JP2008103284A - All-solid battery - Google Patents

All-solid battery Download PDF

Info

Publication number
JP2008103284A
JP2008103284A JP2006286957A JP2006286957A JP2008103284A JP 2008103284 A JP2008103284 A JP 2008103284A JP 2006286957 A JP2006286957 A JP 2006286957A JP 2006286957 A JP2006286957 A JP 2006286957A JP 2008103284 A JP2008103284 A JP 2008103284A
Authority
JP
Japan
Prior art keywords
solid
battery
solid electrolyte
support plate
state battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006286957A
Other languages
Japanese (ja)
Inventor
Takeki Koto
武樹 小藤
Mikiya Hayashi
幹也 林
Nobuo Kawasaki
信夫 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP2006286957A priority Critical patent/JP2008103284A/en
Publication of JP2008103284A publication Critical patent/JP2008103284A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide an all-solid battery capable of being easily caulked, allowing pressure to be evenly applied to the whole surface of a solid electrolyte layer, capable of suppressing the swell of the battery in its central part, and of keeping a battery characteristic against repeated charge and discharge, and high in ion conductivity. <P>SOLUTION: This all-solid battery 1 having an all-solid battery element formed by interposing the solid electrolyte layer 5 between a positive electrode 3 and a negative electrode 6 is provided support plates 7 each having a plurality of through-holes 8 on the respective sides of the positive electrode and the negative electrode without facing the solid electrolyte layer. The all-solid battery is characterized in that pressure of 1.5-200 MPa is applied to the all-solid battery element by connecting/fastening the support plates through the corresponding through-holes of the respective support plates; and at least one of the through-holes is located in a circle of 1/4 of the total area from the central part of the support plate toward the edge thereof. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、全固体電池に関し、詳しくは、正極と負極の間に固体電解質層を介在させてなる全固体電池素子を有する全固体電池であって、固体電池素子に圧力が印加されてなる全固体電池に関する。   The present invention relates to an all-solid-state battery, and more particularly, to an all-solid-state battery having an all-solid-state battery element having a solid electrolyte layer interposed between a positive electrode and a negative electrode, wherein all the pressure is applied to the solid-state battery element. The present invention relates to a solid state battery.

近年、携帯情報端末、携帯電子機器、家庭用小型電力貯蔵装置、モーターを動力源とする自動二輪車、電気自動車、ハイブリッド電気自動車等に用いられる高性能リチウム電池等二次電池の需要が増加している。このように、使用される用途が広がるのに伴い、二次電池の更なる安全性の向上及び高性能化が要求されている。
リチウム電池の安全性を確保する方法としては、有機溶媒電解質に代えて無機固体電解質を用いることが有効である。無機固体電解質は、その性質上一般に不燃又は難燃で、通常使用される有機溶媒電解質と比較し安全性の高い材料である。そのため、該電解質を用いた高い安全性を備えた全固体リチウム電池の開発が望まれている。
In recent years, the demand for secondary batteries such as high-performance lithium batteries used in personal digital assistants, portable electronic devices, small household power storage devices, motorcycles powered by motors, electric vehicles, hybrid electric vehicles, etc. has increased. Yes. As described above, as the applications for use expand, further improvements in safety and performance of secondary batteries are required.
In order to ensure the safety of the lithium battery, it is effective to use an inorganic solid electrolyte instead of the organic solvent electrolyte. Inorganic solid electrolytes are generally nonflammable or flame retardant in nature and are safer materials than commonly used organic solvent electrolytes. Therefore, development of an all-solid lithium battery with high safety using the electrolyte is desired.

無機固体電解質のうち、特に、硫化物系の無機固体電解質は、イオン伝導度が他の無機化合物より高いことが知られており、特許文献1等に記載の無機固体電解質を使用できる。具体的には、Li2SとSiS2、GeS2、P25、B23の組合せから成る無機固体電解質に、適宜、Li3PO4やハロゲン、ハロゲン化合物を添加した無機固体電解質である。 Among inorganic solid electrolytes, in particular, sulfide-based inorganic solid electrolytes are known to have higher ionic conductivity than other inorganic compounds, and the inorganic solid electrolytes described in Patent Document 1 and the like can be used. Specifically, an inorganic solid electrolyte in which Li 3 PO 4 , a halogen, and a halogen compound are appropriately added to an inorganic solid electrolyte composed of a combination of Li 2 S and SiS 2 , GeS 2 , P 2 S 5 , B 2 S 3. It is.

ところで、全固体リチウム電池において、従来は、シート状や薄膜状等の固体電解質層の成形体を形成するためにはバインダーが用いられている。しかしながら、成形体を得るため、固体電解質層にバインダーを混入させると、イオン伝導パスが切断され固体電解質層のイオン伝導性が低下する問題がある。
このように、全固体リチウム電池を構成する部材として、固体電解質のみからなる電解質層が検討されているが、固体電解質だけからなる単一層の薄膜は形成が困難である。また、電池を作動させた場合、電解質中のリチウムイオン伝導性は電解質層の厚みに依存し、電解質層が薄いほど、リチウムイオン伝導度が高まるため、固体電解質層の薄膜化が望まれている。
By the way, in an all-solid-state lithium battery, conventionally, a binder is used to form a molded body of a solid electrolyte layer such as a sheet or a thin film. However, when a binder is mixed in the solid electrolyte layer in order to obtain a molded body, there is a problem that the ion conduction path is cut and the ionic conductivity of the solid electrolyte layer is lowered.
As described above, an electrolyte layer made of only a solid electrolyte has been studied as a member constituting an all-solid lithium battery, but it is difficult to form a single-layer thin film made of only a solid electrolyte. In addition, when the battery is operated, the lithium ion conductivity in the electrolyte depends on the thickness of the electrolyte layer, and the thinner the electrolyte layer, the higher the lithium ion conductivity. Therefore, it is desired to reduce the thickness of the solid electrolyte layer. .

従来の全固体電池は、電池ケース内側の高さにあわせて成形した正極、固体電解質、負極の3層からなる電池素子を金属製の電池ケースの中に配し、周囲をかしめて、コイン型電池としているものが報告されている。
しかしながら、この「かしめ」による封口には以下のような問題点がある。すなわち、封口板及び電池ケースが金属製であり、かしめはプレス加工により施されるが、「曲げ」の部分を有するため、電池ケースの周囲をかしめた際に応力が「曲げ」の部分に集中する。この応力により、電池ケースあるいは封口板中央部に膨れが生じ易いという問題がある。
特に全固体電池においては電池素子を構成する材料がすべて堅い固体であり、従来の液式電池に用いられる樹脂製のセパレータのような素子にかかる圧力を緩和する緩衝材がないため、封口時の電池ケースに膨れが生じ易い。
このような電池の膨れは電池素子と、集電板を兼ねる電池ケース又は封口板との間に隙間を生じさせ、集電性を低下せしめて内部抵抗を上昇させる。その結果、電池特性の低下をきたす。
A conventional all-solid-state battery is a coin-type battery that consists of a battery element consisting of three layers, a positive electrode, a solid electrolyte, and a negative electrode, molded according to the height inside the battery case. What has been reported as a battery has been reported.
However, the “caulking” sealing has the following problems. That is, the sealing plate and the battery case are made of metal, and the caulking is performed by pressing, but since it has a “bending” portion, stress is concentrated on the “bending” portion when the periphery of the battery case is caulked. To do. Due to this stress, there is a problem that the battery case or the central portion of the sealing plate tends to swell.
Especially in all solid-state batteries, all the materials that make up the battery element are hard solids, and there is no cushioning material that relieves pressure on the element, such as a resin separator used in conventional liquid batteries. The battery case tends to swell.
Such swelling of the battery creates a gap between the battery element and a battery case or sealing plate that also serves as a current collector plate, thereby reducing current collection and increasing internal resistance. As a result, battery characteristics are deteriorated.

また、コバルト酸リチウムやニッケル酸リチウム、二硫化鉄、二硫化チタン、黒鉛、インジウム、アルミニウム、リチウム−アルミニウム合金などリチウム二次電池に用いられる多くの電極材料は充放電の際に膨張収縮を繰り返すことが知られている。従って、これらの電極材料を用いた全固体電池は、その体積変化によって、電池素子における電極−固体電解質界面の接合が損なわれ、接触不良によって電池特性、特に充放電サイクル特性が著しく低下するという問題点があった。   In addition, many electrode materials used for lithium secondary batteries such as lithium cobaltate, lithium nickelate, iron disulfide, titanium disulfide, graphite, indium, aluminum, and lithium-aluminum alloys repeatedly expand and contract during charging and discharging. It is known. Therefore, in the all-solid-state battery using these electrode materials, due to the volume change, the bonding between the electrode and the solid electrolyte interface in the battery element is impaired, and the battery characteristics, particularly the charge / discharge cycle characteristics are significantly deteriorated due to poor contact. There was a point.

これらの問題点に鑑み、正極と負極の間に固体電解質を介在させてなる全固体電池素子を外装体で被覆した全固体電池であって、外装体内部で全固体電池素子に50〜10000kgf/cm2の圧力が印加され、全固体電池と外装体の間が密着している全固体電池が提案されている(特許文献2参照)。
しかしながら、特許文献2に記載の方法は外装体として用いる硬化樹脂によって印加された圧力が保持されるものであるが、必ずしも初期に印加した圧力を維持できるとは限らない。また、必ず外装体を必要とする制約もある。さらに、上述した電池の膨れは、電池の中央部で起こりやすく、樹脂による封止のみでは不十分な場合があった。
In view of these problems, an all-solid battery in which an all-solid battery element in which a solid electrolyte is interposed between a positive electrode and a negative electrode is covered with an exterior body, and the all-solid battery element is placed inside the exterior body at 50 to 10,000 kgf / An all-solid battery in which a pressure of cm 2 is applied and the all-solid battery and the exterior body are in close contact with each other has been proposed (see Patent Document 2).
However, although the method described in Patent Document 2 can maintain the pressure applied by the cured resin used as the exterior body, it cannot always maintain the pressure applied in the initial stage. In addition, there is a restriction that always requires an exterior body. Furthermore, the above-described battery swelling is likely to occur at the center of the battery, and sealing with resin alone may not be sufficient.

特開平4−202024号公報Japanese Patent Laid-Open No. 4-202024 特開2000−106154号公報JP 2000-106154 A

本発明は、上記問題点に鑑み、容易にかしめができ、固体電解質層の全面に対して平準な加圧が可能であり、電池中央部での電池の膨れを抑制することができ、かつ繰り返しの充放電に対して電池特性を維持することのできるイオン伝導性の高い全固体電池を提供することを目的とする。   In view of the above-described problems, the present invention can be easily caulked, can apply uniform pressure to the entire surface of the solid electrolyte layer, can suppress battery swelling at the center of the battery, and can be repeated. An object of the present invention is to provide an all solid state battery having high ion conductivity capable of maintaining battery characteristics against charge / discharge.

本発明者らは、鋭意研究を重ねた結果、正極及び負極の固体電解質層と対峙しない側に特定の貫通孔を有する2枚の支持板を配し、該支持板の対応する貫通孔を介して、連結・緊締し、全固体電池素子に圧力を印加することによって、上記課題を解決し得ることを見出した。本発明はかかる知見に基づいて完成されたものである。   As a result of intensive research, the inventors have arranged two support plates having specific through holes on the side of the positive electrode and the negative electrode that do not face the solid electrolyte layer, and the corresponding through holes of the support plate are arranged through the corresponding through holes. Thus, it has been found that the above-mentioned problems can be solved by connecting and tightening and applying pressure to the all-solid-state battery element. The present invention has been completed based on such findings.

