〜2Fについて、多孔質シリカ系粒子の調製例−1の場合と同様に、平均粒子径、細孔径、および細孔容積を測定した。その結果を表2示す。   With respect to the porous silica-based particles 2B to 2F thus obtained, the average particle diameter, the pore diameter, and the pore volume were measured in the same manner as in Preparation Example-1 of porous silica-based particles. The results are shown in Table 2.

Figure 0005921188
(注記) シリカ系微粒子A:日揮触媒化成(株)製Cataloid S−20L
シリカ系微粒子B:日揮触媒化成(株)製Cataloid SI−30
シリカ系微粒子C:日揮触媒化成(株)製スフェリカスラリー SS−160
シリカ系微粒子D:日本アエロジル(株)製AEROSIL 380
Figure 0005921188
(Note) Silica-based fine particles A: Cataloid S-20L manufactured by JGC Catalysts & Chemicals Co., Ltd.
Silica-based fine particle B: JGC Catalysts & Chemicals Cataloid SI-30
Silica-based fine particles C: Spherica slurry SS-160 manufactured by JGC Catalysts & Chemicals Co., Ltd.
Silica-based fine particle D: AEROSIL 380 manufactured by Nippon Aerosil Co., Ltd.

Figure 0005921188
Figure 0005921188

[調製例3]
比較例1〜6用の多孔質シリカ系粒子の調製
表3に示す日揮触媒化成(株)製や日本アエロジル(株)製のシリカ系微粒子を含むシリカ系微粒子分散液や酸性珪酸水溶液(SiO2換算基準シリカ成分を5重量%含む)からなる噴霧用原料を用いると共に、必要に応じて一部の噴霧乾燥条件を変更して、調製例1に示す「実施例1用の多孔質シリカ系粒子の調製」の場合と同様に噴霧乾燥して、噴霧乾燥粉体1a〜1fを得た。
[Preparation Example 3]
Preparation of porous silica-based particles for Comparative Examples 1 to 6 Silica-based fine particle dispersions and acidic silicic acid aqueous solutions (SiO2 equivalent) containing silica-based fine particles manufactured by JGC Catalysts & Chemicals and Nippon Aerosil Co., Ltd. shown in Table 3 (Including 5% by weight of the reference silica component) and a part of the spray-drying conditions are changed as necessary, so that “of the porous silica-based particles for Example 1 shown in Preparation Example 1” Spray drying was performed in the same manner as in the case of “Preparation” to obtain spray-dried powders 1a to 1f.

このようにして得られた噴霧乾燥粉体1a〜1fについて、調製例1に示す「実施例1用の多孔質シリカ系粒子の調製」の場合と同様に、平均粒子径を測定した。その結果を表3に示す。   For the spray-dried powders 1a to 1f thus obtained, the average particle diameter was measured in the same manner as in “Preparation of porous silica-based particles for Example 1” shown in Preparation Example 1. The results are shown in Table 3.

次に、得られた噴霧乾燥粉体1a〜1fを、表4に示す分級条件としたこと以外は、調製例1に示す「実施例1用の多孔質シリカ系粒子の調製」の場合と同様に分級操作を行い、多孔質シリカ系粒子2aおよび2c〜2fを得た。   Next, except that the obtained spray-dried powders 1a to 1f were classified as shown in Table 4, the same as the case of “Preparation of porous silica-based particles for Example 1” shown in Preparation Example 1. The porous silica-based particles 2a and 2c to 2f were obtained.

このようにして得られた多孔質シリカ系粒子2a〜2fについて、多孔質シリカ系粒子の調製例−1の場合と同様に、平均粒子径、細孔径、および細孔容積を測定した。その結果を表4示す。   With respect to the porous silica-based particles 2a to 2f thus obtained, the average particle diameter, the pore diameter, and the pore volume were measured in the same manner as in Preparation Example-1 of porous silica-based particles. The results are shown in Table 4.

Figure 0005921188
(注記) シリカ系微粒子A:日揮触媒化成(株)製Cataloid S−20L
シリカ系微粒子D:日本アエロジル(株)製AEROSIL
シリカ系微粒子E:日揮触媒化成(株)製Cataloid SI−550
シリカ系微粒子F:日揮触媒化成(株)製スフェリカスラリー SS−550
シリカ系微粒子G:380日揮触媒化成(株)製Cataloid SNL
Figure 0005921188
(Note) Silica-based fine particles A: Cataloid S-20L manufactured by JGC Catalysts & Chemicals Co., Ltd.
Silica-based fine particle D: AEROSIL manufactured by Nippon Aerosil Co., Ltd.
Silica-based fine particle E: Cataloid SI-550 manufactured by JGC Catalysts & Chemicals Co., Ltd.
Silica-based fine particles F: Spherica slurry SS-550 manufactured by JGC Catalysts & Chemicals Co., Ltd.
Silica-based fine particle G: 380 JGC Catalysts & Chemicals, Inc. Cataloid SNL

Figure 0005921188
Figure 0005921188

[実施例1]
工程(1)
「実施例1用の多孔質シリカ系粒子の調製」で得られた多孔質シリカ系粒子2A100.0gをミキサーに投入し、これにTiO2として10重量%の濃度に調製した四塩化チタン水溶液30.0gを加えた後、20分間攪拌して、含浸処理粉体を得た。
[Example 1]
Process (1)
100.0 g of porous silica-based particles 2A obtained in “Preparation of porous silica-based particles for Example 1” was put into a mixer, and titanium tetrachloride aqueous solution 30 prepared as TiO 2 at a concentration of 10% by weight was added thereto. After adding 0.0 g, the mixture was stirred for 20 minutes to obtain impregnated powder.

