JP5920312B2 - Method for producing particle dispersion and method for producing oxide semiconductor particles - Google Patents

Method for producing particle dispersion and method for producing oxide semiconductor particles Download PDF

Info

Publication number
JP5920312B2
JP5920312B2 JP2013223785A JP2013223785A JP5920312B2 JP 5920312 B2 JP5920312 B2 JP 5920312B2 JP 2013223785 A JP2013223785 A JP 2013223785A JP 2013223785 A JP2013223785 A JP 2013223785A JP 5920312 B2 JP5920312 B2 JP 5920312B2
Authority
JP
Japan
Prior art keywords
acid
particle dispersion
oxide
fluorine
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013223785A
Other languages
Japanese (ja)
Other versions
JP2014061520A (en
Inventor
年治 林
年治 林
山崎 和彦
和彦 山崎
将英 荒井
将英 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2013223785A priority Critical patent/JP5920312B2/en
Publication of JP2014061520A publication Critical patent/JP2014061520A/en
Application granted granted Critical
Publication of JP5920312B2 publication Critical patent/JP5920312B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、酸化物半導体粒子が分散した粒子分散体を製造する方法と、この方法で製造された粒子分散体を乾燥して酸化物半導体粒子を製造する方法に関するものである。 The present invention relates to a method for producing a particle dispersion in which oxide semiconductor particles are dispersed, and a method for producing oxide semiconductor particles by drying the particle dispersion produced by this method.

従来、1,4-グルコシド結合を有する化合物と金属化合物とを溶媒に溶解し、得られた溶液中の金属イオンを還元し、金属ナノ粒子とする金属ナノ粒子の製造方法(例えば、特許文献1参照。)が開示されている。この金属ナノ粒子の製造方法では、上記溶液を加熱し、その後還元剤を添加することにより、金属イオンを還元する。このように極めて簡便な方法により単分散かつ微細な金属ナノ粒子を製造できるようになっている。   Conventionally, a method for producing metal nanoparticles by dissolving a compound having a 1,4-glucoside bond and a metal compound in a solvent and reducing metal ions in the resulting solution to form metal nanoparticles (for example, Patent Document 1) Reference). In this method for producing metal nanoparticles, the metal ions are reduced by heating the solution and then adding a reducing agent. Thus, monodispersed and fine metal nanoparticles can be produced by a very simple method.

特開2003−213311号公報(請求項1及び4、段落[0032])JP 2003-213111 A (claims 1 and 4, paragraph [0032])

しかし、上記従来の特許文献1に示された金属ナノ粒子の製造方法では、還元反応が有機金属の自己分解に頼っているため、不均一に反応して凝集物が発生し易く、分散体を得ることが難しく、歩留まりが悪いという不具合があった。
本発明の目的は、極めて簡便に、導電性、分散性、分散安定性、透明性、沈降防止性等を付与若しくは改善することができる、粒子分散体の製造方法及び酸化物半導体粒子の製造方法を提供することにある。
However, in the method for producing metal nanoparticles shown in the above-mentioned conventional Patent Document 1, since the reduction reaction relies on the self-decomposition of the organic metal, the reaction tends to occur non-uniformly and aggregates are easily generated. There was a problem that it was difficult to obtain and the yield was poor.
An object of the present invention is to provide a method for producing a particle dispersion and a method for producing an oxide semiconductor particle, which can impart or improve conductivity, dispersibility, dispersion stability, transparency, anti-settling property, etc. very simply. Is to provide.

本発明の第の観点は、有機金属化合物及び有機半金属化合物からなる群より選ばれた1種又は2種以上の単一物又は混合物に、フッ化アンモニウムを添加した後に、この単一物又は混合物1g当たり、不活性ガス雰囲気中、還元性ガス雰囲気中又は大気雰囲気中で出力109〜114Wのマイクロ波を4〜8分間照射して得られたコロイド状の粒子分散体を溶媒で希釈した後に、密栓したガラス瓶に入れて40℃に保持したときに、粒子が分散して2週間以上沈殿せずにコロイド特有のインク状態を保つコロイド状の粒子分散体を作製する工程を含む粒子分散体の製造方法である。
この第の観点の粒子分散体の製造方法では、上記フッ化アンモニウムを添加した単一物又は混合物に所定の雰囲気中でマイクロ波を照射すると、単一物又は混合物の分子がマイクロ波により振動して摩擦熱が発生することにより加熱されるため、化学的に反応しながら有機金属化合物中の金属若しくは金属酸化物又は有機半金属化合物中の半金属又は半金属酸化物が中心となって有機金属化合物又は有機半金属化合物が分解する。この有機金属化合物又は有機半金属化合物の分解により、結合の外れた金属、半金属又はそれらの酸化物生成体からなる粒子の表面に、同様に結合の外れた有機物又はその分解生成物が付くため、導電性、分散性、分散安定性、透明性、沈降防止性等の特性を有する膜として用いられる粒子分散体が得られる。
According to a first aspect of the present invention, ammonium fluoride is added to one or two or more single substances or a mixture selected from the group consisting of an organic metal compound and an organic metalloid compound. Alternatively, a colloidal particle dispersion obtained by irradiating microwaves with an output of 109 to 114 W for 4 to 8 minutes in an inert gas atmosphere, a reducing gas atmosphere or an air atmosphere per 1 g of the mixture was diluted with a solvent. A particle dispersion comprising a step of producing a colloidal particle dispersion that retains the ink state peculiar to a colloid without being dispersed for 2 weeks or more when placed in a sealed glass bottle and kept at 40 ° C. It is a manufacturing method.
In the method for producing a particle dispersion according to the first aspect , when the single substance or mixture to which the ammonium fluoride is added is irradiated with microwaves in a predetermined atmosphere, the molecules of the single substance or mixture are vibrated by the microwaves. Since it is heated by the generation of frictional heat, the metal or metal oxide in the organometallic compound or the semimetal or semimetal oxide in the organic metalloid compound is the center while reacting chemically. Metal compounds or organic metalloid compounds decompose. The decomposition of the organometallic compound or the organometalloid compound causes the dissociated organic substance or its decomposition product to be similarly attached to the surface of the particles made of the unbonded metal, semimetal or oxide product thereof. Thus, a particle dispersion used as a film having properties such as conductivity, dispersibility, dispersion stability, transparency, and anti-settling property can be obtained.

の観点の粒子分散体の製造方法では、有機金属化合物及び有機半金属化合物からなる群より選ばれた1種又は2種以上の単一物又は混合物に、フッ化アンモニウムを添加した後に、所定の雰囲気中でマイクロ波を照射することにより、粒子が分散して2週間以上沈殿せずにコロイド特有のインク状態を保つコロイド状の分散体を作製したので、極めて簡便に、導電性、分散性、分散安定性、透明性、沈降防止性等を付与若しくは改善した粒子分散体を得ることができる。 In the manufacturing method of the particle dispersion of the first aspect, the one or more single compounds or mixtures selected from the group consisting of organic metal compound and an organic metalloid compound, after the addition of ammonium fluoride, By irradiating with microwaves in a predetermined atmosphere, a colloidal dispersion that maintains the ink state peculiar to the colloid without dispersing particles and precipitating for more than 2 weeks was prepared. A particle dispersion imparted or improved with properties, dispersion stability, transparency, anti-settling property, etc. can be obtained.

本発明実施形態の粒子分散体を実験的に製造する装置の断面構成図である。It is a section lineblock diagram of an apparatus which manufactures a particle dispersion of an embodiment of the present invention experimentally. ステンレス製のフォトマスクの斜視図である。It is a perspective view of a stainless steel photomask.

次に本発明を実施するための形態を図面に基づいて説明する。(なお、以下に記載の「第1の実施の形態」は「参考の形態」である。)
<第1の実施の形態>
図1に示すように、粒子分散体を製造するには、先ず有機金属化合物及び有機半金属化合物からなる群より選ばれた1種又は2種以上の単一物を作製するか或いは混合物を調製する。上記有機金属化合物に含まれる金属は、Cu,Au,Ag,Pt,Pd,Ru,Rh,Re,Os,Ir,Sc,Y,Ti,Zr,V,Nb,Ta,Cr,Mo,W,Mn,Fe,Co,Ni,Zn,Cd,Al,Ga,In,Tl,Sn,Pb,La,Ce,Nd,Sm,Eu,Gd,Tb,Er,Tm及びYbからなる群より選ばれた1種又は2種以上の金属、好ましくはCu,Au,Ag,Pt,Pd,Ru,Rh,Re,Ti,Fe,Co,Ni,Zn,In及びSnからなる群より選ばれた1種又は2種以上の金属である。また上記有機半金属化合物に含まれる半金属は、Si,Ge,Sb及びBiからなる群より選ばれた1種又は2種以上の半金属である。
Next, an embodiment for carrying out the present invention will be described with reference to the drawings. (The “first embodiment” described below is a “reference embodiment”.)
<First Embodiment>
As shown in FIG. 1, in order to produce a particle dispersion, first, one or two or more single substances selected from the group consisting of an organic metal compound and an organic metalloid compound are prepared or a mixture is prepared. To do. The metal contained in the organometallic compound is Cu, Au, Ag, Pt, Pd, Ru, Rh, Re, Os, Ir, Sc, Y, Ti, Zr, V, Nb, Ta, Cr, Mo, W, Selected from the group consisting of Mn, Fe, Co, Ni, Zn, Cd, Al, Ga, In, Tl, Sn, Pb, La, Ce, Nd, Sm, Eu, Gd, Tb, Er, Tm and Yb One or more metals, preferably one selected from the group consisting of Cu, Au, Ag, Pt, Pd, Ru, Rh, Re, Ti, Fe, Co, Ni, Zn, In and Sn Two or more metals. The metalloid contained in the organic metalloid compound is one or more metalloids selected from the group consisting of Si, Ge, Sb and Bi.

上記有機金属化合物又は有機半金属化合物の有機成分は、有機酸及びアミンからなる群より選ばれた1種又は2種以上の化合物であり、上記有機酸は、炭素数2〜29、好ましくは炭素数3〜18の炭素を含む化合物からなる群より選ばれた1種又は2種以上の化合物であることが好ましい。この実施の形態では、有機酸は、光重合性化合物である。具体的には、光重合性化合物は、アクリロイル基、メタクリロイル基及びビニル基からなる群より選ばれた1種又は2種以上を含むことが好ましい。ここで、炭素数を2〜29の範囲に限定したのは、炭素数が2未満は所望の有機酸を得ることができず、炭素数が29を越える有機酸は見当たらず実質的に使用しないからである。 The organic component of the organic metal compound or organic metalloid compound is one or more compounds selected from the group consisting of organic acids and amines, and the organic acid has 2 to 29 carbon atoms, preferably carbon. It is preferable that it is 1 type, or 2 or more types of compounds chosen from the group which consists of a compound containing several 3-18 carbons. In this embodiment, the organic acid is Ru der photopolymerizable compound. Specifically, the photopolymerizable compound preferably contains one or more selected from the group consisting of an acryloyl group, a methacryloyl group, and a vinyl group. Here, the reason why the number of carbon atoms is limited to the range of 2 to 29 is that when the number of carbon atoms is less than 2, a desired organic acid cannot be obtained, and an organic acid having more than 29 carbon atoms is not found and is not substantially used. Because.

一方、アミンは、ジブチルアミン、ジイソブチルアミン、トリペンチルアミン、アリルアミン、シクロヘキシルアミン、ジシクロヘキシルアミン、プロピレンジアミン、ジエチレントリアミン、ドデシルアミン、1,3−ジメチル−n−ブチルアミン、1−アミノウンデカン、1−アミノトリデカン、テトラデシルアミン、ヘキサデシルアミン、オクタデシルアミン、オレイルアミン、ジオレイルアミン、ドデシルジメチルアミン、テトラデシルジメチルアミン、ヘキサデシルジメチルアミン、オクタデシルジメチルアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン及び3−メトキシプロピルアミンからなる群より選ばれた1種又は2種以上であることが好ましく、更にジブチルアミン、ドデシルアミン、テトラデシルアミン、ヘキサデシルアミン、オクタデシルアミン、オレイルアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン及び3−メトキシプロピルアミンからなる群より選ばれた1種又は2種以上のアミンであることが好ましい。また還元剤は、ヒドラジン、水素化ホウ素塩、ジメチルアミンボラン、ギ酸、ギ酸塩及びジ亜燐酸塩からなる群より選ばれた1種又は2種以上であることが好ましい。   On the other hand, amines are dibutylamine, diisobutylamine, tripentylamine, allylamine, cyclohexylamine, dicyclohexylamine, propylenediamine, diethylenetriamine, dodecylamine, 1,3-dimethyl-n-butylamine, 1-aminoundecane, 1-aminotridecane. Decane, tetradecylamine, hexadecylamine, octadecylamine, oleylamine, dioleylamine, dodecyldimethylamine, tetradecyldimethylamine, hexadecyldimethylamine, octadecyldimethylamine, monoethanolamine, diethanolamine, triethanolamine and 3-methoxypropyl It is preferably one or more selected from the group consisting of amines, and further dibutylamine, dodecylamine, tetra Shiruamin, hexadecylamine, octadecylamine, oleylamine, monoethanolamine, diethanolamine, is preferably one or more amines selected from the group consisting of triethanolamine and 3-methoxypropylamine. The reducing agent is preferably one or more selected from the group consisting of hydrazine, borohydride, dimethylamine borane, formic acid, formate and diphosphite.

次に上記単一物又は混合物を所定の雰囲気中で出力800〜1250W、好ましくは900〜1200Wのマイクロ波を4〜8分間保持する。このマイクロ波を発生する手段としては、電子レンジを用いることが好ましく、そのマイクロ波の周波数は2.45GHzに設定されている。また単一物又は混合物にマイクロ波を照射するときの雰囲気は、不活性ガス雰囲気、還元性ガス雰囲気又は大気雰囲気であることが好ましい。ここで、マイクロ波の出力を800〜1250Wの範囲に限定したのは、800W未満では分散体の生成が不十分となり、1250Wを越えると有機物の分解が著しくなり、安定した分散体が得られないからである。またマイクロ波の照射時間を4〜8分間の範囲に限定したのは、分間未満では分散体の生成が不十分となり、分間を越えると反応が著しく過度に進行し、凝集塊が生成するからである。このような簡便な方法で粒子が分散したコロイド状の分散体を作製できる。 Next, the single substance or the mixture is held in a predetermined atmosphere with a microwave having an output of 800 to 1250 W, preferably 900 to 1200 W for 4 to 8 minutes. As a means for generating this microwave, it is preferable to use a microwave oven, and the frequency of the microwave is set to 2.45 GHz. Moreover, it is preferable that the atmosphere when irradiating a single substance or a mixture with a microwave is an inert gas atmosphere, a reducing gas atmosphere, or an air atmosphere. Here, the microwave output is limited to the range of 800 to 1250 W. If the output is less than 800 W, the generation of the dispersion is insufficient, and if it exceeds 1250 W, the decomposition of the organic matter becomes remarkable, and a stable dispersion cannot be obtained. Because. Moreover, the reason for limiting the microwave irradiation time to the range of 4 to 8 minutes is that the dispersion is not sufficiently generated when the period is less than 4 minutes, and the reaction proceeds remarkably excessively when the period exceeds 8 minutes, and aggregates are formed. Because. A colloidal dispersion in which particles are dispersed can be produced by such a simple method.

上記方法により製造された粒子分散体としては、平均粒径0.005〜1.0μm、好ましくは0.01〜0.8μmの酸化錫、酸化インジウム、酸化亜鉛、錫含有酸化インジウム(ITO)、亜鉛含有酸化インジウム(IZO)、アルミニウム含有酸化亜鉛(AZO)、ガリウム含有酸化亜鉛(GZO)、セリウム含有酸化亜鉛(CZO)、ホウ素含有酸化亜鉛(BZO)、アンチモン含有酸化錫(ATO)、或いはリン含有酸化錫(PTO)の酸化物半導体粒子を含む粒子分散体が挙げられる。また上記粒子分散体を乾燥して得られた酸化物半導体粒子としては、平均粒径0.005〜1.0μm、好ましくは0.01〜0.8μmの酸化錫、酸化インジウム、酸化亜鉛、錫含有酸化インジウム(ITO)、亜鉛含有酸化インジウム(IZO)、アルミニウム含有酸化亜鉛(AZO)、ガリウム含有酸化亜鉛(GZO)、セリウム含有酸化亜鉛(CZO)、ホウ素含有酸化亜鉛(BZO)、アンチモン含有酸化錫(ATO)、或いはリン含有酸化錫(PTO)の酸化物半導体粒子が挙げられる。ここで、酸化物半導体粒子の平均粒径を0.005〜1.0μmの範囲に限定したのは、0.005μm未満の粒子や1.0μmを越える粒子がこの方法では得られないからである。なお、本発明で使用される酸化物半導体粒子などの平均粒径とは、レーザー回折/散乱式粒度分布測定装置(堀場製作所製 LA−950)にて測定し、粒子径基準を個数として演算した50%平均粒子径(D50)をいう。このレーザー回折/散乱式粒度分布測定装置による個数基準平均粒径の値は、走査型電子顕微鏡(日立ハイテクノロジーズ製 S−4300SE及びS−900)により観察した画像において、任意の50個の粒子について粒径を実測したときのその平均粒径とほぼ一致する。 As the particle dispersion produced by the above method, an average particle diameter of 0.005 to 1.0 μm, preferably 0.01 to 0.8 μm of tin oxide, indium oxide, zinc oxide, tin-containing indium oxide (ITO), Zinc-containing indium oxide (IZO), aluminum-containing zinc oxide (AZO), gallium-containing zinc oxide (GZO), cerium-containing zinc oxide (CZO), boron-containing zinc oxide (BZO), antimony-containing tin oxide (ATO), or phosphorus Examples thereof include a particle dispersion containing oxide semiconductor particles of tin oxide (PTO). The oxide semiconductor particles obtained by drying the particle dispersion are tin oxide, indium oxide, zinc oxide, tin having an average particle size of 0.005 to 1.0 μm, preferably 0.01 to 0.8 μm. Containing indium oxide (ITO), zinc containing indium oxide (IZO), aluminum containing zinc oxide (AZO), gallium containing zinc oxide (GZO), cerium containing zinc oxide (CZO), boron containing zinc oxide (BZO), antimony containing oxidation Examples thereof include oxide semiconductor particles of tin (ATO) or phosphorus-containing tin oxide (PTO). Here, the reason why the average particle size of the oxide semiconductor particles is limited to the range of 0.005 to 1.0 μm is that particles having a particle size of less than 0.005 μm or particles exceeding 1.0 μm cannot be obtained by this method. . The average particle size of the oxide semiconductor particles used in the present invention is measured with a laser diffraction / scattering particle size distribution measuring device (LA-950, manufactured by Horiba, Ltd.), and the particle size reference is calculated as the number. 50% average particle diameter (D 50 ). The number-based average particle diameter measured by the laser diffraction / scattering particle size distribution measuring apparatus is the value of any 50 particles in an image observed with a scanning electron microscope (S-4300SE and S-900 manufactured by Hitachi High-Technologies). It almost coincides with the average particle diameter when the particle diameter is actually measured.

