JP5895827B2 - Solid battery and manufacturing method thereof - Google Patents

Solid battery and manufacturing method thereof Download PDF

Info

Publication number
JP5895827B2
JP5895827B2 JP2012258453A JP2012258453A JP5895827B2 JP 5895827 B2 JP5895827 B2 JP 5895827B2 JP 2012258453 A JP2012258453 A JP 2012258453A JP 2012258453 A JP2012258453 A JP 2012258453A JP 5895827 B2 JP5895827 B2 JP 5895827B2
Authority
JP
Japan
Prior art keywords
positive electrode
negative electrode
battery element
electrode layer
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012258453A
Other languages
Japanese (ja)
Other versions
JP2014107085A (en
Inventor
曜 辻子
曜 辻子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2012258453A priority Critical patent/JP5895827B2/en
Publication of JP2014107085A publication Critical patent/JP2014107085A/en
Application granted granted Critical
Publication of JP5895827B2 publication Critical patent/JP5895827B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、固体電池及びその製造方法に関する。より詳しくは、本発明は、充放電サイクル耐久性に優れた固体電池を及びその製造方法に関する。   The present invention relates to a solid state battery and a method for manufacturing the same. More specifically, the present invention relates to a solid battery excellent in charge / discharge cycle durability and a method for producing the same.

電解質が固体電解質から成る固体電池は、電池内に可燃性の有機溶媒を用いないので、安全装置の簡素化が図れ、製造コストや生産性に優れると考えられている。従来の固体電池の製造方法として、例えば、特許文献1に、電池内部への水分の入り込みを抑えて、電池の安定化を図るために、正極端子及び負極端子を除いた、正極と固体電解質と負極の周囲全体を高温硬化型樹脂により封止することが提案されている。しかし、特許文献2に記載されているように、特許文献1に記載されている方法に従って単に樹脂で封止した場合には、用いられる樹脂が熱硬化性樹脂あるいは熱可塑性樹脂のいずれの場合でも、硬化時に樹脂の体積収縮が起こり、その結果、電池要素と樹脂の間に隙間が生じ、電池の充放電時に電極の膨張・収縮が起こり、粒子間の界面に接合不良が生じ、サイクル特性の劣化につながるという問題がある。特許文献2には、電池を封口する際の電池ケースの膨れがなく、また、充放電による電極の膨張収縮が生じても電極−固体電解質界面の接合及び全固体電池と外装体の密着性を保ち、電池特性が損なわれない電池を提供することを目的として、正極と負極の間に固体電解質を介在させてなる固体電池素子(以下、「電池素子」を「電池要素」という)を熱硬化性樹脂又は熱可塑性樹脂を用いて封止する際に、固体電池要素を加圧しながら熱硬化性樹脂又は熱可塑性樹脂を熱硬化させることが提案されている。しかし、特許文献2に記載されている方法により製造される全固体電池であっても、充放電に伴って全固体電池要素が膨張及び収縮するために、接触不良が生じ、容量維持率が低下するという問題があり、電池要素の加圧力を維持して電極−固体電解質界面の接合を保つ性能が不十分である。さらに、特許文献2に記載されている方法は、熱硬化性樹脂又は熱可塑性樹脂を熱硬化させる際の加圧力が高すぎると、全固体電池要素が圧壊されるという問題がある。特許文献3には、コイン型リチウム二次電池において、電極と金属製ケースとの間又は電極と金属製封口板との間の少なくとも一方にバネを設けることにより電極と固体電解質との接触面圧を高め、接触不良に起因する電流密度の低下を抑制することが記載されている。しかし、特許文献3に記載のコイン型リチウム二次電池は、「かしめ」により封口されたものであり、かしめによる封口は、特許文献2に記載されているように、電池ケースの周囲をかしめた際に応力が「曲げ」部分に集中して電池ケースまたは封じ口板中央部に膨れが生じ易いという問題がある。   A solid battery in which the electrolyte is a solid electrolyte does not use a flammable organic solvent in the battery, so that it is considered that the safety device can be simplified and that the manufacturing cost and productivity are excellent. As a conventional method for producing a solid battery, for example, in Patent Document 1, in order to prevent moisture from entering the battery and stabilize the battery, the positive electrode and the solid electrolyte except for the positive electrode terminal and the negative electrode terminal It has been proposed to seal the entire periphery of the negative electrode with a high-temperature curable resin. However, as described in Patent Document 2, when simply sealing with a resin according to the method described in Patent Document 1, the resin used is either a thermosetting resin or a thermoplastic resin. The resin undergoes volume shrinkage during curing, resulting in a gap between the battery element and the resin, electrode expansion / contraction during battery charge / discharge, poor bonding at the interface between the particles, and cycle characteristics. There is a problem that leads to deterioration. In Patent Document 2, there is no swelling of the battery case when sealing the battery, and even if the electrode expands and contracts due to charge / discharge, the bonding between the electrode and the solid electrolyte interface and the adhesion between the all-solid battery and the outer package are provided. A solid battery element (hereinafter referred to as “battery element”) is thermoset by interposing a solid electrolyte between the positive electrode and the negative electrode for the purpose of providing a battery that maintains the battery characteristics and does not impair the battery characteristics. It has been proposed to thermoset a thermosetting resin or a thermoplastic resin while pressurizing a solid battery element when encapsulating with an adhesive resin or a thermoplastic resin. However, even in an all-solid battery manufactured by the method described in Patent Document 2, all-solid battery elements expand and contract with charge / discharge, resulting in poor contact and a decrease in capacity maintenance rate. However, the performance of maintaining the bonding force at the electrode-solid electrolyte interface by maintaining the applied pressure of the battery element is insufficient. Furthermore, the method described in Patent Document 2 has a problem that the all-solid battery element is crushed if the pressure applied when thermosetting the thermosetting resin or the thermoplastic resin is too high. In Patent Document 3, in a coin-type lithium secondary battery, a contact surface pressure between an electrode and a solid electrolyte is provided by providing a spring between at least one of the electrode and the metal case or between the electrode and the metal sealing plate. That suppresses a decrease in current density caused by poor contact. However, the coin-type lithium secondary battery described in Patent Document 3 is sealed by “caulking”, and the caulking is caulked around the battery case as described in Patent Document 2. At this time, there is a problem in that stress concentrates on the “bending” portion, and the battery case or the sealing plate central portion tends to swell.

特開平6−275247号公報JP-A-6-275247 特開2000−106154号公報JP 2000-106154 A 特開2010−056067号公報JP 2010-056067 A

従って、本発明は、正極層と固体電解質層と負極層の積層方向に電池要素に加わる押圧力を維持することにより、充放電サイクル耐久性に優れた固体電池を提供することを目的とする。   Accordingly, an object of the present invention is to provide a solid battery excellent in charge / discharge cycle durability by maintaining the pressing force applied to the battery element in the stacking direction of the positive electrode layer, the solid electrolyte layer, and the negative electrode layer.

本発明によれば、
正極層と、負極層と、正極層と負極層の間に積層された固体電解質層とを含む電池要素と、
正極層、固体電解質層及び負極層の積層方向に電池要素を押圧挟持する一対の抑え板と、
一対の抑え板に取り付けられ、電池要素を押圧する方向に一対の抑え板を付勢する付勢手段と、
電池要素、一対の抑え板及び付勢手段を収容する収容体と、
収容体内の電池要素、一対の抑え板及び付勢手段の周りに充填された熱硬化樹脂封止剤、
を含む固体電池が提供される。
According to the present invention,
A battery element comprising a positive electrode layer, a negative electrode layer, and a solid electrolyte layer laminated between the positive electrode layer and the negative electrode layer;
A pair of holding plates for pressing and clamping the battery element in the stacking direction of the positive electrode layer, the solid electrolyte layer, and the negative electrode layer;
A biasing means attached to the pair of pressing plates and biasing the pair of pressing plates in a direction of pressing the battery element;
A housing for housing the battery element, the pair of holding plates and the biasing means;
A battery element in the container, a pair of holding plates and a thermosetting resin sealant filled around the biasing means,
A solid state battery is provided.