工程(2)
前記工程(1)で得られた含浸処理粉体を、200℃の温度で1時間、加熱乾燥して、乾燥粉体を得た。
Step (2)
The impregnated powder obtained in the step (1) was heat-dried at a temperature of 200 ° C. for 1 hour to obtain a dry powder.

工程(3)
前記工程(2)で得られた乾燥粉体103gをミキサーに投入し、これにTiO2として10重量%の濃度に調製した四塩化チタン水溶液29.2gを加え、20分間攪拌した後、200℃の温度で1時間、加熱乾燥した。
Process (3)
103 g of the dry powder obtained in the step (2) was put into a mixer, and 29.2 g of a titanium tetrachloride aqueous solution adjusted to a concentration of 10% by weight as TiO 2 was added thereto and stirred for 20 minutes. The mixture was dried by heating at a temperature of 1 hour.

次に、乾燥して得られた粉体105.9gをミキサーに投入し、これにTiO2として10重量%の濃度に調製した四塩化チタン水溶液28.5gを加え、20分間攪拌した後、200℃の温度で1時間、加熱乾燥した。 Next, 105.9 g of the powder obtained by drying was put into a mixer, and 28.5 g of an aqueous titanium tetrachloride solution adjusted to a concentration of 10% by weight as TiO 2 was added thereto and stirred for 20 minutes. Heat drying at a temperature of 1 ° C. for 1 hour.

次に、乾燥して得られた粉体108.8gをミキサーに投入し、これにTiO2として10重量%の濃度に調製した四塩化チタン水溶液27.8gを加え、20分間攪拌した後、200℃の温度で1時間、加熱乾燥した。 Next, 108.8 g of the powder obtained by drying was put into a mixer, and 27.8 g of titanium tetrachloride aqueous solution adjusted to a concentration of 10% by weight as TiO 2 was added thereto and stirred for 20 minutes. Heat drying at a temperature of 1 ° C. for 1 hour.

次に、乾燥して得られた粉体111.6gをミキサーに投入し、これにTiO2として10重量%の濃度に調製した四塩化チタン水溶液27.0gを加え、20分間攪拌した後、200℃の温度で1時間、加熱乾燥した。 Next, 111.6 g of the powder obtained by drying was put into a mixer, and 27.0 g of an aqueous titanium tetrachloride solution adjusted to a concentration of 10% by weight as TiO 2 was added thereto and stirred for 20 minutes. Heat drying at a temperature of 1 ° C. for 1 hour.

次に、乾燥して得られた粉体114.3gをミキサーに投入し、これにTiO2として10重量%の濃度に調製した四塩化チタン水溶液26.3gを加え、20分間攪拌した後、200℃の温度で1時間、加熱乾燥した。 Next, 114.3 g of the powder obtained by drying was put into a mixer, and 26.3 g of titanium tetrachloride aqueous solution adjusted to a concentration of 10% by weight as TiO 2 was added thereto and stirred for 20 minutes. Heat drying at a temperature of 1 ° C. for 1 hour.

次に、乾燥して得られた粉体116.9gをミキサーに投入し、これにTiO2として10重量%の濃度に調製した四塩化チタン水溶液25.7gを加え、20分間攪拌した後、200℃の温度で1時間、加熱乾燥した。 Next, 116.9 g of the powder obtained by drying was put into a mixer, and 25.7 g of an aqueous titanium tetrachloride solution adjusted to a concentration of 10% by weight as TiO 2 was added thereto, followed by stirring for 20 minutes, Heat drying at a temperature of 1 ° C. for 1 hour.

次に、乾燥して得られた粉体119.5gをミキサーに投入し、これにTiO2として10重量%の濃度に調製した四塩化チタン水溶液25.0gを加え、20分間攪拌した後、200℃の温度で1時間、加熱乾燥した。 Next, 119.5 g of the powder obtained by drying was put into a mixer, and 25.0 g of titanium tetrachloride aqueous solution adjusted to a concentration of 10% by weight as TiO 2 was added thereto and stirred for 20 minutes. Heat drying at a temperature of 1 ° C. for 1 hour.

次に、乾燥して得られた粉体122.0gをミキサーに投入し、これにTiO2として10重量%の濃度に調製した四塩化チタン水溶液24.4gを加え、20分間攪拌した後、200℃の温度で1時間、加熱乾燥した。 Next, 122.0 g of the powder obtained by drying was put into a mixer, and 24.4 g of titanium tetrachloride aqueous solution adjusted to a concentration of 10% by weight as TiO 2 was added thereto and stirred for 20 minutes. Heat drying at a temperature of 1 ° C. for 1 hour.

次に、乾燥して得られた粉体124.4gをミキサーに投入し、これにTiO2として10重量%の濃度に調製した四塩化チタン水溶液23.7gを加え、20分間攪拌した後、200℃の温度で1時間、加熱乾燥した。 Next, 124.4 g of the powder obtained by drying was put into a mixer, and 23.7 g of a titanium tetrachloride aqueous solution adjusted to a concentration of 10% by weight as TiO 2 was added thereto, followed by stirring for 20 minutes. Heat drying at a temperature of 1 ° C. for 1 hour.

さらに、このように含浸操作と乾燥操作を10回繰り返して得られた乾燥粉体を、700℃の温度で3時間、加熱焼成した後、ミキサーにかけて凝集物を解砕して、実施例焼成粉体3Aを得た。   Further, the dried powder obtained by repeating the impregnation operation and the drying operation 10 times in this manner was heated and fired at a temperature of 700 ° C. for 3 hours, and then agglomerates were crushed by using a mixer to obtain a fired powder of Example. Body 3A was obtained.

