JP5892487B2 - Lignin carbon fiber and method for producing activated carbon fiber - Google Patents

Lignin carbon fiber and method for producing activated carbon fiber Download PDF

Info

Publication number
JP5892487B2
JP5892487B2 JP2012009060A JP2012009060A JP5892487B2 JP 5892487 B2 JP5892487 B2 JP 5892487B2 JP 2012009060 A JP2012009060 A JP 2012009060A JP 2012009060 A JP2012009060 A JP 2012009060A JP 5892487 B2 JP5892487 B2 JP 5892487B2
Authority
JP
Japan
Prior art keywords
lignin
carbon fiber
fiber
activated carbon
precursor fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012009060A
Other languages
Japanese (ja)
Other versions
JP2013147768A (en
Inventor
智史 久保
智史 久保
山田 竜彦
竜彦 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Forestry and Forest Products Research Institute
Original Assignee
Forestry and Forest Products Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forestry and Forest Products Research Institute filed Critical Forestry and Forest Products Research Institute
Priority to JP2012009060A priority Critical patent/JP5892487B2/en
Publication of JP2013147768A publication Critical patent/JP2013147768A/en
Application granted granted Critical
Publication of JP5892487B2 publication Critical patent/JP5892487B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Artificial Filaments (AREA)
  • Inorganic Fibers (AREA)

Description

本発明は、リグニンから炭素繊維を製造する方法、及びリグニンから活性炭素繊維を製造する方法に関する。   The present invention relates to a method for producing carbon fiber from lignin and a method for producing activated carbon fiber from lignin.

炭素繊維は、強度、耐磨耗性、弾性などの性質に優れることから、種々の分野で広く使用されている。このような炭素繊維は、通常、ピッチ系繊維、アクリル繊維、フェノール樹脂系繊維、レーヨン繊維などの繊維を原料とし、これを必要に応じて酸化性雰囲気下で加熱した後、不活性雰囲気下で高温処理し、炭化する方法で製造されている。   Carbon fibers are widely used in various fields because they are excellent in properties such as strength, wear resistance, and elasticity. Such carbon fibers are usually made from fibers such as pitch fibers, acrylic fibers, phenol resin fibers, rayon fibers and the like, heated in an oxidizing atmosphere as necessary, and then in an inert atmosphere. Manufactured by high temperature treatment and carbonization.

また、多数の細孔が形成された比表面積の大きな繊維として、活性炭素繊維がある。活性炭素繊維は、繊維状活性炭とも呼ばれ、吸着材や、電気二重層キャパシタ用電極などに好適に利用されている。炭素繊維は、活性炭素繊維の原料となり得る。活性炭は炭化物を賦活化(activation)することで調製される。賦活化はガス賦活と薬品賦活に分類でき、これにより炭素質に細孔が形成させる。従来より活性炭としては粉末状活性炭と粒状活性炭の2種存在したが、粉末状活性炭は吸着速度が速いが、微粉末ゆえ飛散しやすく操業環境に問題を与え、再利用に不適という欠点がある。一方、粒状活性炭は再利用できるが、吸着速度が粉末活性炭に比べて遅い。活性炭素繊維は、粉末状活性炭及び粒状活性炭の利点を兼ね備え、(1)比表面積が大きい、(2)吸着、脱着速度が極めて速い、(3)種々の形状に加工が可能、(4)軽量で取扱いが容易、(5)他の機能性材料と複合化が可能、(6)再生・再利用が容易、(7)炭塵の発生が少ない、等の好ましい特徴を有する。しかし、活性炭素繊維は、従来の活性炭に比べ非常に高価である。   An active carbon fiber is a fiber having a large specific surface area in which a large number of pores are formed. The activated carbon fiber is also called fibrous activated carbon, and is suitably used for an adsorbent, an electrode for an electric double layer capacitor, and the like. Carbon fiber can be a raw material for activated carbon fiber. Activated carbon is prepared by activating carbides. Activation can be classified into gas activation and chemical activation, which causes pores to be formed in the carbonaceous material. Conventionally, there are two types of activated carbon, powdered activated carbon and granular activated carbon, but powdered activated carbon has a high adsorption rate, but it has the disadvantage that it is fine and easily scatters, causing problems in the operating environment and unsuitable for reuse. On the other hand, granular activated carbon can be reused, but the adsorption rate is slower than powdered activated carbon. Activated carbon fibers have the advantages of powdered activated carbon and granular activated carbon, (1) large specific surface area, (2) very fast adsorption and desorption speed, (3) can be processed into various shapes, (4) lightweight (5) can be combined with other functional materials, (6) can be easily recycled and reused, and (7) has less generation of coal dust. However, activated carbon fibers are very expensive compared to conventional activated carbon.

汎用炭素繊維製造のためのコストの低い前駆体の一つがリグニンである。リグニンは、木材等リグノセルロースの主要構成成分の一つであり、自然界ではセルロースに次ぎ2番目に豊富な天然高分子である。この不均一な天然芳香族性生体高分子であるリグニンは、バイオエタノールや、紙・パルプ製造等のバイオマス中の多糖成分を主として使用する工業技術において大量に副産するが、その利用は熱源が主でありマテリアルとして十分に利用されているとは言い難く、この安価なリグニンをマテリアルとして炭素繊維の原料とすることは望ましい。また、リグニンは炭素含有率が木材多糖成分に比べて高く、炭素繊維をバイオマスから製造する場合、炭素化収率が最も高いという面においても、リグニンが最も有望な原料である考えられている。一般的にリグニン自体は紡糸することはできないが、リグニンを改質して炭素繊維の原料にすることが報告されている(非特許文献1、非特許文献2)。   One of the low-cost precursors for producing general-purpose carbon fibers is lignin. Lignin is one of the main components of lignocellulose, such as wood, and is the second most abundant natural polymer after cellulose in nature. Lignin, which is a heterogeneous natural aromatic biopolymer, is produced as a by-product in large quantities in industrial technology that mainly uses bioethanol and polysaccharide components in biomass such as paper and pulp production. It is difficult to say that it is the main and fully utilized as a material, and it is desirable to use this inexpensive lignin as a raw material for carbon fiber. In addition, lignin is considered to be the most promising raw material in terms of the carbon content higher than that of wood polysaccharide components and the highest carbonization yield when carbon fiber is produced from biomass. In general, lignin itself cannot be spun, but it has been reported that lignin is modified to be a raw material for carbon fiber (Non-patent Documents 1 and 2).

