JP5907206B2 - Laminate production method - Google Patents

Laminate production method Download PDF

Info

Publication number
JP5907206B2
JP5907206B2 JP2014090787A JP2014090787A JP5907206B2 JP 5907206 B2 JP5907206 B2 JP 5907206B2 JP 2014090787 A JP2014090787 A JP 2014090787A JP 2014090787 A JP2014090787 A JP 2014090787A JP 5907206 B2 JP5907206 B2 JP 5907206B2
Authority
JP
Japan
Prior art keywords
insulating layer
prepreg
less
forming
laminated board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014090787A
Other languages
Japanese (ja)
Other versions
JP2014193613A (en
Inventor
弘久 奈良橋
弘久 奈良橋
中村 茂雄
茂雄 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ajinomoto Co Inc
Original Assignee
Ajinomoto Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co Inc filed Critical Ajinomoto Co Inc
Priority to JP2014090787A priority Critical patent/JP5907206B2/en
Publication of JP2014193613A publication Critical patent/JP2014193613A/en
Application granted granted Critical
Publication of JP5907206B2 publication Critical patent/JP5907206B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Laminated Bodies (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Description

本発明は特定の積層板の製造方法、更には得られた該積層板を用いた回路基板の製造方法に関する。   The present invention relates to a method for producing a specific laminate, and further to a method for producing a circuit board using the obtained laminate.

コア材の回路形成方法としては、金属張積層板の余分な金属箔部分をエッチングし、残った金属箔部分を利用してそのまま回路を形成するサブトラクティブ法や、金属張積層板の金属箔をすべて除去し絶縁層上に形成された金属箔由来の凹凸をアンカーとして利用して、無電解めっきを行い、電気めっきにより導体層を形成するセミアディティブ法がある(特許文献1)。しかし、絶縁層表面にこのような凹凸を形成させると、回路形成時に不要な導体層及びめっきシード層をエッチングで除去する際、凹凸中の金属が除去され難く、一方、十分に除去し得る条件でエッチングした場合には、必要な部分の導体層の溶解が顕著化し、微細配線化の妨げになる問題が生じていた。また、Bステージ樹脂組成物シートを挟むため、基板の小型化には不利となってしまう。   As a circuit forming method for the core material, a subtractive method in which an excess metal foil portion of a metal-clad laminate is etched and a circuit is formed as it is using the remaining metal foil portion, or a metal foil of a metal-clad laminate is used. There is a semi-additive method in which the conductive layer is formed by electroless plating using the unevenness derived from the metal foil that is completely removed and formed on the insulating layer as an anchor (Patent Document 1). However, if such unevenness is formed on the surface of the insulating layer, the metal in the unevenness is difficult to be removed when the unnecessary conductor layer and plating seed layer are removed by etching at the time of circuit formation. In the case of etching with, the necessary part of the conductor layer is significantly dissolved, and there is a problem of hindering fine wiring. Moreover, since the B-stage resin composition sheet is sandwiched, it is disadvantageous for downsizing the substrate.

また、金属箔上に接着補助剤層を形成した接着補助剤付金属箔を用いた銅張積層板が開発されている(特許文献2)。しかし、接着補助剤層を設けているため、基板の小型化には不利となってしまい、金属箔を除去する工程も必要となり、さらに信頼性試験後にめっき界面と接着補助剤層との界面で膨れが発生したり、または接着補助剤層とプリプレグ層との界面で膨れが発生したりと、十分な信頼性が確保できない問題がある。   Moreover, the copper clad laminated board using the metal foil with an adhesion adjuvant which formed the adhesion adjuvant layer on metal foil is developed (patent document 2). However, since the adhesion auxiliary agent layer is provided, it is disadvantageous for downsizing of the substrate, and a process for removing the metal foil is necessary. Further, after the reliability test, the interface between the plating interface and the adhesion auxiliary agent layer is required. There is a problem that sufficient reliability cannot be ensured when swelling occurs or swelling occurs at the interface between the adhesion auxiliary agent layer and the prepreg layer.

特開2003−332734号公報JP 2003-332734 A 特開2006−218855号公報JP 2006-218855 A

本発明の課題は、金属箔を除去するという余分な工程を経ずに、ガラス転移温度と引っ張り弾性率を維持しつつ、平滑な絶縁層表面に剥離強度に優れる導体層が形成される積層板の製造方法を提供することである。   An object of the present invention is to provide a laminate in which a conductor layer having excellent peel strength is formed on a smooth insulating layer surface while maintaining the glass transition temperature and the tensile elastic modulus without an extra step of removing the metal foil. It is to provide a manufacturing method.

本発明者らは、上記課題を解決するために鋭意検討した結果、特定の積層板の製造方法により、上記課題が達成できることを見出した。 As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that the above-described problems can be achieved by a specific method for producing a laminated board.

本発明の特徴は以下の通りである。   The features of the present invention are as follows.

[1](A)支持体の間に1枚以上のプリプレグを配置し、減圧下で加熱及び加圧することで、プリプレグを硬化させて絶縁層を形成する工程、
(B)支持体を除去する工程、
(C)絶縁層表面を粗化処理する工程、
(D)無電解めっきにより絶縁層表面に金属膜層を形成する工程、
を含むことを特徴とする積層板の製造方法であって、
前記プリプレグ中の硬化性樹脂組成物中の不揮発分100質量%に対し、無機充填材を40質量%以上80質量%以下含有し、
前記絶縁層のガラス転移温度が150℃以上270℃以下、引っ張り弾性率が10GPa以上35GPa以下であり、
前記(C)絶縁層表面を粗化処理する工程の後の絶縁層の表面粗さが0.1nm以上600nm以下であり、
前記(D)無電解めっきにより絶縁層表面に金属膜層を形成する工程の後の絶縁層と金属膜層とのピール強度が0.45kgf/cm以上10kgf/cm以下となることを特徴とする積層板の製造方法。
[2]支持体が離型プラスチックフィルムであることを特徴とする、上記[1]に記載の積層板の製造方法。
[3]プリプレグが硬化性樹脂組成物とシート状繊維基材で構成されている上記[1]又は[2]に記載の積層板の製造方法。
[4]プリプレグ中のシート状繊維基材がガラス繊維、有機繊維、ガラス不織布、有機不織布から選択される1種又は2種以上を含有することを特徴とする、上記[3]に記載の積層板の製造方法。
[5]シート状繊維基材が厚さ1〜200μmのガラス繊維であることを特徴とする、上記[4]に記載の積層板の製造方法。
[6]プリプレグ中の硬化性樹脂組成物がエポキシ樹脂及び硬化剤を含有することを特徴とする、上記[1]〜[5]に記載の積層板の製造方法。
[7]プリプレグ中の硬化性樹脂組成物がナフタレン型エポキシ樹脂及びナフトール系硬化剤を含有することを特徴とする、上記[6]に記載の積層板の製造方法。
[8]プリプレグを150〜250℃、60〜150分で硬化させることを特徴とする、上記[1]〜[7]のに記載の積層板の製造方法。
[9]更に、(E)スルーホールを形成する工程を含むことを特徴とする、上記[1]〜[8]に記載の積層板の製造方法。
[10](B)支持体を除去する工程の前に、(E)スルーホールを形成する工程を行うことを特徴とする、上記[9]に記載の積層板の製造方法。
[11]更に、(F)電解めっきにより導体層を形成する工程を含むことを特徴とする、上記[1]〜[10]に記載の積層板の製造方法。
[12]上記[1]〜[11]に記載の製造方法で得た積層板を用いた多層プリント配線板。
[13]上記[1]〜[11]に記載の製造方法で得た積層板を用いた半導体装置。
[1] (A) Disposing one or more prepregs between supports, heating and pressing under reduced pressure to cure the prepreg and form an insulating layer;
(B) removing the support,
(C) a step of roughening the surface of the insulating layer,
(D) forming a metal film layer on the surface of the insulating layer by electroless plating;
A method for producing a laminated board, comprising:
The inorganic filler is contained in an amount of 40% by mass to 80% by mass with respect to 100% by mass of the nonvolatile content in the curable resin composition in the prepreg.
The insulating layer has a glass transition temperature of 150 ° C. or more and 270 ° C. or less, and a tensile elastic modulus of 10 GPa or more and 35 GPa or less,
(C) The surface roughness of the insulating layer after the step of roughening the surface of the insulating layer is 0.1 nm or more and 600 nm or less,
(D) The peel strength between the insulating layer and the metal film layer after the step of forming the metal film layer on the surface of the insulating layer by electroless plating is 0.45 kgf / cm or more and 10 kgf / cm or less. A manufacturing method of a laminated board.
[2] The method for producing a laminated board according to the above [1], wherein the support is a release plastic film.
[3] The method for producing a laminated board according to the above [1] or [2], wherein the prepreg is composed of a curable resin composition and a sheet-like fiber base material.
[4] The laminate according to [3], wherein the sheet-like fiber substrate in the prepreg contains one or more selected from glass fiber, organic fiber, glass nonwoven fabric, and organic nonwoven fabric. A manufacturing method of a board.
[5] The method for producing a laminated board according to [4], wherein the sheet-like fiber base material is a glass fiber having a thickness of 1 to 200 μm.
[6] The method for producing a laminate as described in [1] to [5] above, wherein the curable resin composition in the prepreg contains an epoxy resin and a curing agent.
[7] The method for producing a laminate as described in [6] above, wherein the curable resin composition in the prepreg contains a naphthalene type epoxy resin and a naphthol-based curing agent.
[8] The method for producing a laminate as described in [1] to [7] above, wherein the prepreg is cured at 150 to 250 ° C. for 60 to 150 minutes.
[9] The method for manufacturing a laminated board according to the above [1] to [8], further comprising (E) a step of forming a through hole.
[10] The method for producing a laminated board according to [9] above, wherein (E) a step of forming a through hole is performed before the step of (B) removing the support.
[11] The method for producing a laminated board according to the above [1] to [10], further comprising (F) a step of forming a conductor layer by electrolytic plating.
[12] A multilayer printed wiring board using the laminate obtained by the production method according to the above [1] to [11].
[13] A semiconductor device using the laminate obtained by the manufacturing method according to the above [1] to [11].

本発明の特定の積層板の製造方法により、金属箔を除去するという余分な工程を経ずに、ガラス転移温度と引っ張り弾性率を維持しつつ、平滑な絶縁層表面に剥離強度に優れる導体層が形成される積層板を得ることができるようになった。   Conductor layer excellent in peel strength on the surface of a smooth insulating layer while maintaining the glass transition temperature and the tensile elastic modulus without going through an extra step of removing the metal foil by the method for producing a specific laminate of the present invention It is now possible to obtain a laminated board on which is formed.

以下、本発明をその好適な実施形態に即して詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to preferred embodiments thereof.

本発明は、
(A)支持体の間に1枚以上のプリプレグを配置し、減圧下で加熱及び加圧することで、プリプレグを硬化させて絶縁層を形成する工程、
(B)支持体を除去する工程、
(C)絶縁層表面を粗化処理する工程、
(D)無電解めっきにより絶縁層表面に金属膜層を形成する工程、
を含むことを特徴とする積層板の製造方法である。
The present invention
(A) A step of placing one or more prepregs between the supports, and heating and pressing under reduced pressure to cure the prepreg and form an insulating layer;
(B) removing the support,
(C) a step of roughening the surface of the insulating layer,
(D) forming a metal film layer on the surface of the insulating layer by electroless plating;
It is the manufacturing method of the laminated board characterized by including.

[(A)工程]
<プリプレグ>
本発明で使用するプリプレグは、硬化性樹脂組成物とシート状繊維基材で構成されていることが好ましく、シート状繊維基材に硬化性樹脂組成物を含浸させ、加熱乾燥させて得ることができる。硬化性樹脂組成物は、特に限定なく使用できる。中でも、(a)エポキシ樹脂を含有する組成物が好ましく、(a)エポキシ樹脂、(b)硬化剤、(c)熱可塑性樹脂を含有する組成物がより好ましい。
[Step (A)]
<Prepreg>
The prepreg used in the present invention is preferably composed of a curable resin composition and a sheet-like fiber base material, and can be obtained by impregnating the sheet-like fiber base material with the curable resin composition and drying by heating. it can. The curable resin composition can be used without any particular limitation. Among these, a composition containing (a) an epoxy resin is preferable, and a composition containing (a) an epoxy resin, (b) a curing agent, and (c) a thermoplastic resin is more preferable.

(a)エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビフェニル型エポキシ樹脂、ナフトール型エポキシ樹脂、ナフタレン型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、リン含有エポキシ樹脂、ビスフェノールS型エポキシ樹脂、脂環式エポキシ樹脂、脂肪族鎖状エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ブタジエン構造を有するエポキシ樹脂、ビスフェノールのジグリシジルエーテル化物、ナフタレンジオールのジグリシジルエーテル化物、フェノール類のグリシジルエーテル化物、及びアルコール類のジグリシジルエーテル化物、並びにこれらのエポキシ樹脂のアルキル置換体、ハロゲン化物及び水素添加物等が挙げられる。これらは1種又は2種以上を使用することができる。   (a) As an epoxy resin, for example, bisphenol A type epoxy resin, biphenyl type epoxy resin, naphthol type epoxy resin, naphthalene type epoxy resin, bisphenol F type epoxy resin, phosphorus-containing epoxy resin, bisphenol S type epoxy resin, alicyclic Epoxy resin, aliphatic chain epoxy resin, phenol novolac epoxy resin, cresol novolac epoxy resin, bisphenol A novolac epoxy resin, epoxy resin having butadiene structure, diglycidyl etherified product of bisphenol, diglycidyl ether of naphthalenediol , Glycidyl etherified products of phenols, diglycidyl etherified products of alcohols, and alkyl-substituted products, halides and hydrogenated products of these epoxy resins, etc. And the like. These can use 1 type (s) or 2 or more types.

これらの中でも、耐熱性、絶縁信頼性、金属膜との密着性の観点から、ビスフェノールA型エポキシ樹脂、ナフトール型エポキシ樹脂、ナフタレン型エポキシ樹脂、ビフェニル型エポキシ樹脂、ブタジエン構造を有するエポキシ樹脂が好ましい。具体的には、例えば、液状ビスフェノールA型エポキシ樹脂(三菱化学(株)製「エピコート828EL」)、ナフタレン型2官能エポキシ樹脂(DIC(株)製「HP4032」、「HP4032D])、ナフタレン型4官能エポキシ樹脂(DIC(株)製「HP4700」)、ナフトール型エポキシ樹脂(東都化成(株)製「ESN−475V」)、ブタジエン構造を有するエポキシ樹脂(ダイセル化学工業(株)製「PB−3600」)、ビフェニル構造を有するエポキシ樹脂(日本化薬(株)製「NC3000H」、「NC3000L」、三菱化学(株)製「YX4000」)などが挙げられる。   Among these, bisphenol A type epoxy resin, naphthol type epoxy resin, naphthalene type epoxy resin, biphenyl type epoxy resin, and epoxy resin having a butadiene structure are preferable from the viewpoint of heat resistance, insulation reliability, and adhesion to a metal film. . Specifically, for example, liquid bisphenol A type epoxy resin (“Epicoat 828EL” manufactured by Mitsubishi Chemical Corporation), naphthalene type bifunctional epoxy resin (“HP4032”, “HP4032D” manufactured by DIC Corporation), naphthalene type 4 Functional epoxy resin (“HP4700” manufactured by DIC Corporation), naphthol type epoxy resin (“ESN-475V” manufactured by Tohto Kasei Co., Ltd.), epoxy resin having a butadiene structure (“PB-3600 manufactured by Daicel Chemical Industries, Ltd.”) And epoxy resins having a biphenyl structure (“NC3000H”, “NC3000L”, manufactured by Nippon Kayaku Co., Ltd., “YX4000” manufactured by Mitsubishi Chemical Corporation)), and the like.

(b)硬化剤としては、例えば、アミン系硬化剤、グアニジン系硬化剤、イミダゾール系硬化剤、トリアジン骨格含有フェノール系硬化剤、フェノール系硬化剤、トリアジン骨格含有ナフトール系硬化剤、ナフトール系硬化剤、酸無水物系硬化剤又はこれらのエポキシアダクトやマイクロカプセル化したもの、活性エステル系硬化剤、ベンゾオキサジン系硬化剤、シアネートエステル樹脂等を挙げることができる。めっきの剥離強度を向上させる観点から、硬化剤としては分子構造中に窒素原子を有するものが好ましく、中でも、トリアジン骨格含有フェノール系硬化剤、トリアジン骨格含有ナフトール系硬化剤が好ましく、特にトリアジン骨格含有フェノールノボラック樹脂が好ましい。これらは1種又は2種以上を使用することができる。   (b) Examples of the curing agent include amine curing agents, guanidine curing agents, imidazole curing agents, triazine skeleton-containing phenol curing agents, phenol curing agents, triazine skeleton-containing naphthol curing agents, and naphthol curing agents. And acid anhydride curing agents or epoxy adducts or microencapsulated ones thereof, active ester curing agents, benzoxazine curing agents, cyanate ester resins, and the like. From the viewpoint of improving the peel strength of the plating, the curing agent preferably has a nitrogen atom in the molecular structure, and among them, a triazine skeleton-containing phenol-based curing agent, a triazine skeleton-containing naphthol-based curing agent is preferable, and particularly a triazine skeleton-containing agent. Phenol novolac resins are preferred. These can use 1 type (s) or 2 or more types.