このようにして得られた実施例焼成粉体3Aについて、TiO2含有量、比表面積、分光透過率、サンセットイエロー退色率および崩壊粒子の有無を上記の測定方法でそれぞれ測定した。その結果を表5に示す。 The thus obtained calcined powder 3A of Example was measured for the TiO 2 content, specific surface area, spectral transmittance, sunset yellow fading rate and presence / absence of disintegrating particles by the above measuring methods. The results are shown in Table 5.

封止工程
前記工程(3)で得られた実施例焼成粉体3Aを1000℃の温度で3時間焼成した後、ミキサーにかけて凝集物を解砕して、実施例封止粉体4Aを得た。
このようにして得られた実施例焼成粉体4Aについて、TiO2含有量、比表面積、分光透過率、サンセットイエロー退色率および崩壊粒子の有無を上記の測定方法でそれぞれ測定した。その結果を表6に示す。
Sealing Step After firing the calcined powder 3A of the example obtained in the step (3) at a temperature of 1000 ° C. for 3 hours, the agglomerate was crushed by a mixer to obtain a calcined powder 4A of the example. .
The thus obtained calcined powder 4A of Example was measured for the TiO 2 content, specific surface area, spectral transmittance, sunset yellow fading rate, and presence / absence of decay particles by the above measurement methods. The results are shown in Table 6.

[実施例2〜6]
実施例1で使用した多孔質シリカ系粒子2Aの代わりに、表-1に示す多孔質シリカ系粒子を用いると共に、用いた多孔質シリカ系粒子の細孔容積に応じて、四塩化チタン水溶液の使用量を変更して、実施例1における工程(1)〜(3)の操作を行い、実施例焼成粉体3B〜3Fを得た。
[Examples 2 to 6]
Instead of the porous silica-based particles 2A used in Example 1, the porous silica-based particles shown in Table-1 were used, and according to the pore volume of the used porous silica-based particles, the titanium tetrachloride aqueous solution The amount used was changed and the operations of steps (1) to (3) in Example 1 were performed to obtain Example fired powders 3B to 3F.

このようにして得られた実施例焼成粉体3B〜3Fについて、実施例1の場合と同様に、TiO2含有量、比表面積、分光透過率、サンセットイエロー退色率および崩壊粒子の有無をそれぞれ測定した。その結果を表5に示す。 For the fired powders 3B to 3F of Examples thus obtained, as in Example 1, the TiO 2 content, specific surface area, spectral transmittance, sunset yellow fading rate, and presence / absence of disintegrating particles were determined. It was measured. The results are shown in Table 5.

次に、得られた実施例焼成粉体3B〜3Fについて、実施例1における封止工程の操作を行い、実施例焼成粉体4B〜4Fを得た。
このようにして得られた実施例焼成粉体4B〜4Fについて、実施例1の場合と同様に、TiO2含有量、比表面積、分光透過率、サンセットイエロー退色率および崩壊粒子の有無をそれぞれ測定した。その結果を表6に示す。
Next, about the obtained Example baking powder 3B-3F, operation of the sealing process in Example 1 was performed, and Example baking powder 4B-4F was obtained.
As for Example fired powders 4B to 4F obtained in this way, as in Example 1, the TiO 2 content, specific surface area, spectral transmittance, sunset yellow fading rate, and presence / absence of disintegrating particles were determined. It was measured. The results are shown in Table 6.

Figure 0005921188
Figure 0005921188

Figure 0005921188
Figure 0005921188

Figure 0005921188
Figure 0005921188

[実施例7〜9]
実施例1で使用した四塩化チタン水溶液の代わりに、表-1に示す金属含有混合溶液を用いて、実施例1における工程(1)〜(3)の操作を行い、実施例焼成粉体3G〜3Iを得た。
[Examples 7 to 9]
Using the metal-containing mixed solution shown in Table-1 instead of the titanium tetrachloride aqueous solution used in Example 1, the operations of steps (1) to (3) in Example 1 were performed, and Example calcined powder 3G ~ 3I was obtained.

このようにして得られた実施例焼成粉体3G〜3Iについて、TiO2含有量、ZnO含有量、Fe23含有量、CeO2含有量、比表面積、分光透過率、サンセットイエロー退色率および崩壊粒子の有無を上記の測定方法でそれぞれ測定した。その結果を表7に示す。 For the calcined powders 3G to 3I of Examples thus obtained, TiO 2 content, ZnO content, Fe 2 O 3 content, CeO 2 content, specific surface area, spectral transmittance, sunset yellow fading rate The presence or absence of disintegrating particles was measured by the above measurement methods. The results are shown in Table 7.

次に、得られた実施例焼成粉体3G〜3Iについて、実施例1における封止工程の操作を行い、実施例焼成粉体4G〜4Iを得た。
このようにして得られた実施例焼成粉体4G〜4Iについて、TiO2含有量、ZnO含有量、Fe23含有量、CeO2含有量、比表面積、分光透過率、サンセットイエロー退色率および崩壊粒子の有無を上記の測定方法でそれぞれ測定した。その結果を表8に示す。
Next, about the obtained Example baking powder 3G-3I, operation of the sealing process in Example 1 was performed, and Example baking powder 4G-4I was obtained.
For the fired powders 4G to 4I of Examples thus obtained, TiO 2 content, ZnO content, Fe 2 O 3 content, CeO 2 content, specific surface area, spectral transmittance, sunset yellow fading rate The presence or absence of disintegrating particles was measured by the above measurement methods. The results are shown in Table 8.