近年、リグニンと各種プラスチックとを複合化することで前駆体繊維を調製し、炭素繊維に変換する方法が報告されている(特許文献1、非特許文献3)。また、リグニンを水素化分解後に熱処理することで炭素繊維原料として改質する方法(非特許文献1)、フェノールあるいはクレゾールで化学的に処理をすることで炭素繊維原料として改質する方法(非特許文献2)が報告されている。また、熱可塑性樹脂100質量部、リグニン誘導体1〜50質量部、及びリグニン繊維化助剤0.1〜10質量部を含む樹脂組成物から超微細炭素繊維を製造する方法が報告されている(特許文献2)。   In recent years, methods for preparing precursor fibers by combining lignin and various plastics and converting them into carbon fibers have been reported (Patent Document 1, Non-Patent Document 3). Also, a method of reforming lignin as a carbon fiber raw material by heat treatment after hydrocracking (Non-Patent Document 1), a method of reforming as a carbon fiber raw material by chemically treating with phenol or cresol (non-patent document 1). Reference 2) has been reported. Moreover, the method of manufacturing an ultrafine carbon fiber from the resin composition containing 100 mass parts of thermoplastic resins, 1-50 mass parts of lignin derivatives, and 0.1-10 mass parts of lignin fiberization adjuvants is reported ( Patent Document 2).

米国特許出願公報第2003/0212157号US Patent Application Publication No. 2003/0212157 特開2010−242248JP2010-242248

Sudo, K., Shimizu, K., Journal of Applied Polymer Science, 44(1), 127-134 (1992)Sudo, K., Shimizu, K., Journal of Applied Polymer Science, 44 (1), 127-134 (1992) Sudo, K., Shimizu, K., Nakashima, N., Yokoyma, A., Journal of Applied Polymer Science, 48, 1485-1491 (1993)Sudo, K., Shimizu, K., Nakashima, N., Yokoyma, A., Journal of Applied Polymer Science, 48, 1485-1491 (1993) S. Kubo, J.F. Kadla, J. Polym. and Environ. 13, 97-105 (2005)S. Kubo, J.F. Kadla, J. Polym. And Environ. 13, 97-105 (2005)

リグニンから高性能な炭素繊維及び活性炭素繊維を、高収率で、効率良く製造することが求められている。   There is a demand for efficient production of high-performance carbon fibers and activated carbon fibers from lignin in high yield.

本発明の目的は、リグニンから、高性能な炭素繊維及び活性炭素繊維を、効率良く製造する方法を提供することである。特に、細孔半径の小さい細孔の割合が大きく、比表面積が大きい活性炭素繊維を、高収率で、効率良く製造する方法を提供することを目的とする。   An object of the present invention is to provide a method for efficiently producing high-performance carbon fibers and activated carbon fibers from lignin. In particular, an object of the present invention is to provide a method for efficiently producing activated carbon fibers having a large proportion of pores having a small pore radius and a large specific surface area with high yield.

本発明によれば、親水性基を有するリグニン誘導体を得る工程、該リグニン誘導体から前駆体繊維を形成する工程、該前駆体繊維を酸処理により不融化する工程、該前駆体繊維を炭素化する工程を含む、炭素繊維の製造方法が提供される。かかる炭素繊維の製造方法によれば、炭素繊維を効率良く製造することができる。   According to the present invention, a step of obtaining a lignin derivative having a hydrophilic group, a step of forming a precursor fiber from the lignin derivative, a step of making the precursor fiber infusible by acid treatment, and carbonizing the precursor fiber A method for producing carbon fiber is provided, including a process. According to this carbon fiber manufacturing method, carbon fibers can be manufactured efficiently.

また、本発明によれば、親水性基を有するリグニン誘導体を得る工程、該リグニン誘導体から前駆体繊維を形成する工程、該前駆体繊維を酸処理により不融化する工程、該不融化された前駆体繊維を炭素化して炭素繊維を形成する工程、該炭素繊維を賦活化する工程を含む、活性炭素繊維の製造方法が提供される。かかる活性炭素繊維の製造方法によれば、細孔半径の小さい細孔の割合が大きく、比表面積が大きい活性炭素繊維を、高収率で、効率良く製造することができる。   Further, according to the present invention, a step of obtaining a lignin derivative having a hydrophilic group, a step of forming a precursor fiber from the lignin derivative, a step of infusibilizing the precursor fiber by acid treatment, the infusible precursor There is provided a method for producing activated carbon fibers, including a step of carbonizing body fibers to form carbon fibers, and a step of activating the carbon fibers. According to such a method for producing activated carbon fibers, activated carbon fibers having a large proportion of pores having a small pore radius and a large specific surface area can be efficiently produced at a high yield.

上記の炭素繊維の製造方法及び活性炭素繊維の製造方法において、親水性基を有するリグニン誘導体は、好ましくは、リグノセルロースを、ポリエチレングリコール、エチレングリコール、グリセリン、ポリグリセリンから選択される少なくとも1つの溶媒により加溶媒分解することにより得られたものである。   In the above carbon fiber production method and activated carbon fiber production method, the lignin derivative having a hydrophilic group is preferably at least one solvent in which lignocellulose is selected from polyethylene glycol, ethylene glycol, glycerin, and polyglycerin. Is obtained by solvolysis by

上記の炭素繊維の製造方法及び活性炭素繊維の製造方法において、親水性基を有するリグニン誘導体における親水性基は、好ましくは、アルコール性水酸基及びポリオキシアルキレン基から選択される基を少なくとも1つ含む基である。   In the above carbon fiber production method and activated carbon fiber production method, the hydrophilic group in the lignin derivative having a hydrophilic group preferably contains at least one group selected from an alcoholic hydroxyl group and a polyoxyalkylene group. It is a group.

上記の炭素繊維の製造方法及び活性炭素繊維の製造方法において、親水性基を有するリグニン誘導体における親水性基は、好ましくは、グリシジルエーテル系化合物、グリコール系化合物に由来する基である。   In the above carbon fiber production method and activated carbon fiber production method, the hydrophilic group in the lignin derivative having a hydrophilic group is preferably a group derived from a glycidyl ether compound or a glycol compound.