<第2の実施の形態>
上記第1の実施の形態で作製又は調製された単一物又は混合物に更にフッ化アンモニウムを添加することと、有機酸として光重合性化合物のみならず次のものを用いることができることを除いて、第1の実施の形態と同様にして粒子が分散したコロイド状の分散体を作製する。上記有機酸は、リンゴ酸、クエン酸、フマル酸、マレイン酸、酒石酸、酢酸、プロピオン酸、酪酸、イソ酪酸、ビバル酸、吉草酸、イソ吉草酸、カプロン酸、2−エチル酪酸、カプリル酸、ペラルゴン酸、2−エチルヘキサン酸、カプリン酸、ウンデカン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、イソステアリン酸、アラキン酸、ベヘン酸、リグノセリン酸、セロチン酸、モンタン酸、メリシン酸、リシノール酸、12−ヒドロキシステアリン酸、ナフテン酸、アビエチン酸、デキストロピマル酸、パルミトレイン酸、オレイン酸、リノール酸及びリノレン酸からなる群より選ばれた1種又は2種以上の有機酸であることが好ましく、更にリンゴ酸、クエン酸、フマル酸、マレイン酸、2−エチルヘキサン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、イソステアリン酸、12−ヒドロキシステアリン酸、オレイン酸、リノール酸及びリノレン酸からなる群より選ばれた1種又は2種以上の有機酸であることが好ましい。
<Second Embodiment>
Except that ammonium fluoride is further added to the single substance or mixture prepared or prepared in the first embodiment and that the following can be used as the organic acid as well as the photopolymerizable compound. As in the first embodiment, a colloidal dispersion in which particles are dispersed is prepared. The organic acids are malic acid, citric acid, fumaric acid, maleic acid, tartaric acid, acetic acid, propionic acid, butyric acid, isobutyric acid, vibalic acid, valeric acid, isovaleric acid, caproic acid, 2-ethylbutyric acid, caprylic acid, Pelargonic acid, 2-ethylhexanoic acid, capric acid, undecanoic acid, lauric acid, myristic acid, palmitic acid, stearic acid, isostearic acid, arachidic acid, behenic acid, lignoceric acid, serotic acid, montanic acid, melicic acid, ricinoleic acid , 12-hydroxystearic acid, naphthenic acid, abietic acid, dextropimalic acid, palmitoleic acid, oleic acid, linoleic acid and linolenic acid, preferably one or more organic acids, Malic acid, citric acid, fumaric acid, maleic acid, 2-ethylhexanoic acid, laurin , Myristic acid, palmitic acid, stearic acid, isostearic acid, 12-hydroxystearic acid, oleic acid, that is one or more organic acid selected from the group consisting of linoleic acid and linolenic acid.

この方法により製造された粒子分散体としては、平均粒径0.005〜1.0μm、好ましくは0.01〜0.8μmのフッ素含有酸化錫(FTO)、フッ素含有酸化インジウム(FIO)、フッ素含有酸化亜鉛(FZO)、フッ素錫含有酸化インジウム(FITO)、フッ素亜鉛含有酸化インジウム(FIZO)、フッ素アルミニウム含有酸化亜鉛(FAZO)、フッ素ガリウム含有酸化亜鉛(FGZO)、フッ素セリウム含有酸化亜鉛(FCZO)、或いはフッ素アンチモン含有酸化錫(FATO)の酸化物半導体粒子を含む粒子分散体が挙げられる。また上記粒子分散体を乾燥して得られた酸化粒半導体粒子としては、平均粒径0.005〜1.0μm、好ましくは0.01〜0.8μmのフッ素含有酸化錫(FTO)、フッ素含有酸化インジウム(FIO)、フッ素含有酸化亜鉛(FZO)、フッ素錫含有酸化インジウム(FITO)、フッ素亜鉛含有酸化インジウム(FIZO)、フッ素アルミニウム含有酸化亜鉛(FAZO)、フッ素ガリウム含有酸化亜鉛(FGZO)、フッ素セリウム含有酸化亜鉛(FCZO)、或いはフッ素アンチモン含有酸化錫(FATO)の酸化物半導体粒子が挙げられる。ここで、酸化物半導体粒子の平均粒径を0.005〜1.0μmの範囲に限定したのは、0.005μm未満の粒子や1.0μmを越える粒子がこの方法では得られないからである。   The particle dispersion produced by this method includes fluorine-containing tin oxide (FTO), fluorine-containing indium oxide (FIO), fluorine having an average particle diameter of 0.005 to 1.0 μm, preferably 0.01 to 0.8 μm. Containing zinc oxide (FZO), fluorine tin containing indium oxide (FITO), fluorine zinc containing indium oxide (FIZO), fluorine aluminum containing zinc oxide (FAZO), fluorine gallium containing zinc oxide (FGZO), fluorine cerium containing zinc oxide (FCZO) ), Or a particle dispersion including oxide semiconductor particles of fluorine antimony-containing tin oxide (FATO). Moreover, as the oxidized particle semiconductor particles obtained by drying the particle dispersion, fluorine-containing tin oxide (FTO) having an average particle diameter of 0.005 to 1.0 μm, preferably 0.01 to 0.8 μm, fluorine-containing Indium oxide (FIO), fluorine-containing zinc oxide (FZO), fluorine tin-containing indium oxide (FITO), fluorine zinc-containing indium oxide (FIZO), fluorine aluminum-containing zinc oxide (FAZO), fluorine gallium-containing zinc oxide (FGZO), Examples thereof include oxide semiconductor particles of fluorine-cerium-containing zinc oxide (FCZO) or fluorine-antimony-containing tin oxide (FATO). Here, the reason why the average particle size of the oxide semiconductor particles is limited to the range of 0.005 to 1.0 μm is that particles having a particle size of less than 0.005 μm or particles exceeding 1.0 μm cannot be obtained by this method. .

なお、上記第1及び第2の実施の形態では、酸化物半導体粒子を含む粒子分散体を製造したが、平均粒径0.005〜1.0μm、好ましくは0.01〜0.8μmのCu,Au,Ag,Pt,Pd,Ru,Rh,Re,Fe,Co,Ni,Zn,In及びSnからなる群より選ばれた1種又は2種以上の純金属粒子、混合金属粒子或いは合金粒子を含む粒子分散体であってもよい。また、上記第1及び第2の実施の形態では、粒子分散体を乾燥して酸化物半導体粒子を製造したが、上記純金属粒子、混合金属粒子或いは合金粒子を含む粒子分散体を乾燥して、平均粒径0.005〜1.0μm、好ましくは0.01〜0.8μmのCu,Au,Ag,Pt,Pd,Ru,Rh,Re,Fe,Co,Ni,Zn,In及びSnからなる群より選ばれた1種又は2種以上の純金属、混合金属或いは合金からなる金属粒子であってもよい。ここで、金属粒子の平均粒径を0.005〜1.0μmの範囲に限定したのは、0.005μm未満の粒子や1.0μmを越える粒子がこの方法では得られないからである。
また、上記第1及び第2の実施の形態では、酸化物半導体粒子を含む粒子分散体を製造したが、平均粒径0.005〜1.0μm、好ましくは0.01〜0.8μmのSbの半金属粒子を含む粒子分散体であってもよい。更に、上記第1及び第2の実施の形態では、粒子分散体を乾燥して酸化物半導体粒子を製造したが、上記Sbの半金属粒子を含む粒子分散体を乾燥して、平均粒径0.005〜1.0μm、好ましくは0.01〜0.8μmのSbからなる半金属粒子であってもよい。ここで、半金属粒子の平均粒径を0.005〜1.0μmの範囲に限定したのは、0.005μm未満の粒子や1.0μmを越える粒子がこの方法では得られないからである。
In the first and second embodiments, a particle dispersion containing oxide semiconductor particles is manufactured. However, Cu having an average particle diameter of 0.005 to 1.0 μm, preferably 0.01 to 0.8 μm. , Au, Ag, Pt, Pd, Ru, Rh, Re, Fe, Co, Ni, Zn, In and Sn, one or more types of pure metal particles, mixed metal particles or alloy particles A particle dispersion containing In the first and second embodiments, the particle dispersion is dried to produce oxide semiconductor particles. However, the particle dispersion containing the pure metal particles, mixed metal particles, or alloy particles is dried. From Cu, Au, Ag, Pt, Pd, Ru, Rh, Re, Fe, Co, Ni, Zn, In and Sn having an average particle size of 0.005 to 1.0 μm, preferably 0.01 to 0.8 μm Metal particles made of one or more kinds of pure metals, mixed metals or alloys selected from the group may be used. Here, the reason why the average particle diameter of the metal particles is limited to the range of 0.005 to 1.0 μm is that particles having a particle size of less than 0.005 μm or particles exceeding 1.0 μm cannot be obtained by this method.
Moreover, in the said 1st and 2nd embodiment, although the particle dispersion containing an oxide semiconductor particle was manufactured, average particle diameter 0.005-1.0 micrometer, Preferably it is Sb of 0.01-0.8 micrometer. A particle dispersion containing the metalloid particles may be used. Further, in the first and second embodiments, the particle dispersion was dried to produce oxide semiconductor particles, but the particle dispersion containing the Sb semimetal particles was dried to obtain an average particle size of 0. It may be a semi-metal particle composed of 0.005 to 1.0 μm, preferably 0.01 to 0.8 μm of Sb. Here, the reason why the average particle size of the semi-metal particles is limited to the range of 0.005 to 1.0 μm is that particles having a particle size of less than 0.005 μm or particles exceeding 1.0 μm cannot be obtained by this method.

次に本発明の実施例を参考例及び比較例とともに詳しく説明する。(なお、以下に記載の「実施例7〜15」はいずれも「参考例」である。)
<参考例1>
先ずエチレンオキシド変性コハク酸メタクリレート(新中村化学社製のNKエステルSA)を水酸化ナトリウムでけん化して石鹸を調製した。この石鹸を2つに分け、一方の石鹸に塩化インジウム溶液(アジア物性社製)を混合して撹拌することによりインジウムの金属石鹸を調製した。このインジウムの金属石鹸を十分に水で洗浄して濾過することにより脱塩した後に、この脱塩したインジウムの金属石鹸を80℃の真空乾燥機に一晩入れて脱水することによりインジウム石鹸(炭素数:10)を得た。一方、上記石鹸の他方に塩化錫溶液(アジア物性社製)を混合して撹拌することにより錫の金属石鹸を調製した。この錫の金属石鹸を十分に水で洗浄して濾過することにより脱塩した後に、この脱塩した錫の金属石鹸を80℃の真空乾燥機に一晩入れて脱水することにより錫石鹸(炭素数:10)を得た。なお、上記エチレンオキシド変性コハク酸メタクリレートの化学式(1)をここに示す。
Next, examples of the present invention will be described in detail together with reference examples and comparative examples. (All of the “Examples 7 to 15” described below are “reference examples”.)
<Reference Example 1>
First, a soap was prepared by saponifying ethylene oxide-modified succinic acid methacrylate (NK ester SA manufactured by Shin-Nakamura Chemical Co., Ltd.) with sodium hydroxide. This soap was divided into two, and an indium chloride solution (manufactured by Asian Physical Properties) was mixed with one soap and stirred to prepare an indium metal soap. The indium metal soap was sufficiently desalted by washing with water and filtered, and then the desalted indium metal soap was placed in a vacuum dryer at 80 ° C. overnight to dehydrate it, so that the indium soap (carbon Number: 10) was obtained. On the other hand, a tin metal soap was prepared by mixing and stirring a tin chloride solution (manufactured by Asia Physical Properties Co., Ltd.) with the other soap. The tin metal soap was sufficiently desalted by washing with water and filtered, and then the desalted tin metal soap was placed in a vacuum dryer at 80 ° C. overnight and dehydrated to obtain tin soap (carbon Number: 10) was obtained. The chemical formula (1) of the ethylene oxide-modified succinic acid methacrylate is shown here.

Figure 0005920312
次いで図1に示すように、20ccのガラス瓶に上記インジウム石鹸7.5gと錫石鹸0.5gとを入れて、気密であって所定のガスを給排可能なグローブボックス11内に収容された電子レンジ12のターンテーブル12a上に置いた。次に上記インジウム石鹸と錫石鹸の混合物13の入ったガラス瓶14に、直径及び深さがそれぞれ150mm及び70mmである透明な石英製坩堝16を被せるとともに、グローブボックス11内に空気(鈴木商事館社製の一般空気ボンベに貯留された空気)を200cc/分ずつ供給しながら電子レンジ12を出力1000Wで8分間作動させた。その後、上記ガラス瓶14を電子レンジ12から取出して室温まで冷却し、コロイド状の粒子分散体17を得た。この粒子分散体17を参考例1とした。なお、図1において、符号12bはマイクロ波を発生するマグネトロンであり、符号12cはトランスであり、符号12dは空気を流通させるとともにトランス12cを冷却するファンであり、符号12eはターンテーブル12aを回転駆動するモータである。また図1において、破線矢印はマイクロ波の流れを示し、一点鎖線矢印は空気の流れを示す。
Figure 0005920312
Next, as shown in FIG. 1, 7.5 g of the indium soap and 0.5 g of the tin soap are put into a 20 cc glass bottle, and the electrons stored in a glove box 11 that is airtight and can supply and discharge a predetermined gas. It was placed on the turntable 12a of the range 12. Next, the glass bottle 14 containing the mixture 13 of indium soap and tin soap is covered with a transparent quartz crucible 16 having diameters and depths of 150 mm and 70 mm, respectively, and air (Suzuki Corporation) The microwave oven 12 was operated at an output of 1000 W for 8 minutes while supplying 200 cc / min of air stored in a general air cylinder manufactured by the company. Thereafter, the glass bottle 14 was taken out from the microwave oven 12 and cooled to room temperature, whereby a colloidal particle dispersion 17 was obtained. This particle dispersion 17 was designated as Reference Example 1 . In FIG. 1, reference numeral 12b is a magnetron that generates microwaves, reference numeral 12c is a transformer, reference numeral 12d is a fan that circulates air and cools the transformer 12c, and reference numeral 12e rotates the turntable 12a. It is a motor to drive. Further, in FIG. 1, broken line arrows indicate the flow of microwaves, and alternate long and short dashed arrows indicate the flow of air.

<実施例
先ず12-ヒドロキシステアリン酸インジウム(炭素数:18)7.5gとステアリン酸錫(炭素数:18)0.5gとをガラス瓶に入れ、更にフッ化アンモニウムを0.3g添加して混合物を得た。次に上記混合物の入ったガラス瓶を電子レンジに入れるとともに、グローブボックス内に空気(鈴木商事館社製の一般空気ボンベに貯留された空気)を200cc/分ずつ供給しながら電子レンジを出力950Wで8分間作動させた。その後、上記ガラス瓶を電子レンジから取出して室温まで冷却し、コロイド状の粒子分散体を得た。この粒子分散体を実施例とした。
<実施例
先ずステアリン酸錫(炭素数:18)7.5gをガラス瓶に入れ、フッ化アンモニウムを0.3g添加して混合物を得た。次に上記混合物の入ったガラス瓶を電子レンジに入れるとともに、グローブボックス内に空気(鈴木商事館社製の一般空気ボンベに貯留された空気)を200cc/分ずつ供給しながら電子レンジを出力850Wで8分間作動させた。その後、上記ガラス瓶を電子レンジから取出して室温まで冷却し、コロイド状の粒子分散体を得た。この粒子分散体を実施例とした。
<Example 1 >
First, 7.5 g of indium 12-hydroxystearate (carbon number: 18) and 0.5 g of tin stearate (carbon number: 18) were put in a glass bottle, and 0.3 g of ammonium fluoride was further added to obtain a mixture. . Next, the glass bottle containing the above mixture is put into a microwave oven, and the microwave oven is output at 950 W while supplying air (air stored in a general air cylinder manufactured by Suzuki Shoji Co., Ltd.) at 200 cc / min. Operated for 8 minutes. Thereafter, the glass bottle was taken out from the microwave oven and cooled to room temperature to obtain a colloidal particle dispersion. This particle dispersion was designated as Example 1 .
<Example 2 >
First, 7.5 g of tin stearate (carbon number: 18) was put in a glass bottle, and 0.3 g of ammonium fluoride was added to obtain a mixture. Next, the glass bottle containing the above mixture is put in a microwave oven, and the microwave oven is output at 850 W while supplying air (air stored in a general air cylinder manufactured by Suzuki Shoji Co., Ltd.) at 200 cc / min. Operated for 8 minutes. Thereafter, the glass bottle was taken out from the microwave oven and cooled to room temperature to obtain a colloidal particle dispersion. This particle dispersion was designated as Example 2 .

