JP5907122B2 - Resistance spot welding method - Google Patents

Resistance spot welding method Download PDF

Info

Publication number
JP5907122B2
JP5907122B2 JP2013129421A JP2013129421A JP5907122B2 JP 5907122 B2 JP5907122 B2 JP 5907122B2 JP 2013129421 A JP2013129421 A JP 2013129421A JP 2013129421 A JP2013129421 A JP 2013129421A JP 5907122 B2 JP5907122 B2 JP 5907122B2
Authority
JP
Japan
Prior art keywords
energization
post
current
resistance spot
spot welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013129421A
Other languages
Japanese (ja)
Other versions
JP2014024119A (en
Inventor
公一 谷口
公一 谷口
池田 倫正
倫正 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2013129421A priority Critical patent/JP5907122B2/en
Publication of JP2014024119A publication Critical patent/JP2014024119A/en
Application granted granted Critical
Publication of JP5907122B2 publication Critical patent/JP5907122B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、2枚以上の鋼板を重ね合わせて行なう抵抗スポット溶接方法に関するものであり、特にC含有量の高い高張力鋼板を1枚以上含む鋼板(合計2枚以上)の抵抗スポット溶接方法に関するものである。   The present invention relates to a resistance spot welding method in which two or more steel plates are overlapped, and particularly relates to a resistance spot welding method for steel plates (two or more in total) including one or more high-tensile steel plates having a high C content. Is.

自動車等の車体の組み立てには抵抗スポット溶接が広く使用されており、1台の車体で数千点に及ぶ抵抗スポット溶接が行なわれる。
抵抗スポット溶接は、2枚以上の鋼板を重ね合わせて、上下1対の溶接電極で挟持して加圧しながら通電することによって、鋼板の接合部に所定の大きさのナゲットを形成して溶接継手を得るものである。図1は、抵抗スポット溶接で2枚の鋼板を接合する例を示す断面図である。
Resistance spot welding is widely used in the assembly of automobile bodies such as automobiles, and thousands of resistance spot weldings are performed on one body.
In resistance spot welding, two or more steel plates are overlapped, sandwiched between a pair of upper and lower welding electrodes, and energized while applying pressure to form a nugget of a predetermined size at the joint of the steel plates, and a welded joint Is what you get. FIG. 1 is a cross-sectional view showing an example of joining two steel plates by resistance spot welding.

近年、環境保護の観点から自動車のCO2排出量の低減が要求されており、車体に高張力鋼板を採用して薄肉化することによって、車体の軽量化、すなわち燃費の向上を図っている。しかし、高張力鋼板は多量のCのみならず種々の合金元素を添加して強度を高めたものであるから、炭素当量Ceqが高くなる。
C含有量や炭素量Ceqの高い高張力鋼板は、抵抗スポット溶接による溶接継手の強度が向上するという利点を有するが、短時間で局部的に溶融と凝固が生じることから、通常の鋼板に比べて溶接継手の残留応力が大きくなる。また高張力鋼板は、抵抗スポット溶接にて熱影響部が硬化し易いので、溶接継手の拘束力も通常の鋼板に比べて大きくなる。このような特性を有する高張力鋼板は、抵抗スポット溶接で形成した溶接継手に水素が侵入することによって、遅れ破壊が発生し易いことが知られている。
In recent years, reduction of CO 2 emissions from automobiles has been demanded from the viewpoint of environmental protection, and by using a high-strength steel plate for the vehicle body to reduce the thickness, the vehicle body has been reduced in weight, that is, improved in fuel efficiency. However, the high-tensile steel sheet is not only a large amount of C but also various alloy elements added to increase the strength, so that the carbon equivalent Ceq increases.
High-tensile steel sheets with high C content and high carbon content Ceq have the advantage of improving the strength of welded joints by resistance spot welding, but they are locally melted and solidified in a short time. As a result, the residual stress of the welded joint increases. In addition, since the heat-affected zone is easily hardened by resistance spot welding in the high-tensile steel plate, the binding force of the welded joint is larger than that of a normal steel plate. It is known that a high-tensile steel plate having such characteristics is liable to cause delayed fracture when hydrogen enters a welded joint formed by resistance spot welding.

したがって高張力鋼板の抵抗スポット溶接では、溶接継手の強度を高める一方で、溶接継手の残留応力を低減する必要があり、そのための技術が種々検討されている。
たとえば特許文献1、2には、抵抗スポット溶接による接合部を冷却した後に、大電流の通電を行なうことによって、溶接継手の強度を向上する技術が開示されている。しかしこの技術は、残留応力を低減するものではなく、特に高張力鋼板に適用した場合に、溶接継手の遅れ破壊が発生し易い。
Therefore, in resistance spot welding of high-tensile steel plates, it is necessary to reduce the residual stress of the welded joint while increasing the strength of the welded joint, and various techniques for that purpose have been studied.
For example, Patent Documents 1 and 2 disclose techniques for improving the strength of a welded joint by energizing a large current after cooling a joint by resistance spot welding. However, this technique does not reduce the residual stress, and when applied to a high-strength steel sheet, delayed fracture of the welded joint tends to occur.

