JP5907482B2 - Method for producing ceria-based composite oxide - Google Patents

Method for producing ceria-based composite oxide Download PDF

Info

Publication number
JP5907482B2
JP5907482B2 JP2010162714A JP2010162714A JP5907482B2 JP 5907482 B2 JP5907482 B2 JP 5907482B2 JP 2010162714 A JP2010162714 A JP 2010162714A JP 2010162714 A JP2010162714 A JP 2010162714A JP 5907482 B2 JP5907482 B2 JP 5907482B2
Authority
JP
Japan
Prior art keywords
ceria
oxide
composite oxide
water
based composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010162714A
Other languages
Japanese (ja)
Other versions
JP2012025593A (en
Inventor
修実 阿部
修実 阿部
将也 新井
将也 新井
千秋 御立
千秋 御立
智恵 山田
智恵 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokko Chemical Industry Co Ltd
Ibaraki University NUC
Original Assignee
Hokko Chemical Industry Co Ltd
Ibaraki University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokko Chemical Industry Co Ltd, Ibaraki University NUC filed Critical Hokko Chemical Industry Co Ltd
Priority to JP2010162714A priority Critical patent/JP5907482B2/en
Publication of JP2012025593A publication Critical patent/JP2012025593A/en
Application granted granted Critical
Publication of JP5907482B2 publication Critical patent/JP5907482B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Description

本発明は、触媒、研磨材、固体酸化物形燃料電池(SOFC)の電解質材料あるいは燃料極材料として有用なセリア系複合酸化物(Ce1-xLnx2-y複合酸化物およびCe1-x(Lnz1-zx2-y複合酸化物)ならびに上記セリア系複合酸化物とNiOおよび/またはNiとの複合体であるNiO(Ni)−セリア系複合体(NiO−Ce1-xLnx2-y複合体、NiO−Ni−Ce1-xLnx2-y複合体、Ni−Ce1-xLnx2-y複合体、NiO−Ce1-x(Lnz1-zx2-y複合体、NiO−Ni−Ce1-x(Lnz1-zx2-y複合体、Ni−Ce1-x(Lnz1-zx2-y複合体)の製造方法に関する。 The present invention relates to a ceria-based composite oxide (Ce 1-x Ln x O 2-y composite oxide and Ce 1 ) useful as a catalyst, an abrasive, an electrolyte material of a solid oxide fuel cell (SOFC), or a fuel electrode material. -x (Ln z a 1-z ) x O 2-y complex oxide) as well as a complex with the ceria composite oxide, NiO and / or Ni NiO (Ni) - ceria complex (NiO Ce 1-x Ln x O 2 -y complex, NiO-Ni-Ce 1- x Ln x O 2-y complex, Ni-Ce 1-x Ln x O 2-y complex, NiO-Ce 1- x (Ln z A 1-z ) x O 2-y complex, NiO-Ni-Ce 1- x (Ln z A 1-z) x O 2-y complex, Ni-Ce 1-x ( Ln z A 1-z ) x O 2-y complex).

従来のCe1-xLnx2-y複合酸化物で表されるセリア系複合酸化物の合成方法としては、Ln=Sm、Gdを例に取ると、以下の合成方法などが知られている:
CeO2とLn23とSrなどのアルカリ土類金属の炭酸塩(SrCO3)を乾式粉砕後1300℃で10時間の熱処理をしてセリア系複合酸化物を得る方法(非特許文献1);
Ce(NO3)3・6H2OとLn(NO3)3の混合水溶液をアンモニア水でpH10に調整して、オートクレーブを使い220℃で数時間の水熱処理を行ない、さらに水洗、濾過、凍結乾燥することにより、セリア系複合酸化物を得る方法(非特許文献2、直接焼結体を作製しているので粉末状態での結晶相は不明);
Ce(NO3)3・6H2OとLn(NO3)3の混合水溶液にシュウ酸水溶液を加え、アンモニア水でpH6.5〜6.8に調整後、沈殿物を洗浄、700〜800℃で熱処理して、セリア系複合酸化物を得る方法(非特許文献3);
Ce(NO3)3・6H2OとLn(NO3)3の混合水溶液にクエン酸を加え、ゲル化させて得られた均一な前駆体を400℃〜600℃で熱分解して、セリア系複合酸化物を得る方法(非特許文献4);
SmCl3にNaOHを加えて得られたSm(OH)3/NaClに、Ce(OH)4を乾式混合し、700℃で2時間の熱処理を行ない、熱処理後にNaClおよびNaOHを水洗除去し、セリア系複合酸化物を得る方法(非特許文献5)。
The synthetic method of the conventional Ce 1-x Ln x O 2 -y complex oxide with ceria composite oxide represented, Ln = Sm, taking as an example Gd, are known, such as the synthesis methods below Is:
A method for obtaining a ceria-based composite oxide by dry-grinding an alkaline earth metal carbonate (SrCO 3 ) such as CeO 2 , Ln 2 O 3 and Sr, followed by heat treatment at 1300 ° C. for 10 hours (Non-patent Document 1) ;
A mixed aqueous solution of Ce (NO 3 ) 3 · 6H 2 O and Ln (NO 3 ) 3 is adjusted to pH 10 with aqueous ammonia, hydrothermally treated at 220 ° C. for several hours using an autoclave, further washed with water, filtered and frozen. A method for obtaining a ceria-based composite oxide by drying (Non-Patent Document 2, since a directly sintered body is produced, the crystal phase in a powder state is unknown);
An aqueous oxalic acid solution is added to a mixed aqueous solution of Ce (NO 3 ) 3 .6H 2 O and Ln (NO 3 ) 3 , adjusted to pH 6.5 to 6.8 with aqueous ammonia, and the precipitate is washed, 700 to 800 ° C. To obtain a ceria-based composite oxide by heat treatment (Non-patent Document 3);
A homogeneous precursor obtained by adding citric acid to a mixed aqueous solution of Ce (NO 3 ) 3 .6H 2 O and Ln (NO 3 ) 3 and allowing it to gel is thermally decomposed at 400 ° C. to 600 ° C. to obtain ceria. A method for obtaining a composite oxide (Non-Patent Document 4);
Ce (OH) 4 was dry-mixed with Sm (OH) 3 / NaCl obtained by adding NaOH to SmCl 3 and heat-treated at 700 ° C. for 2 hours. After heat treatment, NaCl and NaOH were removed by washing with water, and ceria. A method of obtaining a composite oxide (Non-Patent Document 5).

また、本出願人らは、一般式ABO3[式中、Aは希土類元素から選ばれる少なくとも1種の元素で占められ、Bはマンガン、鉄、コバルトからなる群より選ばれる少なくとも1種の元素で占められる。]で表わされるペロブスカイト型複合酸化物について、Aサイトを占める元素の酸化物、水酸化物、酸化水酸化物および金属単体の少なくとも1種を含有する原料と、Bサイトを占める元素の酸化物、水酸化物、酸化水酸化物および金属単体の少なくとも1種を含有する原料とを、水系溶媒中で混合粉砕処理することにより上記ペロブスカイト型複合酸化物の前駆体を調製する工程と、その前駆体を熱処理する工程とを含む製造方法を先に提案している(特許文献1)。しかしながら、特許文献1に記載された製造方法が対象としているのは、希土類元素とマンガン、鉄、またはコバルトとのペロブスカイト型複合酸化物であって、セリア系複合酸化物ではない。 Further, the applicants have the general formula ABO 3 [wherein A is occupied by at least one element selected from rare earth elements, and B is at least one element selected from the group consisting of manganese, iron, and cobalt. Occupied by. In the perovskite type complex oxide represented by the following formula: a raw material containing at least one of oxides, hydroxides, oxide hydroxides and simple metals occupying the A site, and oxides of the elements occupying the B site, A step of preparing a precursor of the perovskite complex oxide by mixing and pulverizing a raw material containing at least one of a hydroxide, an oxide hydroxide and a simple metal in an aqueous solvent; Has previously proposed a manufacturing method including a step of heat-treating (Patent Document 1). However, the manufacturing method described in Patent Document 1 is a perovskite complex oxide of rare earth elements and manganese, iron, or cobalt, and not a ceria-based complex oxide.