Figure 0005921188
Figure 0005921188

Figure 0005921188
Figure 0005921188

[実施例10]
純水1300g、エタノール1100gおよび29重量%のアンモニア水400gを加えた混合溶液に、実施例4における工程(3)で得られた実施例焼成粉体3D20gを分散させ、分散液の濃度を35℃に維持しながら、これに有機珪素化合物としてテトラエトキシシラン(多摩化学工業(株)製、エチルシリケートA、SiO2濃度28重量%)14gを14分間で添加した。
[Example 10]
In a mixed solution obtained by adding 1300 g of pure water, 1100 g of ethanol and 400 g of 29% by weight ammonia water, 20 g of the calcined powder of Example 3D obtained in the step (3) in Example 4 was dispersed, and the concentration of the dispersion was 35 ° C. 14 g of tetraethoxysilane (manufactured by Tama Chemical Industry Co., Ltd., ethyl silicate A, SiO 2 concentration of 28% by weight) was added thereto as an organosilicon compound over 14 minutes.

次に、この分散液をオートクレーブに入れて、180℃の温度で10時間、水熱処理した後、冷却し、さらにろ過分離した後、乾燥した。次いで、この乾燥粉体をミキサーにかけて凝集物を解砕して、実施例封止粉体4Jを得た。   Next, this dispersion was put into an autoclave, hydrothermally treated at a temperature of 180 ° C. for 10 hours, cooled, further filtered and dried. Next, the dried powder was passed through a mixer to break up the agglomerates, and Example sealing powder 4J was obtained.

このようにして得られた実施例封止粉体4Jについて、実施例1の場合と同様に、TiO2含有量、比表面積、分光透過率およびサンセットイエロー退色率をそれぞれ測定した。その結果を表9に示す。 For the Example sealing powder 4J thus obtained, the TiO 2 content, specific surface area, spectral transmittance and sunset yellow fading rate were measured in the same manner as in Example 1. The results are shown in Table 9.

Figure 0005921188
Figure 0005921188

[比較例1〜6]
実施例1で使用した多孔質シリカ系粒子2Aの代わりに、表10に示す多孔質シリカ系粒子を用いると共に、用いた多孔質シリカ系粒子の細孔容積に応じて、四塩化チタン水溶液の使用量を変更して、実施例1における工程(1)〜(3)の操作を行い、比較例焼成粉体3a〜3fを得た。
[Comparative Examples 1-6]
Instead of the porous silica-based particles 2A used in Example 1, the porous silica-based particles shown in Table 10 were used, and the use of an aqueous titanium tetrachloride solution was used depending on the pore volume of the used porous silica-based particles. The amount was changed and the operations of steps (1) to (3) in Example 1 were performed to obtain comparative example fired powders 3a to 3f.

このようにして得られた比較例焼成粉体3a〜3fについて、実施例1の場合と同様に、TiO2含有量、比表面積、分光透過率、サンセットイエロー退色率および崩壊粒子の有無をそれぞれ測定した。その結果を表10に示す。 About the comparative example baked powders 3a to 3f thus obtained, as in Example 1, the TiO 2 content, the specific surface area, the spectral transmittance, the sunset yellow fading rate, and the presence or absence of disintegrating particles, respectively. It was measured. The results are shown in Table 10.

なお、ここで得られた比較例焼成粉体3a〜3fは、波長300nmおよび350nmにおける透過率が高く、紫外線遮蔽効果が不十分であった。また、比較例焼成粉体3fについては、崩壊粒子の存在が確認された。   The comparative fired powders 3a to 3f obtained here had high transmittance at wavelengths of 300 nm and 350 nm, and the ultraviolet shielding effect was insufficient. In addition, the presence of the collapsed particles was confirmed for the comparative example fired powder 3f.

Figure 0005921188
Figure 0005921188

Figure 0005921188
Figure 0005921188

[比較例7]
実施例1の工程(1)で得られた含浸処理粉体を、1000℃で3時間焼成して、比較例焼成粉体3gを得た。
[Comparative Example 7]
The impregnated powder obtained in step (1) of Example 1 was calcined at 1000 ° C. for 3 hours to obtain 3 g of a comparative example calcined powder.

このようにして得られた比較例焼成粉体3gについて、実施例1の場合と同様に、TiO2含有量、比表面積、分光透過率、サンセットイエロー退色率および崩壊粒子の有無をそれぞれ測定した。その結果を表11に示す。 About 3 g of the comparative example calcined powder thus obtained, the TiO 2 content, specific surface area, spectral transmittance, sunset yellow fading rate, and presence / absence of decay particles were measured in the same manner as in Example 1. . The results are shown in Table 11.

なお、ここで得られた比較例焼成粉体3gは、波長300nmにおける透過率が高く、紫外線遮蔽性効果が不十分であるが、表面が封止されており、これ以上含浸操作を行うことができなかった。   In addition, although the comparative example baked powder 3g obtained here has a high transmittance at a wavelength of 300 nm and an ultraviolet shielding effect is insufficient, the surface is sealed, and an impregnation operation can be performed further. could not.

Figure 0005921188
Figure 0005921188

[比較例8]
実施例1で得られた実施例焼成粉体3Aを、1200℃で3時間焼成したところ、シリカ系粒子同士の焼結が生じて粗大なブロック状の塊となり、ミキサーを用いても解砕することができず、本発明のシリカ系粒子を得ることができなかった。
[Comparative Example 8]
When the calcined powder 3A of Example obtained in Example 1 was calcined at 1200 ° C. for 3 hours, the silica-based particles were sintered together to form a coarse block-like lump, which was crushed using a mixer. The silica-based particles of the present invention could not be obtained.

[比較例9]
実施例1で使用した四塩化チタンの濃度を、TiO2として1重量%の濃度に変更して、実施例1における工程(1)〜(3)の操作を行い、比較例焼成粉体3hを得た。
[Comparative Example 9]
The concentration of titanium tetrachloride used in Example 1 was changed to a concentration of 1% by weight as TiO 2 , and the operations of Steps (1) to (3) in Example 1 were carried out to produce a comparative example fired powder 3h. Obtained.