上記の炭素繊維の製造方法及び活性炭素繊維の製造方法において、溶融紡糸により前駆体繊維が形成されることが好ましい。   In the above carbon fiber production method and activated carbon fiber production method, the precursor fiber is preferably formed by melt spinning.

上記の炭素繊維の製造方法及び活性炭素繊維の製造方法において、前駆体繊維は0.1〜10%硫酸水溶液による酸処理により不融化することが好ましい。   In the above carbon fiber production method and activated carbon fiber production method, the precursor fiber is preferably infusibilized by acid treatment with a 0.1-10% aqueous sulfuric acid solution.

本発明によれば、リグニン炭素繊維を効率良く製造することができる。また、本発明によれば、細孔半径の小さい細孔の割合が大きく、比表面積が大きい活性炭素繊維を、高収率で、効率良く製造することができる。   According to the present invention, lignin carbon fiber can be produced efficiently. Further, according to the present invention, activated carbon fibers having a large proportion of pores having a small pore radius and a large specific surface area can be efficiently produced at a high yield.

実施例1の操作で得られた前駆体繊維を走査電子顕微鏡により撮影した写真図(倍率500倍)である。It is the photograph (500-times multiplication factor) which image | photographed the precursor fiber obtained by operation of Example 1 with the scanning electron microscope. 実施例1の操作で得られた不融化前駆体繊維を走査電子顕微鏡により撮影した写真図(倍率500倍)である。1 is a photograph (500 times magnification) obtained by photographing the infusible precursor fiber obtained by the operation of Example 1 with a scanning electron microscope. FIG. 実施例1の操作で得られた炭素化繊維を走査電子顕微鏡により撮影した写真図(倍率500倍)である。It is the photograph (500-times multiplication factor) which image | photographed the carbonization fiber obtained by operation of Example 1 with the scanning electron microscope. 実施例2の操作で得られた活性炭素化繊維を走査電子顕微鏡により撮影した写真図(倍率500倍)である。It is the photograph (500-times multiplication factor) which image | photographed the activated carbonized fiber obtained by operation of Example 2 with the scanning electron microscope. 実施例2の操作で得られた活性炭素化繊維の断面部分及び側面亀裂部分を走査電子顕微鏡により撮影した写真図(倍率50,000倍)である。It is the photograph (magnification of 50,000 times) which photographed the section part and side crack part of the activated carbonization fiber obtained by operation of Example 2 with the scanning electron microscope.

以下、本発明の実施の形態について説明する。   Embodiments of the present invention will be described below.

実施形態1:炭素繊維の製造方法
本実施形態に係る炭素繊維の製造方法は、親水性基を有するリグニン誘導体を得る工程、該リグニン誘導体から前駆体繊維を形成する工程、該前駆体繊維を酸処理により不融化する工程、該前駆体繊維を炭素化する工程を含む、炭素繊維の製造方法である。
Embodiment 1: Method for Producing Carbon Fiber The method for producing carbon fiber according to the present embodiment comprises a step of obtaining a lignin derivative having a hydrophilic group, a step of forming a precursor fiber from the lignin derivative, and the precursor fiber being an acid. It is a carbon fiber manufacturing method including a step of infusibilizing by treatment and a step of carbonizing the precursor fiber.

1.親水性基を有するリグニン誘導体を得る工程
本実施形態において、親水性基を有するリグニン誘導体を使用することにより、溶融紡糸により前駆体繊維を形成することができる。また、後述の前駆体繊維の酸処理により、有効に不融化することができる。本実施形態において使用される親水性基を有するリグニン誘導体は、リグニンに親水性基を導入することにより製造することができる。
1. Step of obtaining a lignin derivative having a hydrophilic group In this embodiment, a precursor fiber can be formed by melt spinning by using a lignin derivative having a hydrophilic group. Further, it can be effectively infusibilized by acid treatment of the precursor fiber described later. The lignin derivative having a hydrophilic group used in the present embodiment can be produced by introducing a hydrophilic group into lignin.

本発明におけるリグニンとしては、各種のリグニンを用いることができ、具体的には高圧の飽和水蒸気で処理し、瞬時に圧力を開放することにより得られる蒸煮爆砕リグニン、水酸化ナトリウムと硫化ナトリウムの混合水溶液を蒸解液として高温で木材チップを蒸解することにより得られるクラフトリグニン、木粉を亜硫酸水溶液にて高温で蒸解することにより得られるリグニンスルホン酸塩、木粉を有機酸あるいは有機溶剤で蒸解することにより得られるオルガノソルブリグニン、バイオマス変換技術で副産される、硫酸リグニン、アルカリリグニン等が挙げられるが、これらに限定されない。リグニンの起源についても限定されるものではなく、スギ、ヒノキ、マツ等の針葉樹リグニン、ブナ、ナラ等の広葉樹リグニン、稲わら、モミ、バガス等の草本系リグニンを使用することができる。なお、本発明におけるリグニンに関して、リグニン以外に少量であればセルロースやヘミセルロースなどリグニンを得る際に混入する可能性がある不純物の共存を排除するものではない。   As the lignin in the present invention, various lignins can be used, specifically, steamed and exploded lignin obtained by treating with high-pressure saturated steam and releasing the pressure instantaneously, a mixture of sodium hydroxide and sodium sulfide. Kraft lignin obtained by cooking wood chips at a high temperature using an aqueous solution as cooking liquor, lignin sulfonate obtained by cooking wood powder at a high temperature with a sulfurous acid aqueous solution, and cooking wood powder with an organic acid or organic solvent Examples include, but are not limited to, organosolv lignin obtained by this method, lignin sulfate, alkali lignin and the like produced as a by-product in biomass conversion technology. The origin of lignin is not limited, and coniferous lignin such as cedar, hinoki and pine, broad-leaved lignin such as beech and oak, and herbaceous lignin such as rice straw, fir and bagasse can be used. Note that the lignin in the present invention does not exclude the coexistence of impurities such as cellulose and hemicellulose that may be mixed when lignin is obtained in addition to lignin.

リグニンに親水性基を導入する方法としては、例えば、以下の2つの手法が挙げられるが、これらに限定されない。   Examples of the method for introducing a hydrophilic group into lignin include the following two methods, but are not limited thereto.