フェノール系硬化剤、ナフトール系硬化剤の具体例としては、例えば、MEH−7700、MEH−7810、MEH−7851(明和化成(株)製)、NHN、CBN、GPH(日本化薬(株)製)、SN170、SN180、SN190、SN475、SN485、SN495、SN375、SN395(東都化成(株)製)、TD2090(DIC(株)製)等が挙げられる。トリアジン骨格含有フェノール系硬化剤の具体例としては、LA3018(DIC(株)製)等が挙げられる。トリアジン骨格含有フェノールノボラック硬化剤の具体例としては、LA7052、LA7054、LA1356(DIC(株)製)等が挙げられる。   Specific examples of the phenol-based curing agent and naphthol-based curing agent include, for example, MEH-7700, MEH-7810, MEH-7851 (manufactured by Meiwa Kasei Co., Ltd.), NHN, CBN, GPH (manufactured by Nippon Kayaku Co., Ltd.) ), SN170, SN180, SN190, SN475, SN485, SN495, SN375, SN395 (manufactured by Toto Kasei Co., Ltd.), TD2090 (manufactured by DIC Corporation), and the like. Specific examples of the triazine skeleton-containing phenolic curing agent include LA3018 (manufactured by DIC Corporation). Specific examples of the triazine skeleton-containing phenol novolak curing agent include LA7052, LA7054, LA1356 (manufactured by DIC Corporation) and the like.

活性エステル系硬化剤には、一般にフェノールエステル類、チオフェノールエステル類、N−ヒドロキシアミンエステル類、複素環ヒドロキシ化合物のエステル類等の反応活性の高いエステル基を1分子中に2個以上有する化合物が好ましく用いられる。当該活性エステル化合物は、カルボン酸化合物及び/又はチオカルボン酸化合物とヒドロキシ化合物及び/又はチオール化合物との縮合反応によって得られるものが好ましい。特に耐熱性等の観点から、カルボン酸化合物とフェノール化合物又はナフトール化合物とから得られる活性エステル化合物が好ましい。カルボン酸化合物としては、例えば安息香酸、酢酸、コハク酸、マレイン酸、イタコン酸、フタル酸、イソフタル酸、テレフタル酸、ピロメリット酸等が挙げられる。フェノール化合物又はナフトール化合物としては、ハイドロキノン、レゾルシン、ビスフェノールA、ビスフェノールF、ビスフェノールS、フェノールフタリン、メチル化ビスフェノールA、メチル化ビスフェノールF、メチル化ビスフェノールS、フェノール、o−クレゾール、m−クレゾール、p−クレゾール、カテコール、α−ナフトール、β−ナフトール、1,5−ジヒドロキシナフタレン、1,6−ジヒドロキシナフタレン、2,6−ジヒドロキシナフタレン、ジヒドロキシベンゾフェノン、トリヒドロキシベンゾフェノン、テトラヒドロキシベンゾフェノン、フロログルシン、ベンゼントリオール、ジシクロペンタジエニルジフェノール、フェノールノボラック等が挙げられる。活性エステル化合物は1種又は2種以上を使用することができる。活性エステル化合物としては、特開2004−277460号公報に開示されている活性エステル化合物を用いてもよく、また市販のものを用いることもできる。市販されている活性エステル化合物としては、例えば、ジシクロペンタジエニルジフェノール構造を含むものとして、EXB−9451、EXB−9460(DIC(株)製)、フェノールノボラックのアセチル化物としてDC808、フェノールノボラックのベンゾイル化物としてYLH1026(三菱化学(株)製)、などが挙げられる。   Active ester-based curing agents generally include compounds having two or more ester groups with high reaction activity in one molecule, such as phenol esters, thiophenol esters, N-hydroxyamine esters, and heterocyclic hydroxy compounds. Is preferably used. The active ester compound is preferably obtained by a condensation reaction between a carboxylic acid compound and / or a thiocarboxylic acid compound and a hydroxy compound and / or a thiol compound. In particular, from the viewpoint of heat resistance and the like, an active ester compound obtained from a carboxylic acid compound and a phenol compound or a naphthol compound is preferable. Examples of the carboxylic acid compound include benzoic acid, acetic acid, succinic acid, maleic acid, itaconic acid, phthalic acid, isophthalic acid, terephthalic acid, and pyromellitic acid. Examples of the phenol compound or naphthol compound include hydroquinone, resorcin, bisphenol A, bisphenol F, bisphenol S, phenolphthaline, methylated bisphenol A, methylated bisphenol F, methylated bisphenol S, phenol, o-cresol, m-cresol, p-cresol, catechol, α-naphthol, β-naphthol, 1,5-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, dihydroxybenzophenone, trihydroxybenzophenone, tetrahydroxybenzophenone, phloroglucin, benzenetriol , Dicyclopentadienyl diphenol, phenol novolac and the like. The active ester compound can use 1 type (s) or 2 or more types. As an active ester compound, the active ester compound currently disclosed by Unexamined-Japanese-Patent No. 2004-277460 may be used, and a commercially available thing can also be used. Examples of commercially available active ester compounds include those containing a dicyclopentadienyl diphenol structure, EXB-9451, EXB-9460 (manufactured by DIC Corporation), DC808, phenol novolac as an acetylated product of phenol novolac. YLH1026 (Mitsubishi Chemical Co., Ltd.), etc. are mentioned as a benzoylation product.

ベンゾオキサジン系硬化剤の具体的例としては、F−a、P−d(四国化成(株)製)、HFB2006M(昭和高分子(株)製)などが挙げられる。   Specific examples of the benzoxazine-based curing agent include Fa, Pd (manufactured by Shikoku Kasei Co., Ltd.), HFB2006M (manufactured by Showa Polymer Co., Ltd.), and the like.

(a)エポキシ樹脂と(b)硬化剤の配合比率は、フェノール系硬化剤またはナフトール系硬化剤の場合、エポキシ樹脂のエポキシ基数を1としたときに硬化剤のフェノール性水酸基数が0.4〜2.0の範囲となる比率が好ましく、0.5〜1.0の範囲となる比率がより好ましい。反応基の比率がこの範囲外であると、硬化物の機械強度や耐水性が低下する傾向にある。   The blending ratio of (a) epoxy resin and (b) curing agent is such that, in the case of a phenolic curing agent or a naphthol curing agent, the number of phenolic hydroxyl groups of the curing agent is 0.4 when the number of epoxy groups of the epoxy resin is 1. A ratio in the range of -2.0 is preferable, and a ratio in the range of 0.5-1.0 is more preferable. If the ratio of the reactive groups is outside this range, the mechanical strength and water resistance of the cured product tend to decrease.

(c)熱可塑性樹脂は、硬化後の組成物に適度な可撓性を付与する等の目的で配合されるものであり、例えば、フェノキシ樹脂、ポリビニルアセタール樹脂、ポリイミド、ポリアミドイミド、ポリエーテルスルホン、ポリスルホン等が挙げられる。これらは1種又は2種以上を使用することができる。当該熱可塑性樹脂は硬化性樹脂組成物中の不揮発成分を100質量%とした場合、0.5〜60質量%の割合で配合するのが好ましく、3〜50質量%がより好ましい。熱可塑性樹脂の配合割合が0.5質量%未満の場合、樹脂組成物粘度が低いために、均一な硬化性樹脂組成物層を形成しにくくなる傾向となり、60質量%を超える場合、樹脂組成物の粘度が高くなり過ぎて、基板上の配線パターンを埋め込みにくくなる傾向となる。   (c) The thermoplastic resin is blended for the purpose of imparting appropriate flexibility to the cured composition, for example, phenoxy resin, polyvinyl acetal resin, polyimide, polyamideimide, polyethersulfone. And polysulfone. These can use 1 type (s) or 2 or more types. When the nonvolatile component in the curable resin composition is 100% by mass, the thermoplastic resin is preferably blended at a rate of 0.5 to 60% by mass, and more preferably 3 to 50% by mass. When the blending ratio of the thermoplastic resin is less than 0.5% by mass, the viscosity of the resin composition is low, so that it becomes difficult to form a uniform curable resin composition layer. Since the viscosity of the object becomes too high, it tends to be difficult to embed the wiring pattern on the substrate.

フェノキシ樹脂の具体例としては、例えば、東都化成(株)製FX280、FX293、三菱化学(株)製YX8100、YL6954、YL6974、YL7213、YL6794、YL7553、YL7482等が挙げられる。   Specific examples of the phenoxy resin include FX280 and FX293 manufactured by Toto Kasei Co., Ltd., YX8100, YL6954, YL6974, YL7213, YL6794, YL7553, and YL7482 manufactured by Mitsubishi Chemical Corporation.

ポリビニルアセタール樹脂はポリビニルブチラール樹脂が好ましく、ポリビニルアセタール樹脂の具体例としては、電気化学工業(株)製、電化ブチラール4000−2、5000−A、6000−C、6000−EP、積水化学工業(株)製エスレックBHシリーズ、BXシリーズ、KSシリーズ、BLシリーズ、BMシリーズ等が挙げられる。   The polyvinyl acetal resin is preferably a polyvinyl butyral resin, and specific examples of the polyvinyl acetal resin include those manufactured by Denki Kagaku Kogyo Co., Ltd., Electric Butyral 4000-2, 5000-A, 6000-C, 6000-EP, Sekisui Chemical Co., Ltd. ) Made S-Rec BH series, BX series, KS series, BL series, BM series and the like.

ポリイミドの具体例としては、新日本理化(株)製のポリイミド「リカコートSN20」及び「リカコートPN20」が挙げられる。また、2官能性ヒドロキシル基末端ポリブタジエン、ジイソシアネート化合物及び四塩基酸無水物を反応させて得られる線状ポリイミド(特開2006−37083号公報記載のもの)、ポリシロキサン骨格含有ポリイミド(特開2002−12667号公報、特開2000−319386号公報等に記載のもの)等の変性ポリイミドが挙げられる。   Specific examples of the polyimide include polyimide “Rika Coat SN20” and “Rika Coat PN20” manufactured by Shin Nippon Rika Co., Ltd. Also, a linear polyimide obtained by reacting a bifunctional hydroxyl group-terminated polybutadiene, a diisocyanate compound and a tetrabasic acid anhydride (as described in JP 2006-37083 A), a polysiloxane skeleton-containing polyimide (JP 2002-2002). And modified polyimides such as those described in JP-A No. 12667 and JP-A No. 2000-319386.

ポリアミドイミドの具体例としては、東洋紡績(株)製のポリアミドイミド「バイロマックスHR11NN」及び「バイロマックスHR16NN」が挙げられる。また、日立化成工業(株)製のポリシロキサン骨格含有ポリアミドイミド「KS9100」、「KS9300」等の変性ポリアミドイミドが挙げられる。   Specific examples of the polyamide imide include polyamide imides “Bilomax HR11NN” and “Bilomax HR16NN” manufactured by Toyobo Co., Ltd. In addition, modified polyamideimides such as polysiloxane skeleton-containing polyamideimides “KS9100” and “KS9300” manufactured by Hitachi Chemical Co., Ltd. may be mentioned.

ポリエーテルスルホンの具体例としては、住友化学(株)製のポリエーテルスルホン「PES5003P」等が挙げられる。   Specific examples of polyethersulfone include polyethersulfone “PES5003P” manufactured by Sumitomo Chemical Co., Ltd.

ポリスルホンの具体例としては、ソルベンアドバンストポリマーズ(株)製のポリスルホン「P1700」、「P3500」等が挙げられる。   Specific examples of polysulfone include polysulfone “P1700” and “P3500” manufactured by Solven Advanced Polymers, Inc.

当該硬化性樹脂組成物には、エポキシ樹脂や硬化剤を効率良く硬化させるという観点から、(d)硬化促進剤をさらに含有させることができる。このような硬化促進剤としては、イミダゾール系化合物、ピリジン系化合物、有機ホスフィン系化合物等が挙げられ、具体例としては、例えば、2−メチルイミダゾール、4−ジメチルアミノピリジン、トリフェニルホスフィンなどを挙げることができる。これらは1種又は2種以上を使用することができる。(d)硬化促進剤を用いる場合、エポキシ樹脂に対して0.1〜3.0質量%の範囲で用いるのが好ましい。   The curable resin composition may further contain (d) a curing accelerator from the viewpoint of efficiently curing the epoxy resin and the curing agent. Examples of such curing accelerators include imidazole compounds, pyridine compounds, and organic phosphine compounds. Specific examples include 2-methylimidazole, 4-dimethylaminopyridine, triphenylphosphine, and the like. be able to. These can use 1 type (s) or 2 or more types. (d) When using a hardening accelerator, it is preferable to use in 0.1-3.0 mass% with respect to an epoxy resin.

当該硬化性樹脂組成物には、絶縁層の熱膨張率を低下させるという観点から、(e)無機充填材をさらに含有させることができる。無機充填材としては、例えば、シリカ、アルミナ、雲母、マイカ、珪酸塩、硫酸バリウム、水酸化マグネシウム、酸化チタン等が挙げられ、シリカ、アルミナが好ましく、特に無定形シリカ、溶融シリカ、結晶シリカ、合成シリカ、中空シリカ等のシリカが好ましい。シリカとしては球状のものが好ましいこれらは1種又は2種以上を使用することができる。誘電率、誘電正接、熱膨張率を低くするという観点から、中空シリカを用いることが好ましい。中空シリカは、シェル部及び中空部からなり、平均空隙率が30〜80体積%であることが好ましい。   From the viewpoint of reducing the thermal expansion coefficient of the insulating layer, the curable resin composition can further contain (e) an inorganic filler. Examples of the inorganic filler include silica, alumina, mica, mica, silicate, barium sulfate, magnesium hydroxide, titanium oxide and the like, and silica and alumina are preferable, and amorphous silica, fused silica, crystalline silica, Silica such as synthetic silica and hollow silica is preferred. As the silica, spherical ones are preferable. One or more of these can be used. From the viewpoint of reducing the dielectric constant, dielectric loss tangent, and thermal expansion coefficient, it is preferable to use hollow silica. Hollow silica consists of a shell part and a hollow part, and it is preferable that an average porosity is 30-80 volume%.

無機充填材の平均粒径の上限値は、絶縁信頼性を向上させるという観点から、5μm以下が好ましく、4μm以下がより好ましく、3μm以下が更に好ましく、2μm以下が更に一層好ましく、1.5μm以下が殊更好ましく、1μm以下が特に好ましい。一方、無機充填材の平均粒径の下限値は、分散性を向上させるという観点から、0.01μm以上が好ましく、0.05μm以上がより好ましく、0.1μm以上が更に好ましい。無機充填材の平均粒径はミー(Mie)散乱理論に基づくレーザー回折・散乱法により測定することができる。具体的にはレーザー回折式粒度分布測定装置により、無機充填材の粒度分布を体積基準で作成し、そのメディアン径を平均粒径とすることで測定することができる。測定サンプルは、無機充填材を超音波により水中に分散させたものを好ましく使用することができる。レーザー回折式粒度分布測定装置としては、(株)堀場製作所製 LA−500等を使用することができる。 The upper limit of the average particle size of the inorganic filler is preferably 5 μm or less, more preferably 4 μm or less, further preferably 3 μm or less, even more preferably 2 μm or less, and even more preferably 1.5 μm or less, from the viewpoint of improving the insulation reliability. Is more preferable, and 1 μm or less is particularly preferable. On the other hand, the lower limit of the average particle size of the inorganic filler is preferably 0.01 μm or more, more preferably 0.05 μm or more, and still more preferably 0.1 μm or more from the viewpoint of improving dispersibility. The average particle diameter of the inorganic filler can be measured by a laser diffraction / scattering method based on Mie scattering theory. Specifically, the particle size distribution of the inorganic filler can be created on a volume basis by a laser diffraction particle size distribution measuring device, and the median diameter can be measured as the average particle diameter. As the measurement sample, an inorganic filler dispersed in water by ultrasonic waves can be preferably used. As a laser diffraction type particle size distribution measuring apparatus, LA-500 manufactured by Horiba Ltd. can be used.

硬化性樹脂組成物中の無機充填材の含有量の上限値は、硬化物の機械強度の低下を防止するという観点から、硬化性樹脂組成物中の不揮発成分を100質量%とした場合、80質量%以下が好ましく、75質量%以下がより好ましく、70質量%以下が更に好ましく、65質量%以下が更に一層好ましい。一方、硬化性樹脂組成物中の無機充填剤の含有量の下限値は、熱膨張率を低下させるという観点、プリプレグに剛性を付与するという観点から、硬化性樹脂組成物中の不揮発成分を100質量%とした場合、40質量%以上が好ましい。   The upper limit of the content of the inorganic filler in the curable resin composition is 80 when the nonvolatile component in the curable resin composition is 100% by mass from the viewpoint of preventing a decrease in mechanical strength of the cured product. % By mass or less is preferred, 75% by mass or less is more preferred, 70% by mass or less is more preferred, and 65% by mass or less is even more preferred. On the other hand, the lower limit of the content of the inorganic filler in the curable resin composition is 100% of the non-volatile component in the curable resin composition from the viewpoint of reducing the thermal expansion coefficient and imparting rigidity to the prepreg. In the case of mass%, 40 mass% or more is preferable.