すなわち、本発明は、
[1]正極と負極の間に固体電解質層を介在させてなる全固体電池素子を有する全固体電池であって、正極及び負極の固体電解質層と対峙しない側に複数の貫通孔を有する支持板をそれぞれ備え、各支持板の対応する貫通孔を介して支持板が連結・緊締されることによって全固体電池素子に1.5〜200MPaの圧力が印加され、かつ該貫通孔の少なくとも一つが支持板の中央部から周縁に向けて総面積の1/4の円内にあることを特徴とする全固体電池、
[2]正極と負極の間に固体電解質層を介在させてなる全固体電池素子を有する全固体電池であって、正極及び負極の固体電解質層と対峙しない側に複数の貫通孔を有する支持板をそれぞれ備え、少なくとも一方の支持板の固体電解質層の反対側に貫通孔を有する圧力供給板と、支持板の中央部に該支持板と該圧力供給板とで挟持された押し付け部を有し、各支持板の対応する貫通孔及び圧力供給板の貫通孔を介して支持板及び圧力供給板が連結・緊締されることによって全固体電池素子に1.5〜200MPaの圧力が印加されることを特徴とする全固体電池、
[3]前記固体電解質が、リチウム元素、リン元素及び硫黄元素を含有し、該固体電解質の固体31P−NMRスペクトルが、90.9±0.4ppm及び86.5±0.4ppmの位置に、結晶に起因するピークを有し、前記固体電解質に占める前記結晶の比率が60〜100mol%である上記[1]又は[2]に記載の全固体電池、
[4]全固体電池素子を外装材で被覆した上記[1]〜[3]のいずれかに記載の全固体電池、及び
[5]前記外装材が熱可塑性樹脂又は熱硬化性樹脂からなる外装体をさらに吸着材及び/又はアルカリ性物質含有材料で被覆したものである上記[4]に記載の全固体電池、
を提供するものである。
That is, the present invention
[1] An all-solid battery having an all-solid battery element in which a solid electrolyte layer is interposed between a positive electrode and a negative electrode, and having a plurality of through holes on the side of the positive electrode and the negative electrode that do not face the solid electrolyte layer Each of the support plates is connected and tightened through the corresponding through hole of each support plate, whereby a pressure of 1.5 to 200 MPa is applied to the all solid state battery element, and at least one of the through holes is supported. An all-solid-state battery characterized by being within a circle of ¼ of the total area from the center of the plate toward the periphery,
[2] An all-solid battery having an all-solid battery element in which a solid electrolyte layer is interposed between a positive electrode and a negative electrode, and having a plurality of through holes on the side of the positive electrode and the negative electrode that do not face the solid electrolyte layer A pressure supply plate having a through hole on the opposite side of the solid electrolyte layer of at least one of the support plates, and a pressing portion sandwiched between the support plate and the pressure supply plate at the center of the support plate A pressure of 1.5 to 200 MPa is applied to the all-solid-state battery element by connecting and tightening the support plate and the pressure supply plate via the corresponding through hole of each support plate and the through hole of the pressure supply plate. All solid-state battery,
[3] The solid electrolyte contains elemental lithium, elemental phosphorus and elemental sulfur, and the solid 31 P-NMR spectrum of the solid electrolyte is at positions of 90.9 ± 0.4 ppm and 86.5 ± 0.4 ppm. The all-solid-state battery according to the above [1] or [2], which has a peak due to a crystal and a ratio of the crystal in the solid electrolyte is 60 to 100 mol%.
[4] The all solid state battery according to any one of the above [1] to [3], wherein the all solid state battery element is covered with an exterior material, and [5] the exterior, wherein the exterior material is made of a thermoplastic resin or a thermosetting resin. The all solid state battery according to the above [4], wherein the body is further coated with an adsorbent and / or an alkaline substance-containing material,
Is to provide.

本発明によれば、容易にかしめができ、固体電解質層の全面に対して平準な加圧が可能であり、電池中央部での電池の膨れを抑制することができ、かつ繰り返しの充放電に対して電池特性を維持することのできるイオン伝導性の高い全固体電池を提供することができる。   According to the present invention, caulking can be easily performed, leveling can be applied to the entire surface of the solid electrolyte layer, battery swelling at the center of the battery can be suppressed, and repeated charging and discharging can be performed. On the other hand, it is possible to provide an all-solid battery having high ion conductivity that can maintain battery characteristics.

本発明の全固体電池について、図1を用いて説明する。図1は本発明の全固体電池の構造を示す模式図である。本発明の全固体電池は、正極3と負極6の間に固体電解質層5を介在させてなる全固体電池素子を有する全固体電池であって、正極3及び負極6の固体電解質層と対峙しない側に複数の貫通孔8を有する支持板7をそれぞれ備える。各支持板7の対応する貫通孔を介して支持板が連結治具9で連結・緊締されることによって全固体電池素子に1.5〜200MPaの圧力が印加される。
本発明の固体電池は、このように連結治具9で連結・緊締される構造であるため、該連結治具9を締め付けるだけで容易に加圧することができ、かつ、初期に印加した圧力を維持することができるという利点がある。従って、繰り返しの充放電に対しても、印加圧力を維持することができ、イオン伝導率の低下を招かないため、全固体電池の電池特性を維持することができる。
The all solid state battery of the present invention will be described with reference to FIG. FIG. 1 is a schematic diagram showing the structure of the all solid state battery of the present invention. The all solid state battery of the present invention is an all solid state battery having an all solid state battery element in which a solid electrolyte layer 5 is interposed between a positive electrode 3 and a negative electrode 6, and does not face the solid electrolyte layers of the positive electrode 3 and the negative electrode 6. Support plates 7 each having a plurality of through holes 8 are provided on the side. A pressure of 1.5 to 200 MPa is applied to the all solid state battery element by connecting and tightening the support plate with the connecting jig 9 through the corresponding through hole of each support plate 7.
Since the solid state battery of the present invention is structured to be connected and tightened by the connecting jig 9 in this way, it can be easily pressurized only by tightening the connecting jig 9 and the initial applied pressure can be applied. There is an advantage that it can be maintained. Therefore, the applied pressure can be maintained even with repeated charge and discharge, and the ion conductivity is not lowered, so that the battery characteristics of the all solid state battery can be maintained.

上記支持板7に用いる材料としては特に制限はなく、例えば、ベークライト、金属板などを用いることができる。また、連結治具9についても、2枚の支持板7を連結・緊締することができれば特に制限されることはなく、例えば、ボルト、ナット、リベットなどを用いることができる。なお、これらの材料は固体電池の軽量化の点から重量の軽いものを用いることが好ましい。
なお、図1における4は固体電解質の粉末を示し、固体電解質層5と正極層3及び固体電解質層5と負極層6の界面の密着性を向上させるために少量加えるものである。
There is no restriction | limiting in particular as a material used for the said support plate 7, For example, a bakelite, a metal plate, etc. can be used. Further, the connecting jig 9 is not particularly limited as long as the two support plates 7 can be connected and tightened. For example, bolts, nuts, rivets, and the like can be used. These materials are preferably light in weight from the viewpoint of reducing the weight of the solid battery.
In addition, 4 in FIG. 1 shows the powder of a solid electrolyte, and adds a small amount in order to improve the adhesiveness of the interface of the solid electrolyte layer 5 and the positive electrode layer 3 and the solid electrolyte layer 5 and the negative electrode layer 6. FIG.

また、図2に本発明の全固体電池を電極側から見た模式図を示す。本発明の全固体電池は貫通孔8の少なくとも一つが支持板の中央部Xから周縁に向けて総面積の1/4の円内にあることを特徴とする。貫通孔8はこの円内であればいずれの場所でもよいが、特に中央部Xの近辺であることが好ましい。なお、ここで中央部とは支持板が図2のように四角形状の場合には対角線の交点位置近傍、円形状の場合には中心点近傍をいい、不定形の場合には重心の位置近傍をいう。
貫通孔8がこの円内にあると連結治具9による締め付けの効果が高く、固体電解質層の全面に対して平準な加圧が可能であり、電池中央部での電池の膨れを抑制することができる。一方、貫通孔8がこの円外のみである場合には、固体電解質層の全面に対して平準な加圧を行い、電池中央部での膨れを抑制するためには、支持板7を厚くすることが必要となり、全固体電池の重量が増大するという問題がある。本発明の全固体電池であれば、支持板7を薄くすることができ、全固体電池の軽量化が図れるといる利点がある。
Moreover, the schematic diagram which looked at the all-solid-state battery of this invention from the electrode side in FIG. 2 is shown. The all solid state battery of the present invention is characterized in that at least one of the through holes 8 is in a circle having a quarter of the total area from the central portion X to the peripheral edge of the support plate. The through hole 8 may be anywhere as long as it is within this circle, but is particularly preferably in the vicinity of the central portion X. Here, the central part means the vicinity of the intersection of diagonal lines when the support plate is rectangular as shown in FIG. 2, the vicinity of the center point when the support plate is circular, and the vicinity of the center of gravity when the support plate is indefinite. Say.
When the through-hole 8 is in this circle, the effect of tightening by the connecting jig 9 is high, leveling pressure can be applied to the entire surface of the solid electrolyte layer, and swelling of the battery at the center of the battery is suppressed. Can do. On the other hand, when the through-hole 8 is only outside this circle, the support plate 7 is made thicker in order to apply a uniform pressure to the entire surface of the solid electrolyte layer and suppress swelling at the center of the battery. Therefore, there is a problem that the weight of the all-solid-state battery increases. If it is the all-solid-state battery of this invention, the support plate 7 can be made thin and there exists an advantage that the weight reduction of an all-solid-state battery can be achieved.

以下、本発明における貫通孔8の位置について、各種態様について具体例を挙げて説明する。
まず、図3は図2と同様に本発明の全固体電池を電極側から見た透視図である。この態様では、全固体電池素子が複数個連結された積層電池素子10が2つ存在し、これらが直列で連結されている(連結の態様については図示せず)。支持板7には5つの貫通孔8が設けられており、そのうちの1つは支持板7の中央部付近にある。
次に、図4に示す態様では、積層電池素子10が4つ存在する場合である。図3の場合と同様に、支持板7には5つの貫通孔8が設けられており、そのうちの1つは支持板7の中央部付近にある。
Hereinafter, various aspects of the position of the through hole 8 in the present invention will be described with specific examples.
First, FIG. 3 is a perspective view of the all solid state battery of the present invention as seen from the electrode side as in FIG. In this aspect, there are two stacked battery elements 10 in which a plurality of all solid state battery elements are connected, and these are connected in series (the connection aspect is not shown). The support plate 7 is provided with five through holes 8, one of which is near the center of the support plate 7.
Next, in the aspect shown in FIG. 4, there are four laminated battery elements 10. As in the case of FIG. 3, the support plate 7 is provided with five through holes 8, one of which is near the center of the support plate 7.

本発明の全固体電池の別の態様について図5を用いて説明する。図5では少なくとも一方の支持板7の固体電解質層の反対側に、貫通孔を有する圧力供給板11と、支持板の中央部に該支持板と該圧力供給板とで挟持された押し付け部12を有し、各支持板の対応する貫通孔及び圧力供給板の貫通孔8を介して支持板7及び圧力供給板11が連結・緊締されることによって全固体電池素子に1.5〜200MPaの圧力が印加されることを特徴とする。
図5に示される本発明の全固体電池は、押し付け部12が支持板7の中央部に位置するため、上記連結・緊締により、全固体電池の中央部に特に強い圧力を印加することができる。従って、電池中央部での電池の膨れを抑制することができ、固体電解質層の全面に対して平準な加圧が可能となる。
Another embodiment of the all solid state battery of the present invention will be described with reference to FIG. In FIG. 5, a pressure supply plate 11 having a through hole on the opposite side of the solid electrolyte layer of at least one support plate 7 and a pressing portion 12 sandwiched between the support plate and the pressure supply plate at the center of the support plate. And the support plate 7 and the pressure supply plate 11 are connected and tightened via the corresponding through hole of each support plate and the through hole 8 of the pressure supply plate, whereby the all solid state battery element has a pressure of 1.5 to 200 MPa. A pressure is applied.
In the all solid state battery of the present invention shown in FIG. 5, the pressing portion 12 is located at the center part of the support plate 7, so that particularly strong pressure can be applied to the center part of the all solid state battery by the connection and tightening. . Therefore, the swelling of the battery at the center of the battery can be suppressed, and leveling pressure can be applied to the entire surface of the solid electrolyte layer.