(1)加溶媒分解法
木材等のリグノセルロースを加溶媒分解することにより、リグニンに親水性基を導入することができる。ここで、「加溶媒分解」とは、物質を有機溶媒試薬中で分解する際の化学反応をいい、物質が分解されると同時に、使用した溶媒試薬と分解された物質とが化学的に結合しながら(すなわち、溶媒分子が分解物に加わる)進む化学反応である。加溶媒分解反応を通じて、リグノセルロース中のセルロースを始めとする糖成分はレブリン酸エステル等に変換されると同時に、リグノセルロースにおけるリグニン中に分解試薬に由来するアルコール性水酸基及び/又はポリオキシアルキレン基等の親水性基が多数導入されるため、親水性基を有するリグニン誘導体が生成される。このような加溶媒分解法は、例えば、特許第4025866号公報に記載されている。
(1) Solvolysis method A hydrophilic group can be introduced into lignin by solvolysis of lignocellulose such as wood. Here, “solvolysis” refers to a chemical reaction when a substance is decomposed in an organic solvent reagent. At the same time as the substance is decomposed, the used solvent reagent and the decomposed substance are chemically bonded. It is a chemical reaction that proceeds while the solvent molecules are added to the degradation product. Through the solvolysis reaction, sugar components such as cellulose in lignocellulose are converted into levulinic acid esters and the like, and at the same time, alcoholic hydroxyl groups and / or polyoxyalkylene groups derived from decomposition reagents in lignin in lignocellulose. Since a large number of hydrophilic groups such as these are introduced, a lignin derivative having a hydrophilic group is produced. Such a solvolysis method is described in, for example, Japanese Patent No. 4025866.

加溶媒分解に使用される有機溶媒試薬としては、ポリエチレングリコール(PEG)、エチレングリコール、グリセリン、ポリグリセリン等の高沸点の試薬を使用することができる。好ましくは、有機溶媒試薬と塩酸、硫酸等酸とを混合して用い、好ましくは、分解試薬の融点以上(例えば、約120〜180℃)で加熱し、リグノセルロースを加溶媒分解する。加溶媒分解処理で得られた加溶媒分解物を、例えば水に滴下するなどの操作により、水に不溶な親水性基を有するリグニン誘導体が沈殿物として得られる。加溶媒分解で得られる親水性基を有するリグニン誘導体における親水性基としては、有機溶媒試薬に由来するアルコール性水酸基、ポリオキシエチレン基等のポリオキシアルキレン基である。   As an organic solvent reagent used for solvolysis, a high boiling point reagent such as polyethylene glycol (PEG), ethylene glycol, glycerin, polyglycerin and the like can be used. Preferably, the organic solvent reagent is mixed with an acid such as hydrochloric acid or sulfuric acid, and preferably heated at a temperature equal to or higher than the melting point of the decomposition reagent (for example, about 120 to 180 ° C.) to solvolyze lignocellulose. A lignin derivative having a hydrophilic group insoluble in water is obtained as a precipitate, for example, by dropping the solvolysis product obtained by the solvolysis treatment into water. The hydrophilic group in the lignin derivative having a hydrophilic group obtained by solvolysis is a polyoxyalkylene group such as an alcoholic hydroxyl group or a polyoxyethylene group derived from an organic solvent reagent.

(2)親水性化合物導入法
上記の爆砕リグニン、クラフトリグニン、リグニンスルホン酸、オルガノソルブリグニン、硫酸リグニン、アルカリリグニン等の、バイオエタノール製造やパルプ製造工程などから副産されるリグニンと、グリコール系化合物、グリシジルエーテル系化合物等の親水性化合物とを反応させることにより、リグニン中の水酸基に親水性化合物中の反応基を反応させて、親水性基を有するリグニン誘導体を製造することができる。このような親水性化合物導入方法は、例えば、特開2011−184230に記載されている。
(2) Hydrophilic compound introduction method Lignin produced as a by-product from bioethanol production or pulp production process, such as the above-mentioned explosion lignin, kraft lignin, lignin sulfonic acid, organosolv lignin, sulfate lignin, alkaline lignin, etc., and glycol-based By reacting with a hydrophilic compound such as a compound or a glycidyl ether compound, a reactive group in the hydrophilic compound can be reacted with a hydroxyl group in lignin to produce a lignin derivative having a hydrophilic group. Such a hydrophilic compound introduction method is described in, for example, JP-A-2011-184230.

リグニンと親水性化合物とを反応させる方法において、リグニンに対し反応させる親水性化合物の量は、限定されないが、通常、リグニン10質量部に対し親水性化合物1〜20質量部、好ましくは、リグニン10質量部に対しと親水性化合物5〜15質量部、より好ましくは、リグニン10質量部に対し親水性化合物8〜12質量部である。   In the method of reacting lignin with a hydrophilic compound, the amount of the hydrophilic compound reacted with lignin is not limited, but usually 1 to 20 parts by weight of the hydrophilic compound with respect to 10 parts by weight of lignin, preferably lignin 10 From 5 to 15 parts by weight of the hydrophilic compound, more preferably from 8 to 12 parts by weight of the hydrophilic compound per 10 parts by weight of lignin.

親水性化合物としてグリシジルエーテル系化合物を用いる場合、リグニンをアルカリ水溶液に溶解し、アルカリ性条件下で遊離したリグニン中の水酸基(リグニン−OH)をグリシジルエーテル系化合物中のグリシジル基と反応させることにより、リグニン誘導体を調製することができる。リグノセルロースをアルカリ蒸解した後に得られる黒液を、上記リグニンのアルカリ水溶液として用いることもできる。反応温度は、特に限定されないが、通常、50℃〜100℃、好ましくは70℃である。反応時間は、特に限定されないが、通常、30分〜24時間、好ましくは1時間〜12時間、より好ましくは、3時間〜6時間である。本反応においては、例えば、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム等を使用してアルカリ性条件にすることができる。本反応において、リグニンとグリシジルエーテル系化合物との反応終了後、反応系に酸を添加して中和する。添加する酸としては、悪影響を及ぼさない限り何れの酸でもよく、例えば、塩酸、リン酸、硫酸等の無機酸、及びギ酸、酢酸等の有機酸を使用することができる。   When using a glycidyl ether compound as the hydrophilic compound, by dissolving lignin in an aqueous alkaline solution and reacting the hydroxyl group (lignin-OH) in the lignin liberated under alkaline conditions with the glycidyl group in the glycidyl ether compound, Lignin derivatives can be prepared. The black liquor obtained after alkaline digestion of lignocellulose can also be used as the alkaline aqueous solution of lignin. Although reaction temperature is not specifically limited, Usually, 50 to 100 degreeC, Preferably it is 70 degreeC. The reaction time is not particularly limited, but is usually 30 minutes to 24 hours, preferably 1 hour to 12 hours, and more preferably 3 hours to 6 hours. In this reaction, for example, sodium hydroxide, potassium hydroxide, calcium hydroxide or the like can be used to make the alkaline conditions. In this reaction, after completion of the reaction between lignin and a glycidyl ether compound, the reaction system is neutralized by adding an acid. The acid to be added may be any acid as long as it does not have an adverse effect. For example, inorganic acids such as hydrochloric acid, phosphoric acid and sulfuric acid, and organic acids such as formic acid and acetic acid can be used.