<実施例3>
先ずオレイン酸インジウム(炭素数:18)7.5gをガラス瓶に入れ、フッ化アンモニウムを0.3g添加して混合物を得た。次に上記混合物の入ったガラス瓶を電子レンジに入れるとともに、グローブボックス内に空気(鈴木商事館社製の一般空気ボンベに貯留された空気)を200cc/分ずつ供給しながら電子レンジを出力850Wで8分間作動させた。その後、上記ガラス瓶を電子レンジから取出して室温まで冷却し、コロイド状の粒子分散体を得た。この粒子分散体を実施例3とした。
<参考例2>
先ずステアリン酸錫(炭素数:18)7.5gとモンタン酸/2-アミノエタノールアンチモン錯体(炭素数:29)0.8gとをガラス瓶に入れて混合物を得た。次に上記混合物の入ったガラス瓶を電子レンジに入れるとともに、グローブボックス内に空気(鈴木商事館社製の一般空気ボンベに貯留された空気)を200cc/分ずつ供給しながら電子レンジを出力1000Wで8分間作動させた。その後、上記ガラス瓶を電子レンジから取出して室温まで冷却し、コロイド状の粒子分散体を得た。この粒子分散体を参考例2とした。
<参考例3>
先ずオレイン酸インジウム(炭素数:18)7.5gとパルミチン酸亜鉛(炭素数:16)0.7gとをガラスに入れて混合物を得た。次に上記混合物の入ったガラス瓶を電子レンジに入れるとともに、グローブボックス内に空気(鈴木商事館社製の一般空気ボンベに貯留された空気)を200cc/分ずつ供給しながら電子レンジを出力950Wで5分間作動させた。その後、上記ガラス瓶を電子レンジから取出して室温まで冷却し、コロイド状の粒子分散体を得た。この粒子分散体を参考例3とした。
<Example 3>
First, 7.5 g of indium oleate (carbon number: 18) was put in a glass bottle, and 0.3 g of ammonium fluoride was added to obtain a mixture. Next, the glass bottle containing the above mixture is put in a microwave oven, and the microwave oven is output at 850 W while supplying air (air stored in a general air cylinder manufactured by Suzuki Shoji Co., Ltd.) at 200 cc / min. Operated for 8 minutes. Thereafter, the glass bottle was taken out from the microwave oven and cooled to room temperature to obtain a colloidal particle dispersion. This particle dispersion was designated as Example 3.
<Reference Example 2>
First, 7.5 g of tin stearate (carbon number: 18) and 0.8 g of montanic acid / 2-aminoethanol antimony complex (carbon number: 29) were put in a glass bottle to obtain a mixture. Next, the glass bottle containing the above mixture is put into a microwave oven, and the microwave oven is output at 1000 W while supplying air (air stored in a general air cylinder manufactured by Suzuki Shoji Co., Ltd.) at 200 cc / min. Operated for 8 minutes. Thereafter, the glass bottle was taken out from the microwave oven and cooled to room temperature to obtain a colloidal particle dispersion. This particle dispersion was designated as Reference Example 2.
<Reference Example 3>
First, 7.5 g of indium oleate (carbon number: 18) and zinc palmitate (carbon number: 16) 0.7 g were put into glass to obtain a mixture. Next, the glass bottle containing the above mixture is put into a microwave oven, and the microwave oven is output at 950 W while supplying air (air stored in a general air cylinder manufactured by Suzuki Shoji Co., Ltd.) at 200 cc / min. Operated for 5 minutes. Thereafter, the glass bottle was taken out from the microwave oven and cooled to room temperature to obtain a colloidal particle dispersion. This particle dispersion was designated as Reference Example 3.

参考例4
先ずエチレンオキシド変性コハク酸メタクリレート(新中村化学社製のNKエステルSA)を水酸化ナトリウムでけん化して石鹸を調製した後に、この石鹸に塩化インジウム溶液(アジア物性社製)を混合して撹拌することによりインジウムの金属石鹸を調製した。このインジウムの金属石鹸を十分に水で洗浄して濾過することにより脱塩した後に、この脱塩したインジウムの金属石鹸を80℃の真空乾燥機に一晩入れて脱水することによりインジウム石鹸(炭素数:10)を得た。一方、ω−カルボキシ−ポリカプロラクトンモノアクリレート(東亞合成社製のアロニックスM−5300)を水酸化ナトリウムでけん化して石鹸を調製した後に、この石鹸に塩化亜鉛溶液を混合して撹拌することにより亜鉛の金属石鹸を調製した。この亜鉛の金属石鹸を十分に水で洗浄して濾過することにより脱塩した後に、この脱塩した亜鉛の金属石鹸を80℃の真空乾燥機に一晩入れて脱水することにより亜鉛石鹸(炭素数:15)を得た。なお、上記ω−カルボキシ−ポリカプロラクトンモノアクリレートの化学式(2)をここに示す。
< Reference Example 4 >
First, a soap is prepared by saponifying ethylene oxide-modified succinic acid methacrylate (NK ester SA manufactured by Shin-Nakamura Chemical Co., Ltd.) with sodium hydroxide, and then mixing and stirring the soap with an indium chloride solution (manufactured by Asian Physical Properties). Indium metal soap was prepared. The indium metal soap was sufficiently desalted by washing with water and filtered, and then the desalted indium metal soap was placed in a vacuum dryer at 80 ° C. overnight to dehydrate it, so that the indium soap (carbon Number: 10) was obtained. On the other hand, a soap was prepared by saponifying ω-carboxy-polycaprolactone monoacrylate (Aronix M-5300 manufactured by Toagosei Co., Ltd.) with sodium hydroxide, and then mixing the zinc chloride solution with this soap and stirring the zinc. A metal soap was prepared. The zinc metal soap was thoroughly washed with water and filtered for desalting, and then the desalted zinc metal soap was placed in a vacuum dryer at 80 ° C. overnight to dehydrate it to obtain zinc soap (carbon Number: 15) was obtained. The chemical formula (2) of the ω-carboxy-polycaprolactone monoacrylate is shown here.

Figure 0005920312
次いで上記インジウム石鹸7.5gと亜鉛石鹸0.7gとをガラス瓶に入れて混合物を得た。次に上記混合物の入ったガラス瓶を電子レンジに入れるとともに、グローブボックス内に空気(鈴木商事館社製の一般空気ボンベに貯留された空気)を200cc/分ずつ供給しながら電子レンジを出力950Wで5分間作動させた。その後、上記ガラス瓶を電子レンジから取出して室温まで冷却し、コロイド状の粒子分散体を得た。この粒子分散体を参考例4とした。
Figure 0005920312
Next, 7.5 g of the indium soap and 0.7 g of zinc soap were put in a glass bottle to obtain a mixture. Next, the glass bottle containing the above mixture is put into a microwave oven, and the microwave oven is output at 950 W while supplying air (air stored in a general air cylinder manufactured by Suzuki Shoji Co., Ltd.) at 200 cc / min. Operated for 5 minutes. Thereafter, the glass bottle was taken out from the microwave oven and cooled to room temperature to obtain a colloidal particle dispersion. This particle dispersion was designated as Reference Example 4 .

参考例5
先ずβ−カルボキシルエチルアクリレート(ダイセル・ユーシービー社製のβ−CEA)を水酸化ナトリウムでけん化して石鹸を調製した後に、この石鹸に塩化チタン溶液を混合して撹拌することによりチタンの金属石鹸を調製した。このチタンの金属石鹸を十分に水で洗浄して濾過することにより脱塩した後に、この脱塩したチタンの金属石鹸を80℃の真空乾燥機に一晩入れて脱水することによりチタン石鹸を得た。なお、上記β−カルボキシルエチルアクリレートの化学式(3)をここに示す。
< Reference Example 5 >
First, β-carboxyethyl acrylate (β-CEA manufactured by Daicel UCB) was saponified with sodium hydroxide to prepare a soap, and then mixed with a titanium chloride solution and stirred to obtain a titanium metal soap. Was prepared. The titanium metal soap was sufficiently washed with water and filtered to desalinate, and the desalted titanium metal soap was placed in a vacuum dryer at 80 ° C. overnight to dehydrate it to obtain a titanium soap. It was. The chemical formula (3) of the β-carboxyethyl acrylate is shown here.

Figure 0005920312
次いで上記チタン石鹸7.5gをガラス瓶に入れた。次にこのチタン石鹸(単一物)の入ったガラス瓶を電子レンジに入れるとともに、グローブボックス内に空気(鈴木商事館社製の一般空気ボンベに貯留された空気)を200cc/分ずつ供給しながら電子レンジを出力1200Wで8分間作動させた。その後、上記ガラス瓶を電子レンジから取出して室温まで冷却し、コロイド状の粒子分散体を得た。この粒子分散体を参考例5とした。
Figure 0005920312
Next, 7.5 g of the titanium soap was put in a glass bottle. Next, the glass bottle containing the titanium soap (single item) is put in a microwave oven, and air (air stored in a general air cylinder manufactured by Suzuki Shoji Co., Ltd.) is supplied into the glove box at 200 cc / min. The microwave oven was operated at 1200W output for 8 minutes. Thereafter, the glass bottle was taken out from the microwave oven and cooled to room temperature to obtain a colloidal particle dispersion. This particle dispersion was designated as Reference Example 5 .

参考例6
先ずチタンカップリング剤(味の素社製のKR44、炭素数:3及び4)7.5gをガラス瓶に入れる。次にこのチタンカップリング剤(単一物)の入ったガラス瓶を電子レンジに入れるとともに、グローブボックス内に空気(鈴木商事館社製の一般空気ボンベに貯留された空気)を200cc/分ずつ供給しながら電子レンジを出力1200Wで5分間作動させた。その後、上記ガラス瓶を電子レンジから取出して室温まで冷却し、コロイド状の粒子分散体を得た。この粒子分散体を参考例6とした。なお、上記チタンカップリング剤(味の素社製のKR44)の化学式(4)をここに示す。
< Reference Example 6 >
First, 7.5 g of titanium coupling agent (KR44, carbon number: 3 and 4 manufactured by Ajinomoto Co., Inc.) is put in a glass bottle. Next, the glass bottle containing the titanium coupling agent (single) is put into a microwave oven, and air (air stored in a general air cylinder manufactured by Suzuki Shoji Co., Ltd.) is supplied 200 cc / min into the glove box. The microwave oven was operated at an output of 1200 W for 5 minutes. Thereafter, the glass bottle was taken out from the microwave oven and cooled to room temperature to obtain a colloidal particle dispersion. This particle dispersion was designated as Reference Example 6 . The chemical formula (4) of the titanium coupling agent (KR44 manufactured by Ajinomoto Co., Inc.) is shown here.

Figure 0005920312
参考例7
先ずチタンカップリング剤(味の素社製の9SA、炭素数:3及び18)7.5gをガラス瓶に入れた。次にこのチタンカップリング剤(単一物)の入ったガラス瓶を電子レンジに入れるとともに、グローブボックス内に空気(鈴木商事館社製の一般空気ボンベに貯留された空気)を200cc/分ずつ供給しながら電子レンジを出力1200Wで5分間作動させた。その後、上記ガラス瓶を電子レンジから取出して室温まで冷却し、コロイド状の粒子分散体を得た。この粒子分散体を参考例7とした。なお、上記チタンカップリング剤(味の素社製の9SA)の化学式(5)をここに示す。
Figure 0005920312
< Reference Example 7 >
First, 7.5 g of a titanium coupling agent (9SA manufactured by Ajinomoto Co., Inc., carbon number: 3 and 18) was put in a glass bottle. Next, the glass bottle containing the titanium coupling agent (single) is put into a microwave oven, and air (air stored in a general air cylinder manufactured by Suzuki Shoji Co., Ltd.) is supplied 200 cc / min into the glove box. The microwave oven was operated at an output of 1200 W for 5 minutes. Thereafter, the glass bottle was taken out from the microwave oven and cooled to room temperature to obtain a colloidal particle dispersion. This particle dispersion was designated as Reference Example 7 . The chemical formula (5) of the titanium coupling agent (9SA manufactured by Ajinomoto Co., Inc.) is shown here.

Figure 0005920312
<比較例1>
先ずオレイン酸インジウム(炭素数:18)7.5gとステアリン酸錫(炭素数:18)0.5gとをガラス瓶に入れて混合物を得た。次に上記混合物の入ったガラス瓶を電子レンジに入れるとともに、グローブボックス内に空気(鈴木商事館社製の一般空気ボンベに貯留された空気)を200cc/分ずつ供給しながら電子レンジを出力1300Wで6分間作動させた。その後、上記ガラス瓶を電子レンジから取出して室温まで冷却し、コロイド状の粒子分散体を得た。この粒子分散体を比較例1とした。
<比較例2>
先ずオレイン酸インジウム(炭素数:18)7.5gとステアリン酸錫(炭素数:18)0.5gとをガラス瓶に入れて混合物を得た。次に上記混合物の入ったガラス瓶を電子レンジに入れるとともに、グローブボックス内に空気(鈴木商事館社製の一般空気ボンベに貯留された空気)を200cc/分ずつ供給しながら電子レンジを出力1000Wで11分間作動させた。その後、上記ガラス瓶を電子レンジから取出して室温まで冷却し、コロイド状の粒子分散体を得た。この粒子分散体を比較例2とした。
<比較例3>
先ずオレイン酸インジウム(炭素数:18)7.5gとステアリン酸錫(炭素数:18)0.5gとをガラス瓶に入れて混合物を得た。次に上記混合物の入ったガラス瓶を電子レンジに入れるとともに、グローブボックス内に空気(鈴木商事館社製の一般空気ボンベに貯留された空気)を200cc/分ずつ供給しながら電子レンジを出力750Wで4分間作動させた。その後、上記ガラス瓶を電子レンジから取出して室温まで冷却し、コロイド状の粒子分散体を得た。この粒子分散体を比較例3とした。
Figure 0005920312
<Comparative Example 1>
First, 7.5 g of indium oleate (carbon number: 18) and 0.5 g of tin stearate (carbon number: 18) were put in a glass bottle to obtain a mixture. Next, the glass bottle containing the above mixture is put into a microwave oven, and the microwave oven is output at 1300 W while supplying air (air stored in a general air cylinder manufactured by Suzuki Shoji Co., Ltd.) at 200 cc / min. Run for 6 minutes. Thereafter, the glass bottle was taken out from the microwave oven and cooled to room temperature to obtain a colloidal particle dispersion. This particle dispersion was designated as Comparative Example 1.
<Comparative Example 2>
First, 7.5 g of indium oleate (carbon number: 18) and 0.5 g of tin stearate (carbon number: 18) were put in a glass bottle to obtain a mixture. Next, the glass bottle containing the above mixture is put into a microwave oven, and the microwave oven is output at 1000 W while supplying air (air stored in a general air cylinder manufactured by Suzuki Shoji Co., Ltd.) at 200 cc / min. Operated for 11 minutes. Thereafter, the glass bottle was taken out from the microwave oven and cooled to room temperature to obtain a colloidal particle dispersion. This particle dispersion was designated as Comparative Example 2.
<Comparative Example 3>
First, 7.5 g of indium oleate (carbon number: 18) and 0.5 g of tin stearate (carbon number: 18) were put in a glass bottle to obtain a mixture. Next, the glass bottle containing the above mixture is put into a microwave oven, and the microwave oven is output at 750 W while supplying air (air stored in a general air cylinder manufactured by Suzuki Shoji Co., Ltd.) at 200 cc / min. Operated for 4 minutes. Thereafter, the glass bottle was taken out from the microwave oven and cooled to room temperature to obtain a colloidal particle dispersion. This particle dispersion was designated as Comparative Example 3.

<比較例4>
先ずオレイン酸インジウム(炭素数:18)7.5gとステアリン酸錫(炭素数:18)0.5gとをガラス瓶に入れて混合物を得た。次に上記混合物の入ったガラス瓶を電子レンジに入れるとともに、グローブボックス内に空気(鈴木商事館社製の一般空気ボンベに貯留された空気)を200cc/分ずつ供給しながら電子レンジを出力800Wで2分間作動させた。その後、上記ガラス瓶を電子レンジから取出して室温まで冷却し、コロイド状の粒子分散体を得た。この粒子分散体を比較例4とした。
<比較例5>
先ずオレイン酸インジウム(炭素数:18)7.5gとステアリン酸錫(炭素数:18)0.5gとをガラス瓶に入れ、更に溶媒としてメチルカルビトール(略称:MCT)を添加して混合物を得た。次に上記混合物の入ったガラス瓶を電子レンジに入れるとともに、グローブボックス内に空気(鈴木商事館社製の一般空気ボンベに貯留された空気)を200cc/分ずつ供給しながら電子レンジを出力850Wで8分間作動させた。その後、上記ガラス瓶を電子レンジから取出して室温まで冷却し、コロイド状の粒子分散体を得た。この粒子分散体を比較例5とした。
<Comparative example 4>
First, 7.5 g of indium oleate (carbon number: 18) and 0.5 g of tin stearate (carbon number: 18) were put in a glass bottle to obtain a mixture. Next, the glass bottle containing the above mixture is put into a microwave oven, and the microwave oven is output at 800 W while supplying air (air stored in a general air cylinder manufactured by Suzuki Shoji Co., Ltd.) at 200 cc / min. Run for 2 minutes. Thereafter, the glass bottle was taken out from the microwave oven and cooled to room temperature to obtain a colloidal particle dispersion. This particle dispersion was designated as Comparative Example 4.
<Comparative Example 5>
First, 7.5 g of indium oleate (carbon number: 18) and 0.5 g of tin stearate (carbon number: 18) are put in a glass bottle, and methyl carbitol (abbreviation: MCT) is added as a solvent to obtain a mixture. It was. Next, the glass bottle containing the above mixture is put in a microwave oven, and the microwave oven is output at 850 W while supplying air (air stored in a general air cylinder manufactured by Suzuki Shoji Co., Ltd.) at 200 cc / min. Operated for 8 minutes. Thereafter, the glass bottle was taken out from the microwave oven and cooled to room temperature to obtain a colloidal particle dispersion. This particle dispersion was designated as Comparative Example 5.

<比較試験1及び評価>
実施例1〜3、参考例1〜7及び比較例1〜5の粒子分散体をアセトンで洗浄した後、真空雰囲気中に室温で2時間保持して金属又は半金属化合物粒子からなる乾燥粉末を作製し、X線回折法(XRD法)により乾燥粉末を構成する化合物の同定を行ってその化合物のパターン(結晶構造)及び名称を特定し、また蛍光X線分光分析法(XFS法)により上記乾燥粉末の元素分析を行い、更に透過電子顕微鏡(TEM)により乾燥粉末の一次粒子の平均粒径を求めた。その結果を表1に示す。なお、表1の比較例5の「MCT」はメチルカルビトールである。
<Comparative test 1 and evaluation>
After the particle dispersions of Examples 1 to 3, Reference Examples 1 to 7 and Comparative Examples 1 to 5 were washed with acetone, the powder was held in a vacuum atmosphere at room temperature for 2 hours to obtain a dry powder composed of metal or metalloid compound particles. The compound constituting the dry powder is identified by X-ray diffraction method (XRD method) to identify the pattern (crystal structure) and name of the compound, and the above-mentioned by X-ray fluorescence spectroscopy (XFS method) Elemental analysis of the dry powder was performed, and the average particle size of the primary particles of the dry powder was further determined by a transmission electron microscope (TEM). The results are shown in Table 1. In Table 1, “MCT” in Comparative Example 5 is methyl carbitol.