特開2008−007394号公報JP 2008-007394 A

Solid State Ionics, 52,165(1992)Solid State Ionics, 52, 165 (1992) Solid State Ionics, 81,53(1995)Solid State Ionics, 81, 53 (1995) Solid State Ionics, 86-88,1255(1996)Solid State Ionics, 86-88, 1255 (1996) Materials Reserch Bulletin, 38,1979(2003)Materials Reserch Bulletin, 38, 1979 (2003) Scripta Materialia, 48,85,(2003)Scripta Materialia, 48, 85, (2003)

非特許文献1に記載されたような方法(各成分酸化物を混合して高温で熱処理する固相反応法)により得られるセリア系複合酸化物には、目的としない不純物相や未反応物が残存しやすいという問題がある。   The ceria-based composite oxide obtained by the method as described in Non-Patent Document 1 (solid-phase reaction method in which each component oxide is mixed and heat-treated at high temperature) has an undesired impurity phase and unreacted substances. There is a problem that it tends to remain.

非特許文献2また3に記載されたような方法(各成分元素の塩の水溶液にpH調整用の沈殿剤を添加して成分金属の共沈物を得る共沈法)は、硝酸アンモニウム等の副生物を除去する工程が必要である。   The method as described in Non-Patent Documents 2 and 3 (a coprecipitation method in which a coprecipitate of component metals is obtained by adding a precipitating agent for adjusting pH to an aqueous salt solution of each component element) is a secondary method such as ammonium nitrate. A process for removing organisms is required.

非特許文献4に記載されたような方法(クエン酸錯体法)は、ゲル化させて得られた均一な前駆体を熱分解するので、発生する有害な分解ガスを捕集する必要があり、工業的に高コスト化の原因となる。   Since the method (citrate complex method) described in Non-Patent Document 4 thermally decomposes the uniform precursor obtained by gelation, it is necessary to collect the harmful decomposition gas generated, This is industrially expensive.

非特許文献5に記載されたような方法(本願のようなメカノケミカル法の一種)は、同文献に記載のメカノケミカルアロイ法(各成分元素の酸化物を乾式混合粉砕処理)による生成物の凝集粒子を微細化するために、乾式粉砕時にNaClとNaOHを加え、熱処理する改良方法であるが、熱処理後にNaClとNaOHを水洗に除去する工程が必要である。   The method as described in Non-Patent Document 5 (a kind of mechanochemical method as in the present application) is a product of the mechanochemical alloy method described in the same document (the oxide of each component element is dry mixed and pulverized). In order to make the agglomerated particles finer, this is an improved method in which NaCl and NaOH are added and heat-treated during dry pulverization, but a step of removing NaCl and NaOH by water washing after the heat treatment is required.

本発明は、上記のような課題が解決された、未反応物や不純物を除去するための特別な工程や、各処理のための特別な装置を用いる必要がない、安価なセリア系複合酸化物(Ce1-xLnx2-y複合酸化物およびCe1-x(Lnz1-zx2-y複合酸化物)ならびにそれらのセリア系複合酸化物とNiOおよび/またはNiとの複合体であるNiO(Ni)−セリア系複合体の製造方法を提供することを目的とする。 The present invention solves the above-described problems, and does not require a special process for removing unreacted substances and impurities, and a special apparatus for each treatment, and is an inexpensive ceria-based composite oxide. (Ce 1-x Ln x O 2-y complex oxide and Ce 1-x (Ln z a 1-z) x O 2-y compound oxide) and ceria composite oxides thereof, NiO and / or Ni It aims at providing the manufacturing method of the NiO (Ni) -ceria type composite_body | complex which is a composite_body | complex.

本発明者らは、かかる問題点を解決すべく鋭意検討を進めた結果、一般式Ce1-xLnx2-y(式中、LnはCe以外の希土類元素から選ばれる少なくとも1種の元素で占められ、0<x<1.0、0<y<0.5)およびCe1-x(Lnz1-zx2-y(式中、LnはCe以外の希土類元素から選ばれる少なくとも1種の元素で占められ、AはCa、Sr、Baから選ばれる少なくとも1種の元素で占められ、0<x<1.0、0<y<0.75、0.5≦z<1.0)で表されるセリア系複合酸化物について、セリウムの酸化物、水酸化物または酸化水酸化物のうちの少なくとも1種と、Lnサイトを占める元素の酸化物、水酸化物または酸化水酸化物のうちの少なくとも1種と、後者のセリア系複合酸化物の場合はさらにAサイトを占める元素の酸化物または水酸化物のうちの少なくとも1種とを含む原料を用い、望ましくはこれらの原料を粉砕処理過程で反応などにより発生する水の量を含めた制御された水の量を含有する、水と相溶性のある有機溶媒に水を混合した溶媒中で、あるいは湿式混合粉砕処理過程で放出ないし副生される水が混合された水と相溶性のある有機溶媒中で、湿式混合粉砕処理することにより、直接結晶化したセリア系複合酸化物を製造できることを見出し、本発明を完成させるに至った。 As a result of diligent investigations to solve such problems, the present inventors have obtained a general formula Ce 1-x Ln x O 2-y (where Ln is at least one selected from rare earth elements other than Ce). occupied by elements, 0 <x <1.0,0 <y <0.5) and Ce 1-x (Ln z a 1-z) x O 2-y ( wherein, Ln is a rare earth element other than Ce A is occupied by at least one element selected from Ca, Sr, and Ba, and 0 <x <1.0, 0 <y <0.75, 0.5 ≦ z <1.0) For the ceria-based composite oxide, at least one of a cerium oxide, a hydroxide or an oxide hydroxide, an oxide of an element occupying an Ln site, and hydroxylation In the case of the latter ceria-based composite oxide, at least one of the product or oxide hydroxide is further Using raw materials containing at least one of the oxides or hydroxides of the occupying elements, and preferably controlling the amount of water, including the amount of water generated by reaction of these raw materials during the pulverization process. In a solvent containing water mixed with an organic solvent compatible with water , or in an organic solvent compatible with water mixed with water released or by-produced in the wet mixing and grinding process. It has been found that a directly crystallized ceria-based composite oxide can be produced by mixing and pulverizing, and the present invention has been completed.

本発明の製造方法は、Lnサイトを占める元素がSc、Y、La、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、YbまたはLuのうちの少なくとも1種の元素であるCe1-xLnx2-y複合酸化物およびCe1-x(Lnz1-zx2-y複合酸化物など、工業的に有用な複合酸化物を対象とする場合に好適である。 In the production method of the present invention, the element occupying the Ln site is at least one element of Sc, Y, La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb, or Lu. If the target Ce 1-x Ln x O 2 -y complex oxide and Ce 1-x (Ln z a 1-z) x O 2-y complex oxides, industrially useful composite oxide Is preferred.

また、本発明では、上記の水系溶媒中での湿式混合粉砕処理工程において、さらに、Ni(ニッケル)の酸化物、水酸化物、酸化水酸化物のうちの少なくとも1種を、上記のセリア系複合酸化物の生成量に対して、Ni換算で10wt%以上90wt%以下の量で添加した原料を、水系溶媒中で湿式混合粉砕処理することにより、非晶質NiOの水和物と結晶性セリア系複合酸化物との複合体を製造することもできる。   In the present invention, in the wet mixing and pulverizing treatment step in the aqueous solvent, at least one of Ni (nickel) oxide, hydroxide, and oxide hydroxide is further added to the ceria-based material. Amorphous NiO hydrate and crystallinity are obtained by wet mixing and pulverizing a raw material added in an amount of 10 wt% or more and 90 wt% or less in terms of Ni with respect to the amount of complex oxide produced. A composite with a ceria-based composite oxide can also be produced.