また特許文献3には、抵抗スポット溶接のナゲットを形成するための通電が終了した後に、電極チップによる加圧力を上げることによって、溶接継手の強度を向上する技術が開示されている。しかしこの技術は、残留応力を低減するものではなく、特に高張力鋼板に適用した場合に、溶接継手の遅れ破壊が発生し易い。
特許文献4には、900〜1850MPa級の鋼板の抵抗スポット溶接にて溶接継手の強度を高めるための様々な通電条件が開示されている。しかしこの技術は、通常の鋼板に適用するものであり、高張力鋼板における溶接継手の遅れ破壊を防止する効果は期待できない。
Patent Document 3 discloses a technique for improving the strength of a welded joint by increasing the pressure applied by an electrode tip after energization for forming a resistance spot welding nugget is completed. However, this technique does not reduce the residual stress, and when applied to a high-strength steel sheet, delayed fracture of the welded joint tends to occur.
Patent Document 4 discloses various energization conditions for increasing the strength of a welded joint by resistance spot welding of 900 to 1850 MPa class steel plates. However, this technique is applied to a normal steel plate, and the effect of preventing delayed fracture of a welded joint in a high-tensile steel plate cannot be expected.

特許文献5には、抵抗スポット溶接のナゲットを形成するための通電を2段階に分けて行ない、第1段階では低加圧力かつ大電流とし、第2段階では高加圧力かつ小電流とすることによって、溶接継手の強度を向上する技術が開示されている。しかしこの技術は、通常の鋼板に適用するものであり、高張力鋼板における溶接継手の遅れ破壊を防止する効果は期待できない。   In Patent Document 5, energization for forming a resistance spot welding nugget is performed in two stages, a low pressure and a large current in the first stage, and a high pressure and a small current in the second stage. Discloses a technique for improving the strength of a welded joint. However, this technique is applied to a normal steel plate, and the effect of preventing delayed fracture of a welded joint in a high-tensile steel plate cannot be expected.

特開2010-115706号公報JP 2010-115706 A 特開2010-172946号公報JP 2010-172946 特開2010-149187号公報JP 2010-149187 特開2009-241086号公報JP 2009-241086 特許第3922263号公報Japanese Patent No. 3922263 特許第5201116号公報Patent No. 5201116

本発明は、高張力鋼板の溶接継手の遅れ破壊を防止することが可能な抵抗スポット溶接方法を提供することを目的とする。   An object of the present invention is to provide a resistance spot welding method capable of preventing delayed fracture of a welded joint of a high-tensile steel plate.

本発明者は、C含有量や炭素当量Ceqの高い高張力鋼板の抵抗スポット溶接における溶接継手の遅れ破壊を防止するために、まず遅れ破壊と密接な関係を有する残留応力が発生する原因を調査し、以下のような知見を得た。
抵抗スポット溶接によって形成されたナゲットが凝固する時には、外周部から中心部に向けて凝固していくので、低温の外周部と高温の中心部との温度差が大きく、かつ不均一に分布することから、溶接継手の残留応力が大きくなる。これに対してナゲットが形成された後に通電して接触抵抗発熱を起し、ナゲット内の温度差を低減するとともに温度を均一に分布させることによって、溶接継手の残留応力を低減することができる。
In order to prevent delayed fracture of welded joints in resistance spot welding of high-strength steel sheets with high C content and high carbon equivalent Ceq, the present inventor first investigated the cause of residual stress that is closely related to delayed fracture. The following findings were obtained.
When the nugget formed by resistance spot welding solidifies, it solidifies from the outer periphery to the center, so the temperature difference between the low temperature outer periphery and the high temperature center is large and unevenly distributed. Therefore, the residual stress of the welded joint increases. On the other hand, the residual stress of the welded joint can be reduced by energizing the nugget after it is formed to cause contact resistance heat generation, reducing the temperature difference in the nugget and uniformly distributing the temperature.

また、溶融したナゲットの温度分布を全く均一に保ちながら凝固させることは不可能であるから、ナゲット内の温度差に起因して残留応力が僅かでも発生するのは避けられない。しかし、その残留応力を緩和するために、ナゲットに歪みを付与しておくことが遅れ破壊の防止に有効である。つまり、ナゲットが形成される時に電極チップによる加圧力を増加することによって、ナゲットに歪みを付与しておき、凝固時の温度差で生じる応力がその歪みを解消することによって残留応力を減少させることができる。   Further, since it is impossible to solidify the molten nugget while keeping the temperature distribution completely uniform, it is inevitable that even a slight residual stress is generated due to the temperature difference in the nugget. However, imparting strain to the nugget to alleviate the residual stress is effective in preventing delayed fracture. In other words, by increasing the pressure applied by the electrode tip when the nugget is formed, the nugget is distorted, and the stress caused by the temperature difference during solidification reduces the residual stress by eliminating the distortion. Can do.

そこで本発明者は、種々の数値解析を行ない、高張力鋼板の抵抗スポット溶接に好適な設定条件について鋭意検討した。その結果を以下に説明する。
図2に示すように、コロナボンド6近傍のナゲット端部7(評価位置A)における残留応力、およびナゲット端部7を含む板厚方向の線分8(評価位置B)上での最大応力と最小応力の比率を評価した。その評価は、標準条件となる一定電流、一定加圧の通電方式における評価値を1として正規化して行なった。その結果を図3に示す。
Therefore, the present inventor conducted various numerical analyses, and intensively studied setting conditions suitable for resistance spot welding of high-tensile steel sheets. The results will be described below.
As shown in FIG. 2, the residual stress at the nugget end 7 (evaluation position A) near the corona bond 6 and the maximum stress on the line segment 8 (evaluation position B) in the thickness direction including the nugget end 7 The minimum stress ratio was evaluated. The evaluation was performed by normalizing the evaluation value in the energization method of constant current and constant pressure as standard conditions as 1. The result is shown in FIG.