本発明によれば、さらに、
(a)正極層と、負極層と、正極層と負極層の間に積層された固体電解質層とを含む電池要素を用意する工程、
(b)付勢手段が取り付けられた一対の抑え板によって、電池要素を、正極層、固体電解質層及び負極層の積層方向に押圧挟持する工程、
(c)電池要素、一対の抑え板及び付勢手段を収容体内に収容する工程、
(d)収容体内の電池要素、一対の抑え板及び付勢手段の周りに熱硬化性樹脂封止剤を充填する工程、及び
(e)熱硬化性樹脂封止剤を熱硬化させる工程、
を含む、固体電池の製造方法が提供される。
According to the invention,
(A) preparing a battery element including a positive electrode layer, a negative electrode layer, and a solid electrolyte layer laminated between the positive electrode layer and the negative electrode layer;
(B) a step of pressing and holding the battery element in the stacking direction of the positive electrode layer, the solid electrolyte layer, and the negative electrode layer by a pair of holding plates to which the urging means is attached;
(C) a step of housing the battery element, the pair of holding plates and the biasing means in the housing body;
(D) filling the thermosetting resin sealant around the battery element in the container, the pair of holding plates and the urging means, and (e) thermosetting the thermosetting resin sealant,
A method for producing a solid state battery is provided.

図1は、本発明の一実施態様に従う固体電池の概略断面図を示す。FIG. 1 shows a schematic cross-sectional view of a solid state battery according to one embodiment of the present invention.

本発明の固体電池は、正極層と、負極層と、正極層と負極層の間に積層された固体電解質層とを含む電池要素が、付勢手段が取り付けられた一対の抑え板によって、正極層、固体電解質層及び負極層の積層方向に押圧挟持されることを特徴とし、電池要素が押圧挟持されていることで、電池要素を構成する部材間、例えば正極層と固体電解質層との間、固体電解質層と負極層との間(正極層の固体電解質層とは反対側の表面に正極集電体が設けられ、負極層の固体電解質層とは反対側の表面に負極集電体電池要素が設けられている場合には、さらに、正極集電体と正極層との間及び負極層と負極集電体との間)の接触不良に起因する電流密度の低下を抑制し、固体電池の耐久性能を改善することを可能にしたものである。   The solid state battery of the present invention includes a positive electrode layer, a negative electrode layer, and a battery element including a solid electrolyte layer laminated between the positive electrode layer and the negative electrode layer. The battery element is pressed and clamped in the stacking direction of the layer, the solid electrolyte layer, and the negative electrode layer, and the battery element is pressed and clamped, so that between the members constituting the battery element, for example, between the positive electrode layer and the solid electrolyte layer Between the solid electrolyte layer and the negative electrode layer (a positive electrode current collector is provided on the surface of the positive electrode layer opposite to the solid electrolyte layer, and a negative electrode current collector battery on the surface of the negative electrode layer opposite to the solid electrolyte layer) In the case where the element is provided, a decrease in current density due to poor contact between the positive electrode current collector and the positive electrode layer and between the negative electrode layer and the negative electrode current collector is further suppressed. This makes it possible to improve the durability performance.

次に、図面を参照して本発明の固体電池を説明する。図1は、本発明の一実施態様に従う固体電池の概略断面図である。固体電池1は、正極層2と、負極層3と、正極層2と負極層3の間に積層された固体電解質層4とを含む電池要素5を含む。電池要素5には、通常、図1に示されているように、正極層の固体電解質層とは反対側の表面に正極集電体6aが、また負極層の固体電解質層とは反対側の表面に負極集電体6bがそれぞれ設けられ、正極集電体6a及び負極集電体6bには、それぞれ、正極端子及び負極端子(図示せず)が取り付けられる。なお、図1では、正極集電体と正極端子は簡略化して一体的に示されており、正極端子は、紙面に垂直な方向に延びている。負極集電体も負極端子と簡略化して一体的に示されており、負極端子も紙面に垂直な方向に延びている。図1では、電池要素5と正極集電体6a及び負極集電体6bは、一対の抑え板7a,7bの間に押圧挟持されている。図1に示す実施態様では、一対の抑え板7a,7bの各々の端部に、電池要素を押圧する方向(すなわち、抑え板7a,7bが互いに近づく方向)に一対の抑え板7a,7bを付勢する付勢手段8a,8bが取り付けられている。図1では、付勢手段は、一対のコイルばねを例にとり図示されている。電池要素5、正極集電体6a及び負極集電体6b、一対の抑え板7a,7b並びに付勢手段8a,8bは収容体9内に収容されており、収容体9内の電池要素5、正極集電体6a及び負極集電体6b、一対の抑え板7a,7b並びに付勢手段8a,8bの周りには熱硬化樹脂封止剤10が充填されている。図示されていないが、本発明では、固体電池は、正極層と、負極層と、正極層と負極層の間に積層された固体電解質層とを含み、正極層及び負極層上にそれぞれ正極集電体及び負極集電体を有する電池要素が、同じ極性の集電体が重なり合うように2つ以上積層した積層体を含むものであってもよい。   Next, the solid state battery of the present invention will be described with reference to the drawings. FIG. 1 is a schematic cross-sectional view of a solid state battery according to an embodiment of the present invention. The solid battery 1 includes a battery element 5 including a positive electrode layer 2, a negative electrode layer 3, and a solid electrolyte layer 4 laminated between the positive electrode layer 2 and the negative electrode layer 3. As shown in FIG. 1, the battery element 5 usually has a positive electrode current collector 6a on the surface of the positive electrode layer opposite to the solid electrolyte layer and a negative electrode layer opposite to the solid electrolyte layer. A negative electrode current collector 6b is provided on the surface, and a positive electrode terminal and a negative electrode terminal (not shown) are attached to the positive electrode current collector 6a and the negative electrode current collector 6b, respectively. In FIG. 1, the positive electrode current collector and the positive electrode terminal are shown in a simplified and integrated manner, and the positive electrode terminal extends in a direction perpendicular to the paper surface. The negative electrode current collector is also simplified and shown integrally with the negative electrode terminal, and the negative electrode terminal also extends in a direction perpendicular to the paper surface. In FIG. 1, the battery element 5, the positive electrode current collector 6a, and the negative electrode current collector 6b are pressed and sandwiched between a pair of holding plates 7a and 7b. In the embodiment shown in FIG. 1, a pair of holding plates 7 a and 7 b are provided at the ends of the pair of holding plates 7 a and 7 b in the direction in which the battery element is pressed (that is, the direction in which the holding plates 7 a and 7 b approach each other). Energizing means 8a and 8b for energizing are attached. In FIG. 1, the urging means is illustrated by taking a pair of coil springs as an example. The battery element 5, the positive electrode current collector 6 a and the negative electrode current collector 6 b, the pair of holding plates 7 a and 7 b and the urging means 8 a and 8 b are accommodated in the accommodating body 9, and the battery element 5 in the accommodating body 9, A thermosetting resin sealant 10 is filled around the positive electrode current collector 6a and the negative electrode current collector 6b, the pair of holding plates 7a and 7b, and the urging means 8a and 8b. Although not shown, in the present invention, the solid battery includes a positive electrode layer, a negative electrode layer, and a solid electrolyte layer laminated between the positive electrode layer and the negative electrode layer. The battery element having the current collector and the negative electrode current collector may include a laminate in which two or more current collectors having the same polarity are stacked.