さらに、セリア系複合酸化物またはNiO、Niもしくはこれらの混在物とセリア系複合酸化物との複合体を製造するために、上記のような水系溶媒中での湿式混合粉砕処理工程により得られたセリア系複合酸化物または非晶質NiOの水和物と結晶性セリア系複合酸化物との複合体を熱処理してもよい。   Furthermore, in order to produce a composite of ceria-based composite oxide or NiO, Ni or a mixture thereof and ceria-based composite oxide, it was obtained by a wet mixed pulverization process in an aqueous solvent as described above. A complex of a ceria-based composite oxide or amorphous NiO hydrate and a crystalline ceria-based complex oxide may be heat-treated.

本発明の製造方法(湿式混合粉砕処理工程および加熱工程)は、水系溶媒中で混合粉砕処理を行なうので、前記メカノケミカルアロイ法のような大きな凝集粒子の生成も少なく、副生成物としては水しか生成しないため特別な除去工程も不要である。したがって、各種用途における性能の劣化を招く不純物が混在しない高品質なセリア系複合酸化物を、安価で効率的に製造することができる。   Since the production method (wet mixing and grinding treatment step and heating step) of the present invention performs the mixing and grinding treatment in an aqueous solvent, there is little formation of large aggregated particles as in the mechanochemical alloy method, and the by-product is water. However, a special removal process is not required because it only produces. Therefore, a high-quality ceria-based composite oxide that does not contain impurities that cause performance deterioration in various applications can be efficiently manufactured at low cost.

実施例1における真空乾燥後のCe0.7Ln0.31.85複合酸化物のX線回折図形X-ray diffraction pattern of Ce 0.7 Ln 0.3 O 1.85 composite oxide after vacuum drying in Example 1 実施例1におけるCe0.7Ln0.31.85複合酸化物を1200℃で1時間加熱した後の格子定数比較Comparison of lattice constants after heating the Ce 0.7 Ln 0.3 O 1.85 composite oxide in Example 1 at 1200 ° C. for 1 hour. 実施例1における真空乾燥後および熱処理後のCe0.7Gd0.31.85複合酸化物のX線回折図形(85℃真空乾燥後および大気中、200〜1200℃)X-ray diffraction pattern of Ce 0.7 Gd 0.3 O 1.85 composite oxide after vacuum drying and heat treatment in Example 1 (after vacuum drying at 85 ° C. and in air, 200 to 1200 ° C.) 実施例2における熱処理後のCe0.7(Sm0.8Sr0.2)0.31.82複合酸化物のX線回折図形(85℃真空乾燥後および大気中、200〜1200℃)X-ray diffraction pattern of Ce 0.7 (Sm 0.8 Sr 0.2 ) 0.3 O 1.82 composite oxide after heat treatment in Example 2 (after vacuum drying at 85 ° C. and in the atmosphere, 200 to 1200 ° C.) 実施例3におけるNiO−Ce0.7Sm0.31.85複合酸化物のX線回折図形(85℃真空乾燥後および大気中、800℃と1000℃)X-ray diffraction pattern of NiO—Ce 0.7 Sm 0.3 O 1.85 composite oxide in Example 3 (after vacuum drying at 85 ° C. and in air, 800 ° C. and 1000 ° C.) 実施例3におけるNiO−Ni−Ce0.7Sm0.31.85複合酸化物のX線回折図形(85℃真空乾燥後およびアルゴン中、800℃と1000℃)X-ray diffraction pattern of NiO—Ni—Ce 0.7 Sm 0.3 O 1.85 composite oxide in Example 3 (after vacuum drying at 85 ° C. and in argon, 800 ° C. and 1000 ° C.)

セリア系複合酸化物およびNiO(Ni)−セリア系複合酸化物複合体
本発明の製造方法の対象となるセリア系複合酸化物は、一般式Ce1-xLnx2-y(式中、LnはCe以外の希土類元素から選ばれる少なくとも1種の元素で占められ、0<x<1.0、0<y<0.5)で表される複合酸化物またはCe1-x(Lnz1-zx2-y(式中、LnはCe以外の希土類元素から選ばれる少なくとも1種の元素で占められ、AはCa、Sr、Baから選ばれる少なくとも1種の元素で占められ、0<x<1.0、0<y<0.75、0.5≦z<1.0)で表される複合酸化物である。
Ceria composite oxide and NiO (Ni) - ceria composite oxide as a target of the method for manufacturing the ceria composite oxide complex present invention have the general formula Ce 1-x Ln x O 2 -y ( wherein, Ln is occupied by at least one element selected from rare earth elements other than Ce, and is a composite oxide represented by 0 <x <1.0, 0 <y <0.5) or Ce 1-x (Ln z A 1-z ) x O 2-y (wherein Ln is occupied by at least one element selected from rare earth elements other than Ce, and A is occupied by at least one element selected from Ca, Sr, Ba) 0 <x <1.0, 0 <y <0.75, 0.5 ≦ z <1.0).

また、NiO(Ni)−セリア系複合体は、前記セリア系複合酸化物とNiO(酸化ニッケル)、Ni(金属ニッケル)、もしくはNiOとNiの混在物との複合体であり、セリア系複合酸化物に対し、NiO、Niもしくはこれらの混在物がNi換算で10wt%以上90wt%以下混合された複合体である。Ni−セリア系複合体は、高酸化物イオン伝導性と高電子伝導性を有する混合伝導性複合体であり、固体酸化物形燃料電池(SOFC)の燃料極材料として好適に使用される。NiO−セリア系複合体は、粉末の熱処理過程、あるいは電池セルを作製する過程で、還元雰囲気中で還元処理をすることにより、Ni−セリア系複合体(サーメット)となる。NiO−Ni−セリア系複合体は、NiO−セリア系複合体中のNiOの一部がNiに還元されずに残存しているものである。   The NiO (Ni) -ceria composite is a composite of the ceria composite oxide and NiO (nickel oxide), Ni (metallic nickel), or a mixture of NiO and Ni. It is a composite in which NiO, Ni, or a mixture thereof is mixed in an amount of 10 wt% to 90 wt% in terms of Ni. The Ni-ceria-based composite is a mixed conductive composite having high oxide ion conductivity and high electron conductivity, and is suitably used as a fuel electrode material of a solid oxide fuel cell (SOFC). The NiO-ceria-based composite is converted into a Ni-ceria-based composite (cermet) by performing a reduction treatment in a reducing atmosphere during the heat treatment of the powder or the process of producing the battery cell. The NiO-Ni-ceria-based composite is a part of NiO in the NiO-ceria-based composite that remains without being reduced to Ni.

本発明の製造方法は、Lnサイトを占める元素がSc、Y、La、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、YbまたはLuのうちの少なくとも1種の元素であるCe1-xLnx2-y複合酸化物およびCe1-x(Lnz1-zx2-y複合酸化物など、工業的に有用な複合酸化物を対象とする場合に好適である。 In the production method of the present invention, the element occupying the Ln site is at least one element of Sc, Y, La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb, or Lu. If the target Ce 1-x Ln x O 2 -y complex oxide and Ce 1-x (Ln z a 1-z) x O 2-y complex oxides, industrially useful composite oxide Is preferred.