ここで用いられる貫通孔を有する圧力供給板11の材料としては特に制限はないが、押し付け部12によって加圧時に湾曲することがあるため、加圧時に割れやひびが生じない柔軟性、また、十分な圧力をかけ得る強度が必要である。以上の観点から、樹脂材料、硬質ゴム、エラストマー、金属及びこれらの複合体が挙げられる。
また、圧力供給板11の形状については、支持板7と貫通孔8を介して連結・緊締されれば特に制限はなく、支持板7と同様の形状でもよいし、また図7に示すように対角線の貫通孔を結ぶような形状であってもよい。
Although there is no restriction | limiting in particular as a material of the pressure supply board 11 which has a through-hole used here, Since it may bend at the time of pressurization by the pressing part 12, the softness | flexibility which a crack and a crack do not produce at the time of pressurization, The strength that can apply sufficient pressure is required. From the above viewpoint, resin materials, hard rubbers, elastomers, metals, and composites thereof can be mentioned.
The shape of the pressure supply plate 11 is not particularly limited as long as it is connected and tightened via the support plate 7 and the through hole 8, and may have the same shape as the support plate 7, as shown in FIG. It may be shaped to connect diagonal through holes.

押し付け部12についても、その材料については特に制限はなく、加圧しても割れないものであれば種々の樹脂、ゴム、金属等を用いることができる。また、押し付け部12の形状についても特に制限されず、例えば、圧力供給板11の一部であって突起形状を有していてもよいし、圧力供給板11とは独立して存在する球状体等であってもよい。また、図6に示すようにボルト形状であって、それ自体で圧力を制御できるものであってもよい。   The material of the pressing portion 12 is not particularly limited, and various resins, rubbers, metals, and the like can be used as long as they do not crack even when pressed. Further, the shape of the pressing portion 12 is not particularly limited. For example, the pressing portion 12 may be a part of the pressure supply plate 11 and may have a protruding shape, or a spherical body that exists independently of the pressure supply plate 11. Etc. Moreover, as shown in FIG. 6, it may be a bolt shape and the pressure can be controlled by itself.

本発明で使用する固体電解質としては特に限定されないが、高出力電池であるとの観点からリチウムイオン伝導性固体電解質が好ましい。リチウムイオン伝導性固体電解質を構成する物質は、特に限定されず、有機化合物、無機化合物、あるいは有機・無機両化合物からなる材料を用いることができ、リチウムイオン電池分野で公知のものが使用できる。   Although it does not specifically limit as a solid electrolyte used by this invention, A lithium ion conductive solid electrolyte is preferable from a viewpoint that it is a high output battery. The substance which comprises a lithium ion conductive solid electrolyte is not specifically limited, The material which consists of an organic compound, an inorganic compound, or both organic and inorganic compounds can be used, A well-known thing can be used in the lithium ion battery field | area.

リチウムイオン伝導性固体電解質の中でも、リチウムイオン伝導性が高いことから、硫化リチウムと五硫化二燐、又は硫化リチウムと単体燐及び単体硫黄、さらには硫化リチウム、五硫化二燐、単体燐及び/又は単体硫黄から生成するリチウムイオン伝導性無機固体電解質を使用することが好ましい。以下、好ましい固体電解質について説明する。   Among lithium ion conductive solid electrolytes, since lithium ion conductivity is high, lithium sulfide and diphosphorus pentasulfide, or lithium sulfide and simple phosphorus and simple sulfur, lithium sulfide, diphosphorus pentasulfide, simple phosphorus and / or Alternatively, it is preferable to use a lithium ion conductive inorganic solid electrolyte generated from simple sulfur. Hereinafter, a preferable solid electrolyte will be described.

硫化物系無機固体電解質は、硫化リチウムと、五硫化二燐(P25)及び/又は、単体燐及び単体硫黄から製造することができる。具体的には、後に詳述するように、これらの原料を溶融反応させた後、急冷することにより製造できる。また、これらの原料をメカニカルミリング法(以下、MM法と示すことがある。)により処理して得られる硫化物ガラス、あるいはこれを加熱処理したものである。 The sulfide-based inorganic solid electrolyte can be produced from lithium sulfide and diphosphorus pentasulfide (P 2 S 5 ) and / or simple phosphorus and simple sulfur. Specifically, as described in detail later, these raw materials can be melt-reacted and then rapidly cooled. In addition, sulfide glass obtained by treating these raw materials by a mechanical milling method (hereinafter, sometimes referred to as MM method), or a heat-treated product thereof.

硫化リチウムは、特に制限なく工業的に入手可能なものが使用できるが、以下に説明するように高純度のものが好ましい。
すなわち、硫化リチウムは、少なくとも硫黄酸化物のリチウム塩の総含有量が0.15質量%以下、好ましくは0.1質量%以下であり、かつN−メチルアミノ酪酸リチウムの含有量が0.15質量%以下、好ましくは0.1質量%以下である。硫黄酸化物のリチウム塩の総含有量が0.15質量%以下であると、後記する溶融急冷法やメカニカルミリング法で得られる固体電解質は、ガラス状電解質(完全非晶質)である。即ち、硫黄酸化物のリチウム塩の総含有量が0.15質量%を越えると、得られる電解質は、最初から結晶化物であり、この結晶化物のイオン伝導度は低い。さらに、この結晶化物について下記の熱処理を施しても結晶化物には変化がなく、高イオン伝導度のリチウムイオン伝導性無機固体電解質を得ることはできない。
As lithium sulfide, those commercially available without limitation can be used, but those having high purity are preferable as described below.
That is, lithium sulfide has a total content of at least a lithium salt of sulfur oxide of 0.15% by mass or less, preferably 0.1% by mass or less, and a content of lithium N-methylaminobutyrate of 0.15%. It is not more than mass%, preferably not more than 0.1 mass%. When the total content of the lithium salt of sulfur oxide is 0.15% by mass or less, the solid electrolyte obtained by the melt quenching method or the mechanical milling method described later is a glassy electrolyte (fully amorphous). That is, when the total content of the lithium salt of sulfur oxide exceeds 0.15% by mass, the obtained electrolyte is a crystallized product from the beginning, and the ionic conductivity of this crystallized product is low. Furthermore, even if the crystallized product is subjected to the following heat treatment, the crystallized product is not changed, and a lithium ion conductive inorganic solid electrolyte having a high ion conductivity cannot be obtained.

また、N−メチルアミノ酪酸リチウムの含有量が0.15質量%以下であると、N−メチルアミノ酪酸リチウムの劣化物がリチウム電池のサイクル性能を低下させることがない。
このように、高イオン伝導性電解質を得るためには、不純物が低減された硫化リチウムを用いる必要がある。
Further, when the content of lithium N-methylaminobutyrate is 0.15% by mass or less, the deteriorated product of lithium N-methylaminobutyrate does not deteriorate the cycle performance of the lithium battery.
Thus, in order to obtain a high ion conductive electrolyte, it is necessary to use lithium sulfide with reduced impurities.

高イオン伝導性電解質の製造に用いられる硫化リチウムの製造法としては、少なくとも上記不純物を低減できる方法であれば特に制限はない。
例えば、次の方法で製造された硫化リチウムを精製することにより得ることもできる。
以下の製造法の中では、特にa又はbの方法が好ましい。
a.非プロトン性有機溶媒中で水酸化リチウムと硫化水素とを0〜150℃で反応させて水硫化リチウムを生成し、次いでこの反応液を150〜200℃で脱硫化水素化する方法(特開平7−330312号公報)。
b.非プロトン性有機溶媒中で水酸化リチウムと硫化水素とを150〜200℃で反応させ、直接硫化リチウムを生成する方法(特開平7−330312号公報)。
c.水酸化リチウムとガス状硫黄源を130〜445℃の温度で反応させる方法(特開平9−283156号公報)。
The method for producing lithium sulfide used for producing the high ion conductive electrolyte is not particularly limited as long as it is a method that can reduce at least the impurities.
For example, it can also be obtained by purifying lithium sulfide produced by the following method.
Among the following production methods, the method a or b is particularly preferable.
a. A method in which lithium hydroxide and hydrogen sulfide are reacted at 0 to 150 ° C. in an aprotic organic solvent to produce lithium hydrosulfide, and this reaction solution is then desulfurized at 150 to 200 ° C. -330312).
b. A method of directly producing lithium sulfide by reacting lithium hydroxide and hydrogen sulfide at 150 to 200 ° C. in an aprotic organic solvent (Japanese Patent Laid-Open No. 7-330312).
c. A method of reacting lithium hydroxide and a gaseous sulfur source at a temperature of 130 to 445 ° C. (Japanese Patent Laid-Open No. 9-283156).

上記のようにして得られた硫化リチウムの精製方法としては、特に制限はない。好ましい精製法としては、例えば、国際公開WO2005/40039号等に記載の方法が挙げられる。
具体的には、上記のようにして得られた硫化リチウムを、有機溶媒を用い、100℃以上の温度で洗浄する。洗浄に用いる有機溶媒は、非プロトン性極性溶媒であることが好ましく、さらに、硫化リチウム製造に使用する非プロトン性有機溶媒と洗浄に用いる非プロトン性極性有機溶媒とが同一であることがより好ましい。
There is no restriction | limiting in particular as a purification method of the lithium sulfide obtained as mentioned above. As a preferable purification method, for example, the method described in International Publication No. WO2005 / 40039 and the like can be mentioned.
Specifically, the lithium sulfide obtained as described above is washed at a temperature of 100 ° C. or higher using an organic solvent. The organic solvent used for washing is preferably an aprotic polar solvent, and more preferably, the aprotic organic solvent used for lithium sulfide production and the aprotic polar organic solvent used for washing are the same. .

洗浄に好ましく用いられる非プロトン性極性有機溶媒としては、例えば、アミド化合物、ラクタム化合物、尿素化合物、有機硫黄化合物、環式有機リン化合物等の非プロトン性の極性有機化合物が挙げられ、単独溶媒、又は混合溶媒として好適に使用することができる。特に、N−メチル−2−ピロリドン(NMP)は、良好な溶媒に選択される。
洗浄に使用する有機溶媒の量は特に限定されず、また、洗浄の回数も特に限定されないが、2回以上であることが好ましい。洗浄は、窒素、アルゴン等の不活性ガス下で行うことが好ましい。
Examples of the aprotic polar organic solvent preferably used for washing include aprotic polar organic compounds such as amide compounds, lactam compounds, urea compounds, organic sulfur compounds, cyclic organophosphorus compounds, Or it can use suitably as a mixed solvent. In particular, N-methyl-2-pyrrolidone (NMP) is selected as a good solvent.
The amount of the organic solvent used for washing is not particularly limited, and the number of times of washing is not particularly limited, but is preferably 2 or more. Cleaning is preferably performed under an inert gas such as nitrogen or argon.

洗浄された硫化リチウムを、洗浄に使用した有機溶媒の沸点以上の温度で、窒素等の不活性ガス気流下、常圧又は減圧下で、5分以上、好ましくは約2〜3時間以上乾燥することにより、本発明で好適に用いられる硫化リチウムを得ることができる。
次に、P25は、工業的に製造され、販売されているものであれば、特に限定なく使用することができる。尚、P25に代えて、相当するモル比の単体リン(P)及び単体硫黄(S)を用いることもできる。単体リン(P)及び単体硫黄(S)は、工業的に生産され、販売されているものであれば、特に限定なく使用することができる。
上記硫化リチウムと、五硫化二燐又は単体燐及び単体硫黄の混合モル比は、通常50:50〜80:20、好ましくは60:40〜75:25である。
特に好ましくは、Li2S:P25=68:32〜74:26(モル比)程度である。
The washed lithium sulfide is dried at a temperature equal to or higher than the boiling point of the organic solvent used for washing for 5 minutes or more, preferably about 2 to 3 hours or more under an inert gas stream such as nitrogen under normal pressure or reduced pressure. Thus, lithium sulfide suitably used in the present invention can be obtained.
Next, P 2 S 5 can be used without particular limitation as long as it is industrially manufactured and sold. In place of P 2 S 5 , elemental phosphorus (P) and elemental sulfur (S) in a corresponding molar ratio can also be used. Simple phosphorus (P) and simple sulfur (S) can be used without particular limitation as long as they are industrially produced and sold.
The mixing molar ratio of the lithium sulfide to diphosphorus pentasulfide or simple phosphorus and simple sulfur is usually 50:50 to 80:20, preferably 60:40 to 75:25.
Particularly preferably, it is about Li 2 S: P 2 S 5 = 68: 32 to 74:26 (molar ratio).