本発明に用いられる固体電解質層は、固体電解質層としての機能を有するものであれば特に限定されない。固体電解質層に用いられる固体電解質材料としては、固体電池(例えば固体型リチウム二次電池)において一般的に用いられるものと同様のものを用いることができる。固体電解質材料の例としては、例えば、硫化物系結晶化ガラス、チオリシコン、酸化物系固体電解質等が挙げられる。本発明によれば、正極層と固体電解質層と負極層とを含む電池要素の周囲が熱硬化樹脂封止剤(すなわち、熱硬化性樹脂封止剤の熱硬化物)により覆われ、さらに、熱硬化樹脂封止剤が収容体により覆われるために、電池要素を空気中の水分から遮断することができる。正極層及び負極層がそれぞれ正極集電体及び負極集電体を有する場合には、電池要素に加えて正極集電体及び負極集電体も熱硬化樹脂封止剤により覆われる。従って、本発明の固体電池において、水分と反応して劣化しやすいことが知られている硫化物系の固体電解質材料などを固体電解質層に使用することができる。上記固体電解質層の層厚は、特に限定されないが、典型的には、5μm〜50μmである。   The solid electrolyte layer used in the present invention is not particularly limited as long as it has a function as a solid electrolyte layer. As the solid electrolyte material used for the solid electrolyte layer, the same materials as those generally used in solid batteries (for example, solid lithium secondary batteries) can be used. Examples of the solid electrolyte material include, for example, sulfide-based crystallized glass, thiolithicone, and oxide-based solid electrolyte. According to the present invention, the periphery of the battery element including the positive electrode layer, the solid electrolyte layer, and the negative electrode layer is covered with a thermosetting resin sealant (that is, a thermoset of the thermosetting resin sealant), and Since the thermosetting resin sealant is covered by the container, the battery element can be shielded from moisture in the air. When the positive electrode layer and the negative electrode layer have a positive electrode current collector and a negative electrode current collector, respectively, in addition to the battery element, the positive electrode current collector and the negative electrode current collector are also covered with the thermosetting resin sealant. Therefore, in the solid battery of the present invention, a sulfide-based solid electrolyte material that is known to be easily deteriorated by reacting with moisture can be used for the solid electrolyte layer. The thickness of the solid electrolyte layer is not particularly limited, but is typically 5 μm to 50 μm.

上記固体電解質材料の製造方法としては、所望の固体電解質材料を得ることができる方法であれば特に限定されるものではないが、具体例としては、Liを含んだ原料等を遊星ボールミルにてガラス化させ、その後熱処理することにより固体電解質材料を得る方法などが挙げられる。また、上記固体電解質層の形成方法の例としては、上記固体電解質材料等を圧縮成形する方法、固体電解質材料のスラリーを調製して基材に塗布することによりシートを作製する方法、スパッタや蒸着により成膜する方法などが挙げられる。   The method for producing the solid electrolyte material is not particularly limited as long as it is a method capable of obtaining a desired solid electrolyte material, but as a specific example, a raw material containing Li or the like is made with a planetary ball mill. And a method of obtaining a solid electrolyte material by heat treatment. Examples of the method for forming the solid electrolyte layer include a method for compression molding the solid electrolyte material and the like, a method for preparing a sheet by preparing a slurry of the solid electrolyte material and applying it to a substrate, sputtering and vapor deposition. And the like.

本発明に用いられる正極層及び負極層は、固体電池で一般的に用いられている正極層及び負極層と同様のものを用いることができる。正極層及び負極層は、それぞれ、少なくとも正極活物質及び負極活物質を含み、必要に応じて、導電助剤や固体電解質(イオン伝導助剤)、さらには、バインダー成分も含む。尚、正極活物質及び負極活物質それぞれには、明確な区別はなく、2種類の化合物の充放電電位や酸化還元電位を比較し、貴な電位を示すものを正極活物質として、また、卑な電位を示すものを負極活物質として、組み合わせることで、任意の電圧の電池を構成することができる。ここでは、正極活物質と負極活物質の組み合わせの例示として、正極活物質及び負極活物質をそれぞれ例示する。   The positive electrode layer and the negative electrode layer used in the present invention can be the same as the positive electrode layer and the negative electrode layer that are generally used in solid batteries. Each of the positive electrode layer and the negative electrode layer includes at least a positive electrode active material and a negative electrode active material, and includes a conductive auxiliary agent, a solid electrolyte (ion conductive auxiliary agent), and a binder component as necessary. Note that there is no clear distinction between the positive electrode active material and the negative electrode active material, and the charge / discharge potential and oxidation-reduction potential of two types of compounds are compared. A battery having an arbitrary voltage can be formed by combining the negative electrode active materials with a high potential. Here, a positive electrode active material and a negative electrode active material are illustrated as examples of the combination of the positive electrode active material and the negative electrode active material.

正極活物質の具体例としては、例えば、LiCoO、LiMnO、LiNiMn、LiVO、LiCrO、LiFePO、LiCoPO、LiNiO、LiNi1/3Co1/3Mn1/3などが挙げられる。正極活物質の形状は、粒子状であることが好ましい。また、粒子状の正極活物質の平均粒径は、典型的には100nm〜10μmである。正極層における正極活物質の含有量は、典型的には、70〜95質量%である。導電助剤の具体例としては、例えばアセチレンブラック、カーボンファイバーなどが挙げられる。バインダーとしては、化学的、電気的に安定なものであることが好ましく、具体例として、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)等のフッ素系バインダー成分、及び、スチレンブタジエンゴム(SBR)、ブタジエンゴム(BR)などのゴム系バインダー成分などが挙げられる。正極層におけるバインダーの含有量は、正極活物質等を安定に固定化できる限り、より少ないことが好ましく、典型的には、1〜10質量%である。正極層の層厚は、特に限定されないが、通常1μm〜100μmである。また、正極層の形成方法の例としては、正極活物質等の粉体を圧縮成形する方法などが挙げられる。また、正極層は、通常、正極層の集電を行う正極集電体を固体電解質層とは反対側の表面に有する。正極集電体は、固体電池で一般的に用いられている各種の材料、例えばステンレス(SUS)、アルミニウム、ニッケル、鉄、チタンおよびカーボン等から形成することができる。中でも、SUSが好ましい。正極集電体の形状は、固体電池の用途に応じて適宜選択することができ、例えば箔状およびメッシュ状等の形状であることができる。 Specific examples of the positive electrode active material include, for example, LiCoO 2 , LiMnO 2 , Li 2 NiMn 3 O 8 , LiVO 2 , LiCrO 2 , LiFePO 4 , LiCoPO 4 , LiNiO 2 , LiNi 1/3 Co 1/3 Mn 1 / 3 O 2 etc. are mentioned. The shape of the positive electrode active material is preferably particulate. The average particle diameter of the particulate positive electrode active material is typically 100 nm to 10 μm. The content of the positive electrode active material in the positive electrode layer is typically 70 to 95% by mass. Specific examples of the conductive assistant include acetylene black and carbon fiber. The binder is preferably chemically and electrically stable. Specific examples thereof include fluorine-based binder components such as polyvinylidene fluoride (PVDF) and polytetrafluoroethylene (PTFE), and styrene-butadiene rubber ( And rubber-based binder components such as SBR) and butadiene rubber (BR). The binder content in the positive electrode layer is preferably smaller as long as the positive electrode active material and the like can be stably fixed, and is typically 1 to 10% by mass. The layer thickness of the positive electrode layer is not particularly limited, but is usually 1 μm to 100 μm. Examples of the method for forming the positive electrode layer include a method in which powder such as a positive electrode active material is compression-molded. Further, the positive electrode layer usually has a positive electrode current collector for collecting current of the positive electrode layer on the surface opposite to the solid electrolyte layer. The positive electrode current collector can be formed from various materials generally used in solid state batteries, such as stainless steel (SUS), aluminum, nickel, iron, titanium, and carbon. Among these, SUS is preferable. The shape of the positive electrode current collector can be appropriately selected according to the use of the solid battery, and can be, for example, a foil shape or a mesh shape.