原料
Lnサイトを占める希土類元素[Sc、Y、La、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Yb、Lu]の原料成分としては、これら希土類元素の酸化物[Ln23、LnO2]、水酸化物[Ln(OH)3、Ln(OH)4]、酸化水酸化物[LnO(OH)、LnOOH]が挙げられる。なお、上記化合物には、結晶水を含有するもの[Ln23・nH2O、LnO2・nH2O、Ln(OH)3・nH2O、Ln(OH)4・nH2O、nは正の数]も含まれ、また、希土類水酸化物および希土類酸化水酸化物については、不定比な希土類酸化物の水和物[Ln23・XH2O、LnO2・XH2O、Xは任意の正の数]も含まれる。これらの物質は結晶質、非晶質のどちらであっても構わない。上記のLnサイトを占める希土類元素の原料成分は、いずれか1種を単独で用いても、2種以上を組合わせて用いてもよい。さらに例えばTb47(2TbO2・Tb23)あるいはPr611(4PrO2・Pr23)は、TbとPrの3価と4価の混合原子価をもつ化合物であり、このような原料を組合わせて用いてもよい。
As raw material components of rare earth elements occupying the raw material Ln site [Sc, Y, La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb, Lu], oxides of these rare earth elements [Ln 2 O 3 , LnO 2 ], hydroxide [Ln (OH) 3 , Ln (OH) 4 ], and oxide hydroxide [LnO (OH), LnOOH]. In addition, the above compounds include those containing crystal water [Ln 2 O 3 · nH 2 O, LnO 2 · nH 2 O, Ln (OH) 3 · nH 2 O, Ln (OH) 4 · nH 2 O, n is a positive number] is also included, also, for the rare earth hydroxides and rare earth oxide hydroxides, hydrates of nonstoichiometric rare earth oxides [Ln 2 O 3 · XH 2 O, LnO 2 · XH 2 O and X are arbitrary positive numbers]. These substances may be crystalline or amorphous. Any one of the rare earth element occupying the Ln sites may be used alone, or two or more may be used in combination. Further, for example, Tb 4 O 7 (2TbO 2 · Tb 2 O 3 ) or Pr 6 O 11 (4PrO 2 · Pr 2 O 3 ) is a compound having a trivalent and tetravalent mixed valence of Tb and Pr, Such raw materials may be used in combination.

Aサイトを占める元素[Ca、Sr、Ba]の原料成分としては、これらの元素の酸化物[AO]、水酸化物[A(OH)2]が挙げられる。なお、上記化合物には結晶水を含有したもの[AO・nH2O、A(OH)2・nH2O、nは正の数]も含まれ、また、水酸化物については不定比な酸化物の水和物[AO・XH2O、Xは任意の正の数]も含まれる。これらの物質は結晶質、非晶質のどちらであっても構わない。上記のAサイトを占める元素の原料成分は、いずれか1種を単独で用いても、2種以上を組合わせて用いてもよい。 Examples of raw material components of the elements [Ca, Sr, Ba] occupying the A site include oxides [AO] and hydroxides [A (OH) 2 ] of these elements. The above compounds include those containing water of crystallization [AO.nH 2 O, A (OH) 2 .nH 2 O, n is a positive number]. Hydrates of the product [AO.XH 2 O, X is any positive number]. These substances may be crystalline or amorphous. As the raw material component of the element occupying the A site, any one kind may be used alone, or two or more kinds may be used in combination.

Ce(セリウム元素)の原料成分としては、セリウムの酸化物[CeO2、Ce23]、水酸化物[Ce(OH)4、Ce(OH)3]、酸化水酸化物[CeO(OH)、CeO(OH)2]が挙げられる。なお、上記化合物には結晶水を含有したもの[Ce23・nH2O、CeO2・nH2O、Ce(OH)3・nH2O、Ce(OH)4・nH2O、nは正の数]も含まれ、また、水酸化物、酸化水酸化物については不定比な酸化物の水和物[Ce23・XH2O、CeO2・XH2O、Xは任意の正の数]も含まれる。これらの物質は結晶質、非晶質のどちらであっても構わない。上記のCeサイトを占める元素の原料成分は、いずれか1種を単独で用いても、2種以上を組合わせて用いてもよい。 The raw material components of Ce (cerium element) include cerium oxide [CeO 2 , Ce 2 O 3 ], hydroxide [Ce (OH) 4 , Ce (OH) 3 ], oxide hydroxide [CeO (OH ), CeO (OH) 2 ]. The above compound contains water of crystallization [Ce 2 O 3 · nH 2 O, CeO 2 · nH 2 O, Ce (OH) 3 · nH 2 O, Ce (OH) 4 · nH 2 O, n Is a positive number], and for hydroxides and oxide hydroxides, non-stoichiometric oxide hydrates [Ce 2 O 3 .XH 2 O, CeO 2 .XH 2 O, X is optional. Positive number of]. These substances may be crystalline or amorphous. As the raw material component of the element occupying the Ce site, any one kind may be used alone, or two or more kinds may be used in combination.

また、非晶質NiOの水和物と結晶性セリア系複合酸化物との複合体を製造する場合に添加されるNi(ニッケル元素)の原料成分としては、これらの元素の酸化物[NiO、Ni23、NiO2、Ni34]、水酸化物[Ni(OH)2、Ni(OH)3、Ni(OH)4]、酸化水酸化物[NiO(OH)]が挙げられる。なお、上記化合物には結晶水を含有したもの[Ni23・nH2O、NiO2・nH2O、Ni34・nH2O、Ni(OH)2・nH2O、Ni(OH)3・nH2O、Ni(OH)4・nH2O、nは正の数]も含まれ、また、水酸化物、酸化水酸化物については不定比な酸化物の水和物[NiO・XH2O、Ni23・XH2O、NiO2・XH2O、Xは任意の正の数]も含まれる。これらの物質は結晶質、非晶質のどちらであっても構わない。上記のNiサイトを占める元素の原料成分は、いずれか1種を単独で用いても、2種以上を組合わせて用いてもよい。 Further, as a raw material component of Ni (nickel element) added when producing a composite of amorphous NiO hydrate and crystalline ceria-based composite oxide, oxides of these elements [NiO, Ni 2 O 3 , NiO 2 , Ni 3 O 4 ], hydroxide [Ni (OH) 2 , Ni (OH) 3 , Ni (OH) 4 ], and oxide hydroxide [NiO (OH)]. . The above compound contains crystal water [Ni 2 O 3 · nH 2 O, NiO 2 · nH 2 O, Ni 3 O 4 · nH 2 O, Ni (OH) 2 · nH 2 O, Ni ( OH) 3 .nH 2 O, Ni (OH) 4 .nH 2 O, n is a positive number], and non-stoichiometric oxide hydrates for hydroxides and oxide hydroxides [ NiO.XH 2 O, Ni 2 O 3 .XH 2 O, NiO 2 .XH 2 O, and X are arbitrary positive numbers] are also included. These substances may be crystalline or amorphous. Any one of the raw material components of the elements occupying the Ni site may be used alone, or two or more may be used in combination.

上記のような原料となる物質の粒径は、100μm以下が好ましく、50μm以下がより好ましく、10μm以下が更に好ましい。酸化物を原料として使用する場合は、湿式混合粉砕の過程で水和ないし水酸化物化が起こり粒径が小さくなるので、最初の粒径が大きくても問題はない。   The particle size of the material used as the raw material is preferably 100 μm or less, more preferably 50 μm or less, and still more preferably 10 μm or less. When an oxide is used as a raw material, hydration or hydroxide formation occurs in the process of wet mixed pulverization and the particle size becomes small, so there is no problem even if the initial particle size is large.

また、原料の各成分の配合量は、LnサイトおよびAサイトを占める各元素およびCeサイトおよびNiサイトの原料中の量比が、目的とするセリア系複合酸化物あるいはNiO(Ni)−セリア系複合体における量比と同じとなるようにすればよい。   The amount of each component of the raw material is such that the amount ratio of each element occupying the Ln site and the A site and the Ce site and Ni site in the raw material is the desired ceria-based composite oxide or NiO (Ni) -ceria-based material. What is necessary is just to make it become the same as the quantity ratio in a composite_body | complex.

湿式混合粉砕処理
本発明における湿式混合粉砕処理は、水系溶媒中で、一般的には混合粉砕機を用いて行われる。なお、以下の湿式混合粉砕処理に関する説明は、セリア系複合酸化物を製造する場合の工程、および非晶質NiOの水和物との結晶性セリア系複合酸化物との複合体を製造する場合の工程、両方に共通するものである。
Wet mixed pulverization treatment The wet mixed pulverization treatment in the present invention is generally carried out in an aqueous solvent using a mixing pulverizer. In addition, the description regarding the following wet-mixing pulverization processes is the case where a ceria-based composite oxide is manufactured, and a case where a composite of a crystalline ceria-based composite oxide with an amorphous NiO hydrate is manufactured. This process is common to both processes.