図3中のaは、ナゲットを形成するための通電(以下、主通電という)の途中で電極チップによる加圧力を変更した場合の解析結果、bは、主通電を一定電流、一定加圧とし、ナゲットを形成した後の通電(以下、後通電という)の途中で電流を変更した場合の解析結果、cは、aとbを併用した場合の解析結果である。
図3から明らかなように、解析結果cでは解析結果a,b両方の効果が得られたものの、一部の設定条件では、評価位置Bの評価値が標準条件(すなわち評価値=1)と同じ程度まで増加した。この解析結果を詳細に調査したところ、加圧力を変更するタイミングが早過ぎたために歪みが過剰に付与されたことが分かった。
In FIG. 3, a is an analysis result when the pressure applied by the electrode tip is changed during energization to form a nugget (hereinafter referred to as main energization), and b is a constant current and constant pressurization. The analysis result when the current is changed during energization after forming the nugget (hereinafter referred to as post-energization), and c is the analysis result when a and b are used in combination.
As is clear from FIG. 3, the analysis result c has the effects of both the analysis results a and b. However, in some setting conditions, the evaluation value at the evaluation position B is the standard condition (that is, evaluation value = 1). Increased to the same extent. When this analysis result was investigated in detail, it was found that excessive strain was applied because the timing of changing the applied pressure was too early.

そこで、種々のタイミングで加圧力を変更して同様の数値解析を行なった結果を図4に示す。図4中のdは、主通電工程の総時間TTO(秒)と主通電工程の開始から加圧力を変更するまでの時間TCH(秒)との比率TCH/TTOを0.7未満とした場合の解析結果、eは、比率TCH/TTOを0.7以上とした場合の解析結果である。
図4から明らかなように、解析結果dでは評価位置Bの評価値が標準条件(すなわち評価値=1)よりも大きくなった。これに対して解析結果eでは、全ての評価値が標準条件(すなわち評価値=1)よりも小さくなり、残留応力を低減できることが分かった。
Therefore, FIG. 4 shows the result of similar numerical analysis performed by changing the pressing force at various timings. In FIG. 4, d indicates that the ratio T CH / T TO between the total time T TO (seconds) of the main energization process and the time T CH (seconds) from the start of the main energization process to the change of the applied pressure is less than 0.7. In this case, e is the analysis result when the ratio T CH / T TO is 0.7 or more.
As is apparent from FIG. 4, in the analysis result d, the evaluation value at the evaluation position B is larger than the standard condition (that is, evaluation value = 1). On the other hand, in the analysis result e, it was found that all the evaluation values are smaller than the standard condition (that is, evaluation value = 1), and the residual stress can be reduced.

本発明は以上のような知見に基づいてなされたものである。
すなわち本発明は、1枚以上の高張力鋼板を含む合計2枚以上の鋼板を重ね合わせて1対の溶接電極で挟持し、溶接電極で前記鋼板を加圧しながら電流IM(kA)を供給してナゲットを形成する主通電工程の途中で加圧力を変更し、電流IMの供給を開始した後の第1主通電工程における初期加圧力FM1(kN)と加圧力を変更した後の第2主通電工程における変更後加圧力FM2(kN)とが下記の(1)式を満足し、かつ第1主通電工程の所要時間TM1(秒)と主通電工程の総時間TTO(秒)とが下記の(2)式を満足するとともに、主通電工程の終了後に供給する電流値を変更してナゲットの径を変化させずに加熱する後通電工程を設け、後通電工程の途中で電流を再変更し、再変更する前の第1後通電工程の電流IP1(kA)が下記の(3)式を満足し、かつ再変更した後の第2後通電工程の電流IP2(kA)が下記の(4)式を満足する抵抗スポット溶接方法である。
M1<FM2≦3×FM1 ・・・(1)
1.0>TM1/TTO≧0.7 ・・・(2)
0≦IP1<IM ・・・(3)
3×IM>IP2>IM ・・・(4)
本発明の抵抗スポット溶接方法においては、第1後通電工程と第2後通電工程からなる後通電工程が終了した後に、第1後通電工程と第2後通電工程とを繰り返し行なうことが好ましい。また、高張力鋼板の炭素当量Ceqが下記の(5)式を満足することが好ましい。ここで炭素当量Ceq(%)は、高張力鋼板のC、Si、Mn含有量(質量%)をそれぞれ[C][Si][Mn]として下記の(6)式で算出される値である。
0.2%≦Ceq≦0.5% ・・・(5)
Ceq=[C]+([Si]/24)+([Mn]/6) ・・・(6)
The present invention has been made based on the above findings.
That is, in the present invention, a total of two or more steel plates including one or more high-tensile steel plates are overlapped and sandwiched between a pair of welding electrodes, and current I M (kA) is supplied while pressing the steel plates with the welding electrodes. After changing the applied pressure in the middle of the main energization process for forming the nugget and changing the initial applied pressure F M1 (kN) and the applied pressure in the first main energization process after starting the supply of the current I M The post-change pressure F M2 (kN) in the second main energization process satisfies the following equation (1), and the required time T M1 (second) of the first main energization process and the total time T TO of the main energization process (Seconds) satisfies the following formula (2), and after the main energization process is completed, the current value to be supplied is changed to provide a post-energization process for heating without changing the nugget diameter. re change current on the way, the current of the first after power step prior to re-change I P1 (kA) satisfies the following equation (3), One current of the second after power step after re-changed I P2 (kA) is resistance spot welding method, thereby satisfying the expression (4) below.
F M1 <F M2 ≦ 3 × F M1 (1)
1.0> T M1 / T TO ≧ 0.7 (2)
0 ≦ I P1 <I M (3)
3 × I M > I P2 > I M (4)
In the resistance spot welding method of the present invention, it is preferable to repeatedly perform the first post-energization step and the second post-energization step after the post-energization step including the first post-energization step and the second post-energization step. Further, the carbon equivalent Ceq of the high-tensile steel plate preferably satisfies the following formula (5). Here, the carbon equivalent Ceq (%) is a value calculated by the following formula (6) with the C, Si, and Mn contents (mass%) of the high-tensile steel sheet as [C] [Si] [Mn], respectively. .
0.2% ≦ Ceq ≦ 0.5% (5)
Ceq = [C] + ([Si] / 24) + ([Mn] / 6) (6)