無機充填材は、耐湿性、分散性等の向上のため、アミノプロピルメトキシシラン、アミノプロピルトリエトキシシラン、ウレイドプロピルトリエトキシシラン、N−フェニルアミノプロピルトリメトキシシラン、N−2(アミノエチル)アミノプロビルトリメトキシシラン等のアミノシラン系カップリング剤、グリシドキシプロピルトリメトキシシラン、グリシドキシプロピルトリエトキシシラン、グリシドキシプロピルメチルジエトキシシラン、グリシジルブチルトリメトキシシラン、(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン等のエポキシシラン系カップリング剤、メルカトプロピルトリメトキシシラン、メルカトプロピルトリエトキシシラン等のメルカプトシラン系カップリング剤、メチルトリメトキシシラン、オクタデシルトリメトキシシラン、フェニルトリメトキシシラン、メタクロキシプロピルトリメトキシシラン、イミダゾールシラン、トリアジンシラン等のシラン系カップリング剤、ヘキサメチルジシラザン、ヘキサフェニルジシラザン、ジメチルアミノトリメチルシラン、トリシラザン、シクロトリシラザン、1,1,3,3,5,5−ヘキサメテルシクロトリシラザン等のオルガノシラザン化合物、ブチルチタネートダイマー、チタンオクチレングリコレート、ジイソプロポキシチタンビス(トリエタノールアミネート)、ジヒドロキシチタンビスラクテート、ジヒドロキシビス(アンモニウムラクテート)チタニウム、ビス(ジオクチルパイロホスフェート)エチレンチタネート、ビス(ジオクチルパイロホスフェート)オキシアセテートチタネート、トリーn−ブトキシチタンモノステアレート、テトラ−n−ブチルチタネート、テトラ(2−エチルヘキシル)チタネート、テトライソプロピルビス(ジオクチルホスファイト)チタネート、テトラオクチルビス(ジトリデシルホスファイト)チタネート、テトラ(2,2−ジアリルオキシメチル−1−ブチル)ビス(ジトリデシル)ホスファイトチタネート、イソプロピルトリオクタノイルチタネート、イソプロピルトリクミルフェニルチタネート、イソプロピルトリイソステアロイイルチタネート、イソプロピルイソステアロイルジアクリルチタネート、イソプロピルジメタクリルイソステアロイルチタネート、イソプロピルトリ(ジオクチルホスフェート)チタネート、イソプロピルトリドデシルベンゼンスルホニルチタネート、イソプロピルトリス(ジオクチルパイロホスフェート)チタネート、イソプロピルトリ(N−アミドエチル・アミノエチル)チタネートのチタネート系カップリング剤などの表面処理剤で処理されているのが好ましい。これらは1種又は2種以上を使用することができる。   Inorganic fillers include aminopropylmethoxysilane, aminopropyltriethoxysilane, ureidopropyltriethoxysilane, N-phenylaminopropyltrimethoxysilane, and N-2 (aminoethyl) amino to improve moisture resistance, dispersibility, and the like. Aminosilane coupling agents such as provirtrimethoxysilane, glycidoxypropyltrimethoxysilane, glycidoxypropyltriethoxysilane, glycidoxypropylmethyldiethoxysilane, glycidylbutyltrimethoxysilane, (3,4-epoxy (Cyclohexyl) Epoxysilane coupling agents such as ethyltrimethoxysilane, mercaptosilane coupling agents such as mercatopropyltrimethoxysilane and mercatopropyltriethoxysilane, methyltrimethoxysilane, Silane coupling agents such as tadecyltrimethoxysilane, phenyltrimethoxysilane, methacroxypropyltrimethoxysilane, imidazolesilane, triazinesilane, hexamethyldisilazane, hexaphenyldisilazane, dimethylaminotrimethylsilane, trisilazane, cyclotri Organosilazane compounds such as silazane, 1,1,3,3,5,5-hexamethylcyclotrisilazane, butyl titanate dimer, titanium octylene glycolate, diisopropoxytitanium bis (triethanolaminate), dihydroxytitanium bislactate, Dihydroxybis (ammonium lactate) titanium, bis (dioctylpyrophosphate) ethylene titanate, bis (dioctylpyrophosphate) oxyacetate Titanate, tri-n-butoxy titanium monostearate, tetra-n-butyl titanate, tetra (2-ethylhexyl) titanate, tetraisopropyl bis (dioctyl phosphite) titanate, tetraoctyl bis (ditridecyl phosphite) titanate, tetra (2 , 2-diallyloxymethyl-1-butyl) bis (ditridecyl) phosphite titanate, isopropyl trioctanoyl titanate, isopropyl tricumyl phenyl titanate, isopropyl triisostearoyl titanate, isopropyl isostearoyl diacryl titanate, isopropyl dimethacrylisostearoyl Titanate, isopropyltri (dioctylphosphate) titanate, isopropyltridodecylbenzenesulfonylthio Titanate, isopropyl tris (dioctyl pyrophosphate) titanate, preferably being treated with a surface treatment agent such as isopropyl tri (N- amidoethyl-aminoethyl) titanate titanate coupling agent. These can use 1 type (s) or 2 or more types.

当該硬化性樹脂組成物には、必要に応じて本発明の効果が発揮される範囲で、ビスマレイミド−トリアジン樹脂、アクリル樹脂、マレイミド化合物、ビスアリルナジイミド化合物、ビニルベンジル樹脂、ビニルベンジルエーテル樹脂、ブロックイソシアネート化合物などのエポキシ樹脂以外の熱硬化性樹脂を配合することもできる。これらは1種又は2種以上を使用することができる。マレイミド樹脂としてはBMI1000、BMI2000、BMI3000、BMI4000、BMI5100(大和化成工業(株)製)、BMI、BMI−70、BMI−80(ケイ・アイ化成(株)製)、ANILIX−MI(三井化学ファイン(株)製)、ビスアリルナジイミド化合物としてはBANI−M、BANI−X(丸善石油化学工業(株)製)ビニルベンジル樹脂としてはV5000(昭和高分子(株)製)、ビニルベンジルエーテル樹脂としてはV1000X、V1100X(昭和高分子(株)製)が挙げられる。   The curable resin composition includes a bismaleimide-triazine resin, an acrylic resin, a maleimide compound, a bisallylnadiimide compound, a vinyl benzyl resin, and a vinyl benzyl ether resin as long as the effects of the present invention are exhibited as necessary. A thermosetting resin other than an epoxy resin such as a blocked isocyanate compound can also be blended. These can use 1 type (s) or 2 or more types. As maleimide resins, BMI1000, BMI2000, BMI3000, BMI4000, BMI5100 (manufactured by Daiwa Kasei Kogyo Co., Ltd.), BMI, BMI-70, BMI-80 (manufactured by KEI Kasei Co., Ltd.), ANILIX-MI (Mitsui Chemical Fine) BANI-M, BANI-X (manufactured by Maruzen Petrochemical Co., Ltd.) as a vinyl benzyl resin, V5000 (manufactured by Showa Polymer Co., Ltd.), vinyl benzyl ether resin V1000X, V1100X (manufactured by Showa Polymer Co., Ltd.).

当該硬化性樹脂組成物には、必要に応じて本発明の効果が発揮される範囲で、難燃剤を含有することができる。難燃剤としては、例えば、有機リン系難燃剤、有機系窒素含有リン化合物、窒素化合物、シリコーン系難燃剤、金属水酸化物等が挙げられる。有機リン系難燃剤としては、三光(株)製のHCA、HCA−HQ、HCA−NQ等のホスフィン化合物、昭和高分子(株)製のHFB−2006M等のリン含有ベンゾオキサジン化合物、味の素ファインテクノ(株)製のレオフォス30、50、65、90、110、TPP、RPD、BAPP、CPD、TCP、TXP、TBP、TOP、KP140、TIBP、北興化学工業(株)製のPPQ、クラリアント(株)製のOP930、大八化学(株)製のPX200等のリン酸エステル化合物、東都化成(株)製のFX289、FX310等のリン含有エポキシ樹脂、東都化成(株)製のERF001等のリン含有フェノキシ樹脂等が挙げられる。有機系窒素含有リン化合物としては、四国化成工業(株)製のSP670、SP703等のリン酸エステルアミド化合物、大塚化学(株)製のSPB100、SPE100等のホスファゼン化合物等が挙げられる。金属水酸化物としては、宇部マテリアルズ(株)製のUD65、UD650、UD653等の水酸化マグネシウム、巴工業(株)製のB−30、B−325、B−315、B−308、B−303、UFH−20等の水酸化アルミニウム等が挙げられる。これらは1種又は2種以上を使用することができる。   In the said curable resin composition, a flame retardant can be contained in the range by which the effect of this invention is exhibited as needed. Examples of the flame retardant include an organic phosphorus flame retardant, an organic nitrogen-containing phosphorus compound, a nitrogen compound, a silicone flame retardant, and a metal hydroxide. Examples of organophosphorus flame retardants include phosphine compounds such as HCA, HCA-HQ, and HCA-NQ manufactured by Sanko Co., Ltd., phosphorus-containing benzoxazine compounds such as HFB-2006M manufactured by Showa Polymer Co., Ltd., and Ajinomoto Fine Techno. Reefos 30, 50, 65, 90, 110, TPP, RPD, BAPP, CPD, TCP, TXP, TBP, TOP, KP140, TIBP, PPQ manufactured by Hokuko Chemical Co., Ltd., Clariant Phosphorus ester compounds such as OP930 manufactured by Daihachi Chemical Co., Ltd., PX200 manufactured by Daihachi Chemical Co., Ltd., phosphorus-containing epoxy resins such as FX289 manufactured by Toto Kasei Co., Ltd., and FX310, and phosphorus-containing phenoxy such as ERF001 manufactured by Toto Kasei Co., Ltd. Examples thereof include resins. Examples of the organic nitrogen-containing phosphorus compound include phosphoric ester amide compounds such as SP670 and SP703 manufactured by Shikoku Kasei Kogyo Co., Ltd., and phosphazene compounds such as SPB100 and SPE100 manufactured by Otsuka Chemical Co., Ltd. As the metal hydroxide, magnesium hydroxide such as UD65, UD650, UD653 manufactured by Ube Materials Co., Ltd., B-30, B-325, B-315, B-308, B manufactured by Sakai Kogyo Co., Ltd. And aluminum hydroxide such as -303 and UFH-20. These can use 1 type (s) or 2 or more types.

当該硬化性樹脂組成物には、必要に応じて本発明の効果が発揮される範囲で、硬化物の機械強度を高める、応力緩和効果等の目的で固体状のゴム粒子を含有することができる。固体状のゴム粒子は、樹脂組成物を調製する際の有機溶媒にも溶解せず、エポキシ樹脂等の樹脂組成物中の成分とも相溶せず、樹脂組成物のワニス中では分散状態で存在するものが好ましい。このようなゴム粒子は、一般には、ゴム成分の分子量を有機溶剤や樹脂に溶解しないレベルまで大きくし、粒子状とすることで調製される。ゴム粒子としては、例えば、コアシェル型ゴム粒子、架橋アクリルニトリルブタジエンゴム粒子、架橋スチレンブタジエンゴム粒子、アクリルゴム粒子などが挙げられる。コアシェル型ゴム粒子は、粒子がコア層とシェル層を有するゴム粒子であり、例えば、外層のシェル層がガラス状ポリマー、内層のコア層がゴム状ポリマーで構成される2層構造、または外層のシェル層がガラス状ポリマー、中間層がゴム状ポリマー、コア層がガラス状ポリマーで構成される3層構造のものなどが挙げられる。ガラス状ポリマーは例えば、メタクリル酸メチルの重合物などで構成され、ゴム状ポリマー層は例えば、ブチルアクリレート重合物(ブチルゴム)などで構成される。コアシェル型ゴム粒子の具体例としては、スタフィロイドAC3832、AC3816N、(ガンツ化成(株)商品名)、メタブレンKW-4426(三菱レイヨン(株)商品名)が挙げられる。アクリロニトリルブタジエンゴム(NBR)粒子の具体例としては、XER-91(平均粒径0.5μm、JSR(株)製)などが挙げられる。スチレンブタジエンゴム(SBR)粒子の具体例としては、XSK-500(平均粒径0.5μm、JSR(株)製)などが挙げられる。アクリルゴム粒子の具体例としては、メタブレンW300A(平均粒径0.1μm)、W450A(平均粒径0.5μm)(三菱レイヨン(株)製)を挙げることができる。 The curable resin composition can contain solid rubber particles for the purpose of increasing the mechanical strength of the cured product and for the purpose of stress relaxation as long as the effects of the present invention are exhibited. . Solid rubber particles do not dissolve in the organic solvent when preparing the resin composition, are not compatible with the components in the resin composition such as epoxy resin, and exist in a dispersed state in the varnish of the resin composition Those that do are preferred. Such rubber particles are generally prepared by increasing the molecular weight of the rubber component to a level at which it does not dissolve in an organic solvent or resin and making it into particles. Examples of the rubber particles include core-shell type rubber particles, cross-linked acrylonitrile butadiene rubber particles, cross-linked styrene butadiene rubber particles, and acrylic rubber particles. The core-shell type rubber particles are rubber particles having a core layer and a shell layer. For example, the outer shell layer is a glassy polymer and the inner core layer is a rubbery polymer. Examples include a three-layer structure in which the shell layer is a glassy polymer, the intermediate layer is a rubbery polymer, and the core layer is a glassy polymer. The glassy polymer is composed of, for example, a polymer of methyl methacrylate, and the rubbery polymer layer is composed of, for example, a butyl acrylate polymer (butyl rubber). Specific examples of the core-shell type rubber particles include Staphyloid AC3832, AC3816N, (Ganz Kasei Co., Ltd. trade name), and Metabrene KW-4426 (Mitsubishi Rayon Co., Ltd. trade name). Specific examples of acrylonitrile butadiene rubber (NBR) particles include XER-91 (average particle size 0.5 μm, manufactured by JSR Corporation). Specific examples of styrene butadiene rubber (SBR) particles include XSK-500 (average particle size 0.5 μm, manufactured by JSR Corporation). Specific examples of the acrylic rubber particles include Methbrene W300A (average particle size 0.1 μm), W450A (average particle size 0.5 μm) (manufactured by Mitsubishi Rayon Co., Ltd.).

硬化性樹脂組成物には、必要に応じて他の成分を配合することができる。他の成分としては、例えば、シリコーンパウダー、ナイロンパウダー、フッ素パウダー等の充填剤、オルベン、ベントン等の増粘剤、シリコーン系、フッ素系、高分子系の消泡剤又はレベリング剤、イミダゾール系、チアゾール系、トリアゾール系、シラン系カップリング剤等の密着性付与剤、フタロシアニン・ブルー、フタロシアニン・グリーン、アイオジン・グリーン、ジスアゾイエロー、カーボンブラック等の着色剤等を挙げることができる。   In the curable resin composition, other components can be blended as necessary. Other components include, for example, fillers such as silicone powder, nylon powder, and fluorine powder, thickeners such as olben and benton, silicone-based, fluorine-based, polymer-based antifoaming agent or leveling agent, imidazole-based, Examples thereof include adhesion imparting agents such as thiazole, triazole, and silane coupling agents, and colorants such as phthalocyanine / blue, phthalocyanine / green, iodin / green, disazo yellow, and carbon black.