Figure 0005920312
表1から明らかなように、比較例3及び4では未反応部分が多く、比較例5では原料粉末の有機金属化合物と変わっていなかった。これに対し、実施例1、実施例2、参考例1、参考例3及び参考例4では乾燥粉末の金属又は半金属化合物粒子のパターン(結晶構造)がビックスバイト(bixbite)型構造であり、実施例1及び参考例2では乾燥粉末の金属又は半金属化合物粒子のパターン(結晶構造)がルチル(rutile)型構造であり、参考例5〜7では乾燥粉末の金属又は半金属化合物粒子のパターン(結晶構造)がアナターゼ(anataze)型構造であった。また実施例1〜3及び参考例1〜7では、乾燥粉末の金属又は半金属化合物粒子がIn、Sn、Sb等の金属又は半金属を含んでおり、金属又は半金属化合物粒子の一次粒子の平均粒径が4〜10nmと極めて微細であることが分かった。なお、比較例1及び2では乾燥粉末の金属化合物粒子のパターン(結晶構造)がビックスバイト(bixbite)型構造であり、金属化合物粒子の平均粒径がそれぞれ14nm及び11nmと比較的微細であったが、後述する比較試験2に示すように沈殿してしまい、分散液が得られなかった。
Figure 0005920312
As is clear from Table 1, Comparative Examples 3 and 4 had many unreacted parts, and Comparative Example 5 was not different from the organometallic compound of the raw material powder. On the other hand, in Example 1, Example 2, Reference Example 1, Reference Example 3 and Reference Example 4, the pattern (crystal structure) of the metal or metalloid compound particles of the dry powder is a bixbite type structure, In Example 1 and Reference Example 2, the pattern (crystal structure) of the metal or metalloid compound particles of the dry powder is a rutile structure, and in Reference Examples 5 to 7, the pattern of the metal or metalloid compound particles of the dry powder The (crystal structure) was an anatase type structure. In Examples 1 to 3 and Reference Examples 1 to 7, the dry powder metal or metalloid compound particles contain a metal or metalloid such as In, Sn, or Sb, and the primary particles of the metal or metalloid compound particles The average particle size was found to be extremely fine, 4 to 10 nm. In Comparative Examples 1 and 2, the pattern (crystal structure) of the metal compound particles of the dry powder was a bixbite type structure, and the average particle diameters of the metal compound particles were relatively fine as 14 nm and 11 nm, respectively. However, as shown in the comparative test 2 mentioned later, it settled and the dispersion liquid was not obtained.

参考例8
参考例1の粒子分散体を2-イソプロポキシエタノール(溶媒、略称:isoPG)で希釈した後に、限外濾過法により洗浄・濃縮して粒子の含有量が約30重量%となるように粒子分散体を調製した。この粒子分散体を参考例8とした。
<実施例
実施例の粒子分散体をメチルカルビトール(溶媒、略称:MCT)で希釈した後に、限外濾過法により洗浄・濃縮して粒子の含有量が約30重量%となるように粒子分散体を調製した。この粒子分散体を実施例とした。
<実施例
実施例の粒子分散体をイソプロパノール(溶媒、略称:IPA)で希釈した後に、限外濾過法により洗浄・濃縮して粒子の含有量が約30重量%となるように粒子分散体を調製した。この粒子分散体を実施例とした。
<実施例
実施例の粒子分散体をイソプロパノール(溶媒、略称:IPA)で希釈した後に、限外濾過法により洗浄・濃縮して粒子の含有量が約30重量%となるように粒子分散体を調製した。この粒子分散体を実施例とした。
参考例9
参考例2の粒子分散体をイソプロパノール(溶媒、略称:IPA)で希釈した後に、限外濾過法により洗浄・濃縮して粒子の含有量が約30重量%となるように粒子分散体を調製した。この粒子分散体を参考例9とした。
< Reference Example 8 >
The particle dispersion of Reference Example 1 was diluted with 2-isopropoxyethanol (solvent, abbreviation: isoPG), then washed and concentrated by ultrafiltration, so that the particle content was about 30% by weight. The body was prepared. This particle dispersion was designated as Reference Example 8 .
<Example 4 >
After the particle dispersion of Example 1 was diluted with methyl carbitol (solvent, abbreviation: MCT), the particle dispersion was washed and concentrated by an ultrafiltration method so that the particle content was about 30% by weight. Prepared. This particle dispersion was designated as Example 4 .
<Example 5 >
The particle dispersion of Example 2 was diluted with isopropanol (solvent, abbreviation: IPA), then washed and concentrated by an ultrafiltration method to prepare a particle dispersion so that the particle content was about 30% by weight. . This particle dispersion was designated as Example 5 .
<Example 6 >
The particle dispersion of Example 3 was diluted with isopropanol (solvent, abbreviation: IPA), then washed and concentrated by an ultrafiltration method to prepare a particle dispersion so that the particle content was about 30% by weight. . This particle dispersion was designated as Example 6 .
< Reference Example 9 >
The particle dispersion of Reference Example 2 was diluted with isopropanol (solvent, abbreviation: IPA), then washed and concentrated by an ultrafiltration method to prepare a particle dispersion so that the particle content was about 30% by weight. . This particle dispersion was designated as Reference Example 9 .

参考例10
参考例3の粒子分散体をN-メチルピロリドン(溶媒、略称:NMP)で希釈した後に、限外濾過法により洗浄・濃縮して粒子の含有量が約30重量%となるように粒子分散体を調製した。この粒子分散体を参考例10とした。
参考例11
参考例4の粒子分散体をヘキサン(溶媒、略称:Hx)で希釈した後に、限外濾過法により洗浄・濃縮して粒子の含有量が約30重量%となるように粒子分散体を調製した。この粒子分散体を参考例11とした。
参考例12
参考例5の粒子分散体をプロピレングリコールモノメチルエーテルアセテート(溶媒、略称:PGMEA)で希釈した後に、限外濾過法により洗浄・濃縮して粒子の含有量が約30重量%となるように粒子分散体を調製した。この粒子分散体を参考例12とした。
参考例13
参考例6の粒子分散体をプロピレングリコールモノメチルエーテル(溶媒、略称:PGM)で希釈した後に、限外濾過法により洗浄・濃縮して粒子の含有量が約30重量%となるように粒子分散体を調製した。この粒子分散体を参考例13とした。
参考例14
参考例7の粒子分散体をプロピレングリコールモノメチルエーテルアセテート(溶媒、略称:PGMEA)で希釈した後に、限外濾過法により洗浄・濃縮して粒子の含有量が約30重量%となるように粒子分散体を調製した。この粒子分散体を参考例14とした。
< Reference Example 10 >
The particle dispersion of Reference Example 3 was diluted with N-methylpyrrolidone (solvent, abbreviation: NMP), then washed and concentrated by an ultrafiltration method so that the particle content was about 30% by weight. Was prepared. This particle dispersion was designated as Reference Example 10 .
< Reference Example 11 >
The particle dispersion of Reference Example 4 was diluted with hexane (solvent, abbreviation: Hx), then washed and concentrated by an ultrafiltration method to prepare a particle dispersion so that the particle content was about 30% by weight. . This particle dispersion was designated as Reference Example 11 .
< Reference Example 12 >
After the particle dispersion of Reference Example 5 was diluted with propylene glycol monomethyl ether acetate (solvent, abbreviation: PGMEA), it was washed and concentrated by an ultrafiltration method so that the particle content was about 30% by weight. The body was prepared. This particle dispersion was designated as Reference Example 12 .
< Reference Example 13 >
The particle dispersion of Reference Example 6 was diluted with propylene glycol monomethyl ether (solvent, abbreviation: PGM), then washed and concentrated by an ultrafiltration method so that the particle content was about 30% by weight. Was prepared. This particle dispersion was designated as Reference Example 13 .
< Reference Example 14 >
After the particle dispersion of Reference Example 7 was diluted with propylene glycol monomethyl ether acetate (solvent, abbreviation: PGMEA), it was washed and concentrated by ultrafiltration to disperse the particles so that the particle content was about 30% by weight. The body was prepared. This particle dispersion was designated as Reference Example 14 .

<比較例6>
比較例1の粒子分散体をメチルカルビトール(溶媒、略称:MCT)で希釈した後に、限外濾過法により洗浄・濃縮して粒子の含有量が約30重量%となるように粒子分散体を調製した。この粒子分散体を比較例6とした。
<比較例7>
比較例2の粒子分散体をメチルカルビトール(溶媒、略称:MCT)で希釈した後に、限外濾過法により洗浄・濃縮して粒子の含有量が約30重量%となるように粒子分散体を調製した。この粒子分散体を比較例7とした。
<比較例8>
比較例3の粒子分散体をメチルカルビトール(溶媒、略称:MCT)で希釈した後に、限外濾過法により洗浄・濃縮して粒子の含有量が約30重量%となるように粒子分散体を調製した。この粒子分散体を比較例8とした。
<比較例9>
比較例4の粒子分散体をメチルカルビトール(溶媒、略称:MCT)で希釈した後に、限外濾過法により洗浄・濃縮して粒子の含有量が約30重量%となるように粒子分散体を調製した。この粒子分散体を比較例9とした。
<Comparative Example 6>
After the particle dispersion of Comparative Example 1 was diluted with methyl carbitol (solvent, abbreviation: MCT), the particle dispersion was washed and concentrated by an ultrafiltration method so that the particle content was about 30% by weight. Prepared. This particle dispersion was designated as Comparative Example 6.
<Comparative Example 7>
After the particle dispersion of Comparative Example 2 was diluted with methyl carbitol (solvent, abbreviation: MCT), the particle dispersion was washed and concentrated by an ultrafiltration method so that the particle content was about 30% by weight. Prepared. This particle dispersion was designated as Comparative Example 7.
<Comparative Example 8>
After the particle dispersion of Comparative Example 3 was diluted with methyl carbitol (solvent, abbreviation: MCT), the particle dispersion was washed and concentrated by an ultrafiltration method so that the particle content was about 30% by weight. Prepared. This particle dispersion was designated as Comparative Example 8.
<Comparative Example 9>
After the particle dispersion of Comparative Example 4 was diluted with methyl carbitol (solvent, abbreviation: MCT), the particle dispersion was washed and concentrated by an ultrafiltration method so that the particle content was about 30% by weight. Prepared. This particle dispersion was designated as Comparative Example 9.

<比較試験2及び評価>
実施例4〜6、参考例8〜14及び比較例6〜10の約30重量%に洗浄・濃縮した直後の粒子分散体の状態と、密栓したガラス瓶に入れて40℃に2週間保持した後の状態を目視にて観察した。その結果を表2に示す。表2において、「isoPG」は2-イソプロポキシエタノールの略称であり、「MCT」はメチルカルビトールの略称であり、「IPA」はイソプロパノールの略称であり、「NMP」はN-メチルピロリドンの略称であり、「Hx」はヘキサンの略称であり、「PGMEA」はプロピレングリコールモノメチルエーテルアセテートの略称であり、「PGM」はプロピレングリコールモノメチルエーテルの略称である。
<Comparative test 2 and evaluation>
The state of the particle dispersion immediately after washing and concentration to about 30% by weight of Examples 4 to 6, Reference Examples 8 to 14 and Comparative Examples 6 to 10, and after being kept in a sealed glass bottle at 40 ° C. for 2 weeks The state of was observed visually. The results are shown in Table 2. In Table 2, “isoPG” is an abbreviation for 2-isopropoxyethanol, “MCT” is an abbreviation for methyl carbitol, “IPA” is an abbreviation for isopropanol, and “NMP” is an abbreviation for N-methylpyrrolidone. “Hx” is an abbreviation for hexane, “PGMEA” is an abbreviation for propylene glycol monomethyl ether acetate, and “PGM” is an abbreviation for propylene glycol monomethyl ether.

Figure 0005920312
表2から明らかなように、比較例6〜9では2週間後いずれも沈殿していたのに対し、実施例4〜6及び参考例8〜14では2週間後も沈殿せずコロイド特有のインク状態のままであった。この結果、上記実施例及び参考例のような簡便な方法で、特別な分散装置を使用せずに、高濃度の金属又は半金属化合物粒子の分散した粒子分散体(コロイド液)が比較的容易に製造できることが判った。
Figure 0005920312
As is apparent from Table 2, the inks peculiar to colloids were not precipitated after 2 weeks in Examples 4 to 6 and Reference Examples 8 to 14 , whereas they were precipitated after 2 weeks in Comparative Examples 6 to 9. The state remained. As a result, a particle dispersion (colloidal liquid) in which high-concentration metal or metalloid compound particles are dispersed is relatively easy by a simple method as in the above Examples and Reference Examples , without using a special dispersion apparatus. It was found that it can be manufactured.

参考例15
先ずイソステアリン酸銅(炭素数:18)0.7gをガラス瓶に入れた。次にこのイソステアリン酸銅(単一物)の入ったガラス瓶を電子レンジに入れるとともに、グローブボックス内に窒素ガスを200cc/分ずつ供給しながら電子レンジを出力1000Wで8分間作動させた。その後、上記ガラス瓶を電子レンジから取出して室温まで冷却し、コロイド状の粒子分散体を得た。この粒子分散体を参考例15とした。
参考例16
先ずカプロン酸銀(炭素数:6)0.7gをガラス瓶に入れた。次にこのカプロン酸銀(単一物)の入ったガラス瓶を電子レンジに入れるとともに、グローブボックス内に窒素ガスを200cc/分ずつ供給しながら電子レンジを出力850Wで5分間作動させた。その後、上記ガラス瓶を電子レンジから取出して室温まで冷却し、コロイド状の粒子分散体を得た。この粒子分散体を参考例16とした。
< Reference Example 15 >
First, 0.7 g of copper isostearate (carbon number: 18) was put in a glass bottle. Next, the glass bottle containing the copper isostearate (single product) was put into a microwave oven, and the microwave oven was operated at an output of 1000 W for 8 minutes while supplying nitrogen gas into the glove box at 200 cc / min. Thereafter, the glass bottle was taken out from the microwave oven and cooled to room temperature to obtain a colloidal particle dispersion. This particle dispersion was designated as Reference Example 15 .
< Reference Example 16 >
First, 0.7 g of silver caproate (carbon number: 6) was put in a glass bottle. Next, the glass bottle containing the silver caproate (single item) was put into a microwave oven, and the microwave oven was operated at an output of 850 W for 5 minutes while supplying nitrogen gas into the glove box at 200 cc / min. Thereafter, the glass bottle was taken out from the microwave oven and cooled to room temperature to obtain a colloidal particle dispersion. This particle dispersion was designated as Reference Example 16 .

参考例17
先ずオレイン酸銀(炭素数:18)0.35gと2-エチルヘキサン酸パラジウム(炭素数:8)0.35gとをガラス瓶に入れて混合物を得た。次に上記混合物の入ったガラス瓶を電子レンジに入れるとともに、グローブボックス内に窒素ガスを200cc/分ずつ供給しながら電子レンジを出力850Wで5分間作動させた。その後、上記ガラス瓶を電子レンジから取出して室温まで冷却し、コロイド状の粒子分散体を得た。この粒子分散体を参考例17とした。
参考例18
先ず2-エチルヘキサン酸パラジウム(炭素数:8)0.7gをガラス瓶に入れた。次にこの2-エチルヘキサン酸パラジウム(単一物)の入ったガラス瓶を電子レンジに入れるとともに、グローブボックス内に窒素ガスを200cc/分ずつ供給しながら、電子レンジを出力850Wで5分間作動させた。その後、上記ガラス瓶を電子レンジから取出して室温まで冷却し、コロイド状の粒子分散体を得た。この粒子分散体を参考例18とした。
< Reference Example 17 >
First, 0.35 g of silver oleate (carbon number: 18) and 0.35 g of palladium 2-ethylhexanoate (carbon number: 8) were put in a glass bottle to obtain a mixture. Next, the glass bottle containing the mixture was put in a microwave oven, and the microwave oven was operated at an output of 850 W for 5 minutes while supplying nitrogen gas into the glove box at 200 cc / min. Thereafter, the glass bottle was taken out from the microwave oven and cooled to room temperature to obtain a colloidal particle dispersion. This particle dispersion was designated as Reference Example 17 .
< Reference Example 18 >
First, 0.7 g of palladium 2-ethylhexanoate (carbon number: 8) was put in a glass bottle. Next, the glass bottle containing this palladium 2-ethylhexanoate (single item) is put in a microwave oven, and the microwave oven is operated at an output of 850 W for 5 minutes while supplying 200 cc / min of nitrogen gas into the glove box. It was. Thereafter, the glass bottle was taken out from the microwave oven and cooled to room temperature to obtain a colloidal particle dispersion. This particle dispersion was designated as Reference Example 18 .

参考例19
先ずカプロン酸/2-エチルヘキシルアミン金錯体(炭素数:6,8)0.7gをガラス瓶にいれた。次にこのカプロン酸/2-エチルヘキシルアミン金錯体(単一物)を電子レンジに入れるとともに、グローブボックス内に窒素ガスを200cc/分ずつ供給しながら電子レンジを出力1000Wで5分間作動させた。その後、上記ガラス瓶を電子レンジから取出して室温まで冷却し、コロイド状の粒子分散体を得た。この粒子分散体を参考例19とした。
参考例20
先ずオレイン酸/プロピレンジアミン金錯体(炭素数:18,3)0.6gとイソステアリン酸銅(炭素数:18)0.1gとをガラス瓶に入れて混合物を得た。次に上記混合物の入ったガラス瓶を電子レンジに入れるとともに、グローブボックス内に窒素ガスを200cc/分ずつ供給しながら、電子レンジを出力1000Wで8分間作動させた。その後、上記ガラス瓶を電子レンジから取出して室温まで冷却し、コロイド状の粒子分散体を得た。この粒子分散体を参考例20とした。
< Reference Example 19 >
First, 0.7 g of caproic acid / 2-ethylhexylamine gold complex (carbon number: 6, 8) was put in a glass bottle. Next, the caproic acid / 2-ethylhexylamine gold complex (single substance) was put in a microwave oven, and the microwave oven was operated at an output of 1000 W for 5 minutes while supplying 200 cc / min of nitrogen gas into the glove box. Thereafter, the glass bottle was taken out from the microwave oven and cooled to room temperature to obtain a colloidal particle dispersion. This particle dispersion was designated as Reference Example 19 .
< Reference Example 20 >
First, 0.6 g of oleic acid / propylenediamine gold complex (carbon number: 18, 3) and 0.1 g of copper isostearate (carbon number: 18) were put in a glass bottle to obtain a mixture. Next, the glass bottle containing the mixture was placed in a microwave oven, and the microwave oven was operated at an output of 1000 W for 8 minutes while supplying 200 cc / min of nitrogen gas into the glove box. Thereafter, the glass bottle was taken out from the microwave oven and cooled to room temperature to obtain a colloidal particle dispersion. This particle dispersion was designated as Reference Example 20 .