本発明によれば、高張力鋼板の抵抗スポット溶接を行なうにあたって、溶接継手の遅れ破壊を防止することができるので、産業上格段の効果を奏する。   According to the present invention, when resistance spot welding of a high-tensile steel sheet is performed, delayed fracture of a welded joint can be prevented, and thus an industrially significant effect is achieved.

抵抗スポット溶接の例を模式的に示す断面図である。It is sectional drawing which shows the example of resistance spot welding typically. 図1中のナゲット近辺を拡大して示す断面図である。It is sectional drawing which expands and shows the nugget vicinity in FIG. 数値解析の結果を示すグラフである。It is a graph which shows the result of numerical analysis. 数値解析の他の結果を示すグラフである。It is a graph which shows the other result of numerical analysis. 抵抗スポット溶接の試験片を示す図であり、(a)は平面図、(b)は側面図である。It is a figure which shows the test piece of resistance spot welding, (a) is a top view, (b) is a side view.

本発明は、1枚以上の高張力鋼板を含む合計2枚以上の鋼板を抵抗スポット溶接によって接合するものである。図1に、2枚の鋼板の抵抗スポット溶接を行なう例を示す。以下に図1を参照して、本発明によって2枚の鋼板を重ね合わせて接合する例について説明する。
図1に示すように、まず、下側に配置される鋼板1(以下、下鋼板という)と上側に配置される鋼板2(以下、上鋼板という)とを重ね合わせる。下鋼板1および/または上鋼板2が高張力鋼板である。
The present invention joins a total of two or more steel plates including one or more high-tensile steel plates by resistance spot welding. FIG. 1 shows an example of resistance spot welding of two steel plates. Hereinafter, an example in which two steel plates are overlapped and joined according to the present invention will be described with reference to FIG.
As shown in FIG. 1, first, a steel plate 1 disposed below (hereinafter referred to as a lower steel plate) and a steel plate 2 disposed below (hereinafter referred to as an upper steel plate) are overlapped. The lower steel plate 1 and / or the upper steel plate 2 are high-tensile steel plates.

次いで、下側に配置される電極4(以下、下電極という)および上側に配置される電極5(以下、上電極という)で下鋼板1と上鋼板2を挟持して、加圧しながら通電する。下電極4と上電極5によって加圧し、かつその加圧力を制御する構成は特に限定せず、エアシリンダやサーボモータ等の従来から知られている機器が使用できる。通電の際に電流を供給し、かつその電流値を制御する構成は特に限定せず、従来から知られている機器が使用できる。また、直流、交流のいずれにも本発明を適用できる。   Next, the lower steel plate 1 and the upper steel plate 2 are sandwiched between the lower electrode 4 (hereinafter referred to as the lower electrode) and the upper electrode 5 (hereinafter referred to as the upper electrode), and energized while being pressed. . The structure which pressurizes with the lower electrode 4 and the upper electrode 5 and controls the applied pressure is not particularly limited, and conventionally known devices such as an air cylinder and a servo motor can be used. There is no particular limitation on the configuration for supplying current and controlling the current value during energization, and conventionally known devices can be used. Further, the present invention can be applied to both direct current and alternating current.

ここで、下電極4と上電極5を用いて下鋼板1と上鋼板2に通電する工程を、
(A)主通電工程:下鋼板1と上鋼板2の重ね合わせ部を溶融してナゲット3を形成する通電工程
(B)後通電工程:主通電工程で形成されたナゲット3の径を変化させずに加熱する通電工程
に分けて説明する。
Here, the process of energizing the lower steel plate 1 and the upper steel plate 2 using the lower electrode 4 and the upper electrode 5,
(A) Main energizing step: energizing step of forming the nugget 3 by melting the overlapping portion of the lower steel plate 1 and the upper steel plate 2
(B) Post-energization step: The description will be divided into an energization step of heating without changing the diameter of the nugget 3 formed in the main energization step.

主通電工程では、その工程の途中で加圧力を変更する一方で、供給する電流IM(kA)は変更せず一定とする。そして、主通電工程開始から加圧力変更前までの第1主通電工程における加圧力を初期加圧力FM1(kN)とし、加圧力変更後から主通電工程終了までの第2主通電工程における加圧力を変更後加圧力FM2(kN)として、下記の(1)式を満足するように設定する。
M1<FM2≦3×FM1 ・・・(1)
主通電工程における加圧力がFM1≧FM2であれば、ナゲット3に十分な歪みを付与できないので、溶接継手に生じる残留応力を軽減できない。
In the main energization process, the applied pressure is changed in the middle of the process, while the supplied current I M (kA) is kept constant without being changed. The applied pressure in the first main energization process from the start of the main energization process to before the change in applied pressure is defined as the initial applied pressure F M1 (kN), and the applied force in the second main energization process from the change in the applied pressure to the end of the main energization process. After changing the pressure, set the pressure F M2 (kN) to satisfy the following formula (1).
F M1 <F M2 ≦ 3 × F M1 (1)
If the applied pressure in the main energizing process is F M1 ≧ F M2 , sufficient stress cannot be applied to the nugget 3, so that residual stress generated in the welded joint cannot be reduced.