本発明において、固体電解質としては、ガラス状固体電解質及び結晶成分を含有する固体電解質の両方が使用できる。必要とする特性に合わせて種類を選定すればよい。また、両方を使用してもよい。   In the present invention, as the solid electrolyte, both a glassy solid electrolyte and a solid electrolyte containing a crystal component can be used. The type should be selected according to the required characteristics. Both may be used.

ガラス状電解質である硫化物ガラスの製造方法としては、例えば、溶融急冷法やメカニカルミリング法が挙げられる。
溶融急冷法による場合、P25とLi2Sを所定量乳鉢にて混合し、ペレット状にしたものをカーボンコートした石英管中に入れ真空封入する。所定の反応温度で反応させた後、氷中に投入し急冷することにより、硫化物ガラスが得られる。
この際の反応温度は、好ましくは400℃〜1000℃、より好ましくは、800℃〜900℃である。また、反応時間は、好ましくは0.1時間〜12時間、より好ましくは、1〜12時間である。上記反応物の急冷温度は、通常10℃以下、好ましくは0℃以下であり、その冷却速度は1〜10000K/sec程度、好ましくは1〜1000K/secである。
Examples of the method for producing a sulfide glass that is a glassy electrolyte include a melt quenching method and a mechanical milling method.
In the case of the melt quenching method, a predetermined amount of P 2 S 5 and Li 2 S are mixed in a mortar, and the pellets are placed in a carbon-coated quartz tube and sealed in a vacuum. After reacting at a predetermined reaction temperature, the glass is put into ice and quenched to obtain a sulfide glass.
The reaction temperature at this time is preferably 400 ° C to 1000 ° C, more preferably 800 ° C to 900 ° C. Moreover, reaction time becomes like this. Preferably it is 0.1 to 12 hours, More preferably, it is 1 to 12 hours. The quenching temperature of the reaction product is usually 10 ° C. or lower, preferably 0 ° C. or lower, and the cooling rate is about 1 to 10,000 K / sec, preferably 1 to 1000 K / sec.

MM法による場合、P25とLi2Sを所定量乳鉢にて混合し、メカニカルミリング法にて所定時間反応させることにより、硫化物ガラスが得られる。
上記原料を用いたメカニカルミリング法は、室温で反応を行うことができる。MM法によれば、室温でガラス状電解質を製造できるため、原料の熱分解が起らず、仕込み組成のガラス状電解質を得ることができるという利点がある。また、MM法では、ガラス状電解質の製造と同時に、ガラス状電解質を微粉末化できるという利点もある。
In the case of the MM method, sulfide glass is obtained by mixing a predetermined amount of P 2 S 5 and Li 2 S in a mortar and reacting them for a predetermined time by a mechanical milling method.
The mechanical milling method using the above raw materials can be reacted at room temperature. According to the MM method, since a glassy electrolyte can be produced at room temperature, there is an advantage that a raw material is not thermally decomposed and a glassy electrolyte having a charged composition can be obtained. Further, the MM method has an advantage that the glassy electrolyte can be made into fine powder simultaneously with the production of the glassy electrolyte.

MM法は種々の形式の粉砕法を用いることができるが、遊星型ボールミルを使用するのが特に好ましい。遊星型ボールミルは、ポットが自転回転しながら、台盤が公転回転し、非常に高い衝撃エネルギーを効率良く発生させることができる。
MM法の回転速度及び回転時間は特に限定されないが、回転速度が速いほど、ガラス状電解質の生成速度は速くなり、回転時間が長いほどガラス質状電解質ヘの原料の転化率は高くなる。MM法の条件としては、例えば、遊星型ボールミル機を使用した場合、回転速度を数十〜数百回転/分とし、0.5時間〜100時間処理すればよい。
以上、溶融急冷法及びMM法による硫化物ガラスの具体例を説明したが、温度条件や処理時間等の製造条件は、使用設備等に合わせて適宜調整することができる。
Although various types of pulverization methods can be used for the MM method, it is particularly preferable to use a planetary ball mill. The planetary ball mill can efficiently generate very high impact energy by rotating the platform while the pot rotates.
Although the rotation speed and rotation time of the MM method are not particularly limited, the faster the rotation speed, the faster the glassy electrolyte production rate, and the longer the rotation time, the higher the conversion rate of the raw material into the glassy electrolyte. As conditions for the MM method, for example, when a planetary ball mill is used, the rotational speed may be set to several tens to several hundreds of revolutions / minute, and the treatment may be performed for 0.5 hours to 100 hours.
Although specific examples of the sulfide glass by the melt quenching method and the MM method have been described above, manufacturing conditions such as temperature conditions and processing time can be appropriately adjusted according to the equipment used.

このようにして得られた電解質は、ガラス状電解質であり、通常、イオン伝導度は1.0×10-5〜8.0×10-4(S/cm)程度である。 The electrolyte thus obtained is a glassy electrolyte and usually has an ionic conductivity of about 1.0 × 10 −5 to 8.0 × 10 −4 (S / cm).

その後、得られた硫化物ガラスを所定の温度で熱処理することにより、結晶成分を含有する固体電解質が生成する。
このような固体電解質を生成させる熱処理温度は、好ましくは190℃〜340℃、より好ましくは、195℃〜335℃、特に好ましくは、200℃〜330℃である。190℃より低いと高イオン伝導性の結晶が得られにくい場合があり、340℃より高いとイオン伝導性の低い結晶が生じる恐れがある。
熱処理時間は、190℃以上220℃以下の温度の場合は、3〜240時間が好ましく、特に4〜230時間が好ましい。また、220℃より高く340℃以下の温度の場合は、0.1〜240時間が好ましく、特に0.2〜235時間が好ましく、さらに、0.3〜230時間が好ましい。熱処理時間が0.1時間より短いと、高イオン伝導性の結晶が得られにくい場合があり、240時間より長いと、イオン伝導性の低い結晶が生じる恐れがある。
このようにして得られた、結晶成分を含有するリチウムイオン伝導性無機固体電解質は、通常、イオン伝導度は、7.0×10-4〜5.0×10-3(S/cm)程度である。
Thereafter, the obtained sulfide glass is heat-treated at a predetermined temperature to produce a solid electrolyte containing a crystal component.
The heat treatment temperature for producing such a solid electrolyte is preferably 190 ° C to 340 ° C, more preferably 195 ° C to 335 ° C, and particularly preferably 200 ° C to 330 ° C. When the temperature is lower than 190 ° C., it may be difficult to obtain a crystal with high ion conductivity. When the temperature is higher than 340 ° C., a crystal with low ion conductivity may be generated.
In the case of a temperature of 190 ° C. or higher and 220 ° C. or lower, the heat treatment time is preferably 3 to 240 hours, particularly preferably 4 to 230 hours. Moreover, in the case of the temperature higher than 220 degreeC and 340 degrees C or less, 0.1 to 240 hours are preferable, 0.2 to 235 hours are especially preferable, Furthermore, 0.3 to 230 hours are preferable. If the heat treatment time is shorter than 0.1 hour, a crystal having high ion conductivity may be difficult to obtain, and if it is longer than 240 hours, a crystal having low ion conductivity may be generated.
The lithium ion conductive inorganic solid electrolyte containing the crystal component thus obtained usually has an ionic conductivity of about 7.0 × 10 −4 to 5.0 × 10 −3 (S / cm). It is.

この結晶成分を含有するリチウムイオン伝導性無機固体電解質は、X線回折(CuKα:λ=1.5418A)において、2θ=17.8±0.3deg,18.2±0.3deg,19.8±0.3deg,21.8±0.3deg,23.8±0.3deg,25.9±0.3deg,29.5±0.3deg,30.0±0.3degに回折ピークを有することが好ましい。このような結晶構造を有する固体電解質が、極めて高いリチウムイオン伝導性を有する。   The lithium ion conductive inorganic solid electrolyte containing this crystal component is 2θ = 17.8 ± 0.3 deg, 18.2 ± 0.3 deg, 19.8 in X-ray diffraction (CuKα: λ = 1.5418A). Have diffraction peaks at ± 0.3 deg, 21.8 ± 0.3 deg, 23.8 ± 0.3 deg, 25.9 ± 0.3 deg, 29.5 ± 0.3 deg, 30.0 ± 0.3 deg Is preferred. A solid electrolyte having such a crystal structure has extremely high lithium ion conductivity.

また、本発明で使用するリチウムイオン伝導性無機固体電解質としては、リチウム(Li)元素、リン(P)元素及び硫黄(S)元素を含有する固体電解質であって、下記(1)及び(2)の条件を満たすものも好ましい。
(1)固体電解質の固体31P−NMRスペクトルが、90.9±0.4ppm及び86.5±0.4ppmに、結晶に起因するピークを有する。
(2)固体電解質に占める(1)のピークを生じる結晶の比率(Xc)が60mol%〜100mol%である。
The lithium ion conductive inorganic solid electrolyte used in the present invention is a solid electrolyte containing a lithium (Li) element, a phosphorus (P) element and a sulfur (S) element, and the following (1) and (2 Those satisfying the condition of) are also preferable.
(1) The solid 31 P-NMR spectrum of the solid electrolyte has peaks due to crystals at 90.9 ± 0.4 ppm and 86.5 ± 0.4 ppm.
(2) The ratio (Xc) of crystals that give rise to the peak of (1) in the solid electrolyte is 60 mol% to 100 mol%.

条件(1)の2つのピークは、高イオン伝導性結晶成分が固体電解質に存在する場合に観測されるものである。具体的には、結晶中のP27 4-とPS4 3-に起因するピークである。
条件(2)は、固体電解質中に占める上記結晶の比率Xcを規定するものである。固体電解質中において高イオン伝導性の結晶成分が所定量以上、具体的には60mol%以上存在すると、リチウムイオンが高イオン伝導性の結晶を主に移動するようになる。従って、固体電解質中の非結晶部分(ガラス部分)や、高イオン伝導性を示さない結晶格子(例えば、P26 4-)を移動する場合に比べて、リチウムイオン伝導度が向上する。比率Xcは65mol%〜100mol%であることが好ましい。上記結晶の比率Xcは、原料である硫化物ガラスの熱処理時間及び温度を調整することにより制御できる。
The two peaks of condition (1) are observed when a high ion conductive crystal component is present in the solid electrolyte. Specifically, it is a peak due to P 2 S 7 4- and PS 4 3- in the crystal.
Condition (2) defines the ratio Xc of the crystal in the solid electrolyte. When a high ion conductive crystal component is present in a predetermined amount or more, specifically 60 mol% or more in the solid electrolyte, lithium ions move mainly through the high ion conductive crystal. Accordingly, the lithium ion conductivity is improved as compared with the case of moving a non-crystalline portion (glass portion) in the solid electrolyte or a crystal lattice (for example, P 2 S 6 4− ) that does not exhibit high ion conductivity. The ratio Xc is preferably 65 mol% to 100 mol%. The crystal ratio Xc can be controlled by adjusting the heat treatment time and temperature of the sulfide glass as a raw material.

尚、固体31P−NMRスペクトルの測定は、例えば、日本電子株式会社製のJNM−CMXP302NMR装置を使用して、観測核を31P、観測周波数を121.339MHz、測定温度を室温、測定法をMAS法として行なう。 The solid 31 P-NMR spectrum can be measured, for example, using a JNM-CMXP302 NMR apparatus manufactured by JEOL Ltd., with an observation nucleus of 31 P, an observation frequency of 121.339 MHz, a measurement temperature of room temperature, and a measurement method. Performed as MAS method.

比率Xcの測定方法は、固体31P−NMRスペクトルについて、70〜120ppmに観測される共鳴線を、非線形最小二乗法を用いてガウス曲線に分離し、各曲線の面積比から算出する。詳細は特願2005−356889を参照すればよい。 The method for measuring the ratio Xc is to calculate a resonance line observed at 70 to 120 ppm into a Gaussian curve using a nonlinear least square method and calculate from the area ratio of each curve for the solid 31 P-NMR spectrum. For details, refer to Japanese Patent Application No. 2005-356889.