水系溶媒は、混合粉砕処理により結晶性セリア系複合酸化物の単一相を調製する際に、原料と共に粉砕容器内に入れられる溶媒(粉砕媒体)であり、水と相溶性のある有機溶媒に水を混合した溶媒をいう。   An aqueous solvent is a solvent (grinding medium) that is put into a pulverization container together with raw materials when preparing a single phase of a crystalline ceria-based composite oxide by a mixed pulverization process, and is an organic solvent that is compatible with water. A solvent mixed with water.

水と相溶性のある有機溶媒は、特に限定されるものではないが、アルコール類(メタノール、エタノール、プロパノール、ブタノール等)、エーテル類(ジエチルエーテル、テトラヒドロフラン等)、ケトン類(アセトン、メチルエチルケトン、ジエチルケトン等)などが挙げられる。これらの有機溶媒は、いずれか1種を単独で用いても、2種以上を組合わせて用いてもよい。   The organic solvent compatible with water is not particularly limited, but alcohols (methanol, ethanol, propanol, butanol, etc.), ethers (diethyl ether, tetrahydrofuran, etc.), ketones (acetone, methyl ethyl ketone, diethyl) Ketone) and the like. Any one of these organic solvents may be used alone, or two or more thereof may be used in combination.

上記水と相溶性のある有機溶媒は、原料および湿式混合粉砕の処理条件に応じて、適切な比誘電率を有するものを採用することが望ましい。有機溶媒の比誘電率が適度な範囲であれば、水系溶媒中の粉砕処理物の分散性が高まりすぎず、均一な結晶性セリア系複合酸化物の単一相が得られる。   As the organic solvent compatible with water, it is desirable to employ an organic solvent having an appropriate relative dielectric constant depending on the raw material and the processing conditions of wet mixing and pulverization. If the relative permittivity of the organic solvent is in an appropriate range, the dispersibility of the pulverized product in the aqueous solvent will not be too high, and a uniform single phase of crystalline ceria-based composite oxide can be obtained.

なお、水と相溶性のない有機溶媒(ベンゼン、トルエン、キシレン等)と水の混合液を粉砕媒液として使用すると、混合粉砕機の内部に原料粉末が付着してしまい、混合・粉砕の処理効率が大幅に低下するおそれがあるが、そのような水と相溶性のない有機溶媒も、水と相溶性のある有機溶媒と併用するのであれば、水系溶媒に配合することは可能である。   If a mixed liquid of water and organic solvent (benzene, toluene, xylene, etc.) that is not compatible with water is used as the grinding fluid, the raw material powder will adhere to the inside of the mixing and grinding machine, and the mixing and grinding process Although the efficiency may be significantly reduced, an organic solvent that is not compatible with water can be blended with an aqueous solvent if it is used in combination with an organic solvent that is compatible with water.

水系溶媒中の水の量は特に限定されるものではないが、目的とするCe1-xLnx2-y複合酸化物およびCe1-x(Lnz1-zx2-y複合酸化物の生成量に対し、m倍モル(0<m≦10)とすることが望ましい。Lnサイトの水和性(水和のされやすさ)に応じて、適宜選択すればよい。 The amount of water in the aqueous solvent is not particularly limited, Ce 1-x Ln x O 2-y complex oxide and Ce 1-x of interest (Ln z A 1-z) x O 2- to the amount of y composite oxide, it is desirable that the m-fold molar (0 <m ≦ 10). What is necessary is just to select suitably according to the hydration property (easiness of hydration) of a Ln site.

なお、原料として用いる物質に結晶水が含まれている場合や、湿式混合粉砕処理の過程で原料と有機溶媒の反応によって水が副生する場合(たとえば、原料として水酸化物、水和物あるいは結晶水を持つ原料を用いた場合)には、その結晶水ないし副生する水の量も勘案して、最初に水系溶媒に添加しておく水の量を調整することができる。上記の結晶水または副生する水の量が十分であれば、水と相溶性のある有機溶媒のみを粉砕容器内に供給しておき、混合粉砕の開始後に放出ないし副生される水との混合により水系溶媒が調製されるようにし、その中で湿式混合粉砕処理を行うようにすることも可能である。   It should be noted that when the material used as the raw material contains water of crystallization, or when water is by-produced by the reaction of the raw material and the organic solvent in the course of the wet mixed pulverization process (for example, as a raw material, hydroxide, hydrate In the case of using a raw material having crystallization water), the amount of water initially added to the aqueous solvent can be adjusted in consideration of the amount of crystallization water or by-product water. If the amount of crystallization water or by-product water is sufficient, supply only an organic solvent compatible with water into the pulverization vessel, and release or by-product water after the start of mixed pulverization. It is also possible to prepare an aqueous solvent by mixing, and to perform wet mixing and pulverization treatment therein.

また、混合粉砕機は、原料に機械的に粉砕、摩砕の力が働くものであればよく、たとえば、粉砕容器内に原料と粉砕媒体(ロッド、シリンダー、ボール、ビーズ等)とを入れて撹拌することにより原料を粉砕する、転動ボールミル、振動ボールミル、撹拌ボールミル、遊星ボールミル等のボールミルが好適である。このようなボールミルを連続型にした粉砕機(たとえば、三井鉱山(株)製「SCミル」、(株)シンマルエンタープライゼス製「ダイノーミル」)や、直径1mm以下の非常に小さいボール(ビーズ)を使用できるボールミルなども推奨される。   The mixing pulverizer may be any material that can mechanically pulverize and grind the raw material. For example, the raw material and a pulverizing medium (rod, cylinder, ball, bead, etc.) are placed in a pulverization container. A ball mill such as a rolling ball mill, a vibration ball mill, a stirring ball mill, or a planetary ball mill that pulverizes the raw material by stirring is suitable. Crushers with such a ball mill as a continuous type (for example, “SC Mill” manufactured by Mitsui Mining Co., Ltd., “Dyno Mill” manufactured by Shinmaru Enterprises Co., Ltd.), and very small balls (beads) having a diameter of 1 mm or less. A ball mill that can be used is also recommended.

代表的な粉砕媒体であるボール(ビーズ)としては、直径0.1〜10mm程度の、ZrO2(ジルコニア)、Si34(窒化ケイ素)、SiC(炭化ケイ素)、WC(タングステンカーバイド)、ステンレスなどの素材からなるものを用いることができ、たとえば、東ソー(株)製のジルコニアボール「YTZ」(登録商標)が好適である。 As balls (beads) which are typical grinding media, ZrO 2 (zirconia), Si 3 N 4 (silicon nitride), SiC (silicon carbide), WC (tungsten carbide), having a diameter of about 0.1 to 10 mm, For example, a zirconia ball “YTZ” (registered trademark) manufactured by Tosoh Corporation is preferable.

湿式混合粉砕の処理条件は混合粉砕機の種類に応じて適切に調整すればよい。たとえば、遊星ボールミルを使用する場合には、容器容積100mL当たり、粉砕媒体であるボール(ビーズ)の充填量を15〜60mL、水系溶媒および原料の合計の充填量を10〜30mLとし、かつ水系溶媒と原料の混合物中の原料の濃度を2〜30体積%とすることが好ましい。また、遊星ボールミルの公転回転数は通常1〜10Hz、好ましくは4〜6Hzであり、混合粉砕の処理時間は1〜10時間が好ましい。   What is necessary is just to adjust the process conditions of wet-mixing grinding suitably according to the kind of mixing-milling machine. For example, when a planetary ball mill is used, the filling amount of balls (beads) as a grinding medium is 15 to 60 mL, the total filling amount of the aqueous solvent and the raw material is 10 to 30 mL per 100 mL of the container volume, and the aqueous solvent It is preferable that the concentration of the raw material in the mixture of the raw material is 2 to 30% by volume. Further, the revolution speed of the planetary ball mill is usually 1 to 10 Hz, preferably 4 to 6 Hz, and the processing time for the mixing and grinding is preferably 1 to 10 hours.