グリシジルエーテル系化合物の例としては、例えば、以下が挙げられるが、これらに限定されない:
メチルグリシジルエーテル、エチルグリシジルエーテル、プロピルグリシジルエーテル、2−エチルヘキシルグリシジルエーテル、デシルグリシジルエーテル、ステアリルグリシジルエーテル、ポリエチレングリコール−モノエチル−グリシジルエーテル、ポリエチレングリコール−モノメチル−グリシジルエーテル、ラウリルアルコール−ポリエチレンオキサイド−グリシジルエーテル等の単官能のグリシジルエーテル系化合物、
エチレングリコール−ジグリシジルエーテル、ポリ(エチレングリコール)ジグリシジルエーテル(n’=1〜30、好ましくは9〜30)、プロピレングリコールジグリシジルエーテル、ポリ(プロピレングリコール)ジグリシジルエーテル(n’=1〜30、好ましくは9〜30)、ネオペンチルグリコールジグリシジルエーテル、1,3−プロパンジオールジグリシジルエーテル、1,4−ブタンジオールジグリシジルエーテル、1,5−ペンタンジオールジグリシジルエーテル、1,6−ヘキサンジオールジグリシジルエーテル、1,4−シクロヘキサンジメタノールジグリシジルエーテル、1,4−シクロヘキサンジオールジグリシジルエーテル、1,3−シクロヘキサンジオールジグリシジルエーテル、グリセロールジグリシジルエーテル、ペンタエリトリトールジグリシジルエーテル、ソルビトールジグリシジルエーテル等の二官能のグリシジルエーテル系化合物、
グリセロールトリグリシジルエーテル、ジグリセロールポリグリシジルエーテル、ポリグリセロールポリグリシジルエーテル、ソルビトールポリグリシジルエーテル、3級カルボン酸グリシジルエステル、1,1,1−トリス(ヒドロキシメチル)エタントリグリシジルエーテル、1,1,1−トリス(ヒドロキシメチル)エタンジグリシジルエーテル、トリメチロールプロパンジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、フロログルシノールトリグリシジルエーテル、ピロガロールトリグリシジルエーテル、シアヌル酸トリグリシジルエーテル、ペンタエリトリトールテトラグリシジルエーテル、ソルビトールテトラグリシジルエーテル等の多官能のグリシジルエーテル系化合物、およびこれらのグリシジル基をメトキシド、エトキシドなどのアルコキシドと反応させて、グリシジルエーテル基の官能基量を低下させたグリシジルエーテル系化合物。
Examples of glycidyl ether compounds include, but are not limited to, the following:
Methyl glycidyl ether, ethyl glycidyl ether, propyl glycidyl ether, 2-ethylhexyl glycidyl ether, decyl glycidyl ether, stearyl glycidyl ether, polyethylene glycol-monoethyl-glycidyl ether, polyethylene glycol-monomethyl-glycidyl ether, lauryl alcohol-polyethylene oxide-glycidyl ether Monofunctional glycidyl ether compounds such as
Ethylene glycol-diglycidyl ether, poly (ethylene glycol) diglycidyl ether (n ′ = 1-30, preferably 9-30), propylene glycol diglycidyl ether, poly (propylene glycol) diglycidyl ether (n ′ = 1- 30, preferably 9-30), neopentyl glycol diglycidyl ether, 1,3-propanediol diglycidyl ether, 1,4-butanediol diglycidyl ether, 1,5-pentanediol diglycidyl ether, 1,6- Hexanediol diglycidyl ether, 1,4-cyclohexanedimethanol diglycidyl ether, 1,4-cyclohexanediol diglycidyl ether, 1,3-cyclohexanediol diglycidyl ether, glycerol diglycidyl Ether, pentaerythritol diglycidyl ether, bifunctional glycidyl ether compounds such as sorbitol diglycidyl ether,
Glycerol triglycidyl ether, diglycerol polyglycidyl ether, polyglycerol polyglycidyl ether, sorbitol polyglycidyl ether, tertiary carboxylic acid glycidyl ester, 1,1,1-tris (hydroxymethyl) ethanetriglycidyl ether, 1,1,1 -Tris (hydroxymethyl) ethane diglycidyl ether, trimethylolpropane diglycidyl ether, trimethylolpropane triglycidyl ether, phloroglucinol triglycidyl ether, pyrogallol triglycidyl ether, cyanuric acid triglycidyl ether, pentaerythritol tetraglycidyl ether, sorbitol Polyfunctional glycidyl ether compounds such as tetraglycidyl ether, and these glycidyl The methoxide is reacted with an alkoxide such as ethoxide, glycidyl ether compounds reduced the amount of functional groups of a glycidyl ether group.

例えば、リグニンを水酸化ナトリウム水溶液に溶解させ、得られたリグニンのアルカリ水溶液を常圧下で約70℃に温め、所定量のグリシジルエーテル系化合物を加え、約3時間攪拌しながら反応させ、反応終了後、反応系に酸を加えて中和することにより、リグニン誘導体が得られる。   For example, lignin is dissolved in an aqueous sodium hydroxide solution, and the resulting alkaline aqueous solution of lignin is warmed to about 70 ° C. under normal pressure, and a predetermined amount of glycidyl ether compound is added and reacted with stirring for about 3 hours to complete the reaction. Then, a lignin derivative is obtained by adding an acid to the reaction system and neutralizing.