この固体電解質では、固体7Li−NMR法で測定される室温(25℃)におけるスピン−格子緩和時間T1Liが400ms以下であることが好ましい。緩和時間T1Liは、ガラス状態又は結晶状態とガラス状態を含む固体電解質内における分子運動性の指標となり、T1Liが短いと分子運動性が高くなる。従って、放電時におけるリチウムイオンの拡散がし易いため、イオン伝導度が高くなる。本発明においては、上述したように、高イオン伝導性の結晶成分が所定量以上含むため、T1Liを400ms以下にできる。T1Liは、好ましくは350ms以下である。 This solid electrolyte, spin at room temperature (25 ° C.) as measured by solid 7 Li-NMR method - is preferably lattice relaxation time T 1Li is less than 400 ms. The relaxation time T 1Li is an index of molecular mobility in a solid electrolyte including a glass state or a crystalline state and a glass state, and when T 1Li is short, the molecular mobility increases. Accordingly, since lithium ions are easily diffused during discharge, the ion conductivity is increased. In the present invention, as described above, since a high ion conductive crystal component is contained in a predetermined amount or more, T 1Li can be 400 ms or less. T 1Li is preferably 350 ms or less.

尚、7Liのスピン−格子緩和時間T1Liは、例えば以下のようにして求めることができる。
日本電子株式会社製のJNM−CMXP302NMR装置を使用して、下記の条件で測定すると0−1ppmの範囲にピークがある7Li−NMRスペクトルが得られる。
・NMR測定条件
観測核 :7Li
観測周波数:116.489MHz
測定温度 :室温(25℃)
測定法 :飽和回復法(パルス系列:特願2005−356889の図7参照)
90°パルス幅:4μs
マジック角回転の回転数:6000Hz
FID測定後、次のパルス印加までの待ち時間:5s
積算回数:64回
化学シフトは、外部基準としてLiBr(化学シフト−2.04ppm)を用いて決定する。
The 7 Li spin-lattice relaxation time T 1Li can be determined, for example, as follows.
When a JNM-CMXP302 NMR apparatus manufactured by JEOL Ltd. is used and measured under the following conditions, a 7 Li-NMR spectrum having a peak in the range of 0-1 ppm is obtained.
・ NMR measurement conditions Observation nucleus: 7 Li
Observation frequency: 116.489 MHz
Measurement temperature: Room temperature (25 ° C)
Measurement method: Saturation recovery method (Pulse sequence: see FIG. 7 of Japanese Patent Application No. 2005-356889)
90 ° pulse width: 4μs
Magic angle rotation speed: 6000Hz
Wait time until the next pulse application after FID measurement: 5s
Accumulation count: 64 times The chemical shift is determined using LiBr (chemical shift-2.04 ppm) as an external reference.

特願2005−356889の図7におけるτを変化させて測定を行った時に得られるこのピークの強度の変化を、非線形最小二乗法を用いて、以下の式に最適化することによりT1Liを決定する。

Figure 2008103284
M(τ):τのときのピーク強度 T 1Li is determined by optimizing the change in the intensity of this peak obtained when measurement is performed by changing τ in FIG. 7 of Japanese Patent Application No. 2005-356889 using the nonlinear least square method. To do.
Figure 2008103284
M (τ): Peak intensity at τ

この固体電解質は、少なくとも10V以上の分解電圧を持つ。また、リチウムイオン輸率が1であるという特性を保持しつつ、室温において10-3S/cm台という極めて高いリチウムイオン伝導性を示す。従って、リチウム電池の固体電解質用の材料として極めて適している。また、耐熱性の優れた固体電解質である。 This solid electrolyte has a decomposition voltage of at least 10V or more. Further, while maintaining the property that the lithium ion transport number is 1, it exhibits extremely high lithium ion conductivity of 10 −3 S / cm level at room temperature. Therefore, it is extremely suitable as a material for a solid electrolyte of a lithium battery. Moreover, it is a solid electrolyte excellent in heat resistance.

本発明にかかる全固体電池素子は電解質層、正極及び負極からなり、必要に応じて集電体を有する。
電解質層は、例えば、粒子状のリチウムイオン伝導性固体物質を、ブラスト法やエアロゾルデポジション法にて製膜することで製造できる。また、コールドスプレー法、スパッタリング法、気相成長法(Chemical Vapor Deposition:CVD)又は溶射法等でもリチウムイオン伝導性固体物質の製膜が可能である。
更に、固体電解質と溶媒やバインダー(結着材や高分子化合物等)を混合させた溶液を塗布、塗工した後、溶媒を除去し成膜化する方法もある。又、固体電解質自体や固体電解質とバインダー(結着材や高分子化合物等)や支持体(固体電解質層の強度を補強させたり、固体電解質自体の短絡を防ぐための材料や化合物等)を混合・組合せた電解質を加圧プレスすることで成膜することも可能である。
簡便な装置や室温条件下、固体電解質の状態を変化させない温度範囲で製膜できることから、上述のブラスト法やエアロゾルデポジション法が好ましい。
電解質層の膜厚は、1〜500μmの範囲が好ましく、より好ましくは1〜50μmであり、特に好ましくは1〜30μmである。
The all-solid-state battery element concerning this invention consists of an electrolyte layer, a positive electrode, and a negative electrode, and has a collector as needed.
The electrolyte layer can be produced, for example, by forming a particulate lithium ion conductive solid material by a blast method or an aerosol deposition method. Also, a lithium ion conductive solid material can be formed by a cold spray method, a sputtering method, a vapor deposition method (CVD), a thermal spraying method, or the like.
Further, there is a method in which a solution in which a solid electrolyte is mixed with a solvent and a binder (such as a binder and a polymer compound) is applied and applied, and then the solvent is removed to form a film. Also, the solid electrolyte itself, solid electrolyte and binder (binder, polymer compound, etc.) and support (materials and compounds to reinforce the strength of the solid electrolyte layer and prevent short circuit of the solid electrolyte itself) are mixed -It is also possible to form a film by pressing the combined electrolyte under pressure.
The blasting method and the aerosol deposition method described above are preferable because a film can be formed in a temperature range that does not change the state of the solid electrolyte under a simple apparatus and room temperature conditions.
The thickness of the electrolyte layer is preferably in the range of 1 to 500 μm, more preferably 1 to 50 μm, and particularly preferably 1 to 30 μm.

本発明では集電体として、銅、マグネシウム、ステンレス鋼、チタン、鉄、コバルト、ニッケル、亜鉛、アルミニウム、ゲルマニウム、インジウム、リチウム、又は、これらの合金等からなる板状体や箔状体等が使用できる。   In the present invention, the current collector is a plate or foil made of copper, magnesium, stainless steel, titanium, iron, cobalt, nickel, zinc, aluminum, germanium, indium, lithium, or an alloy thereof. Can be used.

全固体電池の部材である固体状の電極材料(極材)においては、電子伝導性に加えてイオン伝導度を向上させるため、極材の粒子同士が密着し、粒子間の接合点や面を多く存在させ、イオン伝導パスをより多く確保することが重要である。そのため、例えば、電解質等のイオン伝導活物質を混合し、極材とする方法が用いられる。又、極材粒子間の隙間に生じる空間(単位体積における空間体積と極材粒子の体積の割合:空隙率)が少ない程、極材層が密に詰まっており、イオン伝導度は高くなる。
本発明の電極は、上記極材(正極材又は負極材)を集電体の少なくとも一部に膜状に形成することで作製できる。製膜方法としては、上述した電池用部材の製造と同様、ブラスト法、エアロゾルデポジション法、コールドスプレー法、スパッタリング法、気相成長法又は溶射法等が挙げられる。このような方法により製膜することで、極材層の空隙率をより小さくすることができ、イオン伝導度を向上させることができる。
又、固体電解質層の製造法で記載されている他の同様の方法で電極層を製作することが可能である。
尚、簡便な装置や室温条件下、電解質の結晶状態を変化させない温度範囲で製膜できることから、ブラスト法やエアロゾルデポジション法、が好ましい。
In a solid electrode material (electrode material) that is a member of an all-solid battery, in order to improve ion conductivity in addition to electron conductivity, the particles of the electrode material are in close contact with each other, and the junction points and surfaces between the particles are determined. It is important to ensure that there are many ion conduction paths. Therefore, for example, a method of mixing an ion conductive active material such as an electrolyte to obtain an electrode material is used. Further, the smaller the space generated in the gaps between the polar material particles (the ratio of the volume of the polar material particles to the volume of the polar material particles: the porosity), the denser the polar material layer is and the higher the ionic conductivity.
The electrode of the present invention can be produced by forming the electrode material (positive electrode material or negative electrode material) in a film shape on at least a part of the current collector. Examples of the film forming method include a blast method, an aerosol deposition method, a cold spray method, a sputtering method, a vapor deposition method, and a thermal spray method, as in the production of the battery member described above. By forming a film by such a method, the porosity of the electrode material layer can be further reduced, and the ionic conductivity can be improved.
In addition, the electrode layer can be manufactured by other similar methods described in the method for manufacturing the solid electrolyte layer.
The blasting method and the aerosol deposition method are preferred because the film can be formed in a temperature range that does not change the crystal state of the electrolyte under a simple apparatus and room temperature conditions.

正極材としては、電池分野において正極活物質として使用されているものが使用できる。例えば、硫化物系では、硫化チタン(TiS2)、硫化モリブデン(MoS2)、硫化鉄(FeS、FeS2)、硫化銅(CuS)及び硫化ニッケル(Ni32)等が使用できる。
また、酸化物系では、酸化ビスマス(Bi23)、鉛酸ビスマス(Bi2Pb25)、酸化銅(CuO)、酸化バナジウム(V613)、コバルト酸リチウム(LiCoO2)、ニッケル酸リチウム(LiNiO2)、マンガン酸リチウム(LiMnO2)等、またはセレン化ニオブ(NbSe3)等が使用できる。尚、これらを混合して用いることも可能である。これらのうちコバルト酸リチウムが好ましい。
As a positive electrode material, what is used as a positive electrode active material in the battery field | area can be used. For example, the sulfide, titanium sulfide (TiS 2), molybdenum sulfide (MoS 2), iron sulfide (FeS, FeS 2), copper sulfide (CuS) and nickel sulfide (Ni 3 S 2) or the like can be used.
In the oxide system, bismuth oxide (Bi 2 O 3 ), bismuth leadate (Bi 2 Pb 2 O 5 ), copper oxide (CuO), vanadium oxide (V 6 O 13 ), lithium cobaltate (LiCoO 2 ) Lithium nickelate (LiNiO 2 ), lithium manganate (LiMnO 2 ), or niobium selenide (NbSe 3 ) can be used. It is also possible to use a mixture of these. Of these, lithium cobaltate is preferred.

また、導電助剤として、電子が正極活物質内で円滑に移動するようにするための電気的に導電性を有す物質を適宜添加してもよい。前記、電気的に導電性を有する物質としては特に限定しないが、アセチレンブラック、カーボンブラック、カーボンナノチューブのような導電性物質又はポリアニリン、ポリアセチレン、ポリピロールのような導電性高分子を単独又は混合して用いることができる。   Further, as a conductive assistant, a substance having electrical conductivity for allowing electrons to move smoothly in the positive electrode active material may be added as appropriate. The electrically conductive substance is not particularly limited, but a conductive substance such as acetylene black, carbon black and carbon nanotube or a conductive polymer such as polyaniline, polyacetylene and polypyrrole may be used alone or in combination. Can be used.

負極材としては、電池分野において負極活物質として使用されているものが使用できる。例えば、炭素材料、具体的には、人造黒鉛、黒鉛炭素繊維、樹脂焼成炭素、熱分解気相成長炭素、コークス、メソカーボンマイクロビーズ(MCMB)、フルフリルアルコール樹脂焼成炭素、ポリアセン、ピッチ系炭素繊維、気相成長炭素繊維、天然黒鉛及び難黒鉛化性炭素が挙げられる。又はその混合物でもよい。好ましくは、人造黒鉛である。
また、金属リチウム、金属インジウム、金属アルミ、金属ケイ素や、これらの金属自体や他の元素、化合物と組合わせた合金を、負極材としてもちいることができる。
更に、極材に電解質層で使用する固体電解物質を混合して使用してもよい。
As a negative electrode material, what is used as a negative electrode active material in the battery field | area can be used. For example, carbon materials, specifically artificial graphite, graphite carbon fiber, resin-fired carbon, pyrolytic vapor-grown carbon, coke, mesocarbon microbeads (MCMB), furfuryl alcohol resin-fired carbon, polyacene, pitch-based carbon Examples include fibers, vapor grown carbon fibers, natural graphite, and non-graphitizable carbon. Or it may be a mixture thereof. Preferably, it is artificial graphite.
In addition, metallic lithium, metallic indium, metallic aluminum, metallic silicon, or an alloy combined with these metals themselves, other elements, or compounds can be used as the negative electrode material.
Furthermore, you may mix and use the solid electrolyte material used for an electrolyte layer with an pole material.