負極活物質の具体例としては、例えば金属系活物質およびカーボン系活物質などが挙げられる。金属系活物質の具体例としては、例えばIn、Al、Si、Snなどの元素状金属、及び、LiTi12などの無機酸化物が挙げられる。一方、カーボン系活物質の具体例としては、例えばメソカーボンマイクロビーズ(MCMB)、高配向性グラファイト(HOPG)、ハードカーボン、ソフトカーボンなどが挙げられる。また、本発明に用いられる負極層は、金属系活物質の金属膜であっても良く、金属系活物質またはカーボン系活物質の粉体を圧縮成形等したものであっても良い。金属系活物質の金属膜の具体例としては、金属系活物質の金属箔、めっき箔、蒸着箔などが挙げられる。また、例えば、金属系活物質の粉体を圧縮成形して負極層を形成する場合は、導電性を向上させるために、導電助剤を添加しても良い。導電助剤の具体例としては、例えばアセチレンブラック、カーボンファイバー等が挙げられる。負極層の層厚は、特に限定されないが、通常1μm〜100μmである。また、負極層は、通常、負極層の集電を行う負極集電体を固体電解質層とは反対側の表面に有する。負極集電体は、固体電池で一般的に用いられている各種の材料、例えばSUS、銅、ニッケルおよびカーボン等を挙げることができ、中でも、SUSが好ましい。負極集電体の形状は、固体電池の用途に応じて適宜選択することができ、例えば箔状およびメッシュ状等の形状であることができる。 Specific examples of the negative electrode active material include a metal active material and a carbon active material. Specific examples of the metal-based active material include elemental metals such as In, Al, Si, and Sn, and inorganic oxides such as Li 4 Ti 5 O 12 . On the other hand, specific examples of the carbon-based active material include mesocarbon microbeads (MCMB), highly oriented graphite (HOPG), hard carbon, soft carbon, and the like. Further, the negative electrode layer used in the present invention may be a metal film of a metal-based active material, or may be a compression-molded powder of a metal-based active material or a carbon-based active material. Specific examples of the metal film of the metal-based active material include a metal foil, a plating foil, and a vapor deposition foil of the metal-based active material. In addition, for example, when a negative electrode layer is formed by compression molding powder of a metal-based active material, a conductive additive may be added in order to improve conductivity. Specific examples of the conductive assistant include acetylene black and carbon fiber. Although the layer thickness of a negative electrode layer is not specifically limited, Usually, they are 1 micrometer-100 micrometers. The negative electrode layer usually has a negative electrode current collector that collects current from the negative electrode layer on the surface opposite to the solid electrolyte layer. Examples of the negative electrode current collector include various materials generally used in solid state batteries, such as SUS, copper, nickel, and carbon. Among them, SUS is preferable. The shape of the negative electrode current collector can be appropriately selected according to the use of the solid battery, and can be, for example, a foil shape or a mesh shape.

本発明に用いられる一対の抑え板は、電池要素を、正極層、固体電解質層及び負極層の積層方向に押圧挟持するためのものである。正極層及び負極層がそれぞれ正極集電体及び負極集電体を有する場合には、一対の抑え板によって、正極集電体、電池要素(正極層、固体電解質層及び負極層)及び負極集電体が、それらの積層方向に押圧挟持される。一対の抑え板には、後述する付勢手段が取り付けられる。抑え板は、電池要素との接触面全体にわたって均一に押圧することができるように、できるだけ平らな表面を有し、かつ、剛性を有するものであることが好ましい。剛性が高いほど、より薄い抑え板を使用することができ、固体電池を小型化することができる。抑え板の材料に関し、例えば、付勢手段が導電性である場合(例えば導電性金属ばね)には、抑え板の少なくとも付勢手段が取付けられる部分が電気絶縁性であることが好ましい。付勢手段が非導電性である場合(例えば非導電性材料から作られたばね又は非導電性被覆を有するばね)には、正極及び負極集電体に抑え板としての機能も併せ持たせることができる。この場合、正極及び負極集電体とは別個に抑え板を使用する必要がなく、固体電池を小型化することができる。抑え板の材料の具体例としては、例えばフェノール系樹脂[例えばフェノール−ホルムアルデヒド樹脂(例えばベークライト(登録商標)として入手可能なもの)]、ポリカーボネート、ポリフェニレンサルファイド樹脂(PPS)が挙げられる。抑え板のサイズ及び形状は、電池要素のサイズ及び形状及び抑え板の材料の剛性などに応じて当業者が適宜決定することができる。   The pair of holding plates used in the present invention is for pressing and holding the battery element in the stacking direction of the positive electrode layer, the solid electrolyte layer, and the negative electrode layer. When the positive electrode layer and the negative electrode layer respectively have a positive electrode current collector and a negative electrode current collector, the positive electrode current collector, the battery element (the positive electrode layer, the solid electrolyte layer, and the negative electrode layer) and the negative electrode current collector are provided by a pair of holding plates. The body is pressed and clamped in the stacking direction. Biasing means described later is attached to the pair of holding plates. It is preferable that the holding plate has a flat surface as much as possible and has rigidity so that the pressing plate can be uniformly pressed over the entire contact surface with the battery element. The higher the rigidity, the thinner the pressing plate can be used, and the solid state battery can be miniaturized. Regarding the material of the pressing plate, for example, when the biasing means is conductive (for example, a conductive metal spring), it is preferable that at least a portion of the pressing plate to which the biasing means is attached is electrically insulating. When the biasing means is non-conductive (for example, a spring made of a non-conductive material or a spring having a non-conductive coating), the positive and negative current collectors can also have a function as a restraining plate. it can. In this case, it is not necessary to use a restraining plate separately from the positive electrode and the negative electrode current collector, and the solid battery can be reduced in size. Specific examples of the material of the pressing plate include, for example, phenolic resins [for example, phenol-formaldehyde resins (for example, those available as Bakelite (registered trademark))], polycarbonates, and polyphenylene sulfide resins (PPS). The size and shape of the holding plate can be appropriately determined by those skilled in the art according to the size and shape of the battery element and the rigidity of the material of the holding plate.