このようにして得られた比較例焼成粉体3hについて、実施例1の場合と同様に、TiO2含有量、比表面積、分光透過率、サンセットイエロー退色率および崩壊粒子の有無をそれぞれ測定した。その結果を表12に示す。
なお、ここで得られた比較例焼成粉体3hは、含浸操作と乾燥・焼成操作を10回行っても、TiO2含有量が低く、紫外線遮蔽効果が得られなかった。
For the comparative example calcined powder 3h thus obtained, the TiO 2 content, specific surface area, spectral transmittance, sunset yellow fading rate, and presence / absence of decay particles were measured in the same manner as in Example 1. . The results are shown in Table 12.
The comparative fired powder 3h obtained here had a low TiO 2 content even when the impregnation operation and the drying / firing operation were performed 10 times, and the ultraviolet shielding effect was not obtained.

[比較例10]
実施例1で使用した四塩化チタンの濃度を、TiO2として42重量%の濃度に変更して、実施例1における工程(1)〜(3)の操作を行い、比較例焼成粉体3iを得た。
[Comparative Example 10]
The concentration of titanium tetrachloride used in Example 1 was changed to a concentration of 42% by weight as TiO 2 , and the operations of Steps (1) to (3) in Example 1 were performed to obtain a fired comparative example powder 3i. Obtained.

このようにして得られた比較例焼成粉体3iについて、実施例1の場合と同様に、TiO2含有量、比表面積、分光透過率、サンセットイエロー退色率および崩壊粒子の有無をそれぞれ測定した。その結果を表12に示す。 About the comparative example baked powder 3i thus obtained, the TiO 2 content, specific surface area, spectral transmittance, sunset yellow fading rate, and presence / absence of decay particles were measured in the same manner as in Example 1. . The results are shown in Table 12.

なお、ここで得られた比較例焼成粉体3iは、波長300nmおよび350nmにおける透過率が高く、紫外線遮蔽効果が不十分であった。   The comparative fired powder 3i obtained here had high transmittance at wavelengths of 300 nm and 350 nm, and the ultraviolet shielding effect was insufficient.

Figure 0005921188
Figure 0005921188

[比較例11]
市販の二酸化チタン系微粒子粉体(テイカ(株)製MT−100SA)について、TiO2含有量、比表面積、分光透過率およびサンセットイエロー退色率を上記の測定方法でそれぞれ測定した。その結果を表13に示す。
[Comparative Example 11]
The TiO 2 content, specific surface area, spectral transmittance, and sunset yellow fading rate were measured for the commercially available titanium dioxide-based fine particle powder (MT-100SA manufactured by Teika Co., Ltd.) by the above measurement methods. The results are shown in Table 13.

なお、この二酸化チタン系微粒子粉体は、波長300nmおよび350nmにおける透過率が高く、紫外線遮蔽効果が不十分であった。また、波長550nmにおける透過率が低く、透明性も低かった。これは、二酸化チタン系微粒子粉末は、分散性が著しく悪く、超音波照射処理を施しても、粒子同士の凝集が解消されていないことによるものと思われる。さらには、サンセットイエロー退色率が高く、光触媒活性が高いことが認められた。   The titanium dioxide-based fine particle powder had high transmittance at wavelengths of 300 nm and 350 nm, and the ultraviolet shielding effect was insufficient. Moreover, the transmittance | permeability in wavelength 550nm was low, and transparency was also low. This is presumably because the titanium dioxide-based fine particle powder has extremely poor dispersibility, and even when subjected to ultrasonic irradiation treatment, the aggregation of the particles is not eliminated. Further, it was confirmed that the sunset yellow fading rate was high and the photocatalytic activity was high.

Figure 0005921188
Figure 0005921188

[実施例11]
実施例1で得られた実施例封止粉体4Aをハイドロゲンジメチコン(信越化学(株)製KF−9901)で表面処理(ハイドロゲンジメチコン3重量%処理品)したものを用いて、表14に示す組成(重量%)からなるサンスクリーン剤を調製した。
[Example 11]
Table 14 shows the results of the surface treatment (hydrogen dimethicone 3% by weight treated product) of Example sealing powder 4A obtained in Example 1 with hydrogen dimethicone (KF-9901 manufactured by Shin-Etsu Chemical Co., Ltd.). A sunscreen agent having a composition (% by weight) was prepared.

なお、前記サンスクリーン剤の調製は、以下のように行った。
(a)下記成分(8)〜(11)の成分を十分に撹拌混合した。
(b)下記成分(1)〜(7)の成分をホモミキサーを用いて混合し、2000rpmの回転速度で10分間、撹拌して、これに含まれる固形分を分散させた。
(c)前記(a)で得られた混合物を、前記(b)のホモミキサーの中に入れて混合し、2000rpmの回転速度で3分間、撹拌して乳化させた。
(d)前記(c)で得られた乳化物を真空容器中に入れて脱泡した。
The sunscreen agent was prepared as follows.
(A) The following components (8) to (11) were sufficiently stirred and mixed.
(B) The following components (1) to (7) were mixed using a homomixer and stirred at a rotational speed of 2000 rpm for 10 minutes to disperse the solid content contained therein.
(C) The mixture obtained in (a) was put into the homomixer of (b) and mixed, and the mixture was emulsified by stirring at a rotational speed of 2000 rpm for 3 minutes.
(D) The emulsion obtained in (c) was put in a vacuum vessel and defoamed.