以上のような湿式混合粉砕処理の後、生成物を濾別して乾燥することにより、セリア系複合酸化物の結晶化物を回収することができる。
濾別の方法は、一般的な加圧ろ過、吸引ろ過、遠心分離等の方法から適宜選択すればよい。また乾燥の方法も通常の通風乾燥、真空乾燥等のいずれの方法であってもよい。本発明の湿式混合粉砕処理では水系溶媒中で水以外の副生物(塩類等)が生成しないため、蒸発乾固、スプレードライ等の乾燥方法も採用できる。乾燥温度は特に限定されないが50〜200℃(結晶化のための熱処理の温度未満)が好ましい。
After the wet mixing and pulverizing treatment as described above, the ceria-based composite oxide crystallized product can be recovered by filtering and drying the product.
The filtration method may be appropriately selected from general methods such as pressure filtration, suction filtration, and centrifugal separation. The drying method may be any method such as normal ventilation drying and vacuum drying. In the wet mixing and pulverization treatment of the present invention, by-products other than water (such as salts) are not generated in the aqueous solvent, and drying methods such as evaporation to dryness and spray drying can also be employed. Although a drying temperature is not specifically limited, 50-200 degreeC (less than the temperature of the heat processing for crystallization) is preferable.

熱処理
湿式混合粉砕処理により調製されたセリア系結晶化物(非晶質NiOの水和物と複合体を形成している場合を含む。)は、熱処理を省略することができるが、熱処理することにより、結晶性の更なる向上あるいは結晶相の転移をさせることが可能である。熱処理を必要とするかどうかは、セリア系結晶化物(非晶質NiOの水和物と複合体を形成している場合を含む。)を使用する様態、目的などの所望により適宜決めればよい。
The ceria-based crystallized material prepared by the heat treatment wet-mixing pulverization process (including the case of forming a complex with the hydrate of amorphous NiO) can be omitted. Further, the crystallinity can be further improved or the crystal phase can be changed. Whether or not heat treatment is required may be appropriately determined depending on the desired conditions such as the mode and purpose of using a ceria-based crystallized product (including the case of forming a complex with an amorphous NiO hydrate).

熱処理の条件(温度、雰囲気、時間等)は、目的とするセリア系複合酸化物の態様(複合酸化物の組成、結晶化率、比表面積等)に応じて適宜調整することができる。熱処理の温度は、好ましくは200〜1200℃である。セリア系複合酸化物(Ce1-xLnx2-y複合酸化物およびCe1-x(Lnz1-zx2-y)ならびにNiO−セリア系複合体(NiO−Ce1-xLnx2-y複合酸化物およびNiO−Ce1-x(Lnz1-zx2-y複合酸化物)については、大気中で熱処理することが望ましい。一方、NiO−Ni−セリア系複合体(NiO−Ni−Ce1-xLnx2-y複合酸化物およびNiO−Ni−Ce1-x(Lnz1-zx2-y複合酸化物)ならびにNi−セリア系複合体(Ni−Ce1-xLnx2-y複合酸化物およびNi−Ce1-x(Lnz1-zx2-y複合酸化物)については、H2などの還元性ガスを含む還元雰囲気下あるいはN2やArなどの不活性ガス雰囲気下で熱処理する必要がある。なお、セリア系複合酸化物の結晶性はX線回折図形(所定のピークの有無)により確認することができる。 The heat treatment conditions (temperature, atmosphere, time, etc.) can be appropriately adjusted according to the target ceria-based composite oxide mode (composite oxide composition, crystallization rate, specific surface area, etc.). The temperature of the heat treatment is preferably 200 to 1200 ° C. Ceria composite oxide (Ce 1-x Ln x O 2-y complex oxide and Ce 1-x (Ln z A 1-z) x O 2-y) and NiO- ceria complex (NiO-Ce 1 the -x Ln x O 2-y complex oxide and NiO-Ce 1-x (Ln z A 1-z) x O 2-y complex oxide), it is desirable to heat treatment in air. On the other hand, NiO-Ni- ceria composite body (NiO-Ni-Ce 1- x Ln x O 2-y complex oxide and NiO-Ni-Ce 1-x (Ln z A 1-z) x O 2-y composite oxide) as well as Ni- ceria complex (Ni-Ce 1-x Ln x O 2-y complex oxide and Ni-Ce 1-x (Ln z A 1-z) x O 2-y compound oxide ) Must be heat-treated in a reducing atmosphere containing a reducing gas such as H 2 or in an inert gas atmosphere such as N 2 or Ar. The crystallinity of the ceria-based composite oxide can be confirmed by an X-ray diffraction pattern (presence or absence of a predetermined peak).

以下、実施例により本発明をさらに具体的に説明するが、本発明の範囲は何らこれら実施例のみに限定されるものではない。
[実施例1]Ce0.7Ln0.31.85
(Ln;La、Pr、Nd、Sm、Gd、Dy、Er、Yb)
(株)栗本鐵工製遊星ボールミル(ステンレス製ポット、容積420mL)に、表1に示した量のCeO2と希土類酸化物(Ln23)、アセトンおよび水を、2mmφYTZ(R)ボール(東ソー(株)製)168mLとともに充填し、公転及び自転回転数6Hzで3時間の処理を行なった。処理物をろ過後、85℃で12時間の真空乾燥を行ない、Ce0.7Ln0.31.85の結晶性複合酸化物の単一相を得た(X線回折図形が、立方晶の蛍石構造の回折ピークのみを示していたことから判断した)。図1に真空乾燥後(粉砕生成物)のX線回折図形、図2に1200℃で1時間加熱した後の格子定数比較を示す。
Hereinafter, the present invention will be described more specifically with reference to examples. However, the scope of the present invention is not limited to these examples.
[Example 1] Ce 0.7 Ln 0.3 O 1.85
(Ln; La, Pr, Nd, Sm, Gd, Dy, Er, Yb)
Co. Kurimoto Machinery Works Ltd. planetary ball mill (stainless steel pot, volume 420 mL), the amount of CeO 2 and a rare earth oxide as shown in Table 1 (Ln 2 O 3), acetone and water, 2MmfaiYTZ (R) Ball ( Filled with 168 mL of Tosoh Corporation), and treated for 3 hours at a revolution and a rotational speed of 6 Hz. The treated product was filtered and vacuum-dried at 85 ° C. for 12 hours to obtain a single phase of a crystalline composite oxide of Ce 0.7 Ln 0.3 O 1.85 (the X-ray diffraction pattern was a cubic fluorite structure). Judging from the fact that only the diffraction peak was shown). FIG. 1 shows an X-ray diffraction pattern after vacuum drying (pulverized product), and FIG. 2 shows a comparison of lattice constants after heating at 1200 ° C. for 1 hour.

上記Ce0.7Ln0.31.85の結晶性複合酸化物を大気中200℃、400℃、600℃、800℃、1000℃、1200℃の各温度で1時間の熱処理を行なった.La、NdおよびYb以外のLnについては、いずれの加熱温度においても蛍石構造の単一相であり、不純物相は見られなかった。LnがLaとNdについては、800℃と1000℃の加熱処理により、蛍石構造を示すX線回折ピークが二つに分離した。これは、LaあるいはNdが過剰に固溶した表面層と、LaあるいはNdの固溶量の少ない中心部分から成るコアシェル構造を形成したためと考えられる。これらの粉末においても、1200℃の加熱では、蛍石構造の単一相となった。LnがYbの場合には、400℃〜1000℃の加熱により、遊離したYb23の再結晶化が起きたが、1200℃の加熱では、蛍石構造の単一相となった。各加熱温度における比表面積の変化を表2に示す。また一例としてCe0.7Gd0.31.85の各温度で加熱した時のX線回折図形を図3に示す。 The crystalline composite oxide of Ce 0.7 Ln 0.3 O 1.85 was heat-treated at 200 ° C., 400 ° C., 600 ° C., 800 ° C., 1000 ° C., and 1200 ° C. for 1 hour in the atmosphere. Ln other than La, Nd, and Yb was a single phase having a fluorite structure at any heating temperature, and no impurity phase was observed. When Ln was La and Nd, the X-ray diffraction peak indicating a fluorite structure was separated into two by heat treatment at 800 ° C. and 1000 ° C. This is presumably because a core-shell structure consisting of a surface layer in which La or Nd is excessively dissolved and a central portion with a small amount of La or Nd is formed. These powders also became a single phase with a fluorite structure when heated at 1200 ° C. When Ln was Yb, recrystallization of free Yb 2 O 3 occurred by heating at 400 ° C. to 1000 ° C., but heating at 1200 ° C. resulted in a single phase having a fluorite structure. Table 2 shows the change in specific surface area at each heating temperature. As an example, an X-ray diffraction pattern when heated at each temperature of Ce 0.7 Gd 0.3 O 1.85 is shown in FIG.