参考例21
先ずオレイルアミン白金錯体(炭素数:18)0.7をガラス瓶に入れた。次にこのオレイルアミン白金錯体(単一物)の入ったガラス瓶を電子レンジに入れるとともに、グローブボックス内に窒素ガスを200cc/分ずつ供給しながら、電子レンジを出力850Wで8分間作動させた。その後、上記ガラス瓶を電子レンジから取出して室温まで冷却し、コロイド状の粒子分散体を得た。この粒子分散体を参考例21とした。
参考例22
先ずビバル酸ルテニウム(炭素数:5)0.7gをガラス瓶に入れた。次にこのビバル酸ルテニウム(単一物)の入ったガラス瓶を電子レンジに入れるとともに、グローブボックス内に窒素ガスを200cc/分ずつ供給しながら、電子レンジを出力1200Wで8分間作動させた。その後、上記ガラス瓶を電子レンジから取出して室温まで冷却し、コロイド状の粒子分散体を得た。この粒子分散体を参考例22とした。
< Reference Example 21 >
First, oleylamine platinum complex (carbon number: 18) 0.7 was put in a glass bottle. Next, the glass bottle containing the oleylamine platinum complex (single substance) was put in a microwave oven, and the microwave oven was operated at an output of 850 W for 8 minutes while supplying 200 cc / min of nitrogen gas into the glove box. Thereafter, the glass bottle was taken out from the microwave oven and cooled to room temperature to obtain a colloidal particle dispersion. This particle dispersion was designated as Reference Example 21 .
< Reference Example 22 >
First, 0.7 g of ruthenium vibalate (carbon number: 5) was put in a glass bottle. Next, the glass bottle containing the ruthenium vibalate (single substance) was put into a microwave oven, and the microwave oven was operated at an output of 1200 W for 8 minutes while supplying 200 cc / min of nitrogen gas into the glove box. Thereafter, the glass bottle was taken out from the microwave oven and cooled to room temperature to obtain a colloidal particle dispersion. This particle dispersion was designated as Reference Example 22 .

参考例23
先ずステアリン酸鉄(炭素数:18)0.3gと酢酸コバルト(炭素数:2)0.1gとベヘン酸ニッケル(炭素数:22)0.3gとをガラス瓶に入れて混合物を得た。次に上記混合物の入ったガラス瓶を電子レンジに入れるとともに、グローブボックス内に窒素ガスを200cc/分ずつ供給しながら、電子レンジを出力1200Wで8分間作動させた。その後、上記ガラス瓶を電子レンジから取出して室温まで冷却し、コロイド状の粒子分散体を得た。この粒子分散体を参考例23とした。
参考例24
先ずリノール酸/テトラデシルアミンロジウム錯体(炭素数:18,14)0.7gをガラス瓶に入れた。次にリノール酸/テトラデシルアミンロジウム錯体(単一物)の入ったガラス瓶を電子レンジに入れるとともに、グローブボックス内に窒素ガスを200cc/分ずつ供給しながら、電子レンジを出力1000Wで5分間作動させた。その後、上記ガラス瓶を電子レンジから取出して室温まで冷却し、コロイド状の粒子分散体を得た。この粒子分散体を参考例24とした。
< Reference Example 23 >
First, 0.3 g of iron stearate (carbon number: 18), cobalt acetate (carbon number: 2) 0.1 g and nickel behenate (carbon number: 22) 0.3 g were put in a glass bottle to obtain a mixture. Next, the glass bottle containing the mixture was placed in a microwave oven, and the microwave oven was operated at an output of 1200 W for 8 minutes while supplying nitrogen gas into the glove box at 200 cc / min. Thereafter, the glass bottle was taken out from the microwave oven and cooled to room temperature to obtain a colloidal particle dispersion. This particle dispersion was designated as Reference Example 23 .
< Reference Example 24 >
First, 0.7 g of linoleic acid / tetradecylamine rhodium complex (carbon number: 18, 14) was put in a glass bottle. Next, a glass bottle containing linoleic acid / tetradecylamine rhodium complex (single) is put into a microwave oven, and nitrogen gas is supplied into the glove box at 200 cc / min. I let you. Thereafter, the glass bottle was taken out from the microwave oven and cooled to room temperature to obtain a colloidal particle dispersion. This particle dispersion was designated as Reference Example 24 .

参考例25
先ずリノレン酸/ヘキサデシルアミンレニウム錯体(炭素数:18,16)0.7gをガラス瓶に入れた。次にこのリノレン酸/ヘキサデシルアミンレニウム錯体(単一物)の入ったガラス瓶を電子レンジに入れるとともに、グローブボックス内に窒素ガスを200cc/分ずつ供給しながら、電子レンジを出力1000Wで5分間作動させた。その後、上記ガラス瓶を電子レンジから取出して室温まで冷却し、コロイド状の粒子分散体を得た。この粒子分散体を参考例25とした。
参考例26
先ずオレイン酸インジウム(炭素数:18)0.65gとドデシルアミン錫錯体(炭素数:12)0.5gとをガラス瓶に入れて混合物を得た。次に上記混合物の入ったガラス瓶を電子レンジに入れるとともに、グローブボックス内に窒素ガスを200cc/分ずつ供給しながら、電子レンジを出力1000Wで9分間作動させた。その後、上記ガラス瓶を電子レンジから取出して室温まで冷却し、コロイド状の粒子分散体を得た。この粒子分散体を参考例26とした。
< Reference Example 25 >
First, 0.7 g of linolenic acid / hexadecylamine rhenium complex (carbon number: 18, 16) was put in a glass bottle. Next, the glass bottle containing the linolenic acid / hexadecylamine rhenium complex (single) is put into a microwave oven, and nitrogen gas is supplied into the glove box at 200 cc / min. Activated. Thereafter, the glass bottle was taken out from the microwave oven and cooled to room temperature to obtain a colloidal particle dispersion. This particle dispersion was designated as Reference Example 25 .
< Reference Example 26 >
First, 0.65 g of indium oleate (carbon number: 18) and 0.5 g of dodecylamine tin complex (carbon number: 12) were put in a glass bottle to obtain a mixture. Next, the glass bottle containing the mixture was placed in a microwave oven, and the microwave oven was operated for 9 minutes at an output of 1000 W while supplying nitrogen gas into the glove box at 200 cc / min. Thereafter, the glass bottle was taken out from the microwave oven and cooled to room temperature to obtain a colloidal particle dispersion. This particle dispersion was designated as Reference Example 26 .

参考例27
先ず12-ヒドロキシステアリン酸インジウム(炭素数:18)0.6gとパルミチン酸亜鉛(炭素数:16)0.1gとをガラス瓶に入れて混合物を得た。次に上記混合物の入ったガラス瓶を電子レンジに入れるとともに、グローブボックス内に窒素ガスを200cc/分ずつ供給しながら、電子レンジを出力850Wで9分間作動させた。その後、上記ガラス瓶を電子レンジから取出して室温まで冷却し、コロイド状の粒子分散体を得た。この粒子分散体を参考例27とした。
<実施例
先ずアクリル酸銀(炭素数:4)0.7をガラス瓶に入れた。次にこのパルミチン酸亜鉛(単一物)の入ったガラス瓶を電子レンジに入れるとともに、グローブボックス内に窒素ガスを200cc/分ずつ供給しながら、電子レンジを出力850Wで5分間作動させた。その後、上記ガラス瓶を電子レンジから取出して室温まで冷却し、コロイド状の粒子分散体を得た。この粒子分散体を実施例とした。
< Reference Example 27 >
First, 0.6 g of indium 12-hydroxystearate (carbon number: 18) and 0.1 g of zinc palmitate (carbon number: 16) were put in a glass bottle to obtain a mixture. Next, the glass bottle containing the mixture was put into a microwave oven, and the microwave oven was operated at an output of 850 W for 9 minutes while supplying nitrogen gas into the glove box at 200 cc / min. Thereafter, the glass bottle was taken out from the microwave oven and cooled to room temperature to obtain a colloidal particle dispersion. This particle dispersion was designated as Reference Example 27 .
<Example 7 >
First, silver acrylate (carbon number: 4) 0.7 was put in a glass bottle. Next, the glass bottle containing the zinc palmitate (single substance) was put into a microwave oven, and the microwave oven was operated at an output of 850 W for 5 minutes while supplying 200 cc / min of nitrogen gas into the glove box. Thereafter, the glass bottle was taken out from the microwave oven and cooled to room temperature to obtain a colloidal particle dispersion. This particle dispersion was designated as Example 7 .

<実施例8>
先ずメタクリル酸銀(炭素数:)0.35gとアクリル酸パラジウム(炭素数:4)とをガラス瓶に入れて混合物を得た。次に上記混合物の入ったガラス瓶を電子レンジに入れるとともに、グローブボックス内に窒素ガスを200cc/分ずつ供給しながら、電子レンジを出力850Wで5分間作動させた。その後、上記ガラス瓶を電子レンジから取出して室温まで冷却し、コロイド状の粒子分散体を得た。この粒子分散体を実施例8とした。
<参考例28>
参考例1のインジウム石鹸(炭素数:10)0.65gと実施例1の錫石鹸(炭素数:10)0.5gとをガラス瓶に入れて混合物を得た。次に上記混合物の入ったガラス瓶を電子レンジに入れるとともに、グローブボックス内に窒素ガスを200cc/分ずつ供給しながら、電子レンジを出力1100Wで9分間作動させた。その後、上記ガラス瓶を電子レンジから取出して室温まで冷却し、コロイド状の粒子分散体を得た。この粒子分散体を参考例28とした。
<Example 8>
First, 0.35 g of silver methacrylate (carbon number: 5 ) and palladium acrylate (carbon number: 4) were put in a glass bottle to obtain a mixture. Next, the glass bottle containing the mixture was placed in a microwave oven, and the microwave oven was operated at an output of 850 W for 5 minutes while supplying 200 cc / min of nitrogen gas into the glove box. Thereafter, the glass bottle was taken out from the microwave oven and cooled to room temperature to obtain a colloidal particle dispersion. This particle dispersion was defined as Example 8.
<Reference Example 28>
0.65 g of the indium soap (carbon number: 10) of Reference Example 1 and 0.5 g of the tin soap (carbon number: 10) of Example 1 were put in a glass bottle to obtain a mixture. Next, the glass bottle containing the mixture was put into a microwave oven, and the microwave oven was operated at an output of 1100 W for 9 minutes while supplying nitrogen gas into the glove box at 200 cc / min. Thereafter, the glass bottle was taken out from the microwave oven and cooled to room temperature to obtain a colloidal particle dispersion. This particle dispersion was designated as Reference Example 28.

参考例29
先ずエチレンオキシド変性コハク酸メタクリレート(新中村化学社製のNKエステルSA)を水酸化ナトリウムでけん化して石鹸を調製した後に、この石鹸に塩化金溶液を混合して撹拌することにより金の金属石鹸を調製した。次いでこの金の金属石鹸を十分に水で洗浄して濾過することにより脱塩した後に、この脱塩した金の金属石鹸を80℃の真空乾燥機に一晩入れて脱水することにより金石鹸(炭素数:10)を得た。次にこの金石鹸0.7gをガラス瓶に入れた。更にこの金石鹸(単一物)の入ったガラス瓶を電子レンジに入れるとともに、グローブボックス内に窒素ガスを200cc/分ずつ供給しながら、電子レンジを出力1000Wで5分間作動させた。その後、上記ガラス瓶を電子レンジから取出して室温まで冷却し、コロイド状の粒子分散体を得た。この粒子分散体を参考例29とした。
<実施例
先ずメタクリル酸白金(炭素数:5)0.7gをガラス瓶に入れた。次にメタクリル酸白金(単一物)の入ったガラス瓶を電子レンジに入れるとともに、グローブボックス内に窒素ガスを200cc/分ずつ供給しながら、電子レンジを出力1000Wで5分間作動させた。その後、上記ガラス瓶を電子レンジから取出して室温まで冷却し、コロイド状の粒子分散体を得た。この粒子分散体を実施例とした。
< Reference Example 29 >
First, a soap was prepared by saponifying ethylene oxide-modified succinic acid methacrylate (NK ester SA, manufactured by Shin-Nakamura Chemical Co., Ltd.) with sodium hydroxide, and then mixing the gold chloride solution with the soap and stirring the gold metal soap. Prepared. Next, the gold metal soap was sufficiently washed with water and filtered for desalting, and then the desalted gold metal soap was placed in a vacuum dryer at 80 ° C. overnight to dehydrate it to dehydrate the gold soap ( Carbon number: 10) was obtained. Next, 0.7 g of this gold soap was put in a glass bottle. Further, the glass bottle containing the gold soap (single item) was put into a microwave oven, and the microwave oven was operated at an output of 1000 W for 5 minutes while supplying nitrogen gas into the glove box at 200 cc / min. Thereafter, the glass bottle was taken out from the microwave oven and cooled to room temperature to obtain a colloidal particle dispersion. This particle dispersion was designated as Reference Example 29 .
<Example 9 >
First, 0.7 g of platinum methacrylate (carbon number: 5) was put in a glass bottle. Next, the glass bottle containing platinum methacrylate (single) was put into a microwave oven, and the microwave oven was operated at an output of 1000 W for 5 minutes while supplying 200 cc / min of nitrogen gas into the glove box. Thereafter, the glass bottle was taken out from the microwave oven and cooled to room temperature to obtain a colloidal particle dispersion. This particle dispersion was referred to as Example 9 .

<比較例10>
先ずカプロン酸銀(炭素数:6)0.7gをガラス瓶に入れた。次にこのカプロン酸銀(単一物)の入ったガラス瓶を電子レンジに入れるとともに、グローブボックス内に窒素ガスを200cc/分ずつ供給しながら、電子レンジを出力1300Wで6分間作動させた。その後、上記ガラス瓶を電子レンジから取出して室温まで冷却し、コロイド状の粒子分散体を得た。この粒子分散体を比較例10とした。
<比較例11>
先ずカプロン酸銀(炭素数:6)0.7gをガラス瓶に入れた。次にこのカプロン酸銀(単一物)の入ったガラス瓶を電子レンジに入れるとともに、グローブボックス内に窒素ガスを200cc/分ずつ供給しながら、電子レンジを出力1000Wで11分間作動させた。その後、上記ガラス瓶を電子レンジから取出して室温まで冷却し、コロイド状の粒子分散体を得た。この粒子分散体を比較例11とした。
<比較例12>
先ずカプロン酸銀(炭素数:6)0.7gをガラス瓶に入れた。次にこのカプロン酸銀(単一物)の入ったガラス瓶を電子レンジに入れるとともに、グローブボックス内に窒素ガスを200cc/分ずつ供給しながら、電子レンジを出力750Wで4分間作動させた。その後、上記ガラス瓶を電子レンジから取出して室温まで冷却し、コロイド状の粒子分散体を得た。この粒子分散体を比較例12とした。
<比較例13>
先ずカプロン酸銀(炭素数:6)0.7gをガラス瓶に入れた。次にこのカプロン酸銀(単一物)の入ったガラス瓶を電子レンジに入れるとともに、グローブボックス内に窒素ガスを200cc/分ずつ供給しながら、電子レンジを出力800Wで2分間作動させた。その後、上記ガラス瓶を電子レンジから取出して室温まで冷却し、コロイド状の粒子分散体を得た。この粒子分散体を比較例13とした。
<Comparative Example 10>
First, 0.7 g of silver caproate (carbon number: 6) was put in a glass bottle. Next, the glass bottle containing the silver caproate (single item) was put into a microwave oven, and the microwave oven was operated at an output of 1300 W for 6 minutes while supplying 200 cc / min of nitrogen gas into the glove box. Thereafter, the glass bottle was taken out from the microwave oven and cooled to room temperature to obtain a colloidal particle dispersion. This particle dispersion was designated as Comparative Example 10.
<Comparative Example 11>
First, 0.7 g of silver caproate (carbon number: 6) was put in a glass bottle. Next, the glass bottle containing the silver caproate (single item) was put into a microwave oven, and the microwave oven was operated at an output of 1000 W for 11 minutes while supplying nitrogen gas into the glove box at 200 cc / min. Thereafter, the glass bottle was taken out from the microwave oven and cooled to room temperature to obtain a colloidal particle dispersion. This particle dispersion was designated as Comparative Example 11.
<Comparative Example 12>
First, 0.7 g of silver caproate (carbon number: 6) was put in a glass bottle. Next, the glass bottle containing the silver caproate (single item) was put in a microwave oven, and the microwave oven was operated at an output of 750 W for 4 minutes while supplying nitrogen gas into the glove box at 200 cc / min. Thereafter, the glass bottle was taken out from the microwave oven and cooled to room temperature to obtain a colloidal particle dispersion. This particle dispersion was designated as Comparative Example 12.
<Comparative Example 13>
First, 0.7 g of silver caproate (carbon number: 6) was put in a glass bottle. Next, the glass bottle containing the silver caproate (single item) was put into a microwave oven, and the microwave oven was operated at an output of 800 W for 2 minutes while supplying nitrogen gas into the glove box at 200 cc / min. Thereafter, the glass bottle was taken out from the microwave oven and cooled to room temperature to obtain a colloidal particle dispersion. This particle dispersion was designated as Comparative Example 13.