得られたサンスクリーン剤は、紫外線遮蔽効果を有しており、塗布膜の透明感も高いものであった。   The obtained sunscreen agent had an ultraviolet shielding effect, and the coating film had high transparency.

Figure 0005921188
Figure 0005921188

パウダーファンデーションの調製
実施例1で得られた実施例封止粉体4Aを用いて、表15に示す組成(重量%)からなるパウダーファンデーションを調製した。
なお、前記パウダーファンデーションの調製は、以下のように行った。
(a)下記成分(1)〜(9)の成分をミキサーに入れて撹拌し、均一に混合した。
(b)下記成分(10)〜(12)の成分をミキサーに入れて撹拌し、さらに均一に混合した。
(c)前記(b)で得られた混合物を、解砕処理した後、その中から約12gを取り出し、46mm×54mm×4mmの角金皿に入れてプレス成型した。
Preparation of Powder Foundation Using the sealing powder 4A of Example obtained in Example 1, a powder foundation having the composition (% by weight) shown in Table 15 was prepared.
The powder foundation was prepared as follows.
(A) The following components (1) to (9) were placed in a mixer and stirred to mix uniformly.
(B) The following components (10) to (12) were placed in a mixer and stirred, and further uniformly mixed.
(C) After pulverizing the mixture obtained in (b), about 12 g was taken out from the mixture, put into a square metal pan of 46 mm × 54 mm × 4 mm, and press molded.

得られたパウダーファンデーションは、紫外線遮蔽効果を有しており、塗布膜の透明感も高いものであった。   The obtained powder foundation had an ultraviolet shielding effect, and the coating film had high transparency.

Figure 0005921188
Figure 0005921188

O/W型クリームの調製
実施例1で得られた実施例封止粉体4Aを用いて、表16に示す組成(重量%)からなるO/Wクリームを調製した。
なお、前記O/Wクリームの調製は、以下のように行った。
(a)下記成分(9)〜(15)の成分をホモミキサーを用いて混合し、2000rpmの回転速度で10分間撹拌して、これに含まれる固形分を分散させた。(b)下記成分(1)〜(8)の成分を80℃の温度に加熱し、ホモミキサーを用いて混合し、2000rpmの回転速度で10分間攪拌した。
(c)前記(a)で得られた混合物を、前記(b)のホモミキサーの中に入れて混合し、2000rpmの回転速度で3分間、撹拌して乳化させた。
(d)前記(c)で得られた乳化物を真空容器中に入れて脱泡した。
得られたO/Wクリームは、紫外線遮蔽効果を有しており、塗布膜の透明感も高いものであった。
Preparation of O / W type cream Using the example sealing powder 4A obtained in Example 1, an O / W cream having the composition (% by weight) shown in Table 16 was prepared.
The O / W cream was prepared as follows.
(A) The following components (9) to (15) were mixed using a homomixer and stirred at a rotational speed of 2000 rpm for 10 minutes to disperse the solid content contained therein. (B) The following components (1) to (8) were heated to a temperature of 80 ° C., mixed using a homomixer, and stirred for 10 minutes at a rotational speed of 2000 rpm.
(C) The mixture obtained in (a) was put into the homomixer of (b) and mixed, and the mixture was emulsified by stirring at a rotational speed of 2000 rpm for 3 minutes.
(D) The emulsion obtained in (c) was put in a vacuum vessel and defoamed.
The obtained O / W cream had an ultraviolet shielding effect, and the coating film had high transparency.

Figure 0005921188
Figure 0005921188

Claims (14)