本発明に用いられる付勢手段は、上記のとおりの一対の抑え板に取り付けられ、電池要素を押圧する方向(すなわち、抑え板が互いに近づく方向)に一対の抑え板を付勢するものである。付勢手段の具体例としては、弾性体、例えば、ばね、例えば引きばねなどのコイルばねが挙げられる。ばねの材質の例としては、金属及び非金属(例えば樹脂など)が挙げられる。付勢手段が取付けられる抑え板の取付け位置は、一対の抑え板が電池要素(又は正極集電体、電池要素及び負極集電体)を挟持したときに電池要素(又は正極集電体、電池要素及び負極集電体)に押圧力が均一に加わるような位置であることが好ましい。例えば、各抑え板の主面の中心を対称中心として互いに略点対称な位置に、同じ付勢力を与えることができる複数の付勢手段を取り付けることが好ましい。例えば、付勢手段として図1に概略的に示したようなコイルばねを使用する場合、電池要素(又は正極集電体、電池要素及び負極集電体)及び抑え板の形状に応じて、少なくとも2個以上のコイルばねを抑え板の略点対称な位置に取り付けることにより、電池要素(又は正極集電体、電池要素及び負極集電体)に押圧力を均一に加えることができ、かつ、押圧力を維持することができる。さらに、一対の抑え板の間の中央に電池要素を配置することによって、電池要素(又は正極集電体、電池要素及び負極集電体)に加わる押圧力をより均一にすることができる。例えば、一対の抑え板が同じ大きさの正方形又は長方形の主面を有する薄板状体である場合、一対の抑え板をそれらの互いに対応する端部が向かい合うように平行に配置し、互いに対応する端部のそれぞれの1又は2箇所以上の取付位置(例えば一対の抑え板のそれぞれの四隅の位置)にそれぞれコイルばねの片端を取り付けて、一対の抑え板をコイルばねにより連結することができる。一対の抑え板へのコイルばねの取り付けは、例えば、抑え板に穴をあけ、穴にコイルばねのフックを引っ掛けることにより行うことができる。一対の抑え板をコイルばねにより互いに連結した後に、一対の抑え板を互いに反対方向に引き離してコイルばねを蓄勢し、一対の抑え板の間に電池要素(又は正極集電体、電池要素及び負極集電体)を配置することができる。一対の抑え板の間に電池要素を配置した後に、一対の抑え板をコイルばねで連結してもよい。電池要素に対する押圧力は、典型的には、0.1〜500MPaであり、好ましくは1〜10MPaである。   The biasing means used in the present invention is attached to the pair of pressing plates as described above, and biases the pair of pressing plates in the direction in which the battery element is pressed (that is, the direction in which the pressing plates approach each other). . Specific examples of the urging means include an elastic body, for example, a spring such as a coil spring such as a tension spring. Examples of the spring material include metals and non-metals (eg, resin). The attachment position of the holding plate to which the urging means is attached is such that when the pair of holding plates sandwich the battery element (or positive electrode current collector, battery element and negative electrode current collector), the battery element (or positive electrode current collector, battery) The position is preferably such that the pressing force is uniformly applied to the element and the negative electrode current collector. For example, it is preferable to attach a plurality of urging means that can apply the same urging force to positions that are substantially point-symmetric with respect to the center of the main surface of each holding plate. For example, when the coil spring as schematically shown in FIG. 1 is used as the urging means, at least depending on the shape of the battery element (or the positive electrode current collector, the battery element and the negative electrode current collector) and the holding plate, By attaching two or more coil springs at substantially point-symmetrical positions on the holding plate, a pressing force can be uniformly applied to the battery element (or positive electrode current collector, battery element and negative electrode current collector), and The pressing force can be maintained. Furthermore, by disposing the battery element in the center between the pair of holding plates, the pressing force applied to the battery element (or the positive electrode current collector, the battery element, and the negative electrode current collector) can be made more uniform. For example, when the pair of holding plates is a thin plate-like body having a square or rectangular main surface of the same size, the pair of holding plates are arranged in parallel so that their corresponding end portions face each other, and correspond to each other. One end of each of the coil springs can be attached to one or two or more attachment positions (for example, the positions of the four corners of each of the pair of holding plates) of the end portion, and the pair of holding plates can be connected by the coil spring. The attachment of the coil spring to the pair of holding plates can be performed, for example, by making a hole in the holding plate and hooking a hook of the coil spring into the hole. After the pair of holding plates are connected to each other by the coil spring, the pair of holding plates are pulled away from each other in the opposite direction to store the coil spring, and the battery element (or the positive electrode current collector, the battery element, and the negative electrode collector are interposed between the pair of holding plates. Electric body) can be arranged. After the battery element is disposed between the pair of holding plates, the pair of holding plates may be connected by a coil spring. The pressing force on the battery element is typically 0.1 to 500 MPa, preferably 1 to 10 MPa.

本発明に用いられる熱硬化性樹脂封止剤は、収容体内に収容された上記電池要素(又は正極集電体、電池要素及び負極集電体)、一対の抑え板及び付勢手段の周りに充填された後、熱硬化にかけられる。熱硬化性樹脂封止剤は、後述する収容体とともに、空気中の酸素や水分から電池要素を保護することができる。熱硬化性樹脂封止剤に使用できる熱硬化性樹脂の例としては、例えば、エポキシ系樹脂、フェノール系樹脂、アミノ樹脂、不飽和ポリエステル樹脂が挙げられる。熱硬化性樹脂封止剤は、典型的には、100〜200℃の温度で熱硬化することができるものである。熱硬化温度及び時間は、熱硬化性樹脂封止剤のタイプなどに応じて当業者が適宜決定することができる。熱硬化性樹脂封止剤は、必要に応じて、熱硬化開始剤、硬化促進剤、ガラス繊維、有機フィラー、無機フィラーなどを含んでもよい。   The thermosetting resin sealant used in the present invention is around the battery element (or the positive electrode current collector, the battery element and the negative electrode current collector) housed in the container, the pair of holding plates and the biasing means. After filling, it is subjected to heat curing. The thermosetting resin sealant can protect the battery element from oxygen and moisture in the air together with the container described later. Examples of thermosetting resins that can be used for the thermosetting resin sealant include epoxy resins, phenolic resins, amino resins, and unsaturated polyester resins. The thermosetting resin sealant is typically capable of thermosetting at a temperature of 100 to 200 ° C. The thermosetting temperature and time can be appropriately determined by those skilled in the art according to the type of the thermosetting resin sealant. The thermosetting resin sealant may contain a thermosetting initiator, a curing accelerator, glass fiber, an organic filler, an inorganic filler, and the like as necessary.

本発明に用いられる収容体は、上記電池要素(又は正極集電体、電池要素及び負極集電体)、一対の抑え板及び付勢手段を収容し、当該収容体内で電池要素(又は正極集電体、電池要素及び負極集電体)、一対の抑え板及び付勢手段の周りに熱硬化樹脂封止剤が充填されている。収容体は、密閉可能な構造を有するものであれば、その材料及び厚さは、特に限定されない。収容体を構成する材料の例としては、例えば、金属(例えばステンレス)、エンジニアリングプラスチック(例えばポリアミド、ポリカーボネート)が挙げられる。収容体は、ステンレスから作られたものであることが好ましい。収容体の厚みは、典型的には、3mm〜10mmである。   The container used in the present invention contains the battery element (or positive electrode current collector, battery element and negative electrode current collector), a pair of holding plates and biasing means, and the battery element (or positive electrode current collector) within the container. The thermosetting resin sealant is filled around the electric body, the battery element, and the negative electrode current collector), the pair of holding plates, and the biasing means. As long as the container has a sealable structure, the material and thickness thereof are not particularly limited. Examples of the material constituting the container include metal (for example, stainless steel) and engineering plastic (for example, polyamide and polycarbonate). The container is preferably made of stainless steel. The thickness of the container is typically 3 mm to 10 mm.

本発明の固体電池は、上述した部材の他に、通常、セパレーターや、正極集電体及び負極集電体に接続された正極端子及び負極端子などを有することができる。これらの部材の材質及び形状は、固体電池の用途に応じて適宜選択することができる。   In addition to the above-described members, the solid battery of the present invention can usually have a separator, a positive electrode terminal and a negative electrode terminal connected to the positive electrode current collector and the negative electrode current collector, and the like. The material and shape of these members can be appropriately selected according to the use of the solid battery.

以下に示す実施例及び比較例を参照して本発明をさらに詳しく説明するが、本発明の範囲は、これらの実施例によって限定されるものでないことは言うまでもない。   The present invention will be described in more detail with reference to the following Examples and Comparative Examples, but it goes without saying that the scope of the present invention is not limited by these Examples.