M1とFM2が(1)式を満足すれば、残留応力を軽減することが可能であるが、その効果を顕著に発揮するためには、1.1×FM1≦FM2が好ましい。一方で、過大な加圧力の設定は、逆に溶接部に歪みを導入する原因となる。したがって、FM2≦3×FM1と上限を限定する必要がある。加圧力と歪みのバランスをとる観点からは、FM2≦2.5×FM1が望ましい。 If F M1 and F M2 satisfy the expression (1), the residual stress can be reduced, but 1.1 × F M1 ≦ F M2 is preferable in order to exert the effect remarkably. On the other hand, setting an excessive pressure force causes a distortion to be introduced into the weld. Therefore, it is necessary to limit the upper limit to F M2 ≦ 3 × F M1 . From the viewpoint of balancing the applied pressure and strain, F M2 ≦ 2.5 × F M1 is desirable.

また主通電工程では、第1主通電工程の所要時間をTM1(秒)とし、主通電工程の総時間をTTO(秒)として、下記の(2)式を満足するように設定する。
1.0>TM1/TTO≧0.7 ・・・(2)
第1主通電工程の所要時間と主通電工程の総時間がTM1/TTO<0.7であれば、十分な大きさのナゲット3が形成されず、しかも第2主通電工程が長くなることから、ナゲット3に過剰な歪みが付与されるので、接合不良が発生し易くなる。
In the main energization process, the time required for the first main energization process is set to T M1 (seconds), and the total time of the main energization process is set to T TO (seconds) so that the following equation (2) is satisfied.
1.0> T M1 / T TO ≧ 0.7 (2)
If the required time of the first main energization process and the total time of the main energization process are T M1 / T TO <0.7, a sufficiently large nugget 3 is not formed, and the second main energization process becomes longer. In addition, since excessive strain is imparted to the nugget 3, a bonding failure is likely to occur.

M1とTTOが (2)式を満足すれば、健全な溶接継手を形成することが可能であるが、その効果を顕著に発揮するためには、0.95≧TM1/TTO≧0.8が好ましい。
ここで、第2主通電工程の所要時間をTM2(秒)とすれば、TTO=TM1+TM2であるから、TM1/TTOは1を超えることはない。
主通電工程が終了した後に、供給する電流をIM(kA)からIP1(kA)に変更して、後通電工程を開始する。ここで、主通電工程の終了時の電流IMと後通電工程の開始時の電流IP1が下記の(3)式を満足するように設定する。つまり、後通電工程を開始することによってナゲット3を凝固させて、歪みをナゲット3に定着させる。
0≦IP1<IM ・・・(3)
主通電工程から後通電工程に移行する段階で、電流がIP1≧IMであれば、後通電工程においてもナゲット3が溶融した状態となるので、後述するような残留応力を軽減する効果が得られない。
If T M1 and T TO satisfy Eq. (2), it is possible to form a sound welded joint, but 0.95 ≧ T M1 / T TO ≧ 0.8 preferable.
Here, if the time required for the second main energization process is T M2 (seconds), T TO = T M1 + T M2 , so that T M1 / T TO does not exceed 1.
After the main energization process is completed, the supplied current is changed from I M (kA) to I P1 (kA), and the post-energization process is started. Here, the current I M at the end of the main energization process and the current I P1 at the start of the post-energization process are set so as to satisfy the following expression (3). That is, the nugget 3 is solidified by starting the post-energization process, and the distortion is fixed to the nugget 3.
0 ≦ I P1 <I M (3)
If the current is I P1 ≧ I M at the stage of transition from the main energization process to the post-energization process, the nugget 3 is melted even in the post-energization process. I can't get it.

後通電工程では、その工程の途中で電流値を再変更する一方で、加圧力は変更せず、上記の第2主通電工程における加圧力FM2(kN)を維持する。そして、後通電工程開始から電流再変更前までの第1後通電工程における電流をIP1(kA)とし、上記の(3)式を満足するように設定する。
第1後通電工程は、主通電工程で形成されたナゲット3を凝固させるための工程であるから、無通電(すなわちIP1=0)であっても良い。
In the post-energization process, the current value is changed again in the middle of the process, while the applied pressure is not changed, and the applied pressure F M2 (kN) in the second main energizing process is maintained. Then, the current in the first post-energization process from the start of the post-energization process to before the current re-change is defined as I P1 (kA) and set so as to satisfy the above expression (3).
Since the first post-energization process is a process for solidifying the nugget 3 formed in the main energization process, it may be non-energized (that is, I P1 = 0).

ただし、通電による入熱が過剰となり、熱影響部を過度に硬化させた場合、逆に歪みを誘起する結果となる。したがって、より好適には0≦IP1≦0.5×IMの範囲が好ましい。
また、第1後通電工程の所要時間が0.1秒未満では、ナゲット3が凝固しない。第1後通電工程の所要時間が0.2秒を超えると、ナゲット3の温度が低下しすぎるので、後述する第2後通電工程にて残留応力を軽減する効果が得られない。したがって、第1後通電工程は0.1〜0.2秒の範囲内が好ましい。
However, when the heat input due to energization becomes excessive and the heat-affected zone is excessively hardened, it results in inducing distortion. Therefore, more preferably in the range of 0 ≦ I P1 ≦ 0.5 × I M is preferred.
Further, if the time required for the first post-energization process is less than 0.1 seconds, the nugget 3 does not solidify. If the time required for the first post-energization process exceeds 0.2 seconds, the temperature of the nugget 3 is excessively lowered, so that the effect of reducing the residual stress cannot be obtained in the second post-energization process described later. Therefore, the first post-energization step is preferably within the range of 0.1 to 0.2 seconds.