親水性化合物としてグリコール系化合物を用いる場合、リグニンとグリコール系化合物との混合物に、酸触媒を添加して反応させることにより、リグニン誘導体を調製することができる。酸触媒としては、塩酸、硫酸等を用いることができる。添加量は、通常、グリコール系化合物に対して0.1〜3.0重量%である。反応温度は、特に限定されないが、通常、100℃〜200℃、好ましくは120℃〜160℃、より好ましくは140℃である。反応時間は、特に限定されないが、通常、30分〜180分、好ましくは60分〜120分、より好ましくは、90分である。   In the case of using a glycol compound as the hydrophilic compound, a lignin derivative can be prepared by adding an acid catalyst to a mixture of lignin and a glycol compound to cause a reaction. As the acid catalyst, hydrochloric acid, sulfuric acid or the like can be used. The addition amount is usually 0.1 to 3.0% by weight with respect to the glycol compound. Although reaction temperature is not specifically limited, Usually, it is 100 to 200 degreeC, Preferably it is 120 to 160 degreeC, More preferably, it is 140 degreeC. Although reaction time is not specifically limited, Usually, 30 minutes-180 minutes, Preferably it is 60 minutes-120 minutes, More preferably, it is 90 minutes.

また、親水性化合物としてグリコール系化合物を用いる場合、リグニンとグリコール系化合物との混合物に、水酸化ナトリウム等のアルカリ化合物を加えて反応させることにより、リグニン誘導体を調製することができる。アルカリの添加量は、水酸化ナトリウムの場合、グリコール系化合物に対して1〜30重量%である。反応温度は、特に限定されないが、通常80〜150℃で、好ましくは120℃である。反応時間は、特に限定されないが、通常10分〜180分、好ましくは60分である。   Moreover, when using a glycol type compound as a hydrophilic compound, a lignin derivative can be prepared by adding and reacting alkali compounds, such as sodium hydroxide, to the mixture of a lignin and a glycol type compound. In the case of sodium hydroxide, the amount of alkali added is 1 to 30% by weight based on the glycol compound. Although reaction temperature is not specifically limited, Usually, 80-150 degreeC, Preferably it is 120 degreeC. The reaction time is not particularly limited, but is usually 10 minutes to 180 minutes, preferably 60 minutes.

グリコール系化合物の例としては、例えば、以下が挙げられるが、これらに限定されない:
エチレングリコール、ジエチレングリコール、各種分子量のポリエチレングリコール、プロピレングリコール、各種分子量のポリプロピレングリコール、グリセリン(グリセロール)、各種分子量のポリグリセリン(ポリグリセロール)。
Examples of glycol-based compounds include, but are not limited to, the following:
Ethylene glycol, diethylene glycol, polyethylene glycol of various molecular weight, propylene glycol, polypropylene glycol of various molecular weight, glycerin (glycerol), polyglycerin of various molecular weight (polyglycerol).

2.リグニン誘導体から前駆体繊維を形成する工程
上記のようにして得られたリグニン誘導体を紡糸することにより、リグニン誘導体から前駆体繊維を形成することができる。紡糸方法としては、製造コストの観点から、溶融紡糸法が好ましい。熱のみを必要とする溶融紡糸は、少ない設備投資や収率の高さから、最も低コストな紡糸方法とされている。本発明における親水性基を有するリグニン誘導体は、熱流動性を示すので、溶融紡糸により前駆体繊維を形成することができる。なお、ここでいう繊維とは、繊維径10μm〜150μm、繊維軸方向の長さ1mm以上の形態を指す。
2. Step of forming precursor fiber from lignin derivative A precursor fiber can be formed from a lignin derivative by spinning the lignin derivative obtained as described above. As the spinning method, a melt spinning method is preferable from the viewpoint of production cost. Melt spinning that requires only heat is considered to be the lowest cost spinning method because of low capital investment and high yield. Since the lignin derivative having a hydrophilic group in the present invention exhibits thermal fluidity, precursor fibers can be formed by melt spinning. In addition, the fiber here refers to a form having a fiber diameter of 10 μm to 150 μm and a length of 1 mm or more in the fiber axis direction.

溶融紡糸する際の紡糸温度としては80℃〜250℃が好ましく、より好ましくは130℃〜200℃である。紡糸引き取り速度としては、10m/分以上であることが好ましい。   The spinning temperature at the time of melt spinning is preferably 80 ° C to 250 ° C, more preferably 130 ° C to 200 ° C. The spinning take-up speed is preferably 10 m / min or more.

なお、クラフトリグニンなどの工業リグニンの多くは一般的に、ガラス転位はするが、原料樹種および製造条件を限定しない限り熱溶融しないので、溶融紡糸をすることができない。本発明においては、これら工業リグニンも原料樹種を限定することなく親水性基を有するリグニン誘導体に変換して、溶融紡糸に使用することができるので好ましい。また、針葉樹から得られる針葉樹リグニンは、広葉樹リグニンよりも縮合構造(芳香核同士の結合)に富むため、特に熱溶融性を示すことに困難があった。本発明によれば、このような針葉樹リグニンも親水性基を有するリグニン誘導体に変換して、溶融紡糸に使用することができるので好ましい。   Many industrial lignins such as kraft lignin generally undergo glass transition, but cannot be melt-spun because they are not melted unless the raw material species and production conditions are limited. In the present invention, these industrial lignins are also preferable because they can be converted into a lignin derivative having a hydrophilic group and used for melt spinning without limiting the raw material tree species. Moreover, since coniferous lignin obtained from coniferous trees is richer in condensed structure (bonding of aromatic nuclei) than broad-leaved tree lignin, it has been particularly difficult to exhibit heat melting properties. According to the present invention, such a softwood lignin is also preferable because it can be converted into a lignin derivative having a hydrophilic group and used for melt spinning.