プリプレグに用いるシート状繊維基材は特に限定されず、ガラス繊維、有機繊維、ガラス不織布、有機不織布から選択される1種又は2種以上を使用することができる。なかでもガラスクロス、アラミド不織布、液晶ポリマー不織布等のシート状繊維基材を好ましく用いることができ、ガラスクロスがより好ましい。シート状繊維基材の厚さは、1〜200μmが好ましく、5〜175μmがより好ましく、10〜150μmが更に好ましく、20〜125μmが更に一層好ましく、30〜100μmが殊更好ましい。シート状繊維基材の具体的な例としては、ガラスクロスとして、例えば、旭シュエーベル(株)製のスタイル1027MS(経糸密度75本/25mm、緯糸密度75本/25mm、布重量20g/m、厚さ19μm)、旭シュエーベル(株)製のスタイル1037MS(経糸密度70本/25mm、緯糸密度73本/25mm、布重量24g/m、厚さ28μm)、(株)有沢製作所製の1078(経糸密度54本/25mm、緯糸密度54本/25mm、布重量48g/m、厚さ43μm)、(株)有沢製作所製の2116(経糸密度50本/25mm、緯糸密度58本/25mm、布重量103.8g/m、厚さ94μm)などが挙げられる。また液晶ポリマー不織布としては、(株)クラレ製のポリアリレート系液晶ポリマーからメルトブローン方式で製造された不織布であるベクルス(目付け量6〜15g/m2)や(株)クラレ製のベクトランを繊維素材とする不織布などが挙げられる。 The sheet-like fiber base material used for the prepreg is not particularly limited, and one or more kinds selected from glass fibers, organic fibers, glass nonwoven fabrics, and organic nonwoven fabrics can be used. Especially, sheet-like fiber base materials, such as a glass cloth, an aramid nonwoven fabric, and a liquid crystal polymer nonwoven fabric, can be used preferably, and a glass cloth is more preferable. The thickness of the sheet fiber substrate is preferably 1 to 200 μm, more preferably 5 to 175 μm, still more preferably 10 to 150 μm, still more preferably 20 to 125 μm, and particularly preferably 30 to 100 μm. As a specific example of the sheet-like fiber base material, as a glass cloth, for example, Style 1027MS (A warp density: 75/25 mm, Weft density: 75/25 mm, Fabric weight: 20 g / m 2 (Thickness 19 μm), Style 1037MS manufactured by Asahi Schubel Co., Ltd. (warp density 70/25 mm, weft density 73/25 mm, fabric weight 24 g / m 2 , thickness 28 μm), 1078 manufactured by Arisawa Manufacturing Co., Ltd. Warp density 54/25 mm, weft density 54/25 mm, fabric weight 48 g / m 2 , thickness 43 μm), 2116 manufactured by Arisawa Manufacturing Co., Ltd. (warp density 50/25 mm, weft density 58/25 mm, fabric A weight of 103.8 g / m 2 and a thickness of 94 μm). In addition, as the liquid crystal polymer nonwoven fabric, Vecrus (weighing amount 6 to 15 g / m 2 ), which is a nonwoven fabric manufactured from a polyarylate-based liquid crystal polymer manufactured by Kuraray Co., Ltd., and Vectran manufactured by Kuraray Co., Ltd. are used as fiber materials. And non-woven fabrics.

本発明で使用するプリプレグの製造方法は、特に制限されないが、以下の方法が好適である。   The method for producing the prepreg used in the present invention is not particularly limited, but the following method is suitable.

プリプレグは、公知のホットメルト法、ソルベント法などにより製造することができる。ホットメルト法は、樹脂組成物を有機溶剤に溶解することなく、樹脂組成物と剥離性の良い離型紙に一旦コーティングし、それをシート状繊維基材にラミネートする、あるいはダイコータにより直接塗工するなどして、プリプレグを製造する方法である。また、ソルベント法は、樹脂組成物を有機溶剤に溶解した樹脂組成物ワニスにシート状繊維基材を浸漬することにより、樹脂組成物ワニスをシート状繊維基材に含浸させ、その後乾燥させる方法である。また、支持体上に積層された硬化性樹脂組成物からなる接着フィルムをシート状補強基材の両面から加熱、加圧条件下、連続的に熱ラミネートすることで調製することもできる。   The prepreg can be produced by a known hot melt method, solvent method or the like. In the hot-melt method, the resin composition and the release paper having good peelability are coated once without being dissolved in an organic solvent, and then laminated on a sheet-like fiber base material or directly applied by a die coater. Thus, a prepreg is manufactured. Further, the solvent method is a method in which a sheet-like fiber base material is impregnated into a sheet-like fiber base material by immersing the sheet-like fiber base material in a resin composition varnish in which the resin composition is dissolved in an organic solvent, and then dried. is there. It can also be prepared by continuously laminating an adhesive film made of a curable resin composition laminated on a support from both sides of a sheet-like reinforcing base material under heating and pressure conditions.

ワニスを調製する場合の有機溶剤としては、例えば、アセトン、メチルエチルケトン、シクロヘキサノン等のケトン類、酢酸エチル、酢酸ブチル、セロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート、カルビトールアセテート等の酢酸エステル類、セロソルブ、ブチルカルビトール等のカルビトール類、トルエン、キシレン等の芳香族炭化水素類、ジメチルホルムアミド、ジメチルアセトアミド、N−メチルピロリドン等を挙げることができる。これらは1種又は2種以上を使用することができる。   Examples of organic solvents for preparing the varnish include ketones such as acetone, methyl ethyl ketone and cyclohexanone, ethyl acetate, butyl acetate, cellosolve acetate, propylene glycol monomethyl ether acetate, acetate esters such as carbitol acetate, cellosolve, butyl Examples thereof include carbitols such as carbitol, aromatic hydrocarbons such as toluene and xylene, dimethylformamide, dimethylacetamide, and N-methylpyrrolidone. These can use 1 type (s) or 2 or more types.

ワニスの乾燥条件は特に限定されないが、プレス工程において、硬化性樹脂組成物が流動性(フロー性)及び接着性を有する必要がある。一方、プリプレグ内に有機溶剤が多く残留すると、硬化後に膨れが発生する原因となる。このため、硬化性樹脂組成物中への有機溶剤の含有割合は5質量%以下とするのが好ましく、2質量%以下とするのがより好ましい。具体的な乾燥条件は、硬化性樹脂組成物の硬化性やワニス中の有機溶媒量によっても異なるが、30〜60質量%の有機溶剤を含むワニスにおいては、80〜180℃で3〜13分乾燥させるのが好ましい。なお、簡単な実験によって、適宜、好適な乾燥条件を設定することができる。   The drying conditions for the varnish are not particularly limited, but the curable resin composition needs to have fluidity (flowability) and adhesiveness in the pressing step. On the other hand, if a large amount of organic solvent remains in the prepreg, it will cause swelling after curing. For this reason, it is preferable that the content rate of the organic solvent in curable resin composition shall be 5 mass% or less, and it is more preferable to set it as 2 mass% or less. The specific drying conditions vary depending on the curability of the curable resin composition and the amount of the organic solvent in the varnish, but in a varnish containing 30 to 60% by mass of the organic solvent, 3 to 13 minutes at 80 to 180 ° C. It is preferable to dry. It should be noted that suitable drying conditions can be set as appropriate by simple experiments.

プリプレグの厚さは、シート状繊維基材のコスト及びプリプレグとして所望される剛性の観点から、20〜250μmの範囲が好ましく、40〜180μmの範囲がより好ましく、60〜150μmの範囲が更に好ましい。なお、プリプレグの厚さは、硬化性樹脂組成物の含浸量を調整することにより、容易にコントロールすることが出来る。また、プリプレグはプレスでボイドなく積層可能な流動性を持つことが必要であり、プリプレグにおける硬化性樹脂組成物はその最低溶融粘度が200〜30000poiseの範囲であることが好ましく、1000〜20000poiseの範囲であることがより好ましい。   The thickness of the prepreg is preferably in the range of 20 to 250 μm, more preferably in the range of 40 to 180 μm, and still more preferably in the range of 60 to 150 μm, from the viewpoint of the cost of the sheet-like fiber substrate and the rigidity desired as the prepreg. The thickness of the prepreg can be easily controlled by adjusting the amount of impregnation of the curable resin composition. Further, the prepreg needs to have fluidity that can be laminated without voids in a press, and the curable resin composition in the prepreg preferably has a minimum melt viscosity in the range of 200 to 30000 poise, in the range of 1000 to 20000 poise. It is more preferable that

<支持体>
本発明の方法では、金属箔の代わりに支持体を用いてプリプレグを硬化させるため、金属箔を除去するという余分な工程を行う必要がなく、積層板の生産性に優れ、環境面にとっても廃液が減るという優れた点があり、さらには金属箔と比較し低コスト且つ容易に除去可能という優れた点もある。本発明で使用する支持体は、自己支持性を有するフィルムであり、プラスチックフィルムが好適に用いられる。プラスチックフィルムとしては、ポリエチレンテレフタレートフィルム、ポリエチレンナフタレート、ポリイミド、ポリアミドイミド、ポリアミド、ポリテトラフルオロエチレン、ポリカーボネート等が挙げられ、ポリエチレンテレフタレートフィルム、ポリエチレンナフタレートフィルムが好ましく、安価であるという観点からポリエチレンテレフタレートフィルムがより好ましい。またプラスチックフィルムは、硬化後の剥離性を向上させる目的で、マット処理、コロナ処理等の表面処理を施した離型プラスチックフィルムや、支持体表面にシリコーン樹脂、アルキッド樹脂、フッ素樹脂等の他の離型層が存在している離型プラスチックフィルムが好ましい。また、支持体の両面に表面処理を施してもよい。プリプレグと接する側の支持体表面は、プリプレグと接する際にプリプレグ表面を平滑に保つという観点から、表面粗さ(Ra値)は50nm以下が好ましく、40nm以下がより好ましく、35nm以下が更に好ましく、30nm以下が更に一層好ましく、25nm以下が殊更好ましい。表面粗さ(Ra値)の下限値は特に限定されるものではないが、支持体の実用性の観点から、0.1nm以上が好ましく、0.5nm以上がより好ましい。表面粗さ(Ra値)の測定は、公知の方法を用いることができ、例えば、非接触型表面粗さ計(例えば、ビーコインスツルメンツ社製WYKO NT3300等)などの装置を用いて測定することができる。支持体は市販のものを用いることもでき、例えば、T60(東レ(株)製、ポリエチレンテレフタレートフィルム)、A4100(東洋紡(株)製、ポリエチレンテレフタレートフィルム、)、Q83(帝人デュポンフィルム(株)製、ポリエチレンナフタレートフィルム)、リンテック(株)製のアルキッド型離型剤(AL−5)付きポリエチレンテレフタレートフィルム、ダイアホイルB100(三菱化学ポリエステルフィルム(株)製、ポリエチレンテレフタレートフィルム)等が挙げられる。
<Support>
In the method of the present invention, since the prepreg is cured using a support instead of the metal foil, there is no need to perform an extra step of removing the metal foil. In addition, there is an excellent point that it can be easily removed at low cost as compared with a metal foil. The support used in the present invention is a self-supporting film, and a plastic film is preferably used. Examples of the plastic film include polyethylene terephthalate film, polyethylene naphthalate, polyimide, polyamideimide, polyamide, polytetrafluoroethylene, polycarbonate and the like, and polyethylene terephthalate film and polyethylene naphthalate film are preferable and polyethylene terephthalate from the viewpoint of being inexpensive. A film is more preferable. In addition, the plastic film is a release plastic film that has been subjected to a surface treatment such as a mat treatment or a corona treatment for the purpose of improving the peelability after curing, and other materials such as a silicone resin, an alkyd resin, and a fluororesin on the support surface. A release plastic film having a release layer is preferred. Moreover, you may surface-treat on both surfaces of a support body. The surface of the support in contact with the prepreg is preferably 50 nm or less, more preferably 40 nm or less, and even more preferably 35 nm or less, from the viewpoint of keeping the prepreg surface smooth when contacting the prepreg. 30 nm or less is still more preferable, and 25 nm or less is especially preferable. The lower limit of the surface roughness (Ra value) is not particularly limited, but is preferably 0.1 nm or more and more preferably 0.5 nm or more from the viewpoint of practicality of the support. The surface roughness (Ra value) can be measured by using a known method, for example, by using a device such as a non-contact type surface roughness meter (for example, WYKO NT3300 manufactured by Beec Instruments). it can. A commercially available support can also be used. For example, T60 (manufactured by Toray Industries, Inc., polyethylene terephthalate film), A4100 (manufactured by Toyobo Co., Ltd., polyethylene terephthalate film), Q83 (manufactured by Teijin DuPont Films Ltd.) Polyethylene naphthalate film), polyethylene terephthalate film with alkyd mold release agent (AL-5) manufactured by Lintec Corporation, Diafoil B100 (manufactured by Mitsubishi Chemical Polyester Film Co., Ltd., polyethylene terephthalate film), and the like.

支持体の厚みは、10〜70μmが好ましく、15〜70μmがより好ましい。厚みが小さすぎると、取り扱い性に劣る傾向や、支持体層の剥離性低下の傾向がある。また、厚みが大きすぎると、コストパフォーマンスが劣る傾向となる。   10-70 micrometers is preferable and, as for the thickness of a support body, 15-70 micrometers is more preferable. If the thickness is too small, the handleability tends to be inferior and the peelability of the support layer tends to be lowered. Moreover, when the thickness is too large, the cost performance tends to be inferior.

<プリプレグを硬化させて絶縁層を形成する工程> <Step of curing the prepreg to form an insulating layer>

(A)工程では、支持体の間に1枚以上のプリプレグを配置し、減圧下で加圧及び加熱することで、プリプレグを硬化させて絶縁層を形成する。2枚以上のプリプレグを用いる場合は、同じプリプレグを用いてもよく、異なるプリプレグを用いてもよい。異なるプリプレグを用いる場合、硬化性樹脂組成物の組成、シート状繊維基材の材料、シート状繊維基材の厚み等のうちの一つ又は全部が互いに異なるものを用いることができる。本発明の絶縁層は接着剤層を設けることなく、そのまま積層板の製造に供する事ができる。   In the step (A), one or more prepregs are disposed between the supports, and the prepreg is cured by pressurization and heating under reduced pressure to form an insulating layer. When two or more prepregs are used, the same prepreg may be used or different prepregs may be used. When different prepregs are used, those in which one or all of the composition of the curable resin composition, the material of the sheet-like fiber substrate, the thickness of the sheet-like fiber substrate, and the like are different from each other can be used. The insulating layer of the present invention can be directly used for the production of a laminate without providing an adhesive layer.

また、作業性の観点より、支持体表面にプリプレグを貼り合わせた支持体付きプリプレグを用いても良い。支持体とプリプレグの貼り合わせは、プレス、バッチ式ラミネータ、ロール式ラミネータ等で加熱、圧着して行うことができる。加熱温度は、支持体とプリプレグの接着性の観点から、60〜140℃が好ましく、70〜130℃がより好ましい。圧着の圧力は、バッチ式ラミネータの場合、1〜11kgf/cm(9.8×10〜107.9×10N/m)の範囲が好ましく、2〜7kgf/cm(19.6×10〜68.6×10N/m)の範囲がより好ましい。圧着時間は、5秒〜3分の範囲が好ましい。ロール式ラミネータの場合、線圧が1〜15Kgf/cmが好ましく、1〜10kgf/cmがより好ましい。圧力が小さすぎると、樹脂組成物の流動性が不十分となり支持体との密着性が低下する傾向にあり、圧力が大きすぎると、樹脂のしみだしにより、膜厚が維持しにくい傾向となる。真空ラミネートは市販の真空ラミネーターを使用して行うことができる。市販の真空ラミネーターとしては、例えば、(株)名機製作所製 バッチ式真空加圧ラミネーター MVLP−500、ニチゴー・モートン(株)製 バキュームアップリケーター、(株)日立インダストリイズ製 ロール式ドライコータ、日立エーアイーシー(株)製 真空ラミネーター等を挙げることができる。 Moreover, you may use the prepreg with a support body which bonded the prepreg on the support body surface from a viewpoint of workability | operativity. Bonding of the support and the prepreg can be performed by heating and pressure bonding with a press, a batch laminator, a roll laminator or the like. The heating temperature is preferably 60 to 140 ° C, more preferably 70 to 130 ° C, from the viewpoint of the adhesion between the support and the prepreg. In the case of a batch-type laminator, the pressure for pressure bonding is preferably in the range of 1 to 11 kgf / cm 2 (9.8 × 10 4 to 107.9 × 10 4 N / m 2 ), and 2 to 7 kgf / cm 2 (19. The range of 6 × 10 4 to 68.6 × 10 4 N / m 2 ) is more preferable. The pressure bonding time is preferably in the range of 5 seconds to 3 minutes. In the case of a roll laminator, the linear pressure is preferably 1 to 15 kgf / cm, and more preferably 1 to 10 kgf / cm. If the pressure is too small, the fluidity of the resin composition tends to be insufficient and the adhesion to the support tends to decrease. If the pressure is too large, the film tends to be difficult to maintain due to the oozing of the resin. . The vacuum lamination can be performed using a commercially available vacuum laminator. As a commercially available vacuum laminator, for example, a batch type vacuum pressure laminator MVLP-500 manufactured by Meiki Seisakusho Co., Ltd., a vacuum applicator manufactured by Nichigo Morton Co., Ltd., a roll type dry coater manufactured by Hitachi Industries, Ltd., Examples include a vacuum laminator manufactured by Hitachi IC Corporation.

支持体付きプリプレグを用いる場合、プリプレグ層面を相対させて重ねるか又は支持体付きプリプレグ2枚のプリプレグ層間に別のプリプレグを1枚以上配置して重ねた後、減圧下で加圧及び加熱して、プリプレグを硬化させて絶縁層を形成する。なお、上記で説明したとおり、挿入するプリプレグは支持体付きプリプレグのプリプレグ層に使用したプリプレグと同種のものを用いてもよく、または異なるものを用いてもよい。 When using a prepreg with a support, the prepreg layer surfaces are overlapped with each other or one or more other prepregs are placed between two prepreg layers with a support, and then pressed and heated under reduced pressure. Then, the prepreg is cured to form an insulating layer. As described above, the prepreg to be inserted may be the same as or different from the prepreg used for the prepreg layer of the prepreg with the support.