電流再変更後から後通電工程終了までの第2後通電工程における電流をIP2(kA)とし、下記の(4)式を満足するように設定する。
3×IM>IP2>IM ・・・(4)
第2後通電工程は、第1後通電工程で凝固しかつ好適な温度範囲に保持されたナゲット3を加熱して、ナゲット3内の温度差を減少するとともに、歪みを解消することによって、溶接継手の残留応力を軽減する工程であるから、電流IP2は上記の(4)式を満足すれば良いが、その効果を顕著に発揮するためには、IP2を1.3×IM≦IP2≦2.0×IMの範囲内とすることが好ましい。
The current in the second post-energization process from the current re-change to the end of the post-energization process is set to I P2 (kA) and is set so as to satisfy the following expression (4).
3 × I M > I P2 > I M (4)
In the second post-energization step, the nugget 3 solidified in the first post-energization step and heated in a suitable temperature range is heated to reduce the temperature difference in the nugget 3 and to eliminate distortion, thereby welding. Since this is a process for reducing the residual stress of the joint, the current I P2 only needs to satisfy the above formula (4). However, in order to exert the effect remarkably, I P2 is set to 1.3 × I M ≦ I P2 ≦ 2.0 × I M is preferable.

また第2後通電工程の所要時間が0.02秒未満では、ナゲット3が十分に加熱されず、歪みを解消できない。第2後通電工程の所要時間が0.1秒を超えると、ナゲット3が再び溶融して、接合不良が発生し易くなる。したがって、第2後通電工程は0.02〜0.1秒の範囲内が好ましい。
この第2後通電工程においても、上記の加圧力FM2を維持するので、下鋼板1と上鋼板2の反りや溶接継手の剥離を防止できる。
Further, if the time required for the second post-energization process is less than 0.02 seconds, the nugget 3 is not sufficiently heated and the distortion cannot be eliminated. When the time required for the second post-energization process exceeds 0.1 seconds, the nugget 3 is melted again, and a defective bonding is likely to occur. Therefore, the second post-energization step is preferably in the range of 0.02 to 0.1 seconds.
Even in the second post-energization step, the pressure F M2 is maintained, so that warpage of the lower steel plate 1 and the upper steel plate 2 and peeling of the welded joint can be prevented.

このようにして主通電工程および後通電工程が終了した後に、後通電工程(すなわち第1後通電工程と第2後通電工程)を繰り返し行なうことによって、溶接継手の残留応力を大幅に軽減できるので、遅れ破壊を防止する効果が一層向上する。
ただし、後通電工程を繰り返し行なうことは、抵抗スポット溶接の施工能率の低下を招く。そのため、後通電工程の繰り返しは3回以下が好ましい。
Since the post-energization process (that is, the first post-energization process and the second post-energization process) is repeated after the main energization process and the post-energization process are completed in this manner, the residual stress of the welded joint can be greatly reduced. The effect of preventing delayed fracture is further improved.
However, repeating the post-energization step causes a reduction in the efficiency of resistance spot welding. Therefore, the repetition of the post-energization process is preferably 3 times or less.

また本発明は、抵抗スポット溶接によって溶接継手に遅れ破壊が発生し易い高張力鋼板、とりわけ炭素当量Ceqが(5)式を満足する鋼種に適用するのが好ましい。ここで、炭素当量Ceq(%)は、高張力鋼板のC、Si、Mn含有量(質量%)をそれぞれ[C][Si][Mn]として下記の(6)式で算出される値である。
0.2%≦Ceq≦0.5% ・・・(5)
Ceq=[C]+([Si]/24)+([Mn]/6) ・・・(6)
以上に下鋼板1と上鋼板2の抵抗スポット溶接を行なう例について説明したが、本発明は3枚以上の鋼板の抵抗スポット溶接にも適用でき、上記と同様に抵抗スポット溶接を行なうことによって、溶接継手の遅れ破壊を防止することができる。
Further, the present invention is preferably applied to a high-strength steel sheet in which delayed fracture is likely to occur in a welded joint by resistance spot welding, particularly a steel type whose carbon equivalent Ceq satisfies the formula (5). Here, the carbon equivalent Ceq (%) is a value calculated by the following equation (6) with the C, Si, and Mn contents (mass%) of the high-tensile steel sheet as [C] [Si] [Mn], respectively. is there.
0.2% ≦ Ceq ≦ 0.5% (5)
Ceq = [C] + ([Si] / 24) + ([Mn] / 6) (6)
Although the example which performs the resistance spot welding of the lower steel plate 1 and the upper steel plate 2 was demonstrated above, this invention is applicable also to the resistance spot welding of three or more steel plates, and by performing resistance spot welding similarly to the above, Delayed fracture of the welded joint can be prevented.