<比較例14>
先ずカプロン酸銀(炭素数:6)0.7gをガラス瓶に入れ、デカリン(溶媒)1.5gを添加して混合物を得た。次に上記混合物の入ったガラス瓶を電子レンジに入れるとともに、グローブボックス内に窒素ガスを200cc/分ずつ供給しながら、電子レンジを出力850Wで8分間作動させた。その後、上記ガラス瓶を電子レンジから取出して室温まで冷却し、コロイド状の粒子分散体を得た。この粒子分散体を比較例14とした。
<比較試験3及び評価>
実施例7〜9、参考例15〜29及び比較例9〜14の粒子分散体をアセトンで洗浄した後、真空雰囲気中に室温で2時間保持して金属粒子からなる乾燥粉末を作製し、X線光電子スペクトル法(XPS法)により乾燥粉末を構成する化合物の同定を行ってその化合物の酸化数を求め、またフィールドエミッション透過電子顕微鏡(FE−TEM)により上記乾燥粉末の元素分析を行うとともに、乾燥粉末の一次粒子の平均粒径を求めた。その結果を表3及び表4に示す。
<Comparative example 14>
First, 0.7 g of silver caproate (carbon number: 6) was put in a glass bottle, and 1.5 g of decalin (solvent) was added to obtain a mixture. Next, the glass bottle containing the above mixture was put into a microwave oven, and the microwave oven was operated at an output of 850 W for 8 minutes while supplying nitrogen gas into the glove box at 200 cc / min. Thereafter, the glass bottle was taken out from the microwave oven and cooled to room temperature to obtain a colloidal particle dispersion. This particle dispersion was designated as Comparative Example 14.
<Comparative test 3 and evaluation>
The particle dispersions of Examples 7 to 9, Reference Examples 15 to 29 and Comparative Examples 9 to 14 were washed with acetone, and then kept in a vacuum atmosphere at room temperature for 2 hours to produce a dry powder composed of metal particles. The compound constituting the dry powder is identified by the linear photoelectron spectrum method (XPS method) to determine the oxidation number of the compound, and the elemental analysis of the dry powder is performed by a field emission transmission electron microscope (FE-TEM). The average particle size of the primary particles of the dry powder was determined. The results are shown in Tables 3 and 4.

Figure 0005920312
Figure 0005920312

Figure 0005920312
表3及び表4から明らかなように、比較例10では銀メタルの凝集塊が発生し、比較例11では酸化数がゼロであったけれども金属粒子の一次粒子の平均粒径がミクロンオーダと大きく、比較例12では反応部分が多く、更に比較例13及び14では原料粉末の有機金属化合物と変わっていなかった。これに対し、実施例7〜9及び参考15〜29では乾燥粉末の金属粒子の酸化数がゼロであり、また実施例7〜9及び参考15〜29では、乾燥粉末の金属粒子がIn、Sn等の金属を含み、更に金属粒子の一次粒子の平均粒径が2〜13nmと極めて微細であることが分かった。
Figure 0005920312
As apparent from Tables 3 and 4, in Comparative Example 10, silver metal agglomerates were generated. In Comparative Example 11, although the oxidation number was zero, the average particle size of the primary particles of the metal particles was as large as micron. In Comparative Example 12, there were many reaction parts, and in Comparative Examples 13 and 14, the organometallic compound of the raw material powder was not changed. In contrast, in Examples 7 to 9 and References 15 to 29 , the oxidation number of the metal particles of the dry powder was zero, and in Examples 7 to 9 and References 15 to 29 , the metal particles of the dry powder were In, Sn. It was found that the average particle size of the primary particles of the metal particles was 2 to 13 nm and extremely fine.

参考例30
参考例15の粒子分散体をトルエン(溶媒、略称:TL)で希釈した後に、限外濾過法により洗浄・濃縮して粒子の含有量が約40重量%となるように粒子分散体を調製した。この粒子分散体を参考例30とした。
参考例31
参考例16の粒子分散体をイソプロパノール(溶媒、略称:IPA)で希釈した後に、限外濾過法により洗浄・濃縮して粒子の含有量が約40重量%となるように粒子分散体を調製した。この粒子分散体を参考例31とした。
参考例32
参考例17の粒子分散体を2-イソプロポキシエタノール(溶媒、略称:isoPG)で希釈した後に、限外濾過法により洗浄・濃縮して粒子の含有量が約40重量%となるように粒子分散体を調製した。この粒子分散体を参考例32とした。
参考例33
参考例18の粒子分散体をイソプロパノール(溶媒、略称:IPA)で希釈した後に、限外濾過法により洗浄・濃縮して粒子の含有量が約40重量%となるように粒子分散体を調製した。この粒子分散体を参考例33とした。
参考例34
参考例19の粒子分散体をイソプロパノール(溶媒、略称:IPA)で希釈した後に、限外濾過法により洗浄・濃縮して粒子の含有量が約40重量%となるように粒子分散体を調製した。この粒子分散体を参考例34とした。
< Reference Example 30 >
After the particle dispersion of Reference Example 15 was diluted with toluene (solvent, abbreviation: TL), it was washed and concentrated by an ultrafiltration method to prepare a particle dispersion so that the particle content was about 40% by weight. . This particle dispersion was designated as Reference Example 30 .
< Reference Example 31 >
The particle dispersion of Reference Example 16 was diluted with isopropanol (solvent, abbreviation: IPA), then washed and concentrated by an ultrafiltration method to prepare a particle dispersion so that the particle content was about 40% by weight. . This particle dispersion was designated as Reference Example 31 .
< Reference Example 32 >
The particle dispersion of Reference Example 17 was diluted with 2-isopropoxyethanol (solvent, abbreviation: isoPG), then washed and concentrated by an ultrafiltration method so that the particle content was about 40% by weight. The body was prepared. This particle dispersion was designated as Reference Example 32 .
< Reference Example 33 >
The particle dispersion of Reference Example 18 was diluted with isopropanol (solvent, abbreviation: IPA), then washed and concentrated by an ultrafiltration method to prepare a particle dispersion so that the particle content was about 40% by weight. . This particle dispersion was designated as Reference Example 33 .
< Reference Example 34 >
The particle dispersion of Reference Example 19 was diluted with isopropanol (solvent, abbreviation: IPA), then washed and concentrated by an ultrafiltration method to prepare a particle dispersion so that the particle content was about 40% by weight. . This particle dispersion was designated as Reference Example 34 .

参考例35
参考例20の粒子分散体をα−テルピネオール(溶媒、略称:TP)で希釈した後に、限外濾過法により洗浄・濃縮して粒子の含有量が約40重量%となるように粒子分散体を調製した。この粒子分散体を参考例35とした。
参考例36
参考例21の粒子分散体をα−テルピネオール(溶媒、略称:TP)で希釈した後に、限外濾過法により洗浄・濃縮して粒子の含有量が約40重量%となるように粒子分散体を調製した。この粒子分散体を参考例36とした。
参考例37
参考例22の粒子分散体を水(溶媒、略称:W)で希釈した後に、限外濾過法により洗浄・濃縮して粒子の含有量が約40重量%となるように粒子分散体を調製した。この粒子分散体を参考例37とした。
参考例38
参考例23の粒子分散体をプロピレングリコールモノメチルエーテル(溶媒、略称:PGM)で希釈した後に、限外濾過法により洗浄・濃縮して粒子の含有量が約40重量%となるように粒子分散体を調製した。この粒子分散体を参考例38とした。
参考例39
参考例24の粒子分散体をヘキサン(溶媒、略称:Hx)で希釈した後に、限外濾過法により洗浄・濃縮して粒子の含有量が約40重量%となるように粒子分散体を調製した。この粒子分散体を参考例39とした。
< Reference Example 35 >
After the particle dispersion of Reference Example 20 was diluted with α-terpineol (solvent, abbreviation: TP), the particle dispersion was washed and concentrated by an ultrafiltration method so that the particle content was about 40% by weight. Prepared. This particle dispersion was designated as Reference Example 35 .
< Reference Example 36 >
After the particle dispersion of Reference Example 21 was diluted with α-terpineol (solvent, abbreviation: TP), the particle dispersion was washed and concentrated by an ultrafiltration method so that the particle content was about 40% by weight. Prepared. This particle dispersion was designated as Reference Example 36 .
< Reference Example 37 >
After the particle dispersion of Reference Example 22 was diluted with water (solvent, abbreviation: W), it was washed and concentrated by an ultrafiltration method to prepare a particle dispersion so that the particle content was about 40% by weight. . This particle dispersion was designated as Reference Example 37 .
< Reference Example 38 >
The particle dispersion of Reference Example 23 was diluted with propylene glycol monomethyl ether (solvent, abbreviation: PGM), then washed and concentrated by an ultrafiltration method so that the particle content was about 40% by weight. Was prepared. This particle dispersion was designated as Reference Example 38 .
< Reference Example 39 >
The particle dispersion of Reference Example 24 was diluted with hexane (solvent, abbreviation: Hx), then washed and concentrated by an ultrafiltration method to prepare a particle dispersion so that the particle content was about 40% by weight. . This particle dispersion was designated as Reference Example 39 .

参考例40
参考例25の粒子分散体をメチルカルビトール(溶媒、略称:MCT)で希釈した後に、限外濾過法により洗浄・濃縮して粒子の含有量が約40重量%となるように粒子分散体を調製した。この粒子分散体を参考例40とした。
参考例41
参考例26の粒子分散体をデカリン(溶媒、略称:DC)で希釈した後に、限外濾過法により洗浄・濃縮して粒子の含有量が約40重量%となるように粒子分散体を調製した。この粒子分散体を参考例41とした。
参考例42
参考例27の粒子分散体をデカリン(溶媒、略称:DC)で希釈した後に、限外濾過法により洗浄・濃縮して粒子の含有量が約40重量%となるように粒子分散体を調製した。この粒子分散体を参考例42とした。
<実施例10
実施例の粒子分散体をイソプロパノール(溶媒、略称:IPA)で希釈した後に、限外濾過法により洗浄・濃縮して粒子の含有量が約40重量%となるように粒子分散体を調製した。この粒子分散体を実施例10とした。
<実施例11
実施例の粒子分散体をイソプロパノール(溶媒、略称:IPA)で希釈した後に、限外濾過法により洗浄・濃縮して粒子の含有量が約40重量%となるように粒子分散体を調製した。この粒子分散体を実施例11とした。
< Reference Example 40 >
After the particle dispersion of Reference Example 25 was diluted with methyl carbitol (solvent, abbreviation: MCT), the particle dispersion was washed and concentrated by an ultrafiltration method so that the particle content was about 40% by weight. Prepared. This particle dispersion was designated as Reference Example 40 .
< Reference Example 41 >
The particle dispersion of Reference Example 26 was diluted with decalin (solvent, abbreviation: DC), then washed and concentrated by an ultrafiltration method to prepare a particle dispersion so that the particle content was about 40% by weight. . This particle dispersion was designated as Reference Example 41 .
< Reference Example 42 >
The particle dispersion of Reference Example 27 was diluted with decalin (solvent, abbreviation: DC), then washed and concentrated by ultrafiltration to prepare a particle dispersion so that the particle content was about 40% by weight. . This particle dispersion was designated as Reference Example 42 .
<Example 10 >
The particle dispersion of Example 7 was diluted with isopropanol (solvent, abbreviation: IPA), then washed and concentrated by an ultrafiltration method to prepare a particle dispersion so that the particle content was about 40% by weight. . This particle dispersion was designated as Example 10 .
<Example 11 >
The particle dispersion of Example 8 was diluted with isopropanol (solvent, abbreviation: IPA), then washed and concentrated by an ultrafiltration method to prepare a particle dispersion so that the particle content was about 40% by weight. . This particle dispersion was designated as Example 11 .

参考例43
参考例28の粒子分散体をテトラデカン(溶媒、略称:TD)で希釈した後に、限外濾過法により洗浄・濃縮して粒子の含有量が約40重量%となるように粒子分散体を調製した。この粒子分散体を参考例43とした。
参考例44
参考例29の粒子分散体をヘキサン(溶媒、略称:Hx)で希釈した後に、限外濾過法により洗浄・濃縮して粒子の含有量が約40重量%となるように粒子分散体を調製した。この粒子分散体を参考例44とした。
<実施例12
実施例の粒子分散体をプロピレングリコールモノメチルエーテルアセテート(溶媒、略称:PGMEA)で希釈した後に、限外濾過法により洗浄・濃縮して粒子の含有量が約40重量%となるように粒子分散体を調製した。この粒子分散体を実施例12とした。
<比較例15>
比較例11の粒子分散体をイソプロパノール(溶媒、略称:IPA)と混合した。この混合物を比較例15とした。
< Reference Example 43 >
The particle dispersion of Reference Example 28 was diluted with tetradecane (solvent, abbreviation: TD), then washed and concentrated by an ultrafiltration method to prepare a particle dispersion so that the particle content was about 40% by weight. . This particle dispersion was referred to as Reference Example 43 .
< Reference Example 44 >
The particle dispersion of Reference Example 29 was diluted with hexane (solvent, abbreviation: Hx), then washed and concentrated by an ultrafiltration method to prepare a particle dispersion so that the particle content was about 40% by weight. . This particle dispersion was designated as Reference Example 44 .
<Example 12 >
After the particle dispersion of Example 9 was diluted with propylene glycol monomethyl ether acetate (solvent, abbreviation: PGMEA), it was washed and concentrated by an ultrafiltration method so that the particle content was about 40% by weight. The body was prepared. This particle dispersion was designated as Example 12 .
<Comparative Example 15>
The particle dispersion of Comparative Example 11 was mixed with isopropanol (solvent, abbreviation: IPA). This mixture was designated as Comparative Example 15.

<比較試験4及び評価>
実施例10〜12及び参考例30〜44の粒子分散体と比較例15の混合物の、約30重量%に洗浄・濃縮した直後の粒子分散体の状態と、密栓したガラス瓶に入れて40℃に2週間保持した後の状態を目視にて観察した。その結果を表5及び表6に示す。表5及び表6において、「TL」はトルエンの略称であり、「IPA」はイソプロパノールの略称であり、「isoPG」は2-イソプロポキシエタノールの略称であり、「TP」はα−テルピネオールの略称であり、「W」は水の略称であり、「PGM」はプロピレングリコールモノメチルエーテルの略称であり、「Hx」はヘキサンの略称であり、「MCT」はメチルカルビトールの略称であり、「DC」はデカリンの略称であり、「TD」はテトラデカンの略称であり、「PGMEA」はプロピレングリコールモノメチルエーテルアセテートの略称である。
<Comparative test 4 and evaluation>
The state of the particle dispersion immediately after being washed and concentrated to about 30% by weight of the mixture of the particle dispersions of Examples 10 to 12 and Reference Examples 30 to 44 and Comparative Example 15, and put in a sealed glass bottle at 40 ° C. The state after holding for 2 weeks was visually observed. The results are shown in Tables 5 and 6. In Tables 5 and 6, “TL” is an abbreviation for toluene, “IPA” is an abbreviation for isopropanol, “isoPG” is an abbreviation for 2-isopropoxyethanol, and “TP” is an abbreviation for α-terpineol. “W” is an abbreviation for water, “PGM” is an abbreviation for propylene glycol monomethyl ether, “Hx” is an abbreviation for hexane, “MCT” is an abbreviation for methyl carbitol, and “DC "Is an abbreviation for decalin," TD "is an abbreviation for tetradecane, and" PGMEA "is an abbreviation for propylene glycol monomethyl ether acetate.

Figure 0005920312
Figure 0005920312

Figure 0005920312
表5及び表6から明らかなように、比較例15ではイソプロパノール(溶媒、略称:IPAに全く分散しなかったのに対し、実施例10〜12及び参考例30〜44では2週間後も沈殿せずコロイド特有のインク状態のままであった。この結果、上記実施例のような簡便な方法で、特別な分散装置を使用せずに、高濃度の金属粒子の分散した粒子分散体(コロイド液)が比較的容易に製造できることが判った。
Figure 0005920312
As is clear from Tables 5 and 6, in Comparative Example 15, it was not dispersed at all in isopropanol (solvent, abbreviation: IPA), whereas in Examples 10-12 and Reference Examples 30-44 , precipitation was observed after 2 weeks. As a result, a particle dispersion (colloid liquid) in which high-concentration metal particles are dispersed by a simple method as in the above-described embodiment, without using a special dispersing device. ) Was found to be relatively easy to manufacture.

参考例45
先ず参考例8の粒子分散体(濃度約30重量%のITO粒子を分散した分散液)をエタノールで、ITO粒子の含有量が4.0重量%となるように希釈し、この希釈した粒子分散体に光開始剤(チバ・スペシャリティー・ケミカルズ社製のイルガキュア500)を0.1重量%溶かして粒子分散体を調製した。次いで洗浄済みのソーダガラス板(縦100mm、横100mm、厚さ2.8mm)を40℃に保温し、このソーダガラス板をスピンコーターで150rpmの速度で回転させた状態で、上記希釈調製した粒子分散体を5cc滴下し、120秒間振り切って膜を作製した。
上記膜を上に向けたガラス板にステンレス製フォトマスク31(図2)を載せた。このフォトマスク31は、縦×横×厚さがそれぞれ100mm×100mm×1.0mmの正方形状に形成され、幅×長さがそれぞれ20mm×50mmの長方形の窓孔31aが10mm間隔で3個形成される。次いでガラス板の上方から紫外線照射装置(160Wメタルハライドランプ:距離10cm)により250mJ/cm2の紫外線エネルギを照射した後、フォトマスクを取除いたガラス板をホットプレートに載せて大気中で100℃に10分間保持した。次にN,N-ジメチルホルムアミド10重量%及びアセチルアセトン5重量%を相溶させたエタノール溶液で上記ガラス板をリンスすることにより、非光照射部の膜を溶かし、光照射の膜だけを残して、フォトマスクの長方形の窓孔と同一形状のパターニングされた膜を得た。更にこのガラス板を窒素ガス雰囲気中で220℃に30分間保持して膜を焼成した後に室温まで冷却した。このガラス板を参考例45とした。
< Reference Example 45 >
First, the particle dispersion of Reference Example 8 (a dispersion in which ITO particles having a concentration of about 30% by weight are dispersed) is diluted with ethanol so that the content of ITO particles becomes 4.0% by weight. A particle dispersion was prepared by dissolving 0.1% by weight of photoinitiator (Irgacure 500 manufactured by Ciba Specialty Chemicals) into the body. Next, the diluted soda glass plate (length 100 mm, width 100 mm, thickness 2.8 mm) is kept at 40 ° C., and this diluted and prepared particle is rotated with a spin coater at a speed of 150 rpm. 5 cc of the dispersion was dropped and shaken for 120 seconds to prepare a film.
A stainless steel photomask 31 (FIG. 2) was placed on a glass plate with the film facing upward. This photomask 31 is formed in a square shape with a length × width × thickness of 100 mm × 100 mm × 1.0 mm, respectively, and three rectangular window holes 31a each having a width × length of 20 mm × 50 mm are formed at intervals of 10 mm. Is done. Next, after irradiating UV energy of 250 mJ / cm 2 from above the glass plate with an ultraviolet irradiation device (160 W metal halide lamp: distance 10 cm), the glass plate from which the photomask has been removed is placed on a hot plate and brought to 100 ° C. in the atmosphere. Hold for 10 minutes. Next, the glass plate is rinsed with an ethanol solution in which 10% by weight of N, N-dimethylformamide and 5% by weight of acetylacetone are mixed to dissolve the film of the non-light-irradiated portion, leaving only the light-irradiated film. A patterned film having the same shape as the rectangular window hole of the photomask was obtained. Further, this glass plate was held at 220 ° C. for 30 minutes in a nitrogen gas atmosphere to fire the film, and then cooled to room temperature. This glass plate was referred to as Reference Example 45 .