Figure 0005907482
Figure 0005907482

Figure 0005907482
[実施例2]Ce0.7(Sm0.8Sr0.2)0.31.82
(株)栗本鐵工製遊星ボールミル(ステンレス製ポット,容積420mL)に、原料粉末CeO210.5gとSm233.7gとSr(OH)20.64g、2mmφYTZ(R)ボール(東ソー(株))168mL,アセトン74mLを充填し、公転及び自転回転数6Hzで3時間の処理を行なった。処理物をろ過後、85℃で12時間の真空乾燥を行ない、Ce0.7(Sm0.8Sr0.2) 0.31.82の結晶性複合酸化物の単一相を得た(X線回折図形が、立方晶の蛍石構造の回折ピークのみを示していたことから判断した)。各温度で加熱した時のX線回折図形を図4に、比表面積変化を表3に示す。
Figure 0005907482
[Example 2] Ce 0.7 (Sm 0.8 Sr 0.2 ) 0.3 O 1.82
Co. Kurimoto Machinery Works Ltd. planetary ball mill (stainless steel pot, volume 420 mL), the raw material powder CeO 2 10.5 g and Sm 2 O 3 3.7 g and Sr (OH) 2 0.64g, 2mmφYTZ (R) Ball ( Tosoh Co., Ltd.) 168 mL and acetone 74 mL were filled and subjected to revolution and rotation at 6 Hz for 3 hours. The treated product was filtered and then vacuum-dried at 85 ° C. for 12 hours to obtain a single phase of a crystalline composite oxide of Ce 0.7 (Sm 0.8 Sr 0.2 ) 0.3 O 1.82 (X-ray diffraction pattern was cubic) It was judged from the fact that only the diffraction peak of the fluorite structure was shown). An X-ray diffraction pattern when heated at each temperature is shown in FIG.

Figure 0005907482
[実施例3]NiO(Ni)−Ce0.7Sm0.31.85
(株)栗本鐵工製遊星ボールミル(ステンレス製ポット,容積420mL)に、原料粉末CeO25.7gとSm232.5gとNi(OH)210.7g、2mmφYTZ(R)ボール(東ソー(株))168mL,アセトン74mLを充填し、公転及び自転回転数6Hzで3時間の処理を行なった。処理物をろ過後、85℃で12時間の真空乾燥を行ない、非晶質NiO水和物とCe0.7Sm0.31.85の結晶性複合酸化物の複合体を得た(X線回折図形が、立方晶の蛍石構造の回折ピークのみを示していたことから判断した)。大気中とアルゴン中で800℃と1000℃の温度で加熱した時のX線回折図形を図5と図6に示す。大気中800℃以上で加熱処理することにより、NiOとCe0.7Sm0.31.85の2相のみからなる結晶性複合酸化物が得られた。一方、アルゴン中800℃以上で加熱処理することにより、NiOとNiとCe0.7Sm0.31.85の3相からなる結晶性複合酸化物が得られた。
Figure 0005907482
Example 3 NiO (Ni) -Ce 0.7 Sm 0.3 O 1.85
Co. Kurimoto Machinery Works Ltd. planetary ball mill (stainless steel pot, volume 420 mL), the raw material powder CeO 2 5.7 g and Sm 2 O 3 2.5 g and Ni (OH) 2 10.7g, 2mmφYTZ (R) Ball ( Tosoh Co., Ltd.) 168 mL and acetone 74 mL were filled and subjected to revolution and rotation at 6 Hz for 3 hours. The treated product was filtered and vacuum dried at 85 ° C. for 12 hours to obtain a composite of amorphous NiO hydrate and a crystalline composite oxide of Ce 0.7 Sm 0.3 O 1.85 (X-ray diffraction pattern was Judging from the fact that only the diffraction peak of the cubic fluorite structure was shown). 5 and 6 show X-ray diffraction patterns when heated at 800 ° C. and 1000 ° C. in the air and in argon. By performing the heat treatment at 800 ° C. or higher in the atmosphere, a crystalline composite oxide consisting of only two phases of NiO and Ce 0.7 Sm 0.3 O 1.85 was obtained. On the other hand, a crystalline composite oxide composed of three phases of NiO, Ni, and Ce 0.7 Sm 0.3 O 1.85 was obtained by heat treatment at 800 ° C. or higher in argon.

Claims (6)