図1に示すように、下鋼板1と上鋼板2を重ね合わせて、抵抗スポット溶接を行なった。下電極4と上電極5は、いずれも先端の直径6mm、曲率半径40mmとし、アルミナ分散銅製のDR型電極とした。また、下電極4と上電極5をサーボモータで駆動することによって加圧力を制御し、通電の際には周波数50Hzの単相交流を供給した。下鋼板1と上鋼板2は、いずれも引張強さが1470MPa級の高張力鋼板(長辺150mm、短辺50mm)であり、表1に示すように、Ceqが0.2〜0.5質量%、板厚が1.2〜2.0mmであった。その他の設定条件は表1、2に示す通りである。抵抗スポット溶接の溶接点は、図5に示すように長手方向150mm、短手方向50mmの試験片を用意し、50mm四方のスペーサ9を両側に挟み込んで仮溶接し、板組中心を溶接した。図5中の符号10は溶接点、11は仮溶接点である。なお表1、2では時間の単位として、上記の単相交流(周波数50Hz)のサイクルで記す。つまり、1サイクルは0.02秒に相当する。   As shown in FIG. 1, the lower steel plate 1 and the upper steel plate 2 were overlapped and resistance spot welding was performed. The lower electrode 4 and the upper electrode 5 were both DR-type electrodes made of alumina-dispersed copper with a tip diameter of 6 mm and a curvature radius of 40 mm. Further, the pressing force was controlled by driving the lower electrode 4 and the upper electrode 5 with a servo motor, and a single-phase alternating current with a frequency of 50 Hz was supplied during energization. The lower steel plate 1 and the upper steel plate 2 are both high strength steel plates with a tensile strength of 1470 MPa (long side 150 mm, short side 50 mm), and as shown in Table 1, Ceq is 0.2 to 0.5 mass%, the plate thickness Was 1.2-2.0 mm. Other setting conditions are as shown in Tables 1 and 2. As shown in FIG. 5, resistance spot welding was performed by preparing test pieces having a longitudinal direction of 150 mm and a short side direction of 50 mm, and temporarily welding them by sandwiching 50 mm square spacers 9 on both sides, and welding the center of the plate assembly. Reference numeral 10 in FIG. 5 is a welding point, and 11 is a temporary welding point. In Tables 1 and 2, the unit of time is the cycle of the single-phase alternating current (frequency 50 Hz). That is, one cycle corresponds to 0.02 seconds.

Figure 0005907122
Figure 0005907122

Figure 0005907122
Figure 0005907122

表2中の比較例のうち、αは定加圧にて溶接を行ない、後通電を行なわない溶接パターンを実施した例である。βは特許文献6に記載された溶接パターンを実施した例である。γは溶接終了後に加圧力を増加する溶接パターンを実施した例である。
得られた溶接継手を常温で大気中に静置して、24時間経過した後に遅れ破壊の有無を調査した。遅れ破壊が認められなかったものを○、発生したものを×として表2に示す。表2から明らかなように、発明例は全て遅れ破壊が認められなかったのに対して、比較例では遅れ破壊が発生した。
Among the comparative examples in Table 2, α is an example in which welding is performed with constant pressure and a welding pattern in which post-energization is not performed is performed. β is an example in which the welding pattern described in Patent Document 6 is implemented. γ is an example in which a welding pattern for increasing the applied pressure after the end of welding is performed.
The obtained welded joint was left in the atmosphere at room temperature, and after 24 hours, the presence or absence of delayed fracture was investigated. Table 2 shows the case where delayed fracture was not recognized as ◯ and the case where it occurred as x. As is apparent from Table 2, delayed fracture was not observed in all of the inventive examples, whereas delayed fracture occurred in the comparative examples.

1 下鋼板
2 上鋼板
3 ナゲット
4 下電極
5 上電極
6 コロナボンド
7 ナゲット端部(評価位置A)
8 板厚方向の線分(評価位置B)
9 スペーサ
10 溶接点
11 仮溶接点
1 Lower Steel Plate 2 Upper Steel Plate 3 Nugget 4 Lower Electrode 5 Upper Electrode 6 Corona Bond 7 Nugget Edge (Evaluation Position A)
8 Line segment in the thickness direction (Evaluation position B)
9 Spacer
10 Weld point
11 Temporary welding points

Claims (3)