3.前駆体繊維を酸処理により不融化する工程
紡糸された前駆体繊維は炭素化されて炭素繊維に変換されるが、炭素化の条件は不活性ガス雰囲気あるいは減圧下、約1000℃の高温で行われる。溶融紡糸で得られる繊維を直接炭素化すると、ガラス転位(Tg)以上の温度で再び溶融して繊維形態を失う。この現象を防ぐのが、不融化である。ピッチを含む一般的な前駆体繊維の不融化の方法としては、空気、酸素、オゾン、二酸化窒素、ハロゲンなどのガス気流処理、架橋触媒存在下アルデヒド類と反応させる溶液処理などがある。
3. The process of infusibilizing the precursor fiber by acid treatment The spun precursor fiber is carbonized and converted into carbon fiber. Carbonization is performed under an inert gas atmosphere or under reduced pressure at a high temperature of about 1000 ° C. Is called. When the fiber obtained by melt spinning is directly carbonized, it melts again at a temperature higher than the glass transition (Tg) and loses the fiber form. Preventing this phenomenon is infusibilization. As a method for infusibilizing a general precursor fiber containing pitch, there are a gas flow treatment with air, oxygen, ozone, nitrogen dioxide, halogen, etc., and a solution treatment with a reaction with an aldehyde in the presence of a crosslinking catalyst.

本実施形態においては、上記のようにして得られた前駆体繊維を、酸処理することにより、不融化することができる。これにより、後述の炭素化工程において、リグニン誘導体が溶融し繊維形態を失うことがない。   In the present embodiment, the precursor fiber obtained as described above can be infusibilized by acid treatment. Thereby, in the carbonization process described later, the lignin derivative does not melt and lose the fiber form.

酸処理は、前駆体繊維を酸水溶液に浸漬し、必要に応じて加熱することにより行うことができる。使用する酸は、特に限定するものではないが、塩酸や硫酸等の鉱酸や、パラトルエンスルホン酸やギ酸等の有機酸等を使用することができる。酸水溶液の濃度は、特に限定するものではないが、硫酸の場合、0.1〜10%程度の範囲内が好ましい。酸の濃度が高い場合、加熱は特に行う必要はないが、60〜90℃、好ましくは80℃程度で加熱を行うと短時間で不融化が達成できる。   The acid treatment can be performed by immersing the precursor fiber in an aqueous acid solution and heating as necessary. The acid to be used is not particularly limited, and mineral acids such as hydrochloric acid and sulfuric acid, and organic acids such as paratoluenesulfonic acid and formic acid can be used. The concentration of the aqueous acid solution is not particularly limited, but in the case of sulfuric acid, it is preferably within the range of about 0.1 to 10%. When the acid concentration is high, heating is not particularly required. However, when heating is performed at 60 to 90 ° C., preferably about 80 ° C., infusibilization can be achieved in a short time.

不融化が達成される機構としては、以下が推論される。本発明のおける親水性基を有するリグニン誘導体は、親水性基を有していることにより、熱溶融性を示すとともに、疎水性であるリグニン部分と、親水性の親水性基部分とをあわせもつ、いわゆる両親媒性繊維構造となっている。本実施形態における酸処理により、親水性基部分がリグニン部分から脱離され、一方で疎水性セグメントのリグニン部分自身が縮合することで、疎水性のリグニン繊維構造となり、不融化が達成されると推論される。   The following is inferred as a mechanism for achieving infusibilization. The lignin derivative having a hydrophilic group in the present invention has a heat-melting property by having a hydrophilic group, and also has a hydrophobic lignin portion and a hydrophilic hydrophilic group portion. It has a so-called amphiphilic fiber structure. By the acid treatment in the present embodiment, the hydrophilic group portion is removed from the lignin portion, while the lignin portion of the hydrophobic segment itself condenses to form a hydrophobic lignin fiber structure, thereby achieving infusibility. Inferred.

4.前駆体繊維を炭素化する工程
上記のようにして得られた不融化前駆体繊維を、炭素化することにより、炭素繊維を製造することができる。炭素化は公知の方法を使用すればよく、使用される不活性ガスとしては窒素ガス等が挙げられ、温度は700℃〜1700℃、好ましくは800℃〜1000℃である。炭素化時間は、具体的には、炭素繊維収率などに応じて、実験的に決定すればよい
4). Step of carbonizing precursor fiber Carbon fiber can be produced by carbonizing the infusible precursor fiber obtained as described above. Carbonization should just use a well-known method, As an inert gas used, nitrogen gas etc. are mentioned, Temperature is 700 to 1700 degreeC, Preferably it is 800 to 1000 degreeC. Specifically, the carbonization time may be experimentally determined according to the carbon fiber yield or the like.

上記のようにして得られた炭素繊維は、通常のリグニン炭素繊維に比べて多くの細孔を有し、例えば、300〜500m/gの比表面積を、好ましくは400m/gの比表面積を有する。この細孔の存在は、不融化の際に親水性基部分がリグニン部分から脱離することや、炭素化時に繊維内部に残っている熱分解性のポリオキシアルキル基の熱分解に起因すると考えられる。このように、本実施形態により、表面積の大きなリグニン炭素繊維を、効率良く製造することができる。 The carbon fiber obtained as described above has more pores than a normal lignin carbon fiber, and has a specific surface area of, for example, 300 to 500 m 2 / g, preferably a specific surface area of 400 m 2 / g. Have The existence of these pores is thought to be due to the separation of the hydrophilic group part from the lignin part during infusibilization and the thermal decomposition of the thermally decomposable polyoxyalkyl group remaining inside the fiber during carbonization. It is done. Thus, according to this embodiment, a lignin carbon fiber having a large surface area can be efficiently produced.

なお、本明細書中で使用される比表面積とは、液体窒素温度での窒素ガス吸着等温線によるBET多点法により求められる比表面積(BET比表面積)を意味し、たとえば比表面積・細孔分布測定装置(ガス吸着装置)(日本ベル社製BELORP18)を用いて測定することができる。   In addition, the specific surface area used in this specification means the specific surface area (BET specific surface area) calculated | required by the BET multipoint method by the nitrogen gas adsorption isotherm in liquid nitrogen temperature, for example, a specific surface area and pore It can be measured using a distribution measuring device (gas adsorption device) (BELORP18 manufactured by Bell Japan).