参考例46
参考例11の粒子分散体(濃度約30重量%のIZO粒子を分散した分散液)を用いたことを除いて、参考例45と同様の方法でガラス板を作製した。このガラス板を参考例46とした。
< Reference Example 46 >
A glass plate was produced in the same manner as in Reference Example 45 , except that the particle dispersion of Reference Example 11 (dispersion in which IZO particles having a concentration of about 30% by weight were dispersed) was used. This glass plate was referred to as Reference Example 46 .

<比較試験5及び評価>
参考例45及び46のガラス板の膜の厚さを走査型電子顕微鏡(SEM)にて測定した。その結果、参考例45の膜の厚さは215nmと見積もられ、参考例46の膜の厚さは321nmと見積もられた。またこれらの膜の表面抵抗値を四探針法にて測定したところ、参考例45の膜は4920Ω/□の導電性を示し、参考例46の膜は5290Ω/□の導電性を示した。更に参考例45及び46の膜の可視光透過率を分光光度計にて測定したところ、97.5%及び96.2%と高い透明性を示した。
<Comparative test 5 and evaluation>
The thickness of the glass plate of Reference Examples 45 and 46 was measured with a scanning electron microscope (SEM). As a result, the film thickness of Reference Example 45 was estimated to be 215 nm, and the film thickness of Reference Example 46 was estimated to be 321 nm. Further, when the surface resistance values of these films were measured by a four-probe method, the film of Reference Example 45 exhibited a conductivity of 4920 Ω / □, and the film of Reference Example 46 exhibited a conductivity of 5290 Ω / □. Furthermore, when the visible light transmittance of the films of Reference Examples 45 and 46 was measured with a spectrophotometer, they showed high transparency of 97.5% and 96.2%.

<実施例13
先ず実施例10の粒子分散体(濃度約30重量%のAg粒子を分散した分散液)をイソプロパノールで、Ag粒子の含有量が20重量%となるように希釈し、この希釈した粒子分散体に光開始剤(チバ・スペシャリティー・ケミカルズ社製のイルガキュア500)を0.5重量%溶かして粒子分散体を調製した。次いで洗浄済みのソーダガラス板(縦100mm、横100mm、厚さ2.8mm)を40℃に保温し、このソーダガラス板をスピンコーターで150rpmの速度で回転させた状態で、上記希釈調製した粒子分散体を5cc滴下し、120秒間振り切って膜を作製した。
上記膜を上に向けたガラス板にステンレス製フォトマスクをそれぞれ載せた。このフォトマスクは、縦×横×厚さがそれぞれ100mm×100mm×1.0mmの正方形状に形成され、幅×長さがそれぞれ20mm×50mmの長方形の窓孔が10mm間隔で3個形成される。次いでガラス板の上方から紫外線照射装置(160Wメタルハライドランプ:距離10cm)により250mJ/cm2の紫外線エネルギを照射した後、フォトマスクを取除いたガラス板をホットプレートに載せて大気中で100℃に10分間保持した。次にN,N-ジメチルホルムアミド10重量%及びアセチルアセトン5重量%を相溶させたエタノール溶液で上記ガラス板をリンスすることにより、非光照射部の膜を溶かし、光照射の膜だけを残して、フォトマスクの長方形の窓孔と同一形状のパターニングされた膜を得た。更にこのガラス板を大気中で200℃に30分間保持して膜を焼成した後に室温まで冷却した。このガラス板を実施例13とした。
<実施例14
実施例11の粒子分散体(濃度約30重量%のAg粒子及びPd粒子を分散した分散液)を用いたことを除いて実施例13と同様にしてガラス板を作製した。このガラス板を実施例14とした。
<Example 13 >
First, the particle dispersion of Example 10 (a dispersion in which Ag particles having a concentration of about 30% by weight are dispersed) is diluted with isopropanol so that the content of Ag particles is 20% by weight. A particle dispersion was prepared by dissolving 0.5% by weight of a photoinitiator (Irgacure 500 manufactured by Ciba Specialty Chemicals). Next, the diluted soda glass plate (length 100 mm, width 100 mm, thickness 2.8 mm) is kept at 40 ° C., and this diluted and prepared particle is rotated with a spin coater at a speed of 150 rpm. 5 cc of the dispersion was dropped and shaken for 120 seconds to prepare a film.
A stainless steel photomask was placed on each glass plate with the membrane facing upward. This photomask is formed in a square shape having a length × width × thickness of 100 mm × 100 mm × 1.0 mm, respectively, and three rectangular window holes each having a width × length of 20 mm × 50 mm are formed at intervals of 10 mm. . Next, after irradiating UV energy of 250 mJ / cm 2 from above the glass plate with an ultraviolet irradiation device (160 W metal halide lamp: distance 10 cm), the glass plate from which the photomask has been removed is placed on a hot plate and brought to 100 ° C. in the atmosphere. Hold for 10 minutes. Next, the glass plate is rinsed with an ethanol solution in which 10% by weight of N, N-dimethylformamide and 5% by weight of acetylacetone are mixed to dissolve the film of the non-light-irradiated portion, leaving only the light-irradiated film. A patterned film having the same shape as the rectangular window hole of the photomask was obtained. Further, this glass plate was kept at 200 ° C. for 30 minutes in the atmosphere to fire the film, and then cooled to room temperature. This glass plate was referred to as Example 13 .
<Example 14 >
A glass plate was produced in the same manner as in Example 13 except that the particle dispersion of Example 11 (dispersion in which Ag particles and Pd particles having a concentration of about 30% by weight were dispersed) was used. This glass plate was referred to as Example 14 .

参考例47
先ず参考例43の粒子分散体(濃度約30重量%のIn粒子及びSn粒子を分散した分散液)をヘキサンで、In粒子及びSn粒子の含有量が1.0重量%となるように希釈し、この希釈した粒子分散体に光開始剤(チバ・スペシャリティー・ケミカルズ社製のイルガキュア500)を0.05重量%溶かして粒子分散体を調製した。次いで洗浄済みのアクリル板(縦100mm、横100mm、厚さ2.8mm)を40℃に保温し、このアクリル板をスピンコーターで150rpmの速度で回転させた状態で、上記希釈調製した粒子分散体を5cc滴下し、120秒間振り切って膜を作製した。
上記膜に向けたアクリル板にステンレス製フォトマスクをそれぞれ載せた。このフォトマスクは、縦×横×厚さがそれぞれ100mm×100mm×1.0mmの正方形状に形成され、幅×長さがそれぞれ20mm×50mmの長方形の窓孔が10mm間隔で3個形成される。次いでアクリル板の上方から紫外線照射装置(160Wメタルハライドランプ:距離10cm)により250mJ/cm2の紫外線エネルギを照射した後、フォトマスクを取除いたアクリル板をホットプレートに載せて大気中で100℃に10分間保持した。次にN,N-ジメチルホルムアミド10重量%及びアセチルアセトン5重量%を相溶させたエタノール溶液で上記アクリル板をリンスすることにより、非光照射部の膜を溶かし、光照射の膜だけを残して、フォトマスクの長方形の窓孔と同一形状のパターニングされた膜を得た。更にこのアクリル板を窒素ガス雰囲気中で200℃に30分間保持し、大気中で200℃に60分間保持して、膜を焼成した後に室温まで冷却した。このアクリル板を参考例47とした。
< Reference Example 47 >
First, the particle dispersion of Reference Example 43 (dispersion in which In particles and Sn particles having a concentration of about 30% by weight are dispersed) is diluted with hexane so that the content of In particles and Sn particles is 1.0% by weight. Then, 0.05 wt% of a photoinitiator (Irgacure 500 manufactured by Ciba Specialty Chemicals) was dissolved in the diluted particle dispersion to prepare a particle dispersion. Next, the cleaned acrylic plate (100 mm long, 100 mm wide, 2.8 mm thick) is kept at 40 ° C. and the acrylic dispersion is rotated at a speed of 150 rpm with a spin coater, and the diluted particle dispersion prepared above. 5 cc was dropped and shaken for 120 seconds to prepare a film.
A stainless steel photomask was placed on each acrylic plate facing the film. This photomask is formed in a square shape having a length × width × thickness of 100 mm × 100 mm × 1.0 mm, respectively, and three rectangular window holes each having a width × length of 20 mm × 50 mm are formed at intervals of 10 mm. . Next, after irradiating ultraviolet energy of 250 mJ / cm 2 from above the acrylic plate with an ultraviolet irradiation device (160 W metal halide lamp: distance 10 cm), the acrylic plate with the photomask removed is placed on a hot plate and heated to 100 ° C. in the atmosphere. Hold for 10 minutes. Next, by rinsing the acrylic plate with an ethanol solution in which 10% by weight of N, N-dimethylformamide and 5% by weight of acetylacetone are mixed together, the non-light-irradiated part film is dissolved, leaving only the light-irradiated film. A patterned film having the same shape as the rectangular window hole of the photomask was obtained. Further, the acrylic plate was held at 200 ° C. for 30 minutes in a nitrogen gas atmosphere, and held at 200 ° C. for 60 minutes in the air, and the film was baked and then cooled to room temperature . The children of the acrylic plate was that of Reference Example 47.

参考例48
先ず参考例44の粒子分散体(濃度約30重量%のAu粒子を分散した分散液)をヘキサンで、Au粒子の含有量が20重量%となるように希釈し、この希釈した粒子分散体に光開始剤(チバ・スペシャリティー・ケミカルズ社製のイルガキュア500)を0.5重量%溶かして粒子分散体を調製した。次いで洗浄済みのソーダガラス板(縦100mm、横100mm、厚さ2.8mm)を40℃に保温し、このソーダガラス板をスピンコーターで150rpmの速度で回転させた状態で、上記希釈調製した粒子分散体を5cc滴下し、120秒間振り切って膜を作製した。
上記膜を上に向けたガラス板にステンレス製フォトマスクをそれぞれ載せた。このフォトマスクは、縦×横×厚さがそれぞれ100mm×100mm×1.0mmの正方形状に形成され、幅×長さがそれぞれ20mm×50mmの長方形の窓孔が10mm間隔で3個形成される。次いでガラス板の上方から紫外線照射装置(160Wメタルハライドランプ:距離10cm)により250mJ/cm2の紫外線エネルギを照射した後、フォトマスクを取除いたガラス板をホットプレートに載せて大気中で100℃に10分間保持した。次にN,N-ジメチルホルムアミド10重量%及びアセチルアセトン5重量%を相溶させたエタノール溶液で上記ガラス板をリンスすることにより、非光照射部の膜を溶かし、光照射の膜だけを残して、フォトマスクの長方形の窓孔と同一形状のパターニングされた膜を得た。更にこのガラス板を大気中で150℃に30分間保持して膜を焼成した後に室温まで冷却した。このガラス板を参考例48とした。
< Reference Example 48 >
First, the particle dispersion of Reference Example 44 (a dispersion in which Au particles having a concentration of about 30% by weight are dispersed) is diluted with hexane so that the content of Au particles is 20% by weight. A particle dispersion was prepared by dissolving 0.5% by weight of a photoinitiator (Irgacure 500 manufactured by Ciba Specialty Chemicals). Next, the diluted soda glass plate (length 100 mm, width 100 mm, thickness 2.8 mm) is kept at 40 ° C., and this diluted and prepared particle is rotated with a spin coater at a speed of 150 rpm. 5 cc of the dispersion was dropped and shaken for 120 seconds to prepare a film.
A stainless steel photomask was placed on each glass plate with the membrane facing upward. This photomask is formed in a square shape having a length × width × thickness of 100 mm × 100 mm × 1.0 mm, respectively, and three rectangular window holes each having a width × length of 20 mm × 50 mm are formed at intervals of 10 mm. . Next, after irradiating UV energy of 250 mJ / cm 2 from above the glass plate with an ultraviolet irradiation device (160 W metal halide lamp: distance 10 cm), the glass plate from which the photomask has been removed is placed on a hot plate and brought to 100 ° C. in the atmosphere. Hold for 10 minutes. Next, the glass plate is rinsed with an ethanol solution in which 10% by weight of N, N-dimethylformamide and 5% by weight of acetylacetone are mixed to dissolve the film of the non-light-irradiated portion, leaving only the light-irradiated film. A patterned film having the same shape as the rectangular window hole of the photomask was obtained. Further, this glass plate was kept at 150 ° C. in the air for 30 minutes to fire the film, and then cooled to room temperature. This glass plate was referred to as Reference Example 48 .

<実施例15
先ず実施例12の粒子分散体(濃度約30重量%のPt粒子を分散した分散液)をプロピレングリコールモノメチルエーテルアセテートで、Pt粒子の含有量が20重量%となるように希釈し、この希釈した粒子分散体に光開始剤(チバ・スペシャリティー・ケミカルズ社製のイルガキュア500)を0.5重量%溶かして粒子分散体を調製した。次いで洗浄済みのソーダガラス板(縦100mm、横100mm、厚さ2.8mm)を40℃に保温し、このソーダガラス板をスピンコーターで150rpmの速度で回転させた状態で、上記希釈調製した粒子分散体を5cc滴下し、120秒間振り切って膜を作製した。
上記膜を上に向けたガラス板にステンレス製フォトマスクをそれぞれ載せた。このフォトマスクは、縦×横×厚さがそれぞれ100mm×100mm×1.0mmの正方形状に形成され、幅×長さがそれぞれ20mm×50mmの長方形の窓孔が10mm間隔で3個形成される。次いでガラス板の上方から紫外線照射装置(160Wメタルハライドランプ:距離10cm)により250mJ/cm2の紫外線エネルギを照射した後、フォトマスクを取除いたガラス板をホットプレートに載せて大気中で100℃に10分間保持した。次にN,N-ジメチルホルムアミド10重量%及びアセチルアセトン5重量%を相溶させたエタノール溶液で上記ガラス板をリンスすることにより、非光照射部の膜を溶かし、光照射の膜だけを残して、フォトマスクの長方形の窓孔と同一形状のパターニングされた膜を得た。更にこのガラス板を大気中で150℃に30分間保持して膜を焼成した後に室温まで冷却した。このガラス板を実施例15とした。
<Example 15 >
First, the particle dispersion of Example 12 (dispersion in which Pt particles having a concentration of about 30% by weight were dispersed) was diluted with propylene glycol monomethyl ether acetate so that the content of Pt particles was 20% by weight. A particle dispersion was prepared by dissolving 0.5 wt% of a photoinitiator (Irgacure 500 manufactured by Ciba Specialty Chemicals) into the particle dispersion. Next, the diluted soda glass plate (length 100 mm, width 100 mm, thickness 2.8 mm) is kept at 40 ° C., and this diluted and prepared particle is rotated with a spin coater at a speed of 150 rpm. 5 cc of the dispersion was dropped and shaken for 120 seconds to prepare a film.
A stainless steel photomask was placed on each glass plate with the membrane facing upward. This photomask is formed in a square shape having a length × width × thickness of 100 mm × 100 mm × 1.0 mm, respectively, and three rectangular window holes each having a width × length of 20 mm × 50 mm are formed at intervals of 10 mm. . Next, after irradiating UV energy of 250 mJ / cm 2 from above the glass plate with an ultraviolet irradiation device (160 W metal halide lamp: distance 10 cm), the glass plate from which the photomask has been removed is placed on a hot plate and brought to 100 ° C. in the atmosphere. Hold for 10 minutes. Next, the glass plate is rinsed with an ethanol solution in which 10% by weight of N, N-dimethylformamide and 5% by weight of acetylacetone are mixed to dissolve the film of the non-light-irradiated portion, leaving only the light-irradiated film. A patterned film having the same shape as the rectangular window hole of the photomask was obtained. Further, this glass plate was kept at 150 ° C. in the air for 30 minutes to fire the film, and then cooled to room temperature. This glass plate was referred to as Example 15 .

<比較試験6及び評価>
実施例13〜15と参考例47及び48のガラス板の膜と実施例61のアクリル板の膜の厚さと可視光透過率と体積抵抗率をそれぞれ測定した。上記膜の厚さは走査型電子顕微鏡(SEM)にて測定し、透明膜の可視光透過率は分光光度計にて測定し、体積抵抗率は四探針法にて測定した。その結果を表7に示す。表7において、「IPA」はイソプロパノールの略称であり、「Hx」はヘキサンの略称であり、「PGMEA」はプロピレングリコールモノメチルエーテルアセテートの略称である。
<Comparative test 6 and evaluation>
The thickness, visible light transmittance, and volume resistivity of the glass plates of Examples 13 to 15 and Reference Examples 47 and 48 and the acrylic plate of Example 61 were measured. The thickness of the film was measured with a scanning electron microscope (SEM), the visible light transmittance of the transparent film was measured with a spectrophotometer, and the volume resistivity was measured with a four-probe method. The results are shown in Table 7. In Table 7, “IPA” is an abbreviation for isopropanol, “Hx” is an abbreviation for hexane, and “PGMEA” is an abbreviation for propylene glycol monomethyl ether acetate.

Figure 0005920312
表7から明らかなように、実施例13〜15及び参考例48の膜では電極の配線として極めて有効な導電性が得られることが判った。また参考例47の膜では透明導電膜として極めて優れた可視光透過率と導電性を有することが判った。
Figure 0005920312
As is clear from Table 7, it was found that the films of Examples 13 to 15 and Reference Example 48 can obtain extremely effective conductivity as electrode wiring. Further, it was found that the film of Reference Example 47 had extremely excellent visible light transmittance and conductivity as a transparent conductive film.