[比較例1]
(1)固体電解質層の作製
8LiO・67LiS・25Pガラスにより固体電解質層を形成した。固体電解質層の大きさは、50mm×50mm×0.1mmであった。
(2)正極層の作製
不活性雰囲気(アルゴンガス)下で、厚さ7nmのLiNbO層で表面が被覆されたLiNi1/3Co1/3Mn1/3粉末(正極活物質)と、8LiO・67LiS・25Pガラス粉末(固体電解質)と、バインダーとしてブタジエンゴム(BR)を、質量比65:30:5でプラネタリミキサーにより混合し、得られた混合物10gを10mlのヘプタン(懸濁媒体)と混合して正極スラリーを得た。得られたスラリーを60mm×50mm×0.01mmの大きさのアルミニウム箔(正極集電体)の片面の片側の50mm×50mmの領域にドクターブレードにより塗布し、乾燥させて、乾燥塗布厚さ0.1mmの正極層を作製した。
(3)負極層の作製
黒鉛(天然黒鉛)(負極活物質)と、8LiO・67LiS・25Pガラス粉末(固体電解質)と、バインダーとしてブタジエンゴム(BR)を、質量比65:30:5でプラネタリミキサーにより混合し、得られた混合物10gを10mlのヘプタン(懸濁媒体)と混合して負極スラリーを得た。得られたスラリーを60mm×50mm×0.01mmの大きさの銅箔(負極集電体)の片面の片側の50mm×50mmの領域にドクターブレードにより塗布し、乾燥させて、乾燥塗布厚さ0.1mmの負極層を作製した。
(4)電池要素の作製
上記正極集電体上の正極層を厚さ方向に20トン(t)の圧力でプレスし、上記負極集電体上の負極層を厚さ方向に20tの圧力でプレスし、正極層と負極層の間に固体電解質層を配置して、正極集電体と負極集電体とを有する電池要素を9つ作製した。作製した9つの電池要素を、同じ極性の集電体が重なり合うように積層して厚さ3mmの積層体を得た。
(5)タブ(端子)の取り付け
正極集電体へのタブの取り付けは、隣接する正極集電体の自由端間に長さ30mm×幅20mm×厚さ200μmの正極タブ(アルミニウム製)を長さ25mm×幅20mmの自由端が生じるように超音波接合することにより行った。負極集電体へのタブの取り付けは、隣接する負極集電体の自由端間に長さ長さ30mm×幅20mm×厚さ200μmの負極タブ(銅製)を長さ25mm×幅20mmの自由端が生じるように超音波接合した。正極及び負極タブは、それぞれ変性ポリプロピレン製の絶縁層を有していた。以下、正極集電体及び負極集電体を有する電池要素の正極集電体及び負極集電体のそれぞれに正極タブ及び負極タブを超音波接合して得られたものをタブ付き電池要素という。得られたタブ付き電池要素において、正極タブが超音波接合された縁部と負極タブが超音波接合された縁部とは同じ側にあり、正極タブと負極タブは電池要素の同じ側に延びていた。
(6)熱硬化性樹脂封止剤による封止
高さ80mm×幅30mm×奥行き80mmの大きさの金属ケース(ステンレス製、厚さ10mm)であって、一側面(80mm×30mm)の中央部に60mm×10mmの開口部を有する金属ケースを、開口部を上にして配置し、金属ケースの開口部から上記のように作製したタブ付き電池要素を入れた。正極タブ及び負極タブの自由端を金属ケースの開口部から外側に出し、それらの正極タブ及び負極タブの自由端を把持し、電池要素の周囲が金属ケースの内壁と離間するように電池要素の位置を調節した。このとき、電池要素の周囲は、金属ケースの内壁と厚さ方向で約3mm離間していた。次に、熱硬化性エポキシ系樹脂封止剤(三菱化学製のエピコート)を金属ケースと電池要素の間に充填して電池前駆体を作製した。次に、得られた電池前駆体を、温度120℃に設定されたリボンヒーターにより金属ケースの外側から60分間加熱することにより、熱硬化性エポキシ系樹脂封止剤を硬化させた。
[Comparative Example 1]
(1) to form a solid electrolyte layer by making 8Li 2 O · 67Li 2 S · 25P 2 S 5 glass of the solid electrolyte layer. The size of the solid electrolyte layer was 50 mm × 50 mm × 0.1 mm.
(2) Preparation of positive electrode layer LiNi 1/3 Co 1/3 Mn 1/3 O 2 powder (positive electrode active material) whose surface was coated with a 7 nm thick LiNbO 3 layer under an inert atmosphere (argon gas) 8Li 2 O · 67Li 2 S · 25P 2 S 5 glass powder (solid electrolyte) and butadiene rubber (BR) as a binder at a mass ratio of 65: 30: 5 by a planetary mixer, and 10 g of the resulting mixture Was mixed with 10 ml of heptane (suspension medium) to obtain a positive electrode slurry. The obtained slurry was applied to a 50 mm × 50 mm region on one side of one side of an aluminum foil (positive electrode current collector) having a size of 60 mm × 50 mm × 0.01 mm by using a doctor blade and dried, and the dry coating thickness was 0. A 1 mm positive electrode layer was prepared.
(3) Production of negative electrode layer Graphite (natural graphite) (negative electrode active material), 8Li 2 O · 67Li 2 S · 25P 2 S 5 glass powder (solid electrolyte), and butadiene rubber (BR) as a binder in a mass ratio The mixture was mixed with a planetary mixer at 65: 30: 5, and 10 g of the obtained mixture was mixed with 10 ml of heptane (suspension medium) to obtain a negative electrode slurry. The obtained slurry was applied to a 50 mm × 50 mm region on one side of one side of a copper foil (negative electrode current collector) having a size of 60 mm × 50 mm × 0.01 mm with a doctor blade and dried, and the dry coating thickness was 0. A 1 mm negative electrode layer was prepared.
(4) Production of battery element The positive electrode layer on the positive electrode current collector is pressed in the thickness direction at a pressure of 20 tons (t), and the negative electrode layer on the negative electrode current collector is pressed in the thickness direction at a pressure of 20 t. The solid electrolyte layer was disposed between the positive electrode layer and the negative electrode layer, and nine battery elements having a positive electrode current collector and a negative electrode current collector were produced. The produced nine battery elements were laminated so that current collectors of the same polarity overlapped to obtain a laminate having a thickness of 3 mm.
(5) Attaching the tab (terminal) To attach the tab to the positive electrode current collector, a positive electrode tab (made of aluminum) having a length of 30 mm × width of 20 mm × thickness of 200 μm is long between the free ends of the adjacent positive electrode current collectors. This was performed by ultrasonic bonding so that a free end having a width of 25 mm and a width of 20 mm was generated. The attachment of the tab to the negative electrode current collector is performed by placing a negative electrode tab (made of copper) of length 30 mm × width 20 mm × thickness 200 μm between the free ends of adjacent negative electrode current collectors with a free end of 25 mm length × 20 mm width. Ultrasonic bonding was performed so that Each of the positive electrode and the negative electrode tab had an insulating layer made of modified polypropylene. Hereinafter, what was obtained by ultrasonically bonding a positive electrode tab and a negative electrode tab to each of a positive electrode current collector and a negative electrode current collector of a battery element having a positive electrode current collector and a negative electrode current collector is referred to as a battery element with a tab. In the obtained tabbed battery element, the edge where the positive electrode tab is ultrasonically bonded and the edge where the negative electrode tab is ultrasonically bonded are on the same side, and the positive electrode tab and the negative electrode tab extend on the same side of the battery element. It was.
(6) Sealing with thermosetting resin sealant A metal case (stainless steel, thickness 10 mm) with a height of 80 mm, a width of 30 mm and a depth of 80 mm, and the central part of one side (80 mm x 30 mm) A metal case having an opening of 60 mm × 10 mm was placed with the opening facing upward, and the battery element with a tab produced as described above was inserted from the opening of the metal case. Pull out the free ends of the positive and negative electrode tabs from the opening of the metal case, grip the free ends of the positive and negative electrode tabs, and place the battery element so that the periphery of the battery element is separated from the inner wall of the metal case. Adjusted the position. At this time, the periphery of the battery element was separated from the inner wall of the metal case by about 3 mm in the thickness direction. Next, a battery precursor was produced by filling a thermosetting epoxy resin sealant (Epicoat manufactured by Mitsubishi Chemical Corporation) between the metal case and the battery element. Next, the obtained battery precursor was heated for 60 minutes from the outside of the metal case with a ribbon heater set at a temperature of 120 ° C., thereby curing the thermosetting epoxy resin sealant.