紫外線遮蔽効果を有する、粒子径が100〜1000nmのシリカ系粒子の製造方法であって、
(1)粒子内に細孔径が2〜100nmの範囲にある細孔群を有し、さらにその細孔容積が0.05〜2.0ml/gの範囲にあり、しかも粒子径が100〜1000nmの範囲にある多孔質シリカ系粒子に、チタニウム、亜鉛、セリウムおよび鉄から選ばれた1種または2種以上の金属元素を含む金属含有溶液を粒子内の毛管作用により含浸させ、次いで
(2)前記(1)に記載の含浸操作で得られたシリカ系粒子を100〜800℃の温度で加熱して前記金属元素の水酸化物または酸化物を細孔内に沈着・固定化させ、さらに
(3)前記(2)に記載の加熱操作で得られたシリカ系粒子を、再び前記(1)に記載の含浸操作と前記(2)に記載の加熱操作に供して前記金属元素の水酸化物および/または酸化物を前記細孔内に沈着・固定化させる
ことを特徴とするシリカ系粒子の製造方法。
A method for producing silica-based particles having an ultraviolet shielding effect and having a particle diameter of 100 to 1000 nm,
(1) It has a pore group having a pore diameter in the range of 2 to 100 nm in the particles, and further has a pore volume in the range of 0.05 to 2.0 ml / g, and further has a particle diameter of 100 to 1000 nm. The porous silica-based particles in the range of (1) are impregnated with a metal-containing solution containing one or more metal elements selected from titanium, zinc, cerium and iron by capillary action in the particles, and then (2) The silica-based particles obtained by the impregnation operation described in (1) above are heated at a temperature of 100 to 800 ° C. to deposit and fix the hydroxide or oxide of the metal element in the pores, 3) The silica particles obtained by the heating operation described in the above (2) are again subjected to the impregnation operation described in the above (1) and the heating operation described in the above (2). And / or deposit and fix oxides in the pores Method for producing a silica-based particles, characterized in that cause.
前記(3)に記載の含浸操作および加熱操作を、前記金属元素の水酸化物および/または酸化物が前記細孔内に所定量、沈着・固定化するまで繰り返し行うことを特徴とする請求項1に記載のシリカ系粒子の製造方法。   The impregnation operation and the heating operation described in (3) are repeated until a predetermined amount of the metal element hydroxide and / or oxide is deposited and fixed in the pores. The method for producing silica-based particles according to 1. 前記(3)に記載の含浸操作および加熱操作から得られたシリカ系粒子を、さらに900〜1100℃の温度で焼成して粒子表面に存在するシリカ成分を焼結させることにより該粒子の表面を封止することを特徴とする請求項1または2に記載のシリカ系粒子の製造方法。   The silica-based particles obtained from the impregnation operation and heating operation described in (3) above are further fired at a temperature of 900 to 1100 ° C. to sinter the silica component present on the particle surface, thereby sinter the surface of the particles. 3. The method for producing silica-based particles according to claim 1, wherein sealing is performed. 前記(3)に記載の含浸操作および加熱操作から得られたシリカ系粒子を、下記一般式(I)で表される有機珪素化合物および/または珪酸と混合したのち、該化合物を水熱処理して、前記シリカ系粒子の表面をシリカ成分で被覆することにより該粒子の表面を封止することを特徴とする請求項1または2に記載のシリカ系粒子の製造方法。
Figure 0005921188
〔ただし、R1、R2はアルキル基、アリール基、ビニル基、またはアクリル基であり、nは0、1、2または3を表す。〕
Silica-based particles obtained from the impregnation operation and heating operation described in (3) above are mixed with an organosilicon compound and / or silicic acid represented by the following general formula (I), and then the compound is hydrothermally treated. The method for producing silica-based particles according to claim 1 or 2, wherein the surface of the silica-based particles is covered with a silica component to seal the surface of the particles.
Figure 0005921188
[However, R 1 and R 2 are an alkyl group, an aryl group, a vinyl group, or an acrylic group, and n represents 0, 1, 2, or 3. ]
前記多孔質シリカ系粒子が、平均粒子径が5〜300nmのシリカ系微粒子(一次粒子)を含む水分散ゾル、または該シリカ系微粒子(一次粒子)を含む水分散ゾルと酸性珪酸液との混合物を噴霧乾燥し、さらに得られた粒子群を分級してその粒子径を100〜1000nmの範囲としたものであることを特徴とする請求項1〜4のいずれかに記載のシリカ系粒子の製造方法。   An aqueous dispersion sol in which the porous silica-based particles include silica-based fine particles (primary particles) having an average particle diameter of 5 to 300 nm, or a mixture of an aqueous dispersion sol containing the silica-based fine particles (primary particles) and an acidic silicic acid solution The silica particles according to any one of claims 1 to 4, wherein the particles are classified by spray drying and classifying the obtained particle group to a range of 100 to 1000 nm. Method. 前記多孔質シリカ系粒子内に存在する細孔群が、請求項5に記載のシリカ系微粒子(一次粒子)の粒子間に形成される粒界ボイドであることを特徴とする請求項1〜5のいずれかに記載のシリカ系粒子の製造方法。   The pore group which exists in the said porous silica type particle is a grain boundary void formed between the particle | grains of the silica type fine particle (primary particle) of Claim 5. The method for producing silica-based particles according to any one of the above. 前記金属含有溶液が、前記金属元素の塩酸塩、硝酸塩、硫酸塩、オキシ硫酸塩、ペルオキソ化合物、アルコキシド化合物および/または有機金属錯体から選ばれる1種または2種以上の溶解性金属化合物を含む溶液であることを特徴とする請求項1〜6のいずれかに記載のシリカ系粒子の製造方法。   The metal-containing solution is a solution containing one or more soluble metal compounds selected from the hydrochloride, nitrate, sulfate, oxysulfate, peroxo compound, alkoxide compound and / or organometallic complex of the metal element. The method for producing silica-based particles according to claim 1, wherein: 前記金属含有溶液中に含まれる金属塩の濃度が、5〜40重量%の範囲にあることを特徴とする請求項1〜7のいずれかに記載のシリカ系粒子の製造方法。   The method for producing silica-based particles according to any one of claims 1 to 7, wherein the concentration of the metal salt contained in the metal-containing solution is in the range of 5 to 40% by weight. 前記含浸操作を、前記多孔質シリカ系粒子群を前記金属含有溶液中に浸漬することなく、該多孔質シリカ系粒子群に前記金属含有溶液を、該多孔質シリカ系粒子群の細孔容積に対して過不足ない量だけ散布しながら行うことを特徴とする請求項1〜8のいずれかに記載のシリカ系粒子の製造方法。   In the impregnation operation, the porous silica-based particle group is immersed in the metal-containing solution without immersing the porous silica-based particle group in the pore volume of the porous silica-based particle group. The method for producing silica-based particles according to any one of claims 1 to 8, wherein the method is carried out while spraying only an amount that is not excessive or insufficient. 粒子内に細孔径が2〜100nmの範囲にある細孔群を有し、さらにその細孔容積が0.05〜2.0ml/gの範囲にあり、しかも粒子径が100〜1000nmの範囲にある多孔質シリカ系粒子の細孔内部に、チタニウム、亜鉛、セリウムおよび鉄から選ばれた少なくとも1種からなる金属元素の水酸化物および/または酸化物を沈着・固定化してなる、紫外線遮蔽効果を有する、粒子径が100〜1000nmのシリカ系粒子。   It has a pore group having a pore diameter in the range of 2 to 100 nm in the particles, and further has a pore volume in the range of 0.05 to 2.0 ml / g and a particle diameter in the range of 100 to 1000 nm. Ultraviolet shielding effect obtained by depositing and fixing at least one metal element hydroxide and / or oxide selected from titanium, zinc, cerium and iron inside the pores of a porous silica-based particle Silica-based particles having a particle diameter of 100 to 1000 nm. 前記シリカ系粒子が、粒子表面に存在するシリカ成分を焼結させて該粒子の表面を封止したものであることを特徴とする請求項10に記載のシリカ系粒子。   The silica-based particle according to claim 10, wherein the silica-based particle is obtained by sintering a silica component present on the particle surface to seal the surface of the particle. 前記シリカ系粒子の表面がシリカ成分で被覆されたことを特徴とする請求項10に記載のシリカ系粒子。 The silica-based particle according to claim 10, wherein the surface of the silica-based particle is coated with a silica component . 請求項10〜12のいずれかに記載のシリカ系粒子を配合してなる化粧料。   Cosmetics which mix | blend the silica type particle | grains in any one of Claims 10-12. 前記化粧料が、サンスクリーン化粧料、メークアップ化粧料またはスキンケア化粧料であることを特徴とする請求項13に記載の化粧料。   The cosmetic according to claim 13, wherein the cosmetic is a sunscreen cosmetic, a makeup cosmetic, or a skin care cosmetic.
JP2011289347A 2011-12-28 2011-12-28 Method for producing silica-based particles having an ultraviolet shielding effect, silica-based particles obtained from the method, and a cosmetic comprising the silica-based particles Active JP5921188B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011289347A JP5921188B2 (en) 2011-12-28 2011-12-28 Method for producing silica-based particles having an ultraviolet shielding effect, silica-based particles obtained from the method, and a cosmetic comprising the silica-based particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011289347A JP5921188B2 (en) 2011-12-28 2011-12-28 Method for producing silica-based particles having an ultraviolet shielding effect, silica-based particles obtained from the method, and a cosmetic comprising the silica-based particles