減圧下で加圧及び加熱することで、プリプレグを硬化させて絶縁層を形成する工程は、真空ホットプレス機を用いて行うことができる。例えば、加熱されたSUS板等の金属板を支持体側両面からプレスすることにより行うことができる。   The step of curing the prepreg to form the insulating layer by applying pressure and heating under reduced pressure can be performed using a vacuum hot press machine. For example, it can be performed by pressing a metal plate such as a heated SUS plate from both sides of the support.

プレス条件は、1×10−2MPa以下の減圧下で行うのが好ましい。加圧及び加熱は、1段階で行うことが出来る。樹脂のしみだしを制御する観点から2段階以上に条件を分けて行うのが好ましい。1段階目のプレスは、温度が70〜150℃、圧力が1〜15kgf/cmの範囲、時間が15〜45分の範囲で行うのが好ましい。2段階目のプレスは、温度が150〜250℃、圧力が1〜40kgf/cmの範囲、時間が60〜150分の範囲で行うのが好ましく、温度が160〜240℃、圧力が1〜40kgf/cmの範囲、時間が75〜130分の範囲で行うのがより好ましい。 The pressing conditions are preferably performed under a reduced pressure of 1 × 10 −2 MPa or less. Pressurization and heating can be performed in one step. From the viewpoint of controlling the oozing of the resin, it is preferable to divide the conditions into two or more stages. The first stage press is preferably performed at a temperature of 70 to 150 ° C., a pressure of 1 to 15 kgf / cm 2 , and a time of 15 to 45 minutes. The second stage press is preferably performed at a temperature of 150 to 250 ° C., a pressure of 1 to 40 kgf / cm 2 and a time of 60 to 150 minutes, and a temperature of 160 to 240 ° C. and a pressure of 1 to 1. It is more preferable to carry out in the range of 40 kgf / cm 2 and the time in the range of 75 to 130 minutes.

市販されている真空ホットプレス機としては、例えば、MNPC−V−750−5−200(株)名機製作所製)、VH1−1603(北川精機(株)製)等が挙げられる。 Examples of commercially available vacuum hot press machines include MNPC-V-750-5-200 (manufactured by Meiki Seisakusho), VH1-1603 (manufactured by Kitagawa Seiki Co., Ltd.), and the like.

絶縁層のガラス転移温度の下限値は、スルーホール端部のクラックを防止し、樹脂組成物と導体層との間の密着信頼性を向上させ、高温時の反り低減によるチップ等の実装性向上という観点から、150℃以上が好ましく、155℃以上がより好ましい。そして、絶縁層のガラス転移温度の上限値は、高ければ高いほど良いという観点から、175℃以下が好ましく、180℃以下がより好ましく、190℃以下が更に好ましく、200℃以下が更に一層好ましく、230℃以下が殊更好ましく、250℃以下が特に好ましく、270℃以下がとりわけ好ましい。   The lower limit of the glass transition temperature of the insulating layer prevents cracks at the end of the through-hole, improves the adhesion reliability between the resin composition and the conductor layer, and improves the mountability of chips and the like by reducing warpage at high temperatures In view of the above, 150 ° C. or higher is preferable, and 155 ° C. or higher is more preferable. The upper limit of the glass transition temperature of the insulating layer is preferably 175 ° C. or less, more preferably 180 ° C. or less, still more preferably 190 ° C. or less, even more preferably 200 ° C. or less, from the viewpoint that the higher the better. 230 ° C. or lower is particularly preferable, 250 ° C. or lower is particularly preferable, and 270 ° C. or lower is particularly preferable.

絶縁層の引っ張り弾性率は、電子部品実装時の剛性の確保という観点、低反り及び製品の耐衝撃性向上という観点から、10GPa以上が好ましく、15GPa以上がより好ましい。そして、絶縁層の引っ張り弾性率は、高ければ高いほど良いという観点から、25GPa以下がより好ましく、30GPa以下が更に好ましく、35GPa以下が更に一層好ましい。   The tensile elastic modulus of the insulating layer is preferably 10 GPa or more, more preferably 15 GPa or more, from the viewpoint of securing rigidity when mounting electronic components, low warpage, and improvement of impact resistance of the product. And from the viewpoint that the higher the tensile modulus of elasticity of the insulating layer, the higher the better, 25 GPa or less is more preferable, 30 GPa or less is more preferable, and 35 GPa or less is even more preferable.

[(B)工程]
(B)支持体を除去する工程は、一般に、手動または自動剥離装置により機械的に剥離することによって行われる。支持体はプリプレグを硬化させて絶縁層を形成した後に剥離するのが好ましい。なお、後述の(E)スルーホールを形成する工程が行われる場合、(B)支持体を除去する工程の前又は後に、(E)スルーホールを形成する工程を行うことができ、スルーホール形成時に絶縁層表面を保護できるという観点から、(B)支持体を除去する工程の前に、(E)スルーホールを形成する工程を行うことが好ましい。
[Step (B)]
(B) The process of removing a support body is generally performed by peeling mechanically with a manual or automatic peeling apparatus. The support is preferably peeled after the prepreg is cured to form an insulating layer. In addition, when the step (E) of forming a through hole described later is performed, (E) the step of forming the through hole can be performed before or after the step of removing the support (B), and the through hole is formed. From the viewpoint of sometimes protecting the surface of the insulating layer, it is preferable to perform the step (E) of forming a through hole before the step (B) of removing the support.

[(C)工程]
(C)工程はプラズマ等のドライ法、アルカリ性過マンガン酸溶液等の酸化剤処理によるウエット法など公知の方法を用いることができる。特に、酸化剤によるデスミアは、絶縁層表面を粗化し、めっきの密着強度を向上させることができる点で好ましい。(C)工程を酸化剤で行う場合は、膨潤液による膨潤処理、酸化剤による粗化処理、中和液による中和処理をこの順に行うのが好ましい。膨潤液としては特に制限はないが、アルカリ溶液、界面活性剤溶液等が挙げられ、好ましくはアルカリ溶液であり、該アルカリ溶液としては、水酸化ナトリウム溶液、水酸化カリウム溶液がより好ましい。市販されている膨潤液としては、例えば、アトテックジャパン(株)製のスウェリング・ディップ・セキュリガンスP(Swelling Dip Securiganth P)、スウェリング・ディップ・セキュリガンスSBU(Swelling Dip Securiganth SBU)等を挙げることができる。膨潤液による膨潤処理は、特に制限はないが、具体的には、30〜90℃の膨潤液を1分〜15分付すことで行われる。作業性、樹脂が膨潤されすぎないようにする点から、40〜80℃の膨潤液に5秒〜10分浸漬する方法が好ましい。酸化剤としては、特に制限はないが、例えば、水酸化ナトリウムの水溶液に過マンガン酸カリウムや過マンガン酸ナトリウムを溶解したアルカリ性過マンガン酸溶液を挙げることができる。アルカリ性過マンガン酸溶液等の酸化剤による粗化処理は、60℃〜80℃に加熱した酸化剤溶液に10分〜30分付すことで行うのが好ましい。また、アルカリ性過マンガン酸溶液における過マンガン酸塩の濃度は5〜10質量%とするのが好ましい。市販されている酸化剤としては、例えば、アトテックジャパン(株)製のコンセントレート・コンパクト CP、ド−ジングソリューション セキュリガンスP等のアルカリ性過マンガン酸溶液が挙げられる。また、中和液としては、酸性の水溶液が好ましく、市販品としては、アトテックジャパン(株)製のリダクションショリューシン・セキュリガントP(中和液)が挙げられる。中和液による処理は、酸化剤溶液による粗化処理がなされた処理面に30〜80℃の中和液を5分〜30分付す方法を用いることができる。作業性等の点から、酸化剤溶液による粗化処理がなされた対象物を、40〜70℃の中和液に5分〜20分浸漬する方法が好ましい。(C)工程は、(E)スルーホールを形成する工程により生じた壁面残渣を除去することができ、壁面の粗化処理を行うことができるという観点から、(E)スルーホールを形成する工程の後に行うことが好ましい。
[Step (C)]
In the step (C), a known method such as a dry method such as plasma or a wet method using an oxidizing agent treatment such as an alkaline permanganate solution can be used. In particular, desmear with an oxidizing agent is preferable in that it can roughen the surface of the insulating layer and improve the adhesion strength of plating. (C) When performing a process with an oxidizing agent, it is preferable to perform the swelling process by a swelling liquid, the roughening process by an oxidizing agent, and the neutralization process by a neutralization liquid in this order. Although there is no restriction | limiting in particular as a swelling liquid, An alkaline solution, surfactant solution, etc. are mentioned, Preferably it is an alkaline solution, As this alkaline solution, a sodium hydroxide solution and a potassium hydroxide solution are more preferable. Examples of commercially available swelling liquids include Swelling Dip Securiganth P (Swelling Dip Securiganth S) and Swelling Dip Securiganth SBU (ABUTEC Japan). be able to. The swelling treatment with the swelling liquid is not particularly limited, but specifically, it is performed by applying a swelling liquid at 30 to 90 ° C. for 1 to 15 minutes. From the viewpoint of workability and preventing the resin from being swollen too much, a method of immersing in a swelling solution at 40 to 80 ° C. for 5 seconds to 10 minutes is preferable. Although there is no restriction | limiting in particular as an oxidizing agent, For example, the alkaline permanganate solution which melt | dissolved potassium permanganate and sodium permanganate in the aqueous solution of sodium hydroxide can be mentioned. The roughening treatment with an oxidizing agent such as an alkaline permanganic acid solution is preferably performed by attaching the oxidizing agent solution heated to 60 ° C. to 80 ° C. for 10 minutes to 30 minutes. Moreover, it is preferable that the density | concentration of the permanganate in an alkaline permanganic acid solution shall be 5-10 mass%. Examples of commercially available oxidizing agents include alkaline permanganic acid solutions such as Concentrate Compact CP and Dosing Solution Securigans P manufactured by Atotech Japan. Further, the neutralizing solution is preferably an acidic aqueous solution, and a commercially available product is Reduction Sholysin Securigant P (neutralizing solution) manufactured by Atotech Japan Co., Ltd. For the treatment with the neutralizing solution, a method of attaching a neutralizing solution at 30 to 80 ° C. for 5 to 30 minutes on the treated surface subjected to the roughening treatment with the oxidizing agent solution can be used. From the viewpoint of workability and the like, a method of immersing an object subjected to roughening treatment with an oxidant solution in a neutralizing solution at 40 to 70 ° C. for 5 to 20 minutes is preferable. The step (C) is a step (E) in which a through hole is formed from the viewpoint that the wall surface residue generated by the step (E) of forming the through hole can be removed and the wall surface can be roughened. It is preferable to carry out after.

当該(C)工程の後の絶縁層の表面粗さ(Ra値)の上限値は、高い平滑性により微細配線形成を可能にするという観点から、600nm以下が好ましく、570nm以下がより好ましく、540nm以下が更に好ましく、510nm以下が更に一層好ましく、480nm以下が殊更好ましく、450nm以下が特に好ましい。一方、絶縁層の表面粗さ(Ra値)の下限値は、高い剥離強度を得るという観点から、0.1nm以上が好ましく、0.5nm以上がより好ましく、1nm以上が更に好ましく、10nm以上が更に一層好ましく、50nm以上が殊更好ましく、100nm以上が特に好ましい。 The upper limit of the surface roughness (Ra value) of the insulating layer after the step (C) is preferably 600 nm or less, more preferably 570 nm or less, more preferably 540 nm from the viewpoint of enabling fine wiring formation due to high smoothness. The following is more preferable, 510 nm or less is still more preferable, 480 nm or less is particularly preferable, and 450 nm or less is particularly preferable. On the other hand, the lower limit of the surface roughness (Ra value) of the insulating layer is preferably 0.1 nm or more, more preferably 0.5 nm or more, still more preferably 1 nm or more, and more preferably 10 nm or more from the viewpoint of obtaining high peel strength. Even more preferred is 50 nm or more, particularly preferred is 100 nm or more.

[(D)工程]
(D)無電解めっきにより絶縁層表面に金属膜層を形成する工程は、公知の方法により行うことができ、例えば、絶縁層表面を界面活性剤等で処理し、パラジウム等のめっき触媒を付与した後、無電解めっき液に含浸することで金属膜を形成することができる。銅、ニッケル、金、パラジウム等が挙げられる、なかでも銅が好ましい。金属膜層の厚みは、樹脂表面の十分な被覆を行いうること、コストパフォーマンスの観点から、0.1〜5.0μmが好ましく、0.2〜2.5μmがより好ましく、0.2〜1.5μmが更に好ましい。なお、金属膜層は、無電解めっきの一種であるダイレクトプレーティング法によって形成してもよい。
[Step (D)]
(D) The step of forming the metal film layer on the surface of the insulating layer by electroless plating can be performed by a known method. For example, the surface of the insulating layer is treated with a surfactant to give a plating catalyst such as palladium. Then, a metal film can be formed by impregnating with an electroless plating solution. Examples thereof include copper, nickel, gold, palladium, etc. Among them, copper is preferable. The thickness of the metal film layer is preferably 0.1 to 5.0 μm, more preferably 0.2 to 2.5 μm, more preferably 0.2 to 1 from the viewpoint of sufficient covering of the resin surface and cost performance. More preferably, it is 5 μm. The metal film layer may be formed by a direct plating method that is a kind of electroless plating.

当該(D)工程の後の絶縁層と金属膜層とのピール強度の上限値は、高ければ高いほど良いという観点から、0.8kgf/cm以下が好ましく、1kgf/cm以下がより好ましく、3kgf/cm以下が更に好ましく、5kgf/cm以下が更に一層好ましく、10kgf/cm以下が殊更好ましい。一方、絶縁層と金属膜層とのピール強度の下限値は、絶縁信頼性を保つという観点から、0.45kgf/cm以上が好ましい。 The upper limit of the peel strength between the insulating layer and the metal film layer after the step (D) is preferably 0.8 kgf / cm or less, more preferably 1 kgf / cm or less, from the viewpoint that the higher the better the better. / Kg or less is more preferable, 5 kgf / cm or less is still more preferable, and 10 kgf / cm or less is especially preferable. On the other hand, the lower limit of the peel strength between the insulating layer and the metal film layer is preferably 0.45 kgf / cm or more from the viewpoint of maintaining the insulation reliability.

[(E)工程]
本発明の方法では、更に(E)スルーホールを形成する工程を行うことができる。(E)工程は、目的が達成されれば特に制限はないが、公知の方法によりスルーホールの形成を行うことができ、機械ドリル、あるいは炭酸ガスレーザー、YAGレーザー等のレーザーを用いても良い。
[Step (E)]
In the method of the present invention, (E) a step of forming a through hole can be further performed. The step (E) is not particularly limited as long as the object is achieved, but a through hole can be formed by a known method, and a mechanical drill or a laser such as a carbon dioxide gas laser or a YAG laser may be used. .