本発明の全固体電池は、上述した本発明の電池用部材及び/又は電極各部材を貼り合せ、接合することで製造できる。接合する方法は、上述したように正極及び負極の固体電解質層と対峙しない側にある複数の貫通孔を有する2枚の支持板の対応する貫通孔を介して支持板を連結・緊締して加圧するとともに固定する。
なお、接合面にイオン伝導性を有する活物質や、イオン伝導性を阻害しない接着物質を介して接合してもよいし、接合においては、固体電解質の結晶構造が変化しない範囲で加熱融着してもよい。
The all-solid-state battery of the present invention can be produced by bonding and joining the above-described battery members and / or electrode members of the present invention. As described above, the bonding is performed by connecting and tightening the support plates through the corresponding through holes of the two support plates having a plurality of through holes on the side that does not face the positive and negative electrode solid electrolyte layers. Press and fix.
The bonding surface may be bonded via an active material having ionic conductivity or an adhesive that does not inhibit ionic conductivity. In the bonding, heat fusion is performed within a range in which the crystal structure of the solid electrolyte does not change. May be.

本発明の全固体電池は、上記の電池用部材及び/又は電極を接合したことにより実用レベルの全固体電池となる。
また、本発明の電池は薄型化が可能であるため、積層して高出力を得ることができる。さらに、高度の集積が可能である。
The all solid state battery of the present invention becomes a practical level all solid state battery by joining the battery members and / or electrodes.
Further, since the battery of the present invention can be thinned, it can be stacked to obtain a high output. Furthermore, a high degree of integration is possible.

本発明の全固体電池は樹脂等の外装材で被覆することができる。また、外装材として熱可塑性樹脂又は熱硬化性樹脂からなる外装体にさらに吸着材及び/又はアルカリ性物質含有材料で被覆したものを用いることができる。本発明の固体電池は固体電解質中に、水と反応して硫化水素を発生する可能性のある硫黄化合物を含有しているが、全固体電池が何らかの原因で破壊されたとしても、硫化水素を吸着材又はアルカリ性物質含有材料が捕捉して無害化することができる。
また、アルカリ性物質含有材料で被覆することに代え、外装体自体にアルカリ性物質を含有させることもできる。
The all solid state battery of the present invention can be covered with an exterior material such as a resin. Moreover, what coat | covered with the adsorbent and / or the alkaline substance containing material further to the exterior body which consists of a thermoplastic resin or a thermosetting resin as an exterior material can be used. The solid battery of the present invention contains a sulfur compound that may react with water to generate hydrogen sulfide in the solid electrolyte. Even if the all solid battery is destroyed for some reason, The adsorbent or the alkaline substance-containing material can be captured and detoxified.
Moreover, it can replace with coat | cover with an alkaline substance containing material, and can also make an exterior body itself contain an alkaline substance.

以下、本発明を実施例によってさらに具体的に説明する。
製造例
(1)硫化リチウム(Li2S)の製造
硫化リチウムは、特開平7−330312号公報の第1の態様(2工程法)の方法にしたがって製造した。具体的には、撹拌翼のついた10リットルオートクレーブにN−メチル−2−ピロリドン(NMP)3326.4g(33.6モル)及び水酸化リチウム287.4g(12モル)を仕込み、300rpm、130℃に昇温した。昇温後、液中に硫化水素を3リットル/分の供給速度で2時間吹き込んだ。続いてこの反応液を窒素気流下(200cc/分)昇温し、反応した硫化水素の一部を脱硫化水素化した。昇温するにつれ、上記硫化水素と水酸化リチウムの反応により副生した水が蒸発を始めたが、この水はコンデンサにより凝縮し系外に抜き出した。水を系外に留去すると共に反応液の温度は上昇するが、180℃に達した時点で昇温を停止し、一定温度に保持した。脱硫化水素反応が終了後(約80分)反応を終了し、硫化リチウムを得た。
Hereinafter, the present invention will be described more specifically with reference to examples.
Production Example (1) Production of Lithium Sulfide (Li 2 S) Lithium sulfide was produced according to the method of the first aspect (two-step method) of JP-A-7-330312. Specifically, N-methyl-2-pyrrolidone (NMP) 3326.4 g (33.6 mol) and lithium hydroxide 287.4 g (12 mol) were charged into a 10 liter autoclave equipped with a stirring blade, and 300 rpm, 130 The temperature was raised to ° C. After the temperature rise, hydrogen sulfide was blown into the liquid at a supply rate of 3 liters / minute for 2 hours. Subsequently, this reaction solution was heated in a nitrogen stream (200 cc / min) to dehydrosulfide a part of the reacted hydrogen sulfide. As the temperature increased, water produced as a by-product due to the reaction between hydrogen sulfide and lithium hydroxide started to evaporate, but this water was condensed by the condenser and extracted out of the system. While water was distilled out of the system, the temperature of the reaction solution rose, but when the temperature reached 180 ° C., the temperature increase was stopped and the temperature was kept constant. After the dehydrosulfurization reaction was completed (about 80 minutes), the reaction was completed to obtain lithium sulfide.

(2)硫化リチウムの精製
上記(1)で得られた500mLのスラリー反応溶液(NMP−硫化リチウムスラリー)中のNMPをデカンテーションした後、脱水したNMP 100mLを加え、105℃で約1時間撹拌した。その温度のままNMPをデカンテーションした。さらにNMP 100mLを加え、105℃で約1時間撹拌し、その温度のままNMPをデカンテーションし、同様の操作を合計4回繰り返した。デカンテーション終了後、窒素気流下230℃(NMPの沸点以上の温度)で硫化リチウムを常圧下で3時間乾燥した。得られた硫化リチウム中の不純物含有量を測定した。
(2) Purification of lithium sulfide After decanting NMP in the 500 mL slurry reaction solution (NMP-lithium sulfide slurry) obtained in (1) above, 100 mL of dehydrated NMP was added and stirred at 105 ° C. for about 1 hour. did. NMP was decanted at that temperature. Further, 100 mL of NMP was added, stirred at 105 ° C. for about 1 hour, NMP was decanted at that temperature, and the same operation was repeated a total of 4 times. After completion of the decantation, lithium sulfide was dried at 230 ° C. (temperature higher than the boiling point of NMP) under a nitrogen stream for 3 hours under normal pressure. The impurity content in the obtained lithium sulfide was measured.

尚、亜硫酸リチウム(Li2SO3)、硫酸リチウム(Li2SO4)並びにチオ硫酸リチウム(Li223)の各硫黄酸化物、及びN−メチルアミノ酪酸リチウム(LMAB)の含有量は、イオンクロマトグラフ法により定量した。その結果、硫黄酸化物の総含有量は0.13質量%であり、LMABは0.07質量%であった。
このようにして精製したLi2Sを、以下の実施例及び比較例で使用した。
Incidentally, lithium sulfite (Li 2 SO 3), the content of each sulfur oxide lithium sulfate (Li 2 SO 4) and lithium thiosulfate (Li 2 S 2 O 3) , and N- methylamino acid lithium (LMAB) Was quantified by ion chromatography. As a result, the total content of sulfur oxides was 0.13% by mass, and LMAB was 0.07% by mass.
The Li 2 S thus purified was used in the following examples and comparative examples.

実施例1
(1)固体電解質の製造
上記製造例にて製造したLi2SとP25(アルドリッチ製)を出発原料に用いた。これらを70対30のモル比に調製した混合物を約1gと粒径10mmΦのアルミナ製ボール10個とを45mLのアルミナ製容器に入れ、遊星型ボールミル(フリッチュ社製:型番P−7)にて、窒素中、室温(25℃)にて、回転速度を370rpmとし、20時間メカニカルミリング処理することで、白黄色の粉末である硫化物系ガラスを得た。
次いで、該硫化物系ガラス(焼成処理前の粉末)を、330℃、1時間熱処理し、硫化物系結晶化ガラス電解質を得た。室温(25℃)におけるイオン伝導度は、5.0×10-3S/cmであった。
また、該固体電解質の31P−NMRを測定した結果、結晶比率Xcは85mol%、緩和時間T1Liは240msであり、90.9±0.4ppm及び86.5±0.4ppmの位置にピークが存在した。
Example 1
(1) Production of solid electrolyte Li 2 S and P 2 S 5 (manufactured by Aldrich) produced in the above production examples were used as starting materials. About 1 g of the mixture prepared in a molar ratio of 70 to 30 and 10 alumina balls having a particle diameter of 10 mmΦ are put into a 45 mL alumina container, and a planetary ball mill (manufactured by Fritsch: Model No. P-7) is used. A sulfide-based glass that was a white-yellow powder was obtained by mechanical milling for 20 hours at a rotational speed of 370 rpm at room temperature (25 ° C.) in nitrogen.
Next, the sulfide-based glass (powder before firing treatment) was heat-treated at 330 ° C. for 1 hour to obtain a sulfide-based crystallized glass electrolyte. The ionic conductivity at room temperature (25 ° C.) was 5.0 × 10 −3 S / cm.
As a result of measuring 31 P-NMR of the solid electrolyte, the crystal ratio Xc was 85 mol%, the relaxation time T 1Li was 240 ms, and peaks were observed at 90.9 ± 0.4 ppm and 86.5 ± 0.4 ppm. Existed.

(2)正極層の製造
上記(1)で製造したガラスセラミックス固体電解質と正極活物質であるコバルト酸リチウムを質量比で5:8(固体電解質:コバルト酸リチウム)の割合で混合し、プレス成形機を用いて、厚さ2mm、10mmφのペレットを製造し、正極層とした。
(2) Production of positive electrode layer The glass ceramic solid electrolyte produced in (1) above and lithium cobalt oxide as the positive electrode active material are mixed at a mass ratio of 5: 8 (solid electrolyte: lithium cobaltate), and press molding is performed. Using a machine, pellets having a thickness of 2 mm and 10 mmφ were produced to form a positive electrode layer.

(3)負極層の製造
上記(1)で製造したガラスセラミックス固体電解質と負極活物質であるカーボングラファイトを質量比で1:1(固体電解質:カーボングラファイト)の割合で混合し、プレス成形機を用いて、厚さ2mm、10mmφのペレットを製造し、負極層とした。
(3) Production of negative electrode layer The glass ceramic solid electrolyte produced in (1) above and carbon graphite as the negative electrode active material are mixed at a mass ratio of 1: 1 (solid electrolyte: carbon graphite), and a press molding machine is used. Using this, pellets having a thickness of 2 mm and 10 mmφ were produced to form a negative electrode layer.

(4)固体電池素子の製造
厚さ0.3mmのSUS製の板材より、10mmφの円形板を2枚くりぬき、集電体とした。プレス機の内部に各電池材料を投入し、上下より1960MPa(20ton/cm2)の圧力を加えて、1セルの電池ユニット(固体電池素子)を製造した。
(4) Manufacture of solid battery element Two 10 mmφ circular plates were hollowed out from a SUS plate material having a thickness of 0.3 mm to obtain a current collector. Each battery material was put into the press machine, and a pressure of 1960 MPa (20 ton / cm 2 ) was applied from above and below to produce a battery unit (solid battery element) of 1 cell.