[実施例1]
比較例1と同様に、正極集電体及び負極集電体を有する電池要素を作製し、正極集電体及び負極集電体を有する電池要素の正極集電体及び負極集電体のそれぞれに正極タブ及び負極タブを取り付けたタブ付き電池要素を作製した。次に、縦55mm、横55mm及び厚さ1mmの大きさの2枚(すなわち一対)の抑え板(ステンレス製)の四隅の位置にそれぞれ付勢手段としてコイルばね(東海バネ工業製引きばね、ばね定数:1000、両端にフックを有する)を取り付けた。一対の抑え板へのコイルばねの取り付けは、抑え板に穴をあけ、穴にコイルばねのフックを引っ掛けることにより行った。一対の抑え板にコイルばねを取り付けた後の各コイルばねの自由長は2mmであった。一対の抑え板を互いに引き離してコイルばねを蓄勢し、一対の抑え板の間にタブ付き電池要素を挿入した。コイルばねの伸びから、電池要素に対する押圧力は約1.5MPaであると求められた。次に、一対の抑え板の間に挟持されたタブ付き電池要素を比較例1と同様に金属ケース内に入れ、熱硬化性エポキシ系樹脂封止剤を金属ケースと電池要素の間に充填して電池前駆体を作製し、比較例1と同様の条件で熱硬化性エポキシ系樹脂封止剤を硬化させた。
[Example 1]
Similarly to Comparative Example 1, a battery element having a positive electrode current collector and a negative electrode current collector was prepared, and each of the positive electrode current collector and the negative electrode current collector of the battery element having the positive electrode current collector and the negative electrode current collector was prepared. A battery element with a tab to which a positive electrode tab and a negative electrode tab were attached was prepared. Next, coil springs (tokai spring industry-made pull springs, springs) are provided as biasing means at the four corner positions of two (ie, a pair) holding plates (made of stainless steel) having a size of 55 mm in length, 55 mm in width, and 1 mm in thickness. Constant: 1000, with hooks at both ends). The coil springs were attached to the pair of holding plates by making holes in the holding plates and hooking the hooks of the coil springs into the holes. The free length of each coil spring after attaching the coil spring to the pair of holding plates was 2 mm. The pair of holding plates were pulled apart from each other to store the coil spring, and a battery element with a tab was inserted between the pair of holding plates. From the elongation of the coil spring, the pressing force on the battery element was determined to be about 1.5 MPa. Next, the battery element with tabs sandwiched between the pair of holding plates is put in a metal case in the same manner as in Comparative Example 1, and a thermosetting epoxy resin sealant is filled between the metal case and the battery element, and the battery is charged. A precursor was prepared, and the thermosetting epoxy resin sealant was cured under the same conditions as in Comparative Example 1.

[比較例2]
比較例1と同様に、正極集電体及び負極集電体を有する電池要素を作製し、正極集電体及び負極集電体を有する電池要素の正極集電体及び負極集電体のそれぞれに正極及び負極タブを取り付けてタブ付き電池要素を作製した。次に、縦55mm、横55mm及び厚さ1mmの大きさの一対の抑え板(ステンレス製)の四隅の位置にそれぞれ付勢手段としてコイルばね(東海バネ工業製引きばね、ばね定数:1000、両端にフックを有する)を取り付けた。一対の抑え板にコイルばねを取り付けた後の各コイルばねの自由長がタブ付き電池要素の厚さに等しくなるように、一対の抑え板にコイルばねを取り付けた。一対の抑え板の間にタブ付き電池要素を挿入した。次に、一対の抑え板の間に挿入されたタブ付き電池要素を比較例1と同様に金属ケース内に入れ、熱硬化性エポキシ系樹脂封止剤を金属ケースと電池要素の間に充填して電池前駆体を作製し、比較例1と同様の条件で熱硬化性エポキシ系樹脂封止剤を硬化させた。
[Comparative Example 2]
Similarly to Comparative Example 1, a battery element having a positive electrode current collector and a negative electrode current collector was prepared, and each of the positive electrode current collector and the negative electrode current collector of the battery element having the positive electrode current collector and the negative electrode current collector was prepared. A battery element with a tab was prepared by attaching a positive electrode and a negative electrode tab. Next, coil springs (tension springs manufactured by Tokai Spring Industrial Co., Ltd., spring constant: 1000, both ends) at the four corner positions of a pair of holding plates (stainless steel) each having a size of 55 mm in length, 55 mm in width and 1 mm in thickness. With a hook). The coil springs were attached to the pair of restraining plates so that the free length of each coil spring after the coil springs were attached to the pair of restraining plates was equal to the thickness of the battery element with the tab. A tabbed battery element was inserted between the pair of holding plates. Next, the battery element with tabs inserted between the pair of holding plates is put in a metal case in the same manner as in Comparative Example 1, and a thermosetting epoxy resin sealant is filled between the metal case and the battery element. A precursor was prepared, and the thermosetting epoxy resin sealant was cured under the same conditions as in Comparative Example 1.

[電池性能の評価]
比較例1〜2及び実施例1の固体電池について、200回の充放電サイクル後の容量維持率を求めた。温度25℃で、電流密度170μA/cm及びカットオフ電位2.0〜4.2Vの充放電条件で充放電サイクルを200回繰り返した。
200回の充放電サイクルの1サイクル目の放電容量を初期容量として求め、200サイクル後の放電容量を求めた。下記式(1)に従って、初期容量の値を100としたときの200サイクル後の放電容量の値を容量維持率(%)として求めた。
容量維持率(%)=100×(200サイクル後の放電容量)/(初期容量)・・・式(1)
容量維持率の測定結果を下記表1にまとめた。
[Evaluation of battery performance]
About the solid battery of Comparative Examples 1-2 and Example 1, the capacity | capacitance maintenance factor after 200 charging / discharging cycles was calculated | required. The charge / discharge cycle was repeated 200 times at a temperature of 25 ° C. under charge / discharge conditions of a current density of 170 μA / cm 2 and a cutoff potential of 2.0 to 4.2 V.
The discharge capacity at the first cycle of 200 charge / discharge cycles was determined as the initial capacity, and the discharge capacity after 200 cycles was determined. According to the following formula (1), the value of the discharge capacity after 200 cycles when the initial capacity value is 100 was determined as the capacity retention ratio (%).
Capacity maintenance rate (%) = 100 x (discharge capacity after 200 cycles) / (initial capacity) ... Formula (1)
The measurement results of the capacity retention rate are summarized in Table 1 below.