(E)スルーホールを形成する工程は、スルーホール形成時に絶縁層表面を保護できるという観点から、(B)支持体を除去する工程の前に行うことが好ましい。また、絶縁層表面が粗化されるのを防止するという観点から、(D)無電解めっきにより絶縁層表面に金属膜層を形成する工程の後に行うことが好ましい。なお、支持体上からレーザーによりスルーホールを形成する場合、レーザー加工性を向上させるため、支持体にレーザー吸収性成分を含有させることができる。レーザー吸収性成分としては、金属化合物粉、カーボン粉、金属粉、黒色染料等が挙げられる。レーザーエネルギー吸収性成分の配合量は、該成分が含まれる層を構成する全成分中、0.05〜40質量%が好ましく 、より好ましくは0.1〜20質量%、更に好ましくは1〜10質量%である。カーボン粉としては、ファーネスブラック、チャンネルブラック、アセチレンブラック、サーマルブラック、アントラセンブラック等のカーボンブラックの粉末、黒鉛粉末、またはこれらの混合物の粉末などが挙げられる。金属化合物粉としては、酸化チタン等のチタニア類、酸化マグネシウム等のマグネシア類、酸化鉄等の鉄酸化物、酸化ニッケル等のニッケル酸化物、二酸化マンガン、酸化亜鉛等の亜鉛酸化物、二酸化珪素、酸化アルミニウム、希土類酸化物、酸化コバルト等のコバルト酸化物、酸化錫等のスズ酸化物、酸化タングステン等のタングステン酸化物、炭化珪素、炭化タングステン、窒化硼素、窒化珪素、窒化チタン、窒化アルミニウム、硫酸バリウム、希土類酸硫化物、またはこれらの混合物の粉末などが挙げられる。金属粉としては、銀、アルミニウム、ビスマス、コバルト、銅、鉄、マグネシウム、マンガン、モリブデン、ニッケル、パラジウム、アンチモン、ケイ素、錫、チタン、バナジウム、タングステン、亜鉛、またはこれらの合金若しくは混合物の粉末などが挙げられる。黒色染料としては、アゾ(モノアゾ、ジスアゾ等)染料、アゾ−メチン染料、アントラキノン系染料キノリン染料、ケトンイミン染料、フルオロン染料、ニトロ染料、キサンテン染料、アセナフテン染料、キノフタロン染料、アミノケトン染料、メチン染料、ペリレン染料、クマリン染料、ペリノン染料、トリフェニル染料、トリアリルメタン染料、フタロシアニン染料、インクロフェノール染料、アジン染料、またはこれらの混合物などが挙げられる。黒色染料は水溶性樹脂中への分散性を向上させるため溶剤可溶性の黒色染料であるのが好ましい。これらは1種又は2種以上を使用することができる。レーザーエネルギー吸収性成分は、レーザーエネルギーの熱への変換効率や、汎用性等の観点から、カーボン粉が好ましく、特にカーボンブラックが好ましい。 (E) The step of forming the through hole is preferably performed before the step of (B) removing the support from the viewpoint that the surface of the insulating layer can be protected during the formation of the through hole. Further, from the viewpoint of preventing the surface of the insulating layer from being roughened, it is preferably performed after the step (D) of forming a metal film layer on the surface of the insulating layer by electroless plating. In addition, when forming a through hole with a laser from a support body, in order to improve laser workability, a laser absorptive component can be contained in a support body. Examples of the laser absorbing component include metal compound powder, carbon powder, metal powder, and black dye. The blending amount of the laser energy absorbing component is preferably 0.05 to 40% by mass, more preferably 0.1 to 20% by mass, and still more preferably 1 to 10% in all the components constituting the layer containing the component. % By mass. Examples of the carbon powder include carbon black powder such as furnace black, channel black, acetylene black, thermal black, and anthracene black, graphite powder, and a powder of a mixture thereof. As metal compound powder, titania such as titanium oxide, magnesia such as magnesium oxide, iron oxide such as iron oxide, nickel oxide such as nickel oxide, zinc oxide such as manganese dioxide and zinc oxide, silicon dioxide, Aluminum oxide, rare earth oxide, cobalt oxide such as cobalt oxide, tin oxide such as tin oxide, tungsten oxide such as tungsten oxide, silicon carbide, tungsten carbide, boron nitride, silicon nitride, titanium nitride, aluminum nitride, sulfuric acid Examples thereof include powders of barium, rare earth oxysulfides, or mixtures thereof. Examples of metal powders include silver, aluminum, bismuth, cobalt, copper, iron, magnesium, manganese, molybdenum, nickel, palladium, antimony, silicon, tin, titanium, vanadium, tungsten, zinc, or alloys or mixtures thereof. Is mentioned. Black dyes include azo (monoazo, disazo, etc.) dyes, azo-methine dyes, anthraquinone dyes quinoline dyes, ketone imine dyes, fluorone dyes, nitro dyes, xanthene dyes, acenaphthene dyes, quinophthalone dyes, aminoketone dyes, methine dyes, perylenes And dyes, coumarin dyes, perinone dyes, triphenyl dyes, triallylmethane dyes, phthalocyanine dyes, incrophenol dyes, azine dyes, or mixtures thereof. The black dye is preferably a solvent-soluble black dye in order to improve dispersibility in a water-soluble resin. These can use 1 type (s) or 2 or more types. The laser energy absorbing component is preferably carbon powder, particularly carbon black, from the viewpoint of conversion efficiency of laser energy into heat, versatility, and the like.

[(F)工程]
本発明の方法では、更に(F)電解めっきにより導体層を形成する工程を行うことができる。(D)無電解めっきにより絶縁層表面に金属膜層を形成する工程の後、該金属膜層を利用して、(F)電解めっきにより導体層を形成する工程を行うことが好ましい。かかる導体層形成はセミアディティブ法等の公知の方法により行うことができる。例えば、めっきレジストを形成し、(D)工程で形成した金属膜層をめっきシード層として、電解めっきにより導体層を形成する。電解めっきによる導体層は銅が好ましい。その厚みは所望の回路基板のデザインにもよるが、3〜35μmが好ましく、5〜30μmがより好ましい。電解めっき後、めっきレジストをアルカリ性水溶液等のめっきレジスト剥離液で除去し、めっきシード層の除去も行い、配線パターンが形成される。めっきシード層の除去の方法は、エッチング液を用いることができ、例えば、銅であれば塩化第二鉄水溶液、ペルオキソ二硫酸ナトリウムと硫酸の水溶液などの酸性エッチング液、メック(株)製のCF−6000、メルテックス(株)製のE−プロセス―WL等のアルカリ性エッチング液を用いることができる。ニッケルの場合には、硝酸/硫酸を主成分とするエッチング液を用いることができ、市販品としては、メック(株)製のNH−1865、メルテックス(株)製のメルストリップN−950等が挙げられる。なお導体層形成後、150〜200℃、20〜90分のアニール処理をすることにより、導体層のピール強度をさらに向上、安定化させることができる。
[Step (F)]
In the method of the present invention, a step (F) of forming a conductor layer by electrolytic plating can be further performed. (D) After the step of forming the metal film layer on the surface of the insulating layer by electroless plating, it is preferable to perform the step of (F) forming the conductor layer by electrolytic plating using the metal film layer. Such conductor layer formation can be performed by a known method such as a semi-additive method. For example, a plating resist is formed, and a conductor layer is formed by electrolytic plating using the metal film layer formed in step (D) as a plating seed layer. The conductor layer formed by electrolytic plating is preferably copper. Although the thickness depends on the design of the desired circuit board, it is preferably 3 to 35 μm, more preferably 5 to 30 μm. After electrolytic plating, the plating resist is removed with a plating resist stripping solution such as an alkaline aqueous solution, the plating seed layer is also removed, and a wiring pattern is formed. An etching solution can be used as a method for removing the plating seed layer. For example, in the case of copper, an acidic etching solution such as an aqueous solution of ferric chloride, an aqueous solution of sodium peroxodisulfate and sulfuric acid, or CF manufactured by Mec Co., Ltd. An alkaline etching solution such as -6000, E-process-WL manufactured by Meltex Co., Ltd. can be used. In the case of nickel, an etching solution mainly composed of nitric acid / sulfuric acid can be used, and commercially available products include NH-1865 manufactured by MEC, Melstrip N-950 manufactured by Meltex, and the like. Is mentioned. In addition, after the conductor layer is formed, the peel strength of the conductor layer can be further improved and stabilized by annealing at 150 to 200 ° C. for 20 to 90 minutes.

(F)電解めっきにより導体層を形成する工程は、(E)スルーホールを形成する工程の後に行うことが好ましく、(E)スルーホールを形成する工程、(C)絶縁層表面を粗化処理する工程の後に行うことがより好ましく、(E)スルーホールを形成する工程、(C)絶縁層表面を粗化処理する工程、(D)無電解めっきにより絶縁層表面に金属膜層を形成する工程の後に行うことが更に好ましい。   (F) The step of forming the conductor layer by electrolytic plating is preferably performed after (E) the step of forming the through hole, (E) the step of forming the through hole, and (C) the surface of the insulating layer is roughened. More preferably, it is performed after the step of performing (E) a step of forming a through hole, (C) a step of roughening the surface of the insulating layer, and (D) forming a metal film layer on the surface of the insulating layer by electroless plating. More preferably after the step.

厚みの小さいプリプレグに、(E)スルーホールを形成する工程を行った場合、(F)電解めっきにより導体層を形成する工程と同時にスルーホールの内部をめっきで充填することができる。これは、スルーホールフィリングめっきといい、これにより回路基板の製造工程が短縮されるという利点がある。   When the (E) step of forming a through hole is performed on a prepreg having a small thickness, the inside of the through hole can be filled with the plating at the same time as the step (F) of forming a conductor layer by electrolytic plating. This is called through-hole filling plating, which has the advantage of shortening the circuit board manufacturing process.

[多層プリント配線板]
本発明の積層板を用いて本発明の多層プリント配線板を製造する方法について説明する。支持体上に硬化性樹脂組成物を層形成した接着フィルムの硬化性樹脂組成物層を積層板に直接接するように、積層板の片面又は両面にラミネートする。接着フィルムを真空ラミネート法により減圧下で積層板にラミネートする方法が好適に用いられる。ラミネートの方法はバッチ式であってもロールでの連続式であってもよい。またラミネートを行う前に接着フィルム及び積層板を必要により加熱(プレヒート)しておいてもよい。
[Multilayer printed wiring board]
A method for producing the multilayer printed wiring board of the present invention using the laminate of the present invention will be described. The curable resin composition layer of the adhesive film in which the curable resin composition is formed on the support is laminated on one side or both sides of the laminated plate so as to be in direct contact with the laminated plate. A method of laminating an adhesive film on a laminate under reduced pressure by a vacuum laminating method is suitably used. The laminating method may be a batch method or a continuous method using a roll. In addition, the adhesive film and the laminate may be heated (preheated) as necessary before lamination.

ラミネートの条件は、温度を70〜140℃とするのが好ましく、圧力を1〜11kgf/cm2(9.8×104〜107.9×104N/m2)とするのが好ましく、空気圧が20mmHg(26.7hPa)以下とするのが好ましい。真空ラミネートは市販の真空ラミネーターを使用して行うことができる。市販の真空ラミネーターとしては、例えば、ニチゴー・モートン(株)製 バキュームアップリケーター、(株)名機製作所製 真空加圧式ラミネーター、(株)日立インダストリイズ製 ロール式ドライコータ、日立エーアイーシー(株)製真空ラミネーター等を挙げることができる。   Lamination conditions are preferably a temperature of 70 to 140 ° C., a pressure of 1 to 11 kgf / cm 2 (9.8 × 10 4 to 107.9 × 104 N / m 2), and an air pressure of 20 mmHg (26 0.7 hPa) or less. The vacuum lamination can be performed using a commercially available vacuum laminator. Commercially available vacuum laminators include, for example, a vacuum applicator manufactured by Nichigo-Morton Co., Ltd., a vacuum pressurizing laminator manufactured by Meiki Seisakusho, a roll dry coater manufactured by Hitachi Industries, Ltd., and Hitachi AIC Co., Ltd. ) Made vacuum laminator and the like.

このように接着フィルムを積層板にラミネートした後、支持フィルムを剥離する場合は剥離し、熱硬化することにより積層板に絶縁層を形成することができる。加熱硬化の条件は150℃〜220℃、20分〜180分の範囲で選択され、より好ましくは160℃〜200℃、30〜120分である。絶縁層を形成した後、硬化前に支持フィルムを剥離しなかった場合は、ここで剥離する。次に絶縁層に穴あけを行いビアホールを形成する。穴あけは、ドリル、レーザー、プラズマ等の公知の方法により行うことができる。次いで、前述の方法と同様の酸化剤を使用した方法で絶縁層表面の粗化処理を行い、粗化処理により凸凹のアンカーが形成された絶縁層表面に、無電解メッキと電解メッキを組み合わせた方法で導体層を形成する。導体層をパターン加工し回路形成する方法としては、例えば当業者に公知のサブトラクティブ法、セミアディディブ法などを用いることができる。   Thus, after laminating | stacking an adhesive film on a laminated board, when peeling a support film, it peels, and an insulating layer can be formed in a laminated board by thermosetting. The conditions for heat curing are selected in the range of 150 to 220 ° C. and 20 to 180 minutes, more preferably 160 to 200 ° C. and 30 to 120 minutes. If the support film is not peeled off after the insulating layer is formed, it is peeled off here. Next, a hole is formed in the insulating layer to form a via hole. Drilling can be performed by a known method such as drilling, laser, or plasma. Next, the surface of the insulating layer was roughened by a method using an oxidizing agent similar to the method described above, and electroless plating and electrolytic plating were combined on the surface of the insulating layer on which uneven anchors were formed by the roughening treatment. A conductor layer is formed by the method. As a method for forming a circuit by patterning the conductor layer, for example, a subtractive method or a semi-additive method known to those skilled in the art can be used.

[半導体装置]
さらに本発明の多層プリント配線板を用いることで本発明の半導体装置を製造することができる。多層プリント配線板上の接続用電極部分に半導体素子を接合することにより、半導体装置を製造する。半導体素子の搭載方法は、特に限定されないが、例えば、ワイヤボンディング実装、フリップチップ実装、異方性導電フィルム(ACF)による実装、非導電性フィルム(NCF)による実装などが挙げられる。
[Semiconductor device]
Furthermore, the semiconductor device of the present invention can be manufactured by using the multilayer printed wiring board of the present invention. A semiconductor device is manufactured by bonding a semiconductor element to the connection electrode portion on the multilayer printed wiring board. The mounting method of the semiconductor element is not particularly limited, and examples thereof include wire bonding mounting, flip chip mounting, mounting with an anisotropic conductive film (ACF), mounting with a non-conductive film (NCF), and the like.

以下、実施例を示して本発明をより具体的に説明するが、本発明は以下の実施例によって何等限定されるものではない。なお、以下の記載中の「部」は「質量部」を意味する。   EXAMPLES Hereinafter, although an Example is shown and this invention is demonstrated more concretely, this invention is not limited at all by the following Examples. In the following description, “part” means “part by mass”.

まず、本明細書での物性評価における測定方法・評価方法について説明する。   First, measurement methods and evaluation methods in the physical property evaluation in this specification will be described.

<導体層の剥離強度(ピール強度)の測定>
導体層の剥離強度をJIS C6481に準拠して測定した。実施例および比較例において得られた回路基板を150mm×30mmの小片に切断した。小片の銅箔部分に、カッターで幅10mm、長さ100mmの切込みをいれ、銅箔の一端をはがして掴み具で掴み、インストロン万能試験機を用いて室温中にて、50mm/分の速度で垂直方向に35mmを引き剥がした時の荷重を測定し、剥離強度とした。導体層の厚みは約30μmとした。
<Measurement of peel strength (peel strength) of conductor layer>
The peel strength of the conductor layer was measured according to JIS C6481. The circuit boards obtained in the examples and comparative examples were cut into small pieces of 150 mm × 30 mm. Cut the copper foil part of the piece with a width of 10 mm and a length of 100 mm with a cutter, peel off one end of the copper foil and hold it with a gripper, and use an Instron universal testing machine at room temperature to speed 50 mm / min. Then, the load when peeling 35 mm in the vertical direction was measured to determine the peel strength. The thickness of the conductor layer was about 30 μm.

<絶縁層の表面粗さ(Ra値)の測定>
回路基板上の無電解銅めっき層及び電解銅めっき層を銅エッチング液で除去し、非接触型表面粗さ計(ビーコインスツルメンツ製WYKO NT3300)を用いて、VSIコンタクトモード、50倍レンズにより測定範囲を121μm×92μmとして、絶縁層の表面を測定して、表面粗さ(Ra値)を求めた。なお、Ra値は、無作為に測定箇所を10点設定し、それらの測定値の平均値を採用した。
<Measurement of surface roughness (Ra value) of insulating layer>
The electroless copper plating layer and the electrolytic copper plating layer on the circuit board are removed with a copper etching solution, and measured using a non-contact type surface roughness meter (WYKO NT3300 manufactured by Becoins Instruments) with a VSI contact mode and a 50 × lens. Was 121 μm × 92 μm, and the surface of the insulating layer was measured to determine the surface roughness (Ra value). For the Ra value, 10 measurement points were set at random, and the average value of the measurement values was adopted.


<ガラス転移温度(Tg)の測定> 実施例および比較例で作製した絶縁層を、幅約5mm、長さ約15mmの試験片に切断し、(株)リガク製熱機械分析装置(Thermo Plus TMA8310)を使用して、引張加重法で熱機械分析を行った。試験片を前記装置に装着後、荷重1g、昇温速度5℃/分の測定条件にて連続して2回測定した。2回目の測定における寸法変化シグナルの傾きが変化する点からガラス転移温度(℃)を算出した。

<Measurement of Glass Transition Temperature (Tg)> The insulating layers prepared in Examples and Comparative Examples were cut into test pieces having a width of about 5 mm and a length of about 15 mm, and Rigaku Corporation's thermomechanical analyzer (Thermo Plus TMA8310). ) Was used to perform thermomechanical analysis by the tensile load method. After mounting the test piece on the apparatus, the test piece was measured twice continuously under the measurement conditions of a load of 1 g and a heating rate of 5 ° C./min. The glass transition temperature (° C.) was calculated from the point at which the slope of the dimensional change signal in the second measurement changed.

<引っ張り弾性率の測定>
日本工業規格(JIS K7127)に準拠し、実施例および比較例で作製した絶縁層をテンシロン万能試験機((株)エー・アンド・デイ製)を用いて引っ張り試験し、引っ張り弾性率を測定した。
<Measurement of tensile modulus>
In accordance with Japanese Industrial Standard (JIS K7127), the insulation layers produced in the examples and comparative examples were subjected to a tensile test using a Tensilon universal testing machine (manufactured by A & D Co., Ltd.), and the tensile modulus was measured. .