一般式Ce1-xLnx2-y(式中、LnはCe以外の希土類元素から選ばれる少なくとも1種の元素で占められ、0<x<1.0、0<y<0.5)で表されるセリア系複合酸化物の製造方法であって、
Ce(セリウム)の酸化物、水酸化物または酸化水酸化物のうちの少なくとも1種と、Lnサイトの酸化物、水酸化物または酸化水酸化物のうちの少なくとも1種とを含有する原料を、水と相溶性のある有機溶媒に水を混合した溶媒中で、あるいは湿式混合粉砕処理過程で放出ないし副生される水が混合された水と相溶性のある有機溶媒中で、湿式混合粉砕処理することにより、上記結晶性複合酸化物の単一相を直接得る工程を含むことを特徴とする、セリア系複合酸化物の製造方法。
General formula Ce 1-x Ln x O 2-y (where Ln is occupied by at least one element selected from rare earth elements other than Ce, and 0 <x <1.0, 0 <y <0.5 And a method for producing a ceria-based composite oxide represented by:
A raw material containing at least one of an oxide, hydroxide or oxide hydroxide of Ce (cerium) and at least one of an oxide, hydroxide or oxide hydroxide of an Ln site Wet mixed pulverization in a solvent in which water is mixed with an organic solvent compatible with water , or in an organic solvent compatible with water mixed with water released or by-produced in the wet mixed pulverization process A method for producing a ceria-based composite oxide, comprising a step of directly obtaining a single phase of the crystalline composite oxide by treatment.
一般式Ce1-x(Lnz1-zx2-y(式中、LnはCe以外の希土類元素から選ばれる少なくとも1種の元素で占められ、AはCa、Sr、Baから選ばれる少なくとも1種の元素で占められ、0<x<1.0、0<y<0.75、0.5≦z<1.0)で表されるセリア系複合酸化物の製造方法であって、
Ce(セリウム)の酸化物、水酸化物または酸化水酸化物のうちの少なくとも1種と、Lnサイトの酸化物、水酸化物または酸化水酸化物のうちの少なくとも1種と、Aサイトの酸化物または水酸化物のうちの少なくとも1種とを含有する原料を、水と相溶性のある有機溶媒に水を混合した溶媒中で、あるいは湿式混合粉砕処理過程で放出ないし副生される水が混合された水と相溶性のある有機溶媒中で、湿式混合粉砕処理することにより、上記結晶性複合酸化物の単一相を直接得る工程を含むことを特徴とする、セリア系複合酸化物の製造方法。
In the general formula Ce 1-x (Ln z A 1-z) x O 2-y ( wherein, Ln is occupied by at least one element selected from rare earth elements other than Ce, A is Ca, Sr, and Ba A method for producing a ceria-based composite oxide that is occupied by at least one element selected and represented by 0 <x <1.0, 0 <y <0.75, 0.5 ≦ z <1.0). There,
At least one of oxides, hydroxides or oxide hydroxides of Ce (cerium), at least one of oxides, hydroxides or oxide hydroxides of Ln sites, and oxidation of A sites Water that is released or by-produced in a solvent in which water is mixed with an organic solvent compatible with water or in a wet-mixing pulverization process. A ceria-based composite oxide comprising a step of directly obtaining a single phase of the crystalline composite oxide by wet-mixing and grinding in an organic solvent compatible with mixed water . Production method.
前記Lnサイトを占める希土類元素がSc、Y、La、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Yb、Luのうちの少なくとも1種の元素であることを特徴とする、請求項1または2に記載のセリア系複合酸化物の製造方法。   The rare earth element occupying the Ln site is at least one element of Sc, Y, La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb, and Lu. The method for producing a ceria-based composite oxide according to claim 1 or 2. 請求項1または2に記載の前記溶媒中での湿式混合粉砕処理工程において、さらに、Ni(ニッケル)の酸化物、水酸化物、酸化水酸化物のうちの少なくとも1種を、請求項1または2のセリア系複合酸化物の生成量に対して、Ni換算で10wt%以上90wt%以下の量で添加した原料を、前記溶媒中で湿式混合粉砕処理することを特徴とする、非晶質NiOの水和物と結晶性の請求項1または2のセリア系複合酸化物との複合体の製造方法。 In wet mixing pulverization treatment step in the solvent according to claim 1 or 2, further oxides of Ni (nickel), hydroxide, at least one of oxide hydroxides, claim 1 or the generated amount of 2 of ceria composite oxide, the raw material was added in an amount of less than 10 wt% 90 wt% of Ni in terms, characterized by wet mixing pulverization by the solvent, amorphous NiO The manufacturing method of the composite_body | complex with the ceria-type complex oxide of Claim 1 or 2 of hydrate. 請求項1〜3のいずれかに記載の前記溶媒中での湿式混合粉砕処理により得られたセリア系複合酸化物を熱処理する工程を含むことを特徴とする、請求項1〜3のいずれかに記載のセリア系複合酸化物の製造方法。 The method according to any one of claims 1 to 3, further comprising a step of heat-treating the ceria-based composite oxide obtained by the wet mixing and pulverizing treatment in the solvent according to any one of claims 1 to 3. The manufacturing method of the ceria type complex oxide of description. 請求項4に記載の前記溶媒中での湿式混合粉砕処理工程により得られた非晶質NiOの水和物と結晶性セリア系複合酸化物との複合体を熱処理する工程を含むことを特徴とする、セリア系複合酸化物またはNiO、Niもしくはこれらの混在物とセリア系複合酸化物との複合体の製造方法。 And comprising a step of heat-treating the complex of the hydrate amorphous NiO obtained by wet mixing pulverization treatment step in a solvent and the crystalline ceria composite oxide according to claim 4 A method for producing a composite of a ceria-based composite oxide or a ceria-based composite oxide with NiO, Ni or a mixture thereof.
JP2010162714A 2010-07-20 2010-07-20 Method for producing ceria-based composite oxide Active JP5907482B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010162714A JP5907482B2 (en) 2010-07-20 2010-07-20 Method for producing ceria-based composite oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010162714A JP5907482B2 (en) 2010-07-20 2010-07-20 Method for producing ceria-based composite oxide

Publications (2)

Publication Number Publication Date
JP2012025593A JP2012025593A (en) 2012-02-09
JP5907482B2 true JP5907482B2 (en) 2016-04-26

Family

ID=45778993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010162714A Active JP5907482B2 (en) 2010-07-20 2010-07-20 Method for producing ceria-based composite oxide

Country Status (1)

Country Link
JP (1) JP5907482B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6202784B2 (en) * 2012-05-18 2017-09-27 株式会社東芝 Hydrogen production equipment
JP6382030B2 (en) * 2013-08-27 2018-08-29 N‐ルミネセンス株式会社 Synthesis of ceramics by low-temperature solid-phase reaction
WO2023078944A1 (en) * 2021-11-08 2023-05-11 Rhodia Operations Cerium-gadolinium composite oxide

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08169713A (en) * 1994-12-15 1996-07-02 Santoku Kinzoku Kogyo Kk Cerium based sinterable multiple oxide, cerium based multiple oxide sintered compact and its production
JP3538629B2 (en) * 1998-03-25 2004-06-14 独立行政法人物質・材料研究機構 High oxide ion conductive yttria solid electrolyte
JP3538034B2 (en) * 1998-08-28 2004-06-14 ダイハツ工業株式会社 Oxygen storage cerium-based composite oxide
JP3992402B2 (en) * 1999-05-25 2007-10-17 株式会社コーセー Ultraviolet screening agent comprising metal oxide solid solution cerium oxide, resin composition and cosmetic containing the same
AU2002346227A1 (en) * 2002-03-08 2003-09-22 Anan Kasei Co., Ltd. Cerium based composite oxide, sintered product thereof and method for preparation thereof
JP2006210198A (en) * 2005-01-28 2006-08-10 Hosokawa Funtai Gijutsu Kenkyusho:Kk Solid electrolyte, material powder therefor solid oxide type fuel cell, and manufacturing method for material powder for solid electrolyte
JP5110868B2 (en) * 2005-12-16 2012-12-26 北興化学工業株式会社 Method for producing perovskite complex oxide precursor and method for producing perovskite complex oxide
JP5147573B2 (en) * 2008-02-07 2013-02-20 国立大学法人茨城大学 Method for producing perovskite complex oxide
JP5611693B2 (en) * 2009-07-28 2014-10-22 国立大学法人茨城大学 Method for producing vanadate composite oxide

Also Published As

Publication number Publication date
JP2012025593A (en) 2012-02-09

Similar Documents

Publication Publication Date Title
JP5520210B2 (en) Air electrode material powder for solid oxide fuel cell and method for producing the same
JP5451228B2 (en) Lithium transition metal oxide with layer structure
US9412486B2 (en) Composite oxide powder for solid oxide fuel cell and its production method
TWI450864B (en) Method for preparing cerium carbonate, method for cerium oxide prepared and crystalline cerium oxide
JP5110868B2 (en) Method for producing perovskite complex oxide precursor and method for producing perovskite complex oxide
JP6071999B2 (en) Air electrode material powder for solid oxide fuel cell and method for producing the same
WO2012023357A1 (en) Manganese oxide particle and method for producing same
JP5907482B2 (en) Method for producing ceria-based composite oxide
JP5611693B2 (en) Method for producing vanadate composite oxide
JP5574881B2 (en) Air electrode material powder for solid oxide fuel cell and method for producing the same
JP2022061331A (en) Method for producing bismuth- and ruthenium-containing pyrochlore metal oxide and method for producing oxygen electrocatalyst
JP5737954B2 (en) Method for producing vanadate composite oxide
JP5543297B2 (en) Air electrode material powder for solid oxide fuel cell and method for producing the same
JP5147573B2 (en) Method for producing perovskite complex oxide
WO2020066301A1 (en) Powder for solid oxide fuel cell air electrode and method of manufacturing same
JP6330184B2 (en) Method for producing lithium manganese composite oxide
Radhika et al. Low temperature chemical precipitation and characterization of ceria based ceramic composite oxide materials
TWI804647B (en) Method of manufacturing lithium cobalt phosphate and method of manufacturing carbon composite of lithium cobalt phosphate
JP6941315B2 (en) Method for producing perovskite-type composite oxide
CN108502924B (en) Preparation method and application of metal element doped BiOF material
JP3906353B2 (en) YAG fine powder manufacturing method
WO2014021028A1 (en) Method for producing fuel electrode material for solid oxide fuel cell
JP5462639B2 (en) Method for producing composite oxide powder
JP6124629B2 (en) Method for producing gallate complex oxide
JP7473713B2 (en) Lithium-cobalt composite oxide particles and their manufacturing method, lithium-cobalt composite oxide particle composition and their manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140617

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150427

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151221

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20160113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160314

R150 Certificate of patent or registration of utility model

Ref document number: 5907482

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250