12 混合物
14 粒子分散体
12 Mixture 14 Particle dispersion

Claims (15)

有機金属化合物及び有機半金属化合物からなる群より選ばれた1種又は2種以上の単一物又は混合物に、フッ化アンモニウムを添加した後に、この単一物又は混合物1g当たり、不活性ガス雰囲気中、還元性ガス雰囲気中又は大気雰囲気中で出力109〜114Wのマイクロ波を4〜8分間照射して得られたコロイド状の粒子分散体を溶媒で希釈した後に、密栓したガラス瓶に入れて40℃に保持したときに、粒子が分散して2週間以上沈殿せずにコロイド特有のインク状態を保つコロイド状の粒子分散体を作製する工程を含む粒子分散体の製造方法。   After adding ammonium fluoride to one or two or more single compounds or mixtures selected from the group consisting of organic metal compounds and organic metalloid compounds, an inert gas atmosphere per 1 g of the single compounds or mixtures A colloidal particle dispersion obtained by irradiating microwaves with an output of 109 to 114 W for 4 to 8 minutes in a reducing gas atmosphere or an air atmosphere was diluted with a solvent, and then placed in a sealed glass bottle. A method for producing a particle dispersion comprising a step of producing a colloidal particle dispersion that maintains a colloid-specific ink state when the particles are dispersed and do not settle for more than two weeks when held at ° C. 有機金属化合物及び有機半金属化合物からなる群のうちの有機金属化合物に含まれる金属が、Cu,Au,Ag,Pt,Pd,Ru,Rh,Re,Os,Ir,Sc,Y,Ti,Zr,V,Nb,Ta,Cr,Mo,W,Mn,Fe,Co,Ni,Zn,Cd,Al,Ga,In,Tl,Sn,Pb,La,Ce,Nd,Sm,Eu,Gd,Tb,Er,Tm及びYbからなる群より選ばれた1種又は2種以上の金属である請求項記載の粒子分散体の製造方法。 The metal contained in the organometallic compound in the group consisting of the organometallic compound and the organometalloid compound is Cu, Au, Ag, Pt, Pd, Ru, Rh, Re, Os, Ir, Sc, Y, Ti, Zr. , V, Nb, Ta, Cr, Mo, W, Mn, Fe, Co, Ni, Zn, Cd, Al, Ga, In, Tl, Sn, Pb, La, Ce, Nd, Sm, Eu, Gd, Tb The method for producing a particle dispersion according to claim 1, wherein the metal dispersion is one or more metals selected from the group consisting of Y, Er, Tm, and Yb. 有機金属化合物及び有機半金属化合物からなる群のうちの有機半金属化合物に含まれる半金属が、Si,Ge,Sb及びBiからなる群より選ばれた1種又は2種以上の半金属である請求項記載の粒子分散体の製造方法。 The metalloid contained in the organic metalloid compound in the group consisting of the organic metal compound and the organic metalloid compound is one or more metalloids selected from the group consisting of Si, Ge, Sb and Bi. The method for producing a particle dispersion according to claim 1 . 有機金属化合物又は有機半金属化合物の有機成分が、有機酸及びアミンからなる群より選ばれた1種又は2種以上の化合物である請求項記載の粒子分散体の製造方法。 The organic component of the organic metal compound or organometalloid compound, method for manufacturing particle dispersion according to claim 1 wherein the one or more compounds selected from the group consisting of organic acids and amines. 有機酸が、炭素数2〜29の炭素を含む化合物からなる群より選ばれた1種又は2種以上の化合物である請求項記載の粒子分散体の製造方法。 The method for producing a particle dispersion according to claim 4 , wherein the organic acid is one or more compounds selected from the group consisting of compounds containing 2 to 29 carbon atoms. 有機酸が、リンゴ酸、クエン酸、フマル酸、マレイン酸、酒石酸、酢酸、プロピオン酸、酪酸、イソ酪酸、ビバル酸、吉草酸、イソ吉草酸、カプロン酸、2−エチル酪酸、カプリル酸、ペラルゴン酸、2−エチルヘキサン酸、カプリン酸、ウンデカン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、イソステアリン酸、アラキン酸、ベヘン酸、リグノセリン酸、セロチン酸、モンタン酸、メリシン酸、リシノール酸、12−ヒドロキシステアリン酸、ナフテン酸、アビエチン酸、デキストロピマル酸、パルミトレイン酸、オレイン酸、リノール酸及びリノレン酸からなる群より選ばれた1種又は2種以上の有機酸である請求項記載の粒子分散体の製造方法。 Organic acids are malic acid, citric acid, fumaric acid, maleic acid, tartaric acid, acetic acid, propionic acid, butyric acid, isobutyric acid, vibalic acid, valeric acid, isovaleric acid, caproic acid, 2-ethylbutyric acid, caprylic acid, pelargon Acid, 2-ethylhexanoic acid, capric acid, undecanoic acid, lauric acid, myristic acid, palmitic acid, stearic acid, isostearic acid, arachidic acid, behenic acid, lignoceric acid, serotic acid, montanic acid, melicic acid, ricinoleic acid, The particle according to claim 4, which is one or more organic acids selected from the group consisting of 12-hydroxystearic acid, naphthenic acid, abietic acid, dextropimaric acid, palmitoleic acid, oleic acid, linoleic acid and linolenic acid. A method for producing a dispersion. アミンが、ジブチルアミン、ジイソブチルアミン、トリペンチルアミン、アリルアミン、シクロヘキシルアミン、ジシクロヘキシルアミン、プロピレンジアミン、ジエチレントリアミン、ドデシルアミン、1,3−ジメチル−n−ブチルアミン、1−アミノウンデカン、1−アミノトリデカン、テトラデシルアミン、ヘキサデシルアミン、オクタデシルアミン、オレイルアミン、ジオレイルアミン、ドデシルジメチルアミン、テトラデシルジメチルアミン、ヘキサデシルジメチルアミン、オクタデシルジメチルアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン及び3−メトキシプロピルアミンからなる群より選ばれた1種又は2種以上である請求項項記載の粒子分散体の製造方法。 The amine is dibutylamine, diisobutylamine, tripentylamine, allylamine, cyclohexylamine, dicyclohexylamine, propylenediamine, diethylenetriamine, dodecylamine, 1,3-dimethyl-n-butylamine, 1-aminoundecane, 1-aminotridecane, From tetradecylamine, hexadecylamine, octadecylamine, oleylamine, dioleylamine, dodecyldimethylamine, tetradecyldimethylamine, hexadecyldimethylamine, octadecyldimethylamine, monoethanolamine, diethanolamine, triethanolamine and 3-methoxypropylamine The method for producing a particle dispersion according to claim 4 , wherein the particle dispersion is one or more selected from the group consisting of: コロイド状の粒子分散体中に、平均粒径0.005〜1.0μmの酸化錫、酸化インジウム、酸化亜鉛、錫含有酸化インジウム(ITO)、亜鉛含有酸化インジウム(IZO)、アルミニウム含有酸化亜鉛(AZO)、ガリウム含有酸化亜鉛(GZO)、セリウム含有酸化亜鉛(CZO)、ホウ素含有酸化亜鉛(BZO)、アンチモン含有酸化錫(ATO)、或いはリン含有酸化錫(PTO)の酸化物半導体粒子を含む請求項2、3、5又は、6いずれか1項に記載の粒子分散体の製造方法。 In a colloidal particle dispersion, tin oxide, indium oxide, zinc oxide, tin-containing indium oxide (ITO), zinc-containing indium oxide (IZO), aluminum-containing zinc oxide (0.005 to 1.0 μm in average particle diameter) AZO), gallium-containing zinc oxide (GZO), cerium-containing zinc oxide (CZO), boron-containing zinc oxide (BZO), antimony-containing tin oxide (ATO), or phosphorus-containing tin oxide (PTO) oxide semiconductor particles The method for producing a particle dispersion according to claim 2, 3, 5, or 6 . 請求項に記載の方法で得られた粒子分散体を乾燥して、平均粒径0.005〜1.0μmの酸化錫、酸化インジウム、酸化亜鉛、錫含有酸化インジウム(ITO)、亜鉛含有酸化インジウム(IZO)、アルミニウム含有酸化亜鉛(AZO)、ガリウム含有酸化亜鉛(GZO)、セリウム含有酸化亜鉛(CZO)、ホウ素含有酸化亜鉛(BZO)、アンチモン含有酸化錫(ATO)、或いはリン含有酸化錫(PTO)の酸化物半導体粒子を製造する工程を含む酸化物半導体粒子の製造方法。 The particle dispersion obtained by the method according to claim 8 is dried, and tin oxide, indium oxide, zinc oxide, tin-containing indium oxide (ITO), zinc-containing oxide having an average particle size of 0.005 to 1.0 µm is dried. Indium (IZO), aluminum-containing zinc oxide (AZO), gallium-containing zinc oxide (GZO), cerium-containing zinc oxide (CZO), boron-containing zinc oxide (BZO), antimony-containing tin oxide (ATO), or phosphorus-containing tin oxide The manufacturing method of the oxide semiconductor particle including the process of manufacturing the oxide semiconductor particle of (PTO). コロイド状の粒子分散体中に、平均粒径0.005〜1.0μmのフッ素含有酸化錫(FTO)、フッ素含有酸化インジウム(FIO)、フッ素含有酸化亜鉛(FZO)、フッ素錫含有酸化インジウム(FITO)、フッ素亜鉛含有酸化インジウム(FIZO)、フッ素アルミニウム含有酸化亜鉛(FAZO)、フッ素ガリウム含有酸化亜鉛(FGZO)、フッ素セリウム含有酸化亜鉛(FCZO)、或いはフッ素アンチモン含有酸化錫(FATO)の酸化物半導体粒子を含む請求項記載の粒子分散体の製造方法。 In a colloidal particle dispersion, fluorine-containing tin oxide (FTO), fluorine-containing indium oxide (FIO), fluorine-containing zinc oxide (FZO), or fluorine-tin-containing indium oxide having an average particle size of 0.005 to 1.0 μm ( FITO), fluorine zinc-containing indium oxide (FIZO), fluorine aluminum-containing zinc oxide (FAZO), fluorine gallium-containing zinc oxide (FGZO), fluorine cerium-containing zinc oxide (FCZO), or fluorine antimony-containing tin oxide (FATO) oxidation method for producing a particle dispersion of claim 1, further comprising an object semiconductor particles. 請求項10に記載の方法で得られた粒子分散体を乾燥して、平均粒径0.005〜1.0μmのフッ素含有酸化錫(FTO)、フッ素含有酸化インジウム(FIO)、フッ素含有酸化亜鉛(FZO)、フッ素錫含有酸化インジウム(FITO)、フッ素亜鉛含有酸化インジウム(FIZO)、フッ素アルミニウム含有酸化亜鉛(FAZO)、フッ素ガリウム含有酸化亜鉛(FGZO)、フッ素セリウム含有酸化亜鉛(FCZO)、或いはフッ素アンチモン含有酸化錫(FATO)の酸化物半導体粒子を製造する工程を含む酸化物半導体粒子の製造方法。 The particle dispersion obtained by the method according to claim 10 is dried, and fluorine-containing tin oxide (FTO), fluorine-containing indium oxide (FIO), or fluorine-containing zinc oxide having an average particle size of 0.005 to 1.0 μm. (FZO), fluorine tin-containing indium oxide (FITO), fluorine zinc-containing indium oxide (FIZO), fluorine aluminum-containing zinc oxide (FAZO), fluorine gallium-containing zinc oxide (FGZO), fluorine cerium-containing zinc oxide (FCZO), or The manufacturing method of the oxide semiconductor particle including the process of manufacturing the oxide semiconductor particle of a fluorine antimony containing tin oxide (FATO). コロイド状の粒子分散体中に、平均粒径0.005〜1.0μmの、Cu,Au,Ag,Pt,Pd,Ru,Rh,Re,Fe,Co,Ni,Zn,In,Sn及びSbからなる群より選ばれた1種又は2種以上の純金属粒子、混合金属粒子或いは合金粒子を含む請求項1、2又は4いずれか1項に記載の粒子分散体の製造方法。 In a colloidal particle dispersion, Cu, Au, Ag, Pt, Pd, Ru, Rh, Re, Fe, Co, Ni, Zn, In, Sn, and Sb having an average particle diameter of 0.005 to 1.0 μm. 5. The method for producing a particle dispersion according to claim 1, comprising one or more kinds of pure metal particles, mixed metal particles, or alloy particles selected from the group consisting of: 請求項12に記載の方法で得られた粒子分散体を乾燥して、平均粒径0.005〜1.0μmの、Cu,Au,Ag,Pt,Pd,Ru,Rh,Re,Fe,Co,Ni,Zn,In,Sn及びSbからなる群より選ばれた1種又は2種以上の純金属、混合金属或いは合金からなる金属粒子を製造する工程を含む金属粒子の製造方法。 The particle dispersion obtained by the method according to claim 12 is dried to obtain Cu, Au, Ag, Pt, Pd, Ru, Rh, Re, Fe, Co having an average particle diameter of 0.005 to 1.0 μm. , Ni, Zn, In, Sn, and a method for producing metal particles, including a step of producing metal particles made of two or more kinds of pure metals, mixed metals or alloys selected from the group consisting of Sb and Sb. コロイド状の粒子分散体中に、平均粒径0.005〜1.0μmのSbの半金属粒子を含む請求項1、3又は4いずれか1項に記載の粒子分散体の製造方法。 During colloidal particle dispersion, method for producing particles dispersion according to claim 1, 3 or 4 any one containing metalloid particles Sb of average particle size 0.005~1.0Myuemu. 請求項14に記載の方法で得られた粒子分散体を乾燥して、平均粒径0.005〜1.0μmのSbの半金属粒子を製造する工程を含む半金属粒子の製造方法。 A method for producing semimetal particles, comprising drying the particle dispersion obtained by the method according to claim 14 to produce Sb semimetal particles having an average particle diameter of 0.005 to 1.0 µm.
JP2013223785A 2013-10-29 2013-10-29 Method for producing particle dispersion and method for producing oxide semiconductor particles Active JP5920312B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013223785A JP5920312B2 (en) 2013-10-29 2013-10-29 Method for producing particle dispersion and method for producing oxide semiconductor particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013223785A JP5920312B2 (en) 2013-10-29 2013-10-29 Method for producing particle dispersion and method for producing oxide semiconductor particles

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009089345A Division JP5691136B2 (en) 2009-04-01 2009-04-01 Method for producing particle dispersion and method for producing oxide semiconductor particles, metal particles, and metalloid particles

Publications (2)

Publication Number Publication Date
JP2014061520A JP2014061520A (en) 2014-04-10
JP5920312B2 true JP5920312B2 (en) 2016-05-18

Family

ID=50617278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013223785A Active JP5920312B2 (en) 2013-10-29 2013-10-29 Method for producing particle dispersion and method for producing oxide semiconductor particles

Country Status (1)

Country Link
JP (1) JP5920312B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3005683B1 (en) * 1999-03-05 2000-01-31 大阪大学長 Method for producing ultrafine particles and ultrafine particles
DE102004048230A1 (en) * 2004-10-04 2006-04-06 Institut für Neue Materialien Gemeinnützige GmbH Process for the preparation of nanoparticles with customized surface chemistry and corresponding colloids
JP2006188666A (en) * 2004-12-09 2006-07-20 Kyocera Corp Product-producing device and production method of fine particle using the same
JP2007128991A (en) * 2005-11-02 2007-05-24 Shinshu Univ Method of combining magnetic ultra-fine particles of rare-earth metal
KR100809982B1 (en) * 2006-09-21 2008-03-06 삼성전기주식회사 Method for manufacturing copper nanoparticles using microwave
JP5085372B2 (en) * 2007-03-13 2012-11-28 東海ゴム工業株式会社 Paste material
JP5691136B2 (en) * 2009-04-01 2015-04-01 三菱マテリアル株式会社 Method for producing particle dispersion and method for producing oxide semiconductor particles, metal particles, and metalloid particles

Also Published As

Publication number Publication date
JP2014061520A (en) 2014-04-10

Similar Documents

Publication Publication Date Title
JP5526578B2 (en) Method for producing particle dispersion and method for producing oxide semiconductor particles, metal particles, and metalloid particles using the particle dispersion
JP5691136B2 (en) Method for producing particle dispersion and method for producing oxide semiconductor particles, metal particles, and metalloid particles
JP6241908B2 (en) Coated fine metal particles and production method thereof
Deng et al. Antioxidative effect of lactic acid-stabilized copper nanoparticles prepared in aqueous solution
JP2021021146A (en) Method for manufacturing silver-coated copper nanowire having core-shell structure by using chemical reduction method
TWI645923B (en) Manufacturing method of silver nanowire, silver nanowire, dispersion and transparent conductive film
JP6212634B2 (en) Metal nanoparticle dispersion
JP2013513220A (en) Compositions and methods for growing copper nanowires
EP1696443B1 (en) Method for forming transparent conductive film and transparent electrode
JP2007031835A (en) Metal nanoparticle, its production method and conductive ink
JP2013072091A (en) Metal microparticle and method for producing the same, metal paste containing the metal microparticle, and metal coat made of the metal paste
JP6717289B2 (en) Copper-containing particles, conductor forming composition, conductor manufacturing method, conductor and device
JP6057379B2 (en) Copper nitride fine particles and method for producing the same
JP2008069374A (en) Metallic nanoparticle dispersion and metallic film
JP5063003B2 (en) Method for producing copper nanoparticles, copper nanoparticles, conductive composition, and electronic device
JP2011038128A (en) Metal nanoparticle dispersion, method for producing the same, metal nanoparticle aggregate, and method for producing the same
JP5773148B2 (en) Silver fine particles, and conductive paste, conductive film and electronic device containing the silver fine particles
JP2015160989A (en) Composition for metal nanowire formation, metal nanowire and production method thereof
JP5920312B2 (en) Method for producing particle dispersion and method for producing oxide semiconductor particles
TWI813559B (en) Nickel powder and nickel paste
JP4248308B2 (en) Production method of ultrafine particles
JP2004149900A (en) Method of producing metal
JP6889575B2 (en) Cerium oxide nanoparticles, their production methods, dispersions and resin complexes
JP7048193B2 (en) Method for manufacturing cuprous oxide particles
TW570963B (en) Alcohol solution of noble metal or copper colloids, method of producing the same, and coating composition

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150415

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151214

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20160105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160328

R150 Certificate of patent or registration of utility model

Ref document number: 5920312

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150