<金属箔除去工程の有無評価>
実施例及び比較例で作成した積層板において、金属箔除去工程の無いものを「○」とし、金属箔除去工程の有るものを「×」と評価した。
<Evaluation of presence or absence of metal foil removal process>
In the laminates prepared in the examples and comparative examples, those having no metal foil removal step were evaluated as “◯”, and those having the metal foil removal step were evaluated as “x”.

(実施例1)
<プリプレグの作製>
液状ビスフェノールA型エポキシ樹脂(エポキシ当量180、三菱化学(株)製「エピコート828EL」)28部と、ナフタレン型4官能エポキシ樹脂(エポキシ当量163、DIC(株)製「HP4700」)28部と、フェノキシ樹脂(三菱化学(株)製「YX6954BH30」、固形分30質量%のMEKとシクロヘキサノンの1:1溶液)20部とを、MEK15部とシクロヘキサノン15部の混合溶媒に撹拌しながら加熱溶解させた。そこへ、トリアジン含有フェノールノボラック樹脂(水酸基当量125、DIC(株)製「LA7054」、固形分60質量%のMEK溶液)27部、ナフトール系硬化剤(水酸基当量215、東都化成(株)製「SN−485」)の固形分50%のMEK溶液27部、硬化触媒(四国化成工業(株)製、「2E4MZ」)0.1部、球形シリカ(平均粒径0.5μm、(株)アドマテックス製「SOC2」)70部、ポリビニルブチラール樹脂(積水化学工業(株)製「KS−1」)をエタノールとトルエンの質量比が1:1の混合溶媒に溶解した固形分15%の溶液30部を混合し、高速回転ミキサーで均一に分散して、硬化性樹脂組成物のワニスを作製した。該ワニスを、(株)有沢製作所製2116ガラスクロス(厚み94μm)に含浸し、縦型乾燥炉にて140℃で5分間乾燥させプリプレグを作製した。プリプレグの残留溶剤量はガラスクロスを含まない硬化性樹脂組成物中0.1〜1wt%、プリプレグの厚みは120μmであった。
(Example 1)
<Preparation of prepreg>
28 parts of liquid bisphenol A type epoxy resin (epoxy equivalent 180, "Epicoat 828EL" manufactured by Mitsubishi Chemical Corporation), 28 parts of naphthalene type tetrafunctional epoxy resin (epoxy equivalent 163, "HP4700" manufactured by DIC Corporation), 20 parts of phenoxy resin ("YX6954BH30" manufactured by Mitsubishi Chemical Corporation, 1: 1 solution of MEK and cyclohexanone having a solid content of 30% by mass) was dissolved by heating in a mixed solvent of 15 parts of MEK and 15 parts of cyclohexanone with stirring. . Thereto, 27 parts of a triazine-containing phenol novolac resin (hydroxyl equivalent 125, “LA7054” manufactured by DIC Corporation, MEK solution having a solid content of 60% by mass), naphthol-based curing agent (hydroxyl equivalent 215, manufactured by Tohto Kasei Co., Ltd.) SN-485 ") 50% solid MEK solution 27 parts, curing catalyst (manufactured by Shikoku Kasei Kogyo Co., Ltd.," 2E4MZ ") 0.1 part, spherical silica (average particle size 0.5 μm, AD Co., Ltd.) 70 parts of Matex “SOC2”, polyvinyl butyral resin (“KS-1” produced by Sekisui Chemical Co., Ltd.) in a mixed solvent having a mass ratio of ethanol and toluene of 15% and a solid content of 15% 30 The parts were mixed and dispersed uniformly with a high-speed rotary mixer to prepare a varnish of a curable resin composition. The varnish was impregnated into 2116 glass cloth (thickness 94 μm) manufactured by Arisawa Manufacturing Co., Ltd. and dried at 140 ° C. for 5 minutes in a vertical drying furnace to prepare a prepreg. The residual solvent amount of the prepreg was 0.1 to 1 wt% in the curable resin composition not containing glass cloth, and the thickness of the prepreg was 120 μm.

<絶縁層の形成>
上記作製したプリプレグをそれぞれ340mm×500mmの大きさに裁断機で裁断した。その後、2枚のテトラフルオロエチレンフィルム(旭硝子(株)製、「アフレックス」50μm)の間に2枚のプリプレグを設置し、(株)名機製作所製真空プレス機(MNPC−V−750−750−5−200)によって、減圧度を1×10−3MPa、圧力が10kgf/cm、昇温速度3℃/分で室温から130℃迄上昇させて30分保持した後、圧力を30kgf/cmとし、昇温速度3℃/分で190℃まで昇温させて90分保持することで、絶縁層を形成した。
<Formation of insulating layer>
The prepared prepregs were each cut into a size of 340 mm × 500 mm with a cutting machine. Thereafter, two prepregs were installed between two tetrafluoroethylene films (Asahi Glass Co., Ltd., “Aflex” 50 μm), and a vacuum press machine (MNPC-V-750-) manufactured by Meiki Seisakusho Co., Ltd. 750-5-200), the degree of decompression is 1 × 10 −3 MPa, the pressure is 10 kgf / cm 2 , the temperature is increased from room temperature to 130 ° C. at a rate of temperature increase of 3 ° C./min and maintained for 30 minutes, / Cm 2 , the temperature was increased to 190 ° C. at a rate of temperature increase of 3 ° C./min, and held for 90 minutes to form an insulating layer.

<回路基板の作成>
テトラフルオロエチレンフィルムを剥離し、絶縁層表面をアトテックジャパン(株)製のスウェリング・ディップ・セキュリガンスP(Swelling Dip Securiganth P)により、60℃、5分間で膨潤処理を行った。水洗後、アトテックジャパン(株)製のコンセントレート・コンパクト CP(アルカリ性過マンガン酸溶液)により、80℃、20分間で粗化処理を行った。水洗後、アトテックジャパン(株)製のリダクションショリューシン・セキュリガントP(中和液)により、40℃、5分間で中和処理を行った。その後、無電解銅めっき(下記に詳述のアトテックジャパン(株)製の薬液を使用した無電解銅めっきプロセスを使用)を行って積層板を作製した。無電解銅めっきの膜厚は1μmであった。その後、電解銅めっきを行って計30μm厚の導体層を形成して回路基板を得た。
<Creation of circuit board>
The tetrafluoroethylene film was peeled off, and the surface of the insulating layer was swelled at 60 ° C. for 5 minutes with Swelling Dip Securiganth P manufactured by Atotech Japan. After washing with water, a roughening treatment was performed at 80 ° C. for 20 minutes with a concentrate compact CP (alkaline permanganate solution) manufactured by Atotech Japan. After washing with water, neutralization treatment was carried out at 40 ° C. for 5 minutes with a reduction scholysin securigant P (neutralizing solution) manufactured by Atotech Japan. Thereafter, electroless copper plating (using an electroless copper plating process using a chemical solution manufactured by Atotech Japan Co., Ltd., described in detail below) was performed to produce a laminate. The film thickness of the electroless copper plating was 1 μm. Thereafter, electrolytic copper plating was performed to form a conductor layer having a total thickness of 30 μm to obtain a circuit board.

<アトテックジャパン(株)製薬液を使用した無電解銅めっきプロセス>
1.アルカリクリーニング(樹脂表面の洗浄と電荷調整)
商品名:Cleaning cleaner Securiganth 902
条件:60℃で5分
2.ソフトエッチング
硫酸酸性ペルオキソ二硫酸ナトリウム水溶液
条件:30℃で1分
3.プレディップ(次工程のPd付与のための表面の電荷の調整が目的)
商品名:Pre. Dip Neoganth B
条件:室温で1分
4.アクティヴェーター(樹脂表面へのPdの付与)
商品名:Activator Neoganth 834
条件:35℃で5分
5.還元(樹脂に付いたPdを還元する)
商品名:Reducer Neoganth WA
:Reducer Acceralator 810 mod.の混合液
条件:30℃で5分
6.無電解銅めっき(Cuを樹脂表面(Pd表面)に析出させる)
商品名:Basic Solution Printganth MSK-DK
:Copper solution Printganth MSK
:Stabilizer Printganth MSK-DK
:Reducer Cu の混合液
条件:35℃で20分
<Electroless copper plating process using Atotech Japan Co., Ltd. pharmaceutical solution>
1. Alkali cleaning (resin surface cleaning and charge adjustment)
Product Name: Cleaning cleaner Securiganth 902
Condition: 5 minutes at 60 ° C. Soft etching Sulfuric acid sodium peroxodisulfate aqueous solution Conditions: 1 minute at 30 ° C. Pre-dip (for the purpose of adjusting the surface charge for applying Pd in the next process)
Product Name: Pre. Dip Neoganth B
Condition: 1 minute at room temperature Activator (addition of Pd to the resin surface)
Product Name: Activator Neoganth 834
Conditions: 5 minutes at 35 ° C. Reduction (reducing Pd attached to the resin)
Product Name: Reducer Neoganth WA
: Mixer of Reducer Acceralator 810 mod. Conditions: 5 minutes at 30 ° C Electroless copper plating (Cu is deposited on the resin surface (Pd surface))
Product Name: Basic Solution Printganth MSK-DK
: Copper solution Printganth MSK
: Stabilizer Printganth MSK-DK
: Reducer Cu mixed solution Conditions: 20 minutes at 35 ° C

(実施例2)
<プリプレグの作製>
液状ビスフェノールA型エポキシ樹脂(エポキシ当量180、三菱化学(株)製「エピコート828EL」)13部と、ナフタレン型4官能エポキシ樹脂(エポキシ当量163、DIC(株)製「HP4700」)6部と、ビフェニルアラルキル型エポキシ樹脂(エポキシ当量275、日本化薬(株)製「NC3000L」)18部、ビフェニル型エポキシ樹脂(エポキシ当量180、三菱化学(株)製、「YX4000H」)10部、フェノキシ樹脂(三菱化学(株)製「YX6954BH30」、固形分30質量%のMEKとシクロヘキサノンの1:1溶液)10部とを、MEK15部とシクロヘキサノン15部の混合溶媒に撹拌しながら加熱溶解させた。そこへ、トリアジン含有フェノールノボラック樹脂(水酸基当量125、DIC(株)製「LA7054」、固形分60質量%のMEK溶液)15部、ナフトール系硬化剤(水酸基当量215、東都化成(株)製「SN−485」)の固形分60%のMEK溶液15部、硬化触媒(四国化成工業(株)製、「2E4MZ」)0.1部、球形シリカ(平均粒径0.5μm、(株)アドマテックス製「SOC2」)135部、フェナントリレン型リン化合物(三光(株)製「HCA−HQ」平均粒径2μm)6部、ポリビニルブチラール樹脂(積水化学工業(株)製「KS−1」)をエタノールとトルエンの質量比が1:1の混合溶媒に溶解した固形分15%の溶液15部を混合し、高速回転ミキサーで均一に分散して、硬化性樹脂組成物のワニスを作製した。該ワニスを、(株)有沢製作所製2116ガラスクロス(厚み94μm)に含浸し、縦型乾燥炉にて140℃で5分間乾燥させプリプレグを作製した。プリプレグの残留溶剤量はガラスクロスを含まない硬化性樹脂組成物中0.1〜1wt%、プリプレグの厚みは120μmであった。
(Example 2)
<Preparation of prepreg>
13 parts of liquid bisphenol A type epoxy resin (epoxy equivalent 180, “Epicoat 828EL” manufactured by Mitsubishi Chemical Corporation), 6 parts of naphthalene type tetrafunctional epoxy resin (epoxy equivalent 163, “HP4700” manufactured by DIC Corporation), 18 parts of biphenyl aralkyl type epoxy resin (epoxy equivalent 275, “NC3000L” manufactured by Nippon Kayaku Co., Ltd.), 10 parts biphenyl type epoxy resin (epoxy equivalent 180, “YX4000H” manufactured by Mitsubishi Chemical Corporation), phenoxy resin ( 10 parts of “YX6954BH30” manufactured by Mitsubishi Chemical Corporation (1: 1 solution of MEK and cyclohexanone having a solid content of 30% by mass) were dissolved in a mixed solvent of 15 parts of MEK and 15 parts of cyclohexanone with stirring. There, 15 parts of a triazine-containing phenol novolac resin (hydroxyl equivalent 125, “LA7054 manufactured by DIC Corporation, MEK solution having a solid content of 60% by mass), naphthol-based curing agent (hydroxyl equivalent 215, manufactured by Toto Kasei Co., Ltd.” SN-485 ") 60% solid MEK solution 15 parts, curing catalyst (Shikoku Kasei Kogyo Co., Ltd.," 2E4MZ ") 0.1 part, spherical silica (average particle size 0.5 μm, AD Co., Ltd.) Matex "SOC2") 135 parts, phenanthrylene-type phosphorus compound (Sanko Co., Ltd. "HCA-HQ" average particle size 2 [mu] m) 6 parts, polyvinyl butyral resin (Sekisui Chemical Co., Ltd. "KS-1") A varnish of a curable resin composition is prepared by mixing 15 parts of a 15% solid solution dissolved in a mixed solvent having a mass ratio of ethanol and toluene of 1: 1 and uniformly dispersing with a high-speed rotary mixer. Was made. The varnish was impregnated into 2116 glass cloth (thickness 94 μm) manufactured by Arisawa Manufacturing Co., Ltd. and dried at 140 ° C. for 5 minutes in a vertical drying furnace to prepare a prepreg. The residual solvent amount of the prepreg was 0.1 to 1 wt% in the curable resin composition not containing glass cloth, and the thickness of the prepreg was 120 μm.

その後実施例1と同様にして、絶縁層を形成し、回路基板を作製した。 Thereafter, in the same manner as in Example 1, an insulating layer was formed to produce a circuit board.

(比較例1)
<プリプレグの作製>
クレゾールノボラック型エポキシ樹脂(エポキシ当量215、DIC(株)製「N−680」)の固形分75%のMEK溶液30部と、クレゾールノボラック樹脂(水酸基当量119、DIC(株)製「KA−1165」)の60%のMEK溶液16.5部、硬化触媒(四国化成工業(株)製、「2E4MZ」)0.05部、水酸化アルミニウム(平均粒径3.0μm、巴工業(株)製「UFE−20」)30部、MEK40部を混合し、高速回転ミキサーで均一に分散して、硬化性樹脂組成物のワニスを作製した。該ワニスを、(株)有沢製作所製2116ガラスクロス(厚み94μm)に含浸し、縦型乾燥炉にて140℃で5分間乾燥させプリプレグを作製した。プリプレグの残留溶剤量はガラスクロスを含まない硬化性樹脂組成物中0.1〜1wt%、プリプレグの厚みは約120μmであった。
(Comparative Example 1)
<Preparation of prepreg>
30 parts of a MEK solution having a solid content of 75% of a cresol novolac type epoxy resin (epoxy equivalent 215, “N-680” manufactured by DIC Corporation), and a cresol novolak resin (hydroxyl group equivalent 119, “KA-1165 manufactured by DIC Corporation”). 1) part of 60% MEK solution, 0.05 part of curing catalyst (manufactured by Shikoku Kasei Kogyo Co., Ltd., “2E4MZ”), aluminum hydroxide (average particle size 3.0 μm, manufactured by Sakai Kogyo Co., Ltd.) "UFE-20") 30 parts and MEK 40 parts were mixed and dispersed uniformly with a high-speed rotary mixer to prepare a varnish of a curable resin composition. The varnish was impregnated into 2116 glass cloth (thickness: 94 μm) manufactured by Arisawa Manufacturing Co., Ltd. and dried at 140 ° C. for 5 minutes in a vertical drying furnace to prepare a prepreg. The residual solvent amount of the prepreg was 0.1 to 1 wt% in the curable resin composition not containing glass cloth, and the thickness of the prepreg was about 120 μm.

その後実施例1と同様して、絶縁層を形成し、回路基板を作製しようとしたが、絶縁層上にめっきが形成されず、剥離強度の測定は行うことが出来なかった。表1には「×」と示した。 Thereafter, in the same manner as in Example 1, an insulating layer was formed and an attempt was made to produce a circuit board. However, no plating was formed on the insulating layer, and the peel strength could not be measured. Table 1 shows “x”.

(比較例2)
実施例1で作製したプリプレグを用い、実施例1の2枚のテトラフルオロエチレンフィルムの変わりに、2枚の電解銅箔((株)日鉱マテリアルズ製「JTC箔」、18μm)を用いたこと以外は、実施例1と同様にして絶縁層を形成した。その後、FeCl3水溶液に30分間浸漬させ、銅箔を除去し、実施例1と同様にして回路基板を作製した。
(Comparative Example 2)
Using the prepreg produced in Example 1 and using two electrolytic copper foils (“JTC foil” manufactured by Nikko Materials Co., Ltd., 18 μm) instead of the two tetrafluoroethylene films of Example 1. Except for the above, an insulating layer was formed in the same manner as in Example 1. Then, it was immersed in FeCl3 aqueous solution for 30 minutes, copper foil was removed, and the circuit board was produced like Example 1. FIG.

測定結果を、下記表に示す。   The measurement results are shown in the following table.