Publications (2)

Publication Number Publication Date
JP2013136493A JP2013136493A (en) 2013-07-11
JP5921188B2 true JP5921188B2 (en) 2016-05-24

Family

ID=48912593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011289347A Active JP5921188B2 (en) 2011-12-28 2011-12-28 Method for producing silica-based particles having an ultraviolet shielding effect, silica-based particles obtained from the method, and a cosmetic comprising the silica-based particles

Country Status (1)

Country Link
JP (1) JP5921188B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101763191B1 (en) 2014-06-30 2017-07-31 닛키 쇼쿠바이카세이 가부시키가이샤 Porous silica particles, method for producing same, and cosmetic compounded with same
JP6808271B2 (en) * 2016-03-30 2021-01-06 東ソー株式会社 Method for manufacturing titanium oxide-coated mesoporous silica
JP6598719B2 (en) * 2016-03-30 2019-10-30 日揮触媒化成株式会社 Method for producing silica-based composite particle dispersion
EP3590494B1 (en) * 2017-03-03 2023-06-21 Shiseido Company, Ltd. High portability cosmetic comprising uv filters
JP6941958B2 (en) * 2017-03-31 2021-09-29 日揮触媒化成株式会社 Coated particles and their manufacturing method
JP7085730B2 (en) * 2017-07-10 2022-06-17 東ソー株式会社 Metal oxide-coated porous material, its manufacturing method and UV scattering agent
KR102053215B1 (en) * 2019-04-03 2019-12-06 한국콜마주식회사 Composite powder for protecting ultraviolet ray, near infrared ray or blue light, and cosmetics composition containing the same
WO2021125211A1 (en) * 2019-12-16 2021-06-24 株式会社 資生堂 Sunscreen cosmetic
JP7498582B2 (en) 2020-03-27 2024-06-12 日揮触媒化成株式会社 Particles having a cavity inside an outer shell and an internal particle, a coating solution containing the particles, and a substrate with a transparent coating containing the particles

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0867867A (en) * 1994-06-23 1996-03-12 Suzuki Yushi Kogyo Kk Ultraviolet rays blocking material, ultraviolet rays blocking synthetic resin, ultraviolet rays blocking cosmetic and ultraviolet rays blocking coating film respectively using the same

Also Published As

Publication number Publication date
JP2013136493A (en) 2013-07-11

Similar Documents

Publication Publication Date Title
JP5921188B2 (en) Method for producing silica-based particles having an ultraviolet shielding effect, silica-based particles obtained from the method, and a cosmetic comprising the silica-based particles
EP3162762B1 (en) Porous silica particles, method for producing same, and cosmetic compounded with same
US9327258B2 (en) Porous silica-based particles having smooth surface, method for production thereof and cosmetic comprising such particles
JP7170633B2 (en) Hollow particles and cosmetics
US8168157B2 (en) Production method of fine particle zinc oxide powder and cosmetics containing the same
JP5791771B2 (en) Porous silica-based particles having excellent surface smoothness and cosmetics comprising the porous silica-based particles
JP5839984B2 (en) Method for producing metal oxide particles
JP5896688B2 (en) Method for producing pigment-encapsulated silica-based particles
JP5850740B2 (en) Method for producing metal oxide particles
JP5850705B2 (en) Method for producing dye-encapsulated silica-based particles, dye-encapsulated silica-based particles, and cosmetics containing the same
JPWO2004006873A1 (en) Cosmetics
CN114901241B (en) Antifouling composite powder having ultraviolet blocking function and fine dust blocking function, and cosmetic composition comprising same
JP7019460B2 (en) Water-based cosmetics
JP2015163600A (en) Surface-treated porous inorganic oxide particles, production method thereof, and cosmetic comprising particles thereof
JP2005075690A (en) Compound body containing iron phosphate and cosmetic containing the same
JP2022509948A (en) A sunscreen composition that absorbs light in the UVA region, and a method for producing the same.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150721

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160412

R150 Certificate of patent or registration of utility model

Ref document number: 5921188

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250