(5)ラミネート電池の製造
上記固体電池素子の集電体にSUS製の電極端子を溶接により接合し、これを防湿性多層フィルムでラミネートして、ラミネート電池を製造した。ラミネート電池の構造を図8に模式的に示す。ここでaは外装材である防湿性多層フィルムであって、厚さ7μmのアルミニウム箔の片側に厚さ12μmのポリエチレンテレフタレートフィルム、もう片側に厚さ70μmのポリプロピレンフィルムを熱融着することで得られた,厚さ89μmの防湿性多層フィルムを22cm×15cmに裁断して得たものである。bは負極層、cは正極層、dは固体電解質層、eは集電体、fはSUS製の電極端子、gは熱融着により封止するためのポリエチレン片である。
防湿性多層フィルムaの周囲を熱プレスし、ポリエチレン片を熱融解させ、防湿性多層フィルムaで電池を封止した。
このラミネート電池の初期充放電効率は82%であり、作動電位は3.3Vであった。
(5) Manufacture of Laminate Battery An electrode terminal made of SUS was joined to the current collector of the solid battery element by welding, and this was laminated with a moisture-proof multilayer film to manufacture a laminate battery. The structure of the laminate battery is schematically shown in FIG. Here, a is a moisture-proof multilayer film as an exterior material, obtained by heat-sealing a 12 μm thick polyethylene terephthalate film on one side of a 7 μm thick aluminum foil and a 70 μm thick polypropylene film on the other side. The obtained moisture-proof multilayer film having a thickness of 89 μm was cut into 22 cm × 15 cm. b is a negative electrode layer, c is a positive electrode layer, d is a solid electrolyte layer, e is a current collector, f is an electrode terminal made of SUS, and g is a polyethylene piece for sealing by thermal fusion.
The periphery of the moisture-proof multilayer film a was hot-pressed to heat-melt the polyethylene piece, and the battery was sealed with the moisture-proof multilayer film a.
The initial charge / discharge efficiency of this laminate battery was 82%, and the operating potential was 3.3V.

(6)全固体電池の製造
上記ラミネート電池を図9に示すように2個直列に接続し、厚さ5mmの2枚のアクリル板(支持板7)で挟んだ。ラミネート電池とアクリル板の間には印加圧力を測定するための感圧試験紙14を挟んだ。アクリル板には図9に示すように5つの貫通孔8が設けられており、ボルト、ナット、ワッシャー等の連結治具を用い、レンチを使用して、感圧試験紙14での測定で印加圧力が1.96MPa(20kg/cm2)となるように緊締した。
該全固体電池の初期充放電効率は80%であり、作動電位は6.5Vであった。また、充放電を50回繰り返しても良好な電池特性を示した。
(6) Manufacture of all-solid-state battery As shown in FIG. 9, two laminated batteries were connected in series and sandwiched between two acrylic plates (support plate 7) having a thickness of 5 mm. A pressure sensitive test paper 14 for measuring the applied pressure was sandwiched between the laminate battery and the acrylic plate. As shown in FIG. 9, the acrylic plate is provided with five through-holes 8, which are applied by measuring with pressure-sensitive test paper 14 using a wrench using a connecting jig such as a bolt, nut, or washer. Tightening was performed so that the pressure was 1.96 MPa (20 kg / cm 2 ).
The all-solid battery had an initial charge / discharge efficiency of 80% and an operating potential of 6.5V. Moreover, even if charging / discharging was repeated 50 times, good battery characteristics were exhibited.

比較例1
実施例1において、アクリル板を用いての連結・緊締をしなかったこと以外は実施例1と同様にして2つのラミネート電池を直列につなぎ、充放電特性を測定した。初期充放電効率は80%であり、作動電位は、6.5Vであった。15回充放電特性を測定した段階で、ラミネートフィルムの数箇所でガス発生による膨らみが生じ始めた。その後、充放電をくりかえしたところ、18回目の放電測定時に、極端な電池特性の劣化が観測され、19回目の充電ができない状態となった。
Comparative Example 1
In Example 1, two laminated batteries were connected in series in the same manner as in Example 1 except that the acrylic plate was not used for connection / tightening, and charge / discharge characteristics were measured. The initial charge / discharge efficiency was 80%, and the operating potential was 6.5V. At the stage where the charge / discharge characteristics were measured 15 times, bulging due to gas generation began to occur at several points on the laminate film. After that, when charging and discharging were repeated, extreme deterioration of battery characteristics was observed during the 18th discharge measurement, and the 19th charge was impossible.

本発明によれば、容易にかしめができ、イオン伝導性の高い全固体電池を安価に提供することができる。また、本発明の固体電池は、固体電解質層の全面に対して平準な加圧が可能であるため、電池中央部での電池の膨れを抑制することができる。また、繰り返しの充放電に対して、高い水準で電池特性を維持することができる。従って、ハイブリッド自動車などの自動車又はオートバイの駆動用、蓄電用、非常電源用、携帯電話、パーソナルコンピューター等の電源用として幅広い用途に好適に用いることができる。   According to the present invention, an all solid state battery that can be easily caulked and has high ion conductivity can be provided at low cost. In addition, since the solid battery of the present invention can apply uniform pressure to the entire surface of the solid electrolyte layer, it is possible to suppress battery swelling at the center of the battery. Further, the battery characteristics can be maintained at a high level against repeated charging and discharging. Therefore, it can be suitably used for a wide range of applications such as driving of automobiles such as hybrid cars or motorcycles, power storage, emergency power supplies, power supplies of mobile phones, personal computers and the like.

本発明の全固体電池の構造を示す模式図である。It is a schematic diagram which shows the structure of the all-solid-state battery of this invention. 本発明の全固体電池を電極側から見た模式図である。It is the schematic diagram which looked at the all-solid-state battery of this invention from the electrode side. 本発明の全固体電池を電極側から見た透視図である。It is the perspective view which looked at the all-solid-state battery of this invention from the electrode side. 本発明の全固体電池を電極側から見た透視図である。It is the perspective view which looked at the all-solid-state battery of this invention from the electrode side. 本発明の全固体電池の構造を示す模式図である。It is a schematic diagram which shows the structure of the all-solid-state battery of this invention. 本発明の全固体電池の構造を示す模式図である。It is a schematic diagram which shows the structure of the all-solid-state battery of this invention. 本発明の全固体電池を電極側から見た模式図である。It is the schematic diagram which looked at the all-solid-state battery of this invention from the electrode side. ラミネート電池の構造を示す模式図である。It is a schematic diagram which shows the structure of a laminated battery. 実施例1の全固体電池を電極側から見た透視図である。It is the perspective view which looked at the all-solid-state battery of Example 1 from the electrode side.

符号の説明Explanation of symbols

1:固体電池
2:集電体
3:正極
4:固体電解質の粉末
5:固体電解質層
6:負極
7:支持板
8:貫通孔
9:連結治具
10:積層電池素子
11:圧力供給板
12:押し付け部
13:ラミネート電池
14:感圧試験紙
X:中央部
a:防湿性多層フィルム
b:負極層
c:正極層
d:固体電解質層
e:集電体
f:電極端子
g:ポリエチレン片
DESCRIPTION OF SYMBOLS 1: Solid battery 2: Current collector 3: Positive electrode 4: Solid electrolyte powder 5: Solid electrolyte layer 6: Negative electrode 7: Support plate 8: Through hole 9: Connecting jig 10: Multilayer battery element 11: Pressure supply plate 12 : Pressing part 13: Laminated battery 14: Pressure sensitive test paper X: Center part a: Moisture-proof multilayer film b: Negative electrode layer c: Positive electrode layer d: Solid electrolyte layer e: Current collector f: Electrode terminal g: Polyethylene piece

Claims (5)

正極と負極の間に固体電解質層を介在させてなる全固体電池素子を有する全固体電池であって、正極及び負極の固体電解質層と対峙しない側に複数の貫通孔を有する支持板をそれぞれ備え、各支持板の対応する貫通孔を介して支持板が連結・緊締されることによって全固体電池素子に1.5〜200MPaの圧力が印加され、かつ該貫通孔の少なくとも一つが支持板の中央部から周縁に向けて総面積の1/4の円内にあることを特徴とする全固体電池。   An all-solid battery having an all-solid battery element in which a solid electrolyte layer is interposed between a positive electrode and a negative electrode, each provided with a support plate having a plurality of through holes on the side not facing the solid electrolyte layer of the positive electrode and the negative electrode The support plate is connected and tightened through the corresponding through hole of each support plate, whereby a pressure of 1.5 to 200 MPa is applied to the all solid state battery element, and at least one of the through holes is at the center of the support plate An all-solid-state battery characterized by being in a circle having a quarter of the total area from the portion toward the periphery. 正極と負極の間に固体電解質層を介在させてなる全固体電池素子を有する全固体電池であって、正極及び負極の固体電解質層と対峙しない側に複数の貫通孔を有する支持板をそれぞれ備え、少なくとも一方の支持板の固体電解質層の反対側に貫通孔を有する圧力供給板と、支持板の中央部に該支持板と該圧力供給板とで挟持された押し付け部を有し、各支持板の対応する貫通孔及び圧力供給板の貫通孔を介して支持板及び圧力供給板が連結・緊締されることによって全固体電池素子に1.5〜200MPaの圧力が印加されることを特徴とする全固体電池。   An all-solid battery having an all-solid battery element in which a solid electrolyte layer is interposed between a positive electrode and a negative electrode, each provided with a support plate having a plurality of through holes on the side not facing the solid electrolyte layer of the positive electrode and the negative electrode A pressure supply plate having a through hole on the opposite side of the solid electrolyte layer of at least one of the support plates, and a pressing portion sandwiched between the support plate and the pressure supply plate at the center of the support plate, A pressure of 1.5 to 200 MPa is applied to the all-solid-state battery element by connecting and tightening the support plate and the pressure supply plate through the corresponding through hole of the plate and the through hole of the pressure supply plate. All-solid battery. 前記固体電解質が、リチウム元素、リン元素及び硫黄元素を含有し、該固体電解質の固体31P−NMRスペクトルが、90.9±0.4ppm及び86.5±0.4ppmの位置に、結晶に起因するピークを有し、前記固体電解質に占める前記結晶の比率が60〜100mol%である請求項1又は2に記載の全固体電池。 The solid electrolyte contains elemental lithium, elemental phosphorus and elemental sulfur, and the solid 31 P-NMR spectrum of the solid electrolyte is located at 90.9 ± 0.4 ppm and 86.5 ± 0.4 ppm in the crystal. 3. The all-solid-state battery according to claim 1, wherein the all-solid-state battery according to claim 1, wherein the all-solid battery has a peak due to a ratio of 60 to 100 mol% of the crystal in the solid electrolyte. 全固体電池素子を外装材で被覆した請求項1〜3のいずれかに記載の全固体電池。   The all-solid-state battery in any one of Claims 1-3 which coat | covered the all-solid-state battery element with the exterior material. 前記外装材が熱可塑性樹脂又は熱硬化性樹脂からなる外装体をさらに吸着材及び/又はアルカリ性物質含有材料で被覆したものである請求項4に記載の全固体電池。   The all-solid-state battery according to claim 4, wherein the exterior material is obtained by further coating an exterior body made of a thermoplastic resin or a thermosetting resin with an adsorbent and / or an alkaline substance-containing material.
JP2006286957A 2006-10-20 2006-10-20 All-solid battery Pending JP2008103284A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006286957A JP2008103284A (en) 2006-10-20 2006-10-20 All-solid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006286957A JP2008103284A (en) 2006-10-20 2006-10-20 All-solid battery

Publications (1)

Publication Number Publication Date
JP2008103284A true JP2008103284A (en) 2008-05-01

Family

ID=39437449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006286957A Pending JP2008103284A (en) 2006-10-20 2006-10-20 All-solid battery

Country Status (1)