1枚以上の高張力鋼板を含む合計2枚以上の鋼板を重ね合わせて1対の溶接電極で挟持し、該溶接電極で前記鋼板を加圧しながら電流IM(kA)を供給してナゲットを形成する主通電工程の途中で加圧力を変更し、前記電流IMの供給を開始した後の第1主通電工程における初期加圧力FM1(kN)と前記加圧力を変更した後の第2主通電工程における変更後加圧力FM2(kN)とが下記の(1)式を満足し、かつ前記第1主通電工程の所要時間TM1(秒)と前記主通電工程の総時間TTO(秒)とが下記の(2)式を満足するとともに、前記主通電工程の終了後に供給する電流値を変更して前記ナゲットの径を変化させずに加熱する後通電工程を設け、該後通電工程の途中で電流を再変更し、該再変更する前の第1後通電工程の電流IP1(kA)が下記の(3)式を満足し、かつ前記再変更した後の第2後通電工程の電流IP2(kA)が下記の(4)式を満足することを特徴とする抵抗スポット溶接方法。
M1<FM2≦3×FM1 ・・・(1)
1.0>TM1/TTO≧0.7 ・・・(2)
0≦IP1<IM ・・・(3)
3×IM>IP2>IM ・・・(4)
A total of two or more steel plates including one or more high-tensile steel plates are stacked and sandwiched between a pair of welding electrodes, and a current I M (kA) is supplied while pressing the steel plates with the welding electrodes to produce a nugget. The initial pressing force F M1 (kN) in the first main energizing step after the pressing force is changed during the main energizing step to be formed and the supply of the current I M is started, and the second after changing the pressing force. The post-change pressure F M2 (kN) in the main energization process satisfies the following formula (1), and the required time T M1 (second) of the first main energization process and the total time T TO of the main energization process: (Seconds) satisfies the following formula (2), and after the main energization process is completed, a current value to be supplied is changed to provide a post-energization process for heating without changing the diameter of the nugget. re modify current during the energization process, the first after the energization step before changing該再current I P1 (kA) is the following (3) Happy, and resistance spot welding method wherein the current in the second after power step after re-changed I P2 to (kA) is characterized by satisfying the expression (4) below the.
F M1 <F M2 ≦ 3 × F M1 (1)
1.0> T M1 / T TO ≧ 0.7 (2)
0 ≦ I P1 <I M (3)
3 × I M > I P2 > I M (4)
前記第1後通電工程と前記第2後通電工程からなる後通電工程が終了した後に、前記第1後通電工程と前記第2後通電工程とを繰り返し行なうことを特徴とする請求項1に記載の抵抗スポット溶接方法。   2. The first post-energization step and the second post-energization step are repeated after the post-energization step including the first post-energization step and the second post-energization step is completed. Resistance spot welding method. 前記高張力鋼板の炭素当量Ceq(%)が下記の(5)式を満足することを特徴とする請求項1または2に記載の抵抗スポット溶接方法。
0.2%≦Ceq≦0.5% ・・・(5)
The resistance spot welding method according to claim 1 or 2, wherein a carbon equivalent Ceq (%) of the high-strength steel sheet satisfies the following formula (5).
0.2% ≦ Ceq ≦ 0.5% (5)
JP2013129421A 2012-06-21 2013-06-20 Resistance spot welding method Active JP5907122B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013129421A JP5907122B2 (en) 2012-06-21 2013-06-20 Resistance spot welding method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012139440 2012-06-21
JP2012139440 2012-06-21
JP2013129421A JP5907122B2 (en) 2012-06-21 2013-06-20 Resistance spot welding method

Publications (2)

Publication Number Publication Date
JP2014024119A JP2014024119A (en) 2014-02-06
JP5907122B2 true JP5907122B2 (en) 2016-04-20

Family

ID=50198284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013129421A Active JP5907122B2 (en) 2012-06-21 2013-06-20 Resistance spot welding method

Country Status (1)

Country Link
JP (1) JP5907122B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106061665B (en) 2014-03-14 2019-07-05 日本制铁株式会社 The manufacturing method of welded structure and welded structure
WO2021039866A1 (en) * 2019-08-29 2021-03-04 Jfeスチール株式会社 Resistance spot welding method and method for manufacturing welded member

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0679783B2 (en) * 1985-02-01 1994-10-12 トヨタ自動車株式会社 Method and apparatus for butt resistance welding of thin plates
JPH09274855A (en) * 1996-04-05 1997-10-21 Sony Corp Method for welding damper spring to frame
JP5168204B2 (en) * 2008-10-08 2013-03-21 新日鐵住金株式会社 Spot welding method for steel sheet
JP5299257B2 (en) * 2009-05-27 2013-09-25 新日鐵住金株式会社 Spot welding method for high strength steel sheet
JP2011067853A (en) * 2009-09-28 2011-04-07 Nippon Steel Corp Spot welding method for high-strength steel sheet
JP5513962B2 (en) * 2010-04-15 2014-06-04 株式会社神戸製鋼所 Dissimilar material joining method
JP5333560B2 (en) * 2011-10-18 2013-11-06 Jfeスチール株式会社 Resistance spot welding method and resistance spot welding joint of high strength steel plate

Also Published As

Publication number Publication date
JP2014024119A (en) 2014-02-06

Similar Documents

Publication Publication Date Title
JP5332857B2 (en) Resistance welding method for high strength steel sheet
TWI601588B (en) Resistance point welding method
JP5713147B2 (en) Overlap welding member, automotive part, overlapping portion welding method, and overlap welding member manufacturing method
JP6015119B2 (en) Welding method
JP5640410B2 (en) Method of manufacturing resistance spot welded joint
JP6226083B2 (en) Resistance spot welding method
JP5401047B2 (en) Series spot or indirect spot welding of high-tensile steel plate
JP5599553B2 (en) Resistance spot welding method
JP2008229720A (en) Spot-welded joint of high-strength steel sheets excellent in tensile strength, automotive component having the same joint, and spot-welding method of high-strength steel sheets
WO2018123350A1 (en) Resistance spot welding method
JP6769467B2 (en) Resistance spot welding method and manufacturing method of resistance spot welding member
JP5573128B2 (en) Resistance spot welding method
JP5261984B2 (en) Resistance spot welding method
JP6052480B1 (en) Resistance spot welding method
JP5609966B2 (en) Resistance spot welding method
JP5907122B2 (en) Resistance spot welding method
JP2010172945A (en) Resistance spot welding method of high-strength steel sheet
JP5640409B2 (en) Method of manufacturing resistance spot welded joint
JP6315161B1 (en) Resistance spot welding method
JPWO2020036198A1 (en) Resistance spot welding member and manufacturing method thereof
JP5906618B2 (en) Resistance spot welding method
KR102010196B1 (en) Resistance spot welding method
JP7335196B2 (en) Manufacturing method of resistance welded member
JP7299192B2 (en) Manufacturing method of resistance welded member
JP6020345B2 (en) Welding method

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140402

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160223

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160307

R150 Certificate of patent or registration of utility model

Ref document number: 5907122

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250