Figure 0005895827
Figure 0005895827

表1に示されるように、実施例1の固体電池は、比較例1〜2の固体電池と比べて高い容量維持率を示した。   As shown in Table 1, the solid battery of Example 1 showed a higher capacity retention rate than the solid batteries of Comparative Examples 1 and 2.

1 固体電池
2 正極層
3 負極層
4 固体電解質層
5 電池要素
6a 正極集電体
6b 負極集電体
7a,7b 抑え板
8a,8b 付勢手段
9 収容体
10 熱硬化樹脂封止剤
DESCRIPTION OF SYMBOLS 1 Solid battery 2 Positive electrode layer 3 Negative electrode layer 4 Solid electrolyte layer 5 Battery element 6a Positive electrode collector 6b Negative electrode collector 7a, 7b Restraining plate 8a, 8b Energizing means 9 Housing 10 Thermosetting resin sealant

Claims (2)

正極層と、負極層と、前記正極層と負極層の間に積層された固体電解質層とを含む電池要素と、
前記正極層、前記固体電解質層及び前記負極層の積層方向に前記電池要素を押圧挟持する一対の抑え板と、
前記一対の抑え板に取り付けられ、前記電池要素を押圧する方向に前記一対の抑え板を付勢する付勢手段と、
前記電池要素、前記一対の抑え板及び前記付勢手段を収容する収容体と、
前記収容体内の前記電池要素、前記一対の抑え板及び前記付勢手段の周りに充填された熱硬化した熱硬化性樹脂封止剤、
を含む固体電池。
A battery element comprising a positive electrode layer, a negative electrode layer, and a solid electrolyte layer laminated between the positive electrode layer and the negative electrode layer;
A pair of holding plates for pressing and holding the battery element in the stacking direction of the positive electrode layer, the solid electrolyte layer, and the negative electrode layer;
An urging means attached to the pair of holding plates and urging the pair of holding plates in a direction of pressing the battery element;
A housing for housing the battery element, the pair of holding plates and the biasing means;
A thermosetting thermosetting resin sealant filled around the battery element, the pair of holding plates and the biasing means in the container;
Including solid state battery.
(a)正極層と、負極層と、前記正極層と負極層の間に積層された固体電解質層とを含む電池要素を用意する工程、
(b)付勢手段が取り付けられた一対の抑え板によって、前記電池要素を、前記正極層、固体電解質層及び負極層の積層方向に押圧挟持する工程、
(c)前記電池要素、前記一対の抑え板及び前記付勢手段を収容体内に収容する工程、
(d)前記収容体内の前記電池要素、前記一対の抑え板及び前記付勢手段の周りに熱硬化性樹脂封止剤を充填する工程、及び
(e)前記熱硬化性樹脂封止剤を熱硬化させる工程、
を含む、固体電池の製造方法。
(A) preparing a battery element including a positive electrode layer, a negative electrode layer, and a solid electrolyte layer laminated between the positive electrode layer and the negative electrode layer;
(B) a step of pressing and holding the battery element in the stacking direction of the positive electrode layer, the solid electrolyte layer, and the negative electrode layer by a pair of holding plates to which urging means are attached;
(C) a step of accommodating the battery element, the pair of holding plates and the biasing means in a container;
(D) filling the thermosetting resin sealant around the battery element, the pair of holding plates and the biasing means in the container; and (e) heating the thermosetting resin sealant. Curing,
A method for producing a solid state battery.
JP2012258453A 2012-11-27 2012-11-27 Solid battery and manufacturing method thereof Active JP5895827B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012258453A JP5895827B2 (en) 2012-11-27 2012-11-27 Solid battery and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012258453A JP5895827B2 (en) 2012-11-27 2012-11-27 Solid battery and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2014107085A JP2014107085A (en) 2014-06-09
JP5895827B2 true JP5895827B2 (en) 2016-03-30

Family

ID=51028410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012258453A Active JP5895827B2 (en) 2012-11-27 2012-11-27 Solid battery and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5895827B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6380200B2 (en) * 2015-03-30 2018-08-29 トヨタ自動車株式会社 Manufacturing method of secondary battery
JP6547768B2 (en) * 2017-01-17 2019-07-24 トヨタ自動車株式会社 Method of manufacturing all solid lithium ion battery
JP6846505B2 (en) * 2017-03-13 2021-03-24 富士フイルム株式会社 All-solid-state secondary battery and its manufacturing method
KR102394782B1 (en) * 2017-07-06 2022-05-04 현대자동차주식회사 All-solid battery and method for manufacturing the same
JP6981868B2 (en) * 2017-12-18 2021-12-17 三星電子株式会社Samsung Electronics Co., Ltd. All-solid-state secondary battery
JP6994992B2 (en) * 2018-03-20 2022-01-14 愛知製鋼株式会社 Restraint and all-solid-state battery assembly
JP6915587B2 (en) * 2018-05-09 2021-08-04 トヨタ自動車株式会社 Laminated battery manufacturing method
JP7215270B2 (en) * 2019-03-22 2023-01-31 トヨタ自動車株式会社 Case manufacturing method
JP7272304B2 (en) * 2020-03-18 2023-05-12 トヨタ自動車株式会社 ALL-SOLID BATTERY AND METHOD FOR MANUFACTURING ALL-SOLID BATTERY

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000311717A (en) * 1999-02-25 2000-11-07 Mitsubishi Chemicals Corp Battery element and battery
JP2008059954A (en) * 2006-08-31 2008-03-13 Seiko Epson Corp Manufacturing method of secondary battery
JP2008103284A (en) * 2006-10-20 2008-05-01 Idemitsu Kosan Co Ltd All-solid battery
JP2010033892A (en) * 2008-07-29 2010-02-12 Idemitsu Kosan Co Ltd Lithium secondary battery and device having the same
JP2010056067A (en) * 2008-07-31 2010-03-11 Idemitsu Kosan Co Ltd Coin-type lithium secondary battery

Also Published As

Publication number Publication date
JP2014107085A (en) 2014-06-09

Similar Documents

Publication Publication Date Title
JP5895827B2 (en) Solid battery and manufacturing method thereof
JP5200367B2 (en) Bipolar battery electrode
JP4892893B2 (en) Bipolar battery
WO2016031688A1 (en) Stacked cell and production method for same
KR102522317B1 (en) All-solid battery and method for producing the same
WO2012164723A1 (en) Method for manufacturing all-solid cell
JP5510546B2 (en) Bipolar battery
KR20140113186A (en) Electrode Assembly and Secondary battery with the Same and Method of thereof
JP2009266467A (en) Bipolar secondary battery
JP2014137869A (en) All-solid-state battery and manufacturing method therefor
CN111463437B (en) All-solid battery
JP7475825B2 (en) Lithium-ion battery module and battery pack
JP5163026B2 (en) Nonaqueous electrolyte secondary battery
JP2014089842A (en) All solid battery and process of manufacturing the same
JP2020135974A (en) All-solid-state battery
CN110556584A (en) All-solid-state battery
JP2022188177A (en) Film outer package battery, battery pack, and manufacturing method of the film outer package battery
JP2012226862A (en) Monopolar solid state battery, laminate solid state battery, and mobile entity
JPWO2020137388A1 (en) Manufacturing method of all-solid-state battery and all-solid-state battery
WO2019176422A1 (en) Secondary battery
JP2008130450A (en) Manufacturing method of bipolar battery
WO2021100736A1 (en) Lithium ion battery pack
JP4055640B2 (en) Bipolar battery, bipolar battery manufacturing method, battery pack and vehicle
JP2021082391A (en) Lithium-ion battery module and battery pack
JP6861127B2 (en) Electrode manufacturing method and manufacturing equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141010

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160215

R151 Written notification of patent or utility model registration

Ref document number: 5895827

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151