Country Link
JP (1) JP2008103284A (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010056070A (en) * 2008-07-30 2010-03-11 Idemitsu Kosan Co Ltd All-solid secondary battery and device provided with same
JP2010205536A (en) * 2009-03-03 2010-09-16 Toyota Motor Corp Method of manufacturing all-solid lithium-ion secondary battery
JP2010272210A (en) * 2009-05-19 2010-12-02 Hitachi Zosen Corp Method of manufacturing all-solid secondary battery
JP2011159534A (en) * 2010-02-02 2011-08-18 Toyota Motor Corp Lithium battery
JP2012069248A (en) * 2010-09-21 2012-04-05 Hitachi Zosen Corp Manufacturing method for all-solid battery
JP2012069305A (en) * 2010-09-22 2012-04-05 Hitachi Zosen Corp Manufacturing method of all-solid secondary battery
WO2012164723A1 (en) * 2011-06-02 2012-12-06 トヨタ自動車株式会社 Method for manufacturing all-solid cell
JP2013546114A (en) * 2010-06-24 2013-12-26 ビーエーエスエフ ソシエタス・ヨーロピア Thermoelectric generator
JP2014107085A (en) * 2012-11-27 2014-06-09 Toyota Motor Corp Solid battery and method for manufacturing the same
JP2015156297A (en) * 2014-02-20 2015-08-27 トヨタ自動車株式会社 Method for manufacturing lithium solid battery module
KR20160046882A (en) 2013-09-25 2016-04-29 후지필름 가부시키가이샤 Solid electrolyte composition, electrode sheet for batteries using same and all-solid-state secondary battery
CN106165183A (en) * 2014-04-16 2016-11-23 巴斯夫欧洲公司 It is exposed to the electrochemical cell of hydrostatic pressure
JP2017112029A (en) * 2015-12-18 2017-06-22 トヨタ自動車株式会社 Battery system
US9786921B2 (en) 2012-02-17 2017-10-10 Sony Corporation Secondary battery, manufacturing method of secondary battery, electrode for secondary battery, and electronic device
DE102016212782A1 (en) * 2016-07-13 2018-01-18 Bayerische Motoren Werke Aktiengesellschaft Battery cell and battery
KR20190073243A (en) 2017-12-18 2019-06-26 삼성전자주식회사 All soild state secondary battery
CN110021783A (en) * 2018-01-09 2019-07-16 丰田自动车株式会社 All-solid-state battery
WO2019188487A1 (en) 2018-03-28 2019-10-03 富士フイルム株式会社 Fully solid-state secondary battery and method of manufacturing same
CN110391451A (en) * 2018-04-18 2019-10-29 丰田自动车株式会社 All-solid-state battery
WO2020004343A1 (en) * 2018-06-26 2020-01-02 日立化成株式会社 Secondary battery and manufacturing method therefor
KR20200005491A (en) * 2018-07-06 2020-01-15 도요타 지도샤(주) Short circuit inspection method for all-solid-state battery assembly, restraint jig used therefor, kit for short circuit inspection, and method for manufacturing all-solid-state battery
US10654963B2 (en) 2013-09-25 2020-05-19 Fujifilm Corporation Solid electrolyte composition, binder for all-solid-state secondary batteries, and electrode sheet for batteries and all-solid-state secondary battery each using said solid electrolyte composition
CN112881922A (en) * 2020-12-30 2021-06-01 天津国安盟固利新材料科技股份有限公司 Button lithium battery and method for detecting assembling quality of button lithium battery
US11271243B2 (en) 2017-12-18 2022-03-08 Samsung Electronics Co., Ltd. All-solid secondary battery
CN114552023A (en) * 2021-11-02 2022-05-27 万向一二三股份公司 Laminated all-solid-state battery with self-supporting structure
WO2022114044A1 (en) 2020-11-30 2022-06-02 株式会社クレハ Vinylidene fluoride copolymer composition and method for producing same, polymer dispersion solution, electrode for nonaqueous electrolyte secondary battery, electrolyte layer for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
US11929463B2 (en) 2017-11-21 2024-03-12 Samsung Electronics Co., Ltd. All-solid-state secondary battery and method of charging the same

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010056070A (en) * 2008-07-30 2010-03-11 Idemitsu Kosan Co Ltd All-solid secondary battery and device provided with same
JP2010205536A (en) * 2009-03-03 2010-09-16 Toyota Motor Corp Method of manufacturing all-solid lithium-ion secondary battery
JP2010272210A (en) * 2009-05-19 2010-12-02 Hitachi Zosen Corp Method of manufacturing all-solid secondary battery
JP2011159534A (en) * 2010-02-02 2011-08-18 Toyota Motor Corp Lithium battery
JP2013546114A (en) * 2010-06-24 2013-12-26 ビーエーエスエフ ソシエタス・ヨーロピア Thermoelectric generator
JP2012069248A (en) * 2010-09-21 2012-04-05 Hitachi Zosen Corp Manufacturing method for all-solid battery
JP2012069305A (en) * 2010-09-22 2012-04-05 Hitachi Zosen Corp Manufacturing method of all-solid secondary battery
WO2012164723A1 (en) * 2011-06-02 2012-12-06 トヨタ自動車株式会社 Method for manufacturing all-solid cell
US9786921B2 (en) 2012-02-17 2017-10-10 Sony Corporation Secondary battery, manufacturing method of secondary battery, electrode for secondary battery, and electronic device
JP2014107085A (en) * 2012-11-27 2014-06-09 Toyota Motor Corp Solid battery and method for manufacturing the same
KR20160046882A (en) 2013-09-25 2016-04-29 후지필름 가부시키가이샤 Solid electrolyte composition, electrode sheet for batteries using same and all-solid-state secondary battery
US11440986B2 (en) 2013-09-25 2022-09-13 Fujifilm Corporation Solid electrolyte composition, binder for all-solid-state secondary batteries, and electrode sheet for batteries and all-solid-state secondary battery each using said solid electrolyte
KR20180069137A (en) 2013-09-25 2018-06-22 후지필름 가부시키가이샤 Solid electrolyte composition, electrode sheet for batteries using same and all-solid-state secondary battery
US10654963B2 (en) 2013-09-25 2020-05-19 Fujifilm Corporation Solid electrolyte composition, binder for all-solid-state secondary batteries, and electrode sheet for batteries and all-solid-state secondary battery each using said solid electrolyte composition
JP2015156297A (en) * 2014-02-20 2015-08-27 トヨタ自動車株式会社 Method for manufacturing lithium solid battery module
US9577286B2 (en) 2014-02-20 2017-02-21 Toyota Jidosha Kabushiki Kaisha Method of producing solid state lithium battery module
CN106165183A (en) * 2014-04-16 2016-11-23 巴斯夫欧洲公司 It is exposed to the electrochemical cell of hydrostatic pressure
JP2017112029A (en) * 2015-12-18 2017-06-22 トヨタ自動車株式会社 Battery system
DE102016212782A1 (en) * 2016-07-13 2018-01-18 Bayerische Motoren Werke Aktiengesellschaft Battery cell and battery
US11929463B2 (en) 2017-11-21 2024-03-12 Samsung Electronics Co., Ltd. All-solid-state secondary battery and method of charging the same
JP2019109998A (en) * 2017-12-18 2019-07-04 三星電子株式会社Samsung Electronics Co.,Ltd. All-solid secondary battery
KR20190073243A (en) 2017-12-18 2019-06-26 삼성전자주식회사 All soild state secondary battery
US11271243B2 (en) 2017-12-18 2022-03-08 Samsung Electronics Co., Ltd. All-solid secondary battery
CN110021783A (en) * 2018-01-09 2019-07-16 丰田自动车株式会社 All-solid-state battery
JP2019121532A (en) * 2018-01-09 2019-07-22 トヨタ自動車株式会社 All-solid battery
CN110021783B (en) * 2018-01-09 2022-06-14 丰田自动车株式会社 All-solid-state battery
US11063300B2 (en) 2018-01-09 2021-07-13 Toyota Jidosha Kabushiki Kaisha All-solid-state battery
US11909034B2 (en) 2018-03-28 2024-02-20 Fujifilm Corporation All-solid state secondary battery and method of manufacturing the same
WO2019188487A1 (en) 2018-03-28 2019-10-03 富士フイルム株式会社 Fully solid-state secondary battery and method of manufacturing same
KR20200103806A (en) 2018-03-28 2020-09-02 후지필름 가부시키가이샤 All-solid secondary battery and its manufacturing method
CN110391451A (en) * 2018-04-18 2019-10-29 丰田自动车株式会社 All-solid-state battery
JP6992665B2 (en) 2018-04-18 2022-01-13 トヨタ自動車株式会社 All solid state battery
JP2019192338A (en) * 2018-04-18 2019-10-31 トヨタ自動車株式会社 All-solid battery
US11431031B2 (en) 2018-04-18 2022-08-30 Toyota Jidosha Kabushiki Kaisha All-solid-state battery
JPWO2020004343A1 (en) * 2018-06-26 2021-07-15 昭和電工マテリアルズ株式会社 Secondary battery and its manufacturing method
WO2020004343A1 (en) * 2018-06-26 2020-01-02 日立化成株式会社 Secondary battery and manufacturing method therefor
KR20200005491A (en) * 2018-07-06 2020-01-15 도요타 지도샤(주) Short circuit inspection method for all-solid-state battery assembly, restraint jig used therefor, kit for short circuit inspection, and method for manufacturing all-solid-state battery
KR102338222B1 (en) * 2018-07-06 2021-12-10 도요타 지도샤(주) Short circuit inspection method for all-solid-state battery assembly, restraint jig used therefor, kit for short circuit inspection, and method for manufacturing all-solid-state battery
US11125776B2 (en) 2018-07-06 2021-09-21 Toyota Jidosha Kabushiki Kaisha Short circuit inspection method for all-solid-state battery assembly, restraint jig used therefor, kit for short circuit inspection, and method for manufacturing all-solid-state battery
KR20230096068A (en) 2020-11-30 2023-06-29 가부시끼가이샤 구레하 Vinylidene fluoride copolymer composition and preparation method thereof, polymer dispersion, electrode for non-aqueous electrolyte secondary battery, electrolyte layer for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
WO2022114044A1 (en) 2020-11-30 2022-06-02 株式会社クレハ Vinylidene fluoride copolymer composition and method for producing same, polymer dispersion solution, electrode for nonaqueous electrolyte secondary battery, electrolyte layer for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
KR20240037378A (en) 2020-11-30 2024-03-21 가부시끼가이샤 구레하 Vinylidene fluoride copolymer composition and method for producing same, polymer dispersion solution, electrode for nonaqueous electrolyte secondary battery, electrolyte layer for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
CN112881922A (en) * 2020-12-30 2021-06-01 天津国安盟固利新材料科技股份有限公司 Button lithium battery and method for detecting assembling quality of button lithium battery
CN114552023B (en) * 2021-11-02 2023-07-07 万向一二三股份公司 Laminated all-solid-state battery with self-supporting structure
CN114552023A (en) * 2021-11-02 2022-05-27 万向一二三股份公司 Laminated all-solid-state battery with self-supporting structure

Similar Documents

Publication Publication Date Title
JP2008103284A (en) All-solid battery
JP4989183B2 (en) Electrode and solid secondary battery using the same
JP2008103288A (en) All-solid battery
JP5368711B2 (en) Solid electrolyte membrane, positive electrode membrane, or negative electrode membrane for all solid lithium secondary battery, method for producing the same, and all solid lithium secondary battery
JP5615551B2 (en) Heat-resistant positive electrode mixture and all-solid lithium secondary battery using the same
US9300011B2 (en) Solid state electrolyte layer, electrode active material layer, all solid state lithium battery, manufacturing method for solid state electrolyte layer, and manufacturing method for electrode active material layer
JP5848801B2 (en) Lithium ion conductive solid electrolyte sheet and method for producing the same
JP5348853B2 (en) Sulfide-based electrolyte molded body and all-solid battery comprising the same
JP2008135287A (en) All-solid battery member and manufacturing method of the member, and all-solid battery
JP2008103245A (en) Sulfide based secondary battery
JP2008103280A (en) Positive electrode plied timber and all-solid secondary battery using it
JP2008103204A (en) Cathode active material and secondary battery using it
JP2008103203A (en) Solid electrolyte and all-solid secondary battery using it
JP2008103229A (en) Manufacturing method of solid electrolyte molded body and full solid battery provided with the same
JP2008103146A (en) Solid electrolyte and secondary battery using it
JP5001621B2 (en) Solid electrolyte and solid secondary battery using the same
JP2010033876A (en) Polymer-coated solid electrolyte and all-solid secondary battery using the same
JP2008234843A (en) Electrode and member for all-solid secondary battery
JP2008103259A (en) Solid electrolyte sheet, electrode sheet, and all-solid secondary battery using it
JP2008103283A (en) All-solid battery
JP2007311084A (en) Electrolyte, member for battery, electrode, and all-solid secondary battery
JP2013222530A (en) All solid state battery and method for charging/discharging all solid state battery
JP5096722B2 (en) Battery material manufacturing method and all solid state battery
JP2008103285A (en) All solid bipolar battery
JP2010033877A (en) Electrode mixture and all-solid secondary battery using the same