Figure 0005907206
Figure 0005907206

実施例1、2により、本発明の方法によれば、金属箔を除去するという余分な工程を経ずに、ガラス転移温度と引っ張り弾性率を維持しつつ、平滑な絶縁層表面に剥離強度に優れる導体層が形成される積層板を得ることができた。比較例1では、本発明のプリプレグを用いていないため剥離強度が全く得られていないことが分かる。比較例2は本発明の方法を用いるのではなく銅箔を用いているため、表面粗さの制御が非常に困難であり、更に金属箔除去という余分な工程を必要としてしまう結果になった。実際に銅箔を使用した場合には、銅箔の凹凸による影響により積層板の表面粗さが大きくなり、微細配線形成が困難であった。 According to the methods of Examples 1 and 2, according to the method of the present invention, it is possible to increase the peel strength on the surface of the smooth insulating layer while maintaining the glass transition temperature and the tensile elastic modulus without going through an extra step of removing the metal foil. A laminate having an excellent conductor layer could be obtained. In Comparative Example 1, it can be seen that no peel strength was obtained because the prepreg of the present invention was not used. Since the comparative example 2 uses copper foil instead of using the method of the present invention, it is very difficult to control the surface roughness, and further, an extra step of removing the metal foil is required. When the copper foil was actually used, the surface roughness of the laminated plate was increased due to the influence of the unevenness of the copper foil, and it was difficult to form fine wiring.


本発明によれば、金属箔を除去するという余分な工程を経ずに、ガラス転移温度と引っ張り弾性率を維持しつつ、平滑な絶縁層表面に剥離強度に優れる導体層が形成される積層板を製造することができるようになった。該積層板は、エッチングによるめっきシード層の除去を温和な条件で行え、配線パターンの溶解を抑制することができるため、特に、微細配線形成が要求される回路基板の製造に適したものとなる。更にこれらを搭載した、多層プリント配線板、半導体装置、コンピューター、携帯電話、デジタルカメラ、テレビ、等の電気製品や、自動二輪車、自動車、電車、船舶、航空機、等の乗物も提供できるようになった。















According to the present invention, a laminate in which a conductor layer having excellent peel strength is formed on a smooth insulating layer surface while maintaining the glass transition temperature and the tensile elastic modulus without going through an extra step of removing the metal foil. Can now be manufactured. The laminate can remove the plating seed layer by etching under mild conditions and can suppress the dissolution of the wiring pattern, so that it is particularly suitable for manufacturing a circuit board that requires fine wiring formation. . Furthermore, electrical products such as multilayer printed wiring boards, semiconductor devices, computers, mobile phones, digital cameras, and televisions, and vehicles such as motorcycles, automobiles, trains, ships, and aircraft equipped with these can be provided. It was.














Claims (15)

(A)離型プラスチックフィルムの間に1枚以上のプリプレグを配置して重ねた後、減圧下で加熱及び加圧することで、プリプレグを硬化させて絶縁層を形成する工程、
(B)離型プラスチックフィルムを除去する工程、
(C)絶縁層表面を粗化処理する工程、
(D)無電解めっきにより絶縁層表面に金属膜層を形成する工程、
を含むことを特徴とする積層板の製造方法であって、
前記プリプレグ中の硬化性樹脂組成物中の不揮発分100質量%に対し、無機充填材を40質量%以上80質量%以下含有し、
前記絶縁層のガラス転移温度が150℃以上270℃以下、引っ張り弾性率が10GPa以上35GPa以下であり、
前記(C)絶縁層表面を粗化処理する工程の後の絶縁層の表面粗さが0.1nm以上600nm以下であり、
前記(D)無電解めっきにより絶縁層表面に金属膜層を形成する工程の後の絶縁層と金属膜層とのピール強度が0.45kgf/cm以上10kgf/cm以下となることを特徴とする積層板の製造方法。
(A) A step of forming an insulating layer by curing the prepreg by placing and stacking one or more prepregs between the release plastic films and then heating and pressing under reduced pressure,
(B) a step of removing the release plastic film;
(C) a step of roughening the surface of the insulating layer,
(D) forming a metal film layer on the surface of the insulating layer by electroless plating;
A method for producing a laminated board, comprising:
The inorganic filler is contained in an amount of 40% by mass to 80% by mass with respect to 100% by mass of the nonvolatile content in the curable resin composition in the prepreg.
The insulating layer has a glass transition temperature of 150 ° C. or more and 270 ° C. or less, and a tensile elastic modulus of 10 GPa or more and 35 GPa or less,
(C) The surface roughness of the insulating layer after the step of roughening the surface of the insulating layer is 0.1 nm or more and 600 nm or less,
(D) The peel strength between the insulating layer and the metal film layer after the step of forming the metal film layer on the surface of the insulating layer by electroless plating is 0.45 kgf / cm or more and 10 kgf / cm or less. A manufacturing method of a laminated board.
(A)離型プラスチックフィルムの間に1枚のプリプレグを配置して重ねた後、減圧下で加熱及び加圧することで、プリプレグを硬化させて絶縁層を形成する工程、
(B)離型プラスチックフィルムを除去する工程、
(C)絶縁層表面を粗化処理する工程、
(D)無電解めっきにより絶縁層表面に金属膜層を形成する工程、
を含むことを特徴とする積層板の製造方法であって、
前記プリプレグ中の硬化性樹脂組成物中の不揮発分100質量%に対し、無機充填材を40質量%以上80質量%以下含有し、
前記絶縁層のガラス転移温度が150℃以上270℃以下、引っ張り弾性率が10GPa以上35GPa以下であり、
前記(C)絶縁層表面を粗化処理する工程の後の絶縁層の表面粗さが0.1nm以上600nm以下であり、
前記(D)無電解めっきにより絶縁層表面に金属膜層を形成する工程の後の絶縁層と金属膜層とのピール強度が0.45kgf/cm以上10kgf/cm以下となることを特徴とする積層板の製造方法。
(A) A process of forming an insulating layer by curing a prepreg by placing and stacking one prepreg between release plastic films and then heating and pressing under reduced pressure,
(B) a step of removing the release plastic film;
(C) a step of roughening the surface of the insulating layer,
(D) forming a metal film layer on the surface of the insulating layer by electroless plating;
A method for producing a laminated board, comprising:
The inorganic filler is contained in an amount of 40% by mass to 80% by mass with respect to 100% by mass of the nonvolatile content in the curable resin composition in the prepreg.
The insulating layer has a glass transition temperature of 150 ° C. or more and 270 ° C. or less, and a tensile elastic modulus of 10 GPa or more and 35 GPa or less,
(C) The surface roughness of the insulating layer after the step of roughening the surface of the insulating layer is 0.1 nm or more and 600 nm or less,
(D) The peel strength between the insulating layer and the metal film layer after the step of forming the metal film layer on the surface of the insulating layer by electroless plating is 0.45 kgf / cm or more and 10 kgf / cm or less. A manufacturing method of a laminated board.
プリプレグが硬化性樹脂組成物とシート状繊維基材で構成されている請求項1又は2に記載の積層板の製造方法。 The manufacturing method of the laminated board of Claim 1 or 2 with which the prepreg is comprised with the curable resin composition and the sheet-like fiber base material. プリプレグ中のシート状繊維基材がガラス繊維、有機繊維、ガラス不織布、有機不織布から選択される1種又は2種以上を含有することを特徴とする、請求項3に記載の積層板の製造方法。 The sheet-like fiber base material in a prepreg contains 1 type, or 2 or more types selected from glass fiber, an organic fiber, a glass nonwoven fabric, and an organic nonwoven fabric, The manufacturing method of the laminated board of Claim 3 characterized by the above-mentioned. . シート状繊維基材が厚さ1〜200μmのガラス繊維であることを特徴とする、請求項3に記載の積層板の製造方法。 The method for producing a laminated board according to claim 3, wherein the sheet-like fiber base material is a glass fiber having a thickness of 1 to 200 µm. プリプレグ中の硬化性樹脂組成物がエポキシ樹脂及び硬化剤を含有することを特徴とする、請求項1〜5のいずれか1項に記載の積層板の製造方法。 The method for producing a laminated board according to any one of claims 1 to 5, wherein the curable resin composition in the prepreg contains an epoxy resin and a curing agent. プリプレグ中の硬化性樹脂組成物がナフタレン型エポキシ樹脂及びナフトール系硬化剤を含有することを特徴とする、請求項6に記載の積層板の製造方法。 The method for producing a laminated board according to claim 6, wherein the curable resin composition in the prepreg contains a naphthalene type epoxy resin and a naphthol-based curing agent. プリプレグを150〜250℃、60〜150分で硬化させて絶縁層を形成することを特徴とする、請求項1〜7のいずれか1項に記載の積層板の製造方法。 The method for producing a laminate according to any one of claims 1 to 7, wherein the prepreg is cured at 150 to 250 ° C for 60 to 150 minutes to form an insulating layer. 更に、(E)スルーホールを形成する工程を含むことを特徴とする、請求項1〜8のいずれか1項に記載の積層板の製造方法。 Furthermore, (E) The process of forming a through hole is included, The manufacturing method of the laminated board of any one of Claims 1-8 characterized by the above-mentioned. (B)離型プラスチックフィルムを除去する工程の前に、(E)スルーホールを形成する工程を行うことを特徴とする、請求項9に記載の積層板の製造方法。 The method for producing a laminated board according to claim 9, wherein (B) a step of forming a through hole is performed before the step of (B) removing the release plastic film. 更に、(F)電解めっきにより導体層を形成する工程を含むことを特徴とする、請求項1〜10のいずれか1項に記載の積層板の製造方法。 Furthermore, (F) The process of forming a conductor layer by electrolytic plating is included, The manufacturing method of the laminated board of any one of Claims 1-10 characterized by the above-mentioned. (A)支持体の間に1枚以上のプリプレグを配置して重ねた後、減圧下で加熱及び加圧することで、プリプレグを硬化させて絶縁層を形成する工程、
(B)支持体を除去する工程、
(C)絶縁層表面を粗化処理する工程、
(D)無電解めっきにより絶縁層表面に金属膜層を形成する工程、
(E)スルーホールを形成する工程、
を含むことを特徴とする積層板の製造方法であって、
(B)支持体を除去する工程の前に、(E)スルーホールを形成する工程を行い、
前記プリプレグ中の硬化性樹脂組成物中の不揮発分100質量%に対し、無機充填材を40質量%以上80質量%以下含有し、
前記絶縁層のガラス転移温度が150℃以上270℃以下、引っ張り弾性率が10GPa以上35GPa以下であり、
前記(C)絶縁層表面を粗化処理する工程の後の絶縁層の表面粗さが0.1nm以上600nm以下であり、
前記(D)無電解めっきにより絶縁層表面に金属膜層を形成する工程の後の絶縁層と金属膜層とのピール強度が0.45kgf/cm以上10kgf/cm以下となることを特徴とする積層板の製造方法。
(A) a step of placing one or more prepregs between the supports and stacking them, and then heating and pressing under reduced pressure to cure the prepreg and form an insulating layer;
(B) removing the support,
(C) a step of roughening the surface of the insulating layer,
(D) forming a metal film layer on the surface of the insulating layer by electroless plating;
(E) forming a through hole;
A method for producing a laminated board, comprising:
(B) Before the step of removing the support, (E) performing a step of forming a through hole,
The inorganic filler is contained in an amount of 40% by mass to 80% by mass with respect to 100% by mass of the nonvolatile content in the curable resin composition in the prepreg.
The insulating layer has a glass transition temperature of 150 ° C. or more and 270 ° C. or less, and a tensile elastic modulus of 10 GPa or more and 35 GPa or less,
(C) The surface roughness of the insulating layer after the step of roughening the surface of the insulating layer is 0.1 nm or more and 600 nm or less,
(D) The peel strength between the insulating layer and the metal film layer after the step of forming the metal film layer on the surface of the insulating layer by electroless plating is 0.45 kgf / cm or more and 10 kgf / cm or less. A manufacturing method of a laminated board.
前記(A)離型プラスチックフィルムの間に1枚以上のプリプレグを配置して重ねた後、減圧下で加熱及び加圧することで、プリプレグを硬化させて絶縁層を形成する工程、において、In the step of forming an insulating layer by curing the prepreg by placing and stacking one or more prepregs between the release plastic films (A) and heating and pressing under reduced pressure,
1×101 × 10 −2-2 MPa以下の減圧下で加熱及び加圧してプリプレグを硬化させる請求項1及び請求項3〜12のいずれか1項に記載の積層板の製造方法。The method for producing a laminate according to any one of claims 1 and 3 to 12, wherein the prepreg is cured by heating and pressurizing under a reduced pressure of MPa or less.
前記(A)離型プラスチックフィルムの間に1枚のプリプレグを配置して重ねた後、減圧下で加熱及び加圧することで、プリプレグを硬化させて絶縁層を形成する工程、において、(A) after placing and stacking one prepreg between the release plastic films, by heating and pressing under reduced pressure to cure the prepreg and form an insulating layer,
1×101 × 10 −2-2 MPa以下の減圧下で加熱及び加圧してプリプレグを硬化させる請求項2〜11のいずれか1項に記載の積層板の製造方法。The method for producing a laminate according to any one of claims 2 to 11, wherein the prepreg is cured by heating and pressurizing under a reduced pressure of MPa or less.
プリプレグ中の硬化性樹脂組成物がエポキシ樹脂と、フェノール系硬化剤及びナフトール系硬化剤から選ばれる硬化剤と、を含有し、The curable resin composition in the prepreg contains an epoxy resin and a curing agent selected from a phenol-based curing agent and a naphthol-based curing agent,
エポキシ樹脂のエポキシ基数を1としたときに硬化剤のフェノール性水酸基数が0.4〜2.0である、請求項1〜14のいずれか1項に記載の積層板の製造方法。The manufacturing method of the laminated board of any one of Claims 1-14 whose phenolic hydroxyl group number of a hardening | curing agent is 0.4-2.0, when the epoxy group number of an epoxy resin is set to 1.
JP2014090787A 2014-04-25 2014-04-25 Laminate production method Active JP5907206B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014090787A JP5907206B2 (en) 2014-04-25 2014-04-25 Laminate production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014090787A JP5907206B2 (en) 2014-04-25 2014-04-25 Laminate production method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2010179966A Division JP5540984B2 (en) 2010-08-11 2010-08-11 Laminate production method

Publications (2)

Publication Number Publication Date
JP2014193613A JP2014193613A (en) 2014-10-09
JP5907206B2 true JP5907206B2 (en) 2016-04-26

Family

ID=51839234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014090787A Active JP5907206B2 (en) 2014-04-25 2014-04-25 Laminate production method

Country Status (1)

Country Link
JP (1) JP5907206B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05152746A (en) * 1991-11-26 1993-06-18 Hitachi Chem Co Ltd Manufacture of wiring board by full additive process
JPH06334331A (en) * 1993-05-20 1994-12-02 Hitachi Chem Co Ltd Laminate for additive method printed wiring board
JP2000340908A (en) * 1999-05-31 2000-12-08 Kyocera Corp Prepreg, manufacture and manufacture of wiring board
JP2010010295A (en) * 2008-06-25 2010-01-14 Panasonic Electric Works Co Ltd Method of manufacturing printed circuit board
KR101383434B1 (en) * 2008-07-31 2014-04-08 세키스이가가쿠 고교가부시키가이샤 Epoxy resin composition, prepreg, cured body, sheet-like molded body, laminate and multilayer laminate
WO2010061980A1 (en) * 2008-11-28 2010-06-03 味の素株式会社 Resin composition
JP2010147443A (en) * 2008-12-22 2010-07-01 Panasonic Electric Works Co Ltd Method of manufacturing laminate

Also Published As

Publication number Publication date
JP2014193613A (en) 2014-10-09

Similar Documents

Publication Publication Date Title
JP5540984B2 (en) Laminate production method
JP6572983B2 (en) Epoxy resin composition
JP6267140B2 (en) Resin composition
JP5751368B2 (en) Metal-clad laminate
JP4983228B2 (en) Resin composition for insulating layer of multilayer printed wiring board
JP5396805B2 (en) Epoxy resin composition
JP5505435B2 (en) Resin composition for insulating layer of multilayer printed wiring board
JP4725704B2 (en) Resin composition for interlayer insulation of multilayer printed wiring board, adhesive film and prepreg
JP4992396B2 (en) Resin composition for interlayer insulation layer of multilayer printed wiring board
JP5573869B2 (en) Resin composition for interlayer insulation layer of multilayer printed wiring board
JP2016048788A (en) Resin composition
JP2010202865A (en) Resin composition
TWI433887B (en) Epoxy resin composition
JP6281489B2 (en) Manufacturing method of multilayer printed wiring board
JP5740940B2 (en) Method for producing metal-clad laminate
KR20080108469A (en) Epoxy resin composition
JP2013234328A (en) Epoxy resin composition
JP5907206B2 (en) Laminate production method
JP6343885B2 (en) Manufacturing method of multilayer printed wiring board

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151027

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20151029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160223

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160307

R150 Certificate of patent or registration of utility model

Ref document number: 5907206

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250