実施形態2:活性炭素繊維の製造方法
本実施形態に係る活性炭素繊維の製造方法は、親水性基を有するリグニン誘導体を得る工程、該リグニン誘導体から前駆体繊維を形成する工程、該前駆体繊維を酸処理により不融化する工程、該不融化された前駆体繊維を炭素化して炭素繊維を形成する工程、該炭素繊維を賦活化する工程を含む、活性炭素繊維の製造方法である。なお、本実施形態は、炭素繊維を賦活化する工程を除いては、基本的には上記の実施形態1と同様の構成及び作用効果を有するため、実施形態1と同様の内容については、適宜説明を省略する。
Embodiment 2: Method for Producing Activated Carbon Fiber The method for producing activated carbon fiber according to this embodiment includes a step of obtaining a lignin derivative having a hydrophilic group, a step of forming a precursor fiber from the lignin derivative, and the precursor fiber. This is a method for producing activated carbon fiber, comprising a step of infusible by acid treatment, a step of carbonizing the infusible precursor fiber to form carbon fiber, and a step of activating the carbon fiber. In addition, since this embodiment basically has the same configuration and effects as the above-described Embodiment 1 except for the step of activating the carbon fiber, the same contents as those in Embodiment 1 are appropriately selected. Description is omitted.

5.炭素繊維を賦活化する工程
上記のようにして得られた炭素繊維を、賦活化することにより、活性炭素繊維を得ることができる。賦活する工程は、公知の方法で実施すればよく、炭素化により一旦炭素繊維を製造した後、この炭素繊維を賦活する方法でもよいし、炭素化する工程と賦活する工程とをまとめて1つの工程として行ってもよい。また、賦活方法には、薬品を使用した薬品賦活法やガスを使用したガス賦活法などがあるが、いかなる方法を採用してもよい。
5. Step of activating carbon fiber Activated carbon fiber can be obtained by activating the carbon fiber obtained as described above. The activation step may be performed by a known method, and after carbon fiber is once produced by carbonization, the carbon fiber may be activated, or the carbonization step and the activation step may be combined into one. It may be performed as a process. The activation method includes a chemical activation method using a chemical and a gas activation method using a gas, but any method may be adopted.

賦活方法としてガス賦活法を採用する場合には、炭素繊維を水蒸気、二酸化炭素などの賦活ガスと例えば750〜1100℃、数十分間〜数時間程度反応させて賦活(ガス賦活)すればよい。この際、賦活時間は、具体的には、活性炭素繊維収率や活性炭素繊維に求められる比表面積などに応じて、実験的に決定すればよい。一般に、賦活化の進行は収率を低下させるが、比表面積などは上昇させる。また、炭化と賦活とを同一の装置内で連続的に実施してもよいし、それぞれ独立に実施してもよい。   When the gas activation method is employed as the activation method, the carbon fiber may be activated (gas activation) by reacting with an activation gas such as water vapor or carbon dioxide, for example, 750 to 1100 ° C. for about several tens of minutes to several hours. . In this case, the activation time may be experimentally determined according to the activated carbon fiber yield, the specific surface area required for the activated carbon fiber, and the like. In general, the progress of activation decreases the yield, but increases the specific surface area and the like. Moreover, carbonization and activation may be performed continuously in the same apparatus, or may be performed independently.

賦活方法として薬品賦活法を採用する場合には、炭素繊維に塩化亜鉛、リン酸などの薬品や、過マンガン酸カリウムなどの酸化性を持つ薬品をあらかじめ含浸させ、不活性雰囲気下、400〜1000℃で数時間程度加熱すればよい。具体的な加熱時間は、活性炭素繊維に求められる比表面積、収率などに応じて、実験的に決定すればよい。   When the chemical activation method is employed as the activation method, carbon fibers are impregnated with chemicals such as zinc chloride and phosphoric acid, and chemicals with oxidizing properties such as potassium permanganate in advance, and 400 to 1000 in an inert atmosphere. What is necessary is just to heat at several degrees C for several hours. The specific heating time may be determined experimentally according to the specific surface area and yield required for the activated carbon fiber.

本実施形態によれば、賦活法における賦活時間等を調整することにより、大きな比表面積を有する活性炭繊維を、高収率で得ることができる。例えば、水蒸気で賦活処理を行った場合、1500m/g以上の比表面積を有する活性炭繊維を収率60%以上で得ることができ、例えば、2000m/g以上の比表面積を有する活性炭繊維を収率40%以上で得ることができる。このように大きな比表面積を有する活性炭繊維を高収率で得ることができる理由としては、上記の方法で得られる賦活化前の炭素繊維の段階で既にある程度の細孔を付与されており、さらなる賦活処理で、細孔形成が促進されるためと考えられる。ポリアクリロニトリルやピッチ等の通常の石油系の活性炭素繊維の製造では、水蒸気賦活収率50%時の比表面積は1000m/g以下であり、2000m/gに賦活した時の収率は20%以下である点を考慮しても、大きな比表面積を有する活性炭繊維を高収率で得ることができる本発明の活性炭繊維の製造方法は、極めて有利である。 According to this embodiment, the activated carbon fiber which has a large specific surface area can be obtained with a high yield by adjusting the activation time etc. in an activation method. For example, when activation treatment is performed with steam, activated carbon fibers having a specific surface area of 1500 m 2 / g or more can be obtained in a yield of 60% or more. For example, activated carbon fibers having a specific surface area of 2000 m 2 / g or more are obtained. A yield of 40% or more can be obtained. As a reason that the activated carbon fiber having such a large specific surface area can be obtained in a high yield, a certain amount of pores are already provided at the stage of the carbon fiber before activation obtained by the above method, and further This is probably because pore formation is promoted by the activation treatment. In the production of ordinary petroleum-based activated carbon fibers such as polyacrylonitrile and pitch, the specific surface area when the steam activation yield is 50% is 1000 m 2 / g or less, and the yield when activated to 2000 m 2 / g is 20 Even if the point which is% or less is considered, the manufacturing method of the activated carbon fiber of this invention which can obtain the activated carbon fiber which has a big specific surface area with a high yield is very advantageous.

また、本実施形態によれば、細孔を有する活性炭素繊維を得ることができる。本実施形態の製造方法により得られた活性炭素繊維は、細孔半径の小さい細孔の割合が大きく、例えば、Dollimore-Healの方法で計算されるほとんどの細孔の細孔半径は10nm以下であり、また細孔半径5nm以下の細孔容積は、全細孔容積の95%以上であり、細孔半径2nm以下の細孔容積は、全細孔容積の75%以上であるという、非常にシャープな細孔径分布を有する。活性炭素の吸着能力は、半径の小さい細孔、特に半径2nmのマイクロ孔の存在に依るところが大きい。したがって、このように半径の小さい細孔の割合が大きく、吸着能力の高い活性炭素繊維を選択的に得ることができる本発明の活性炭素繊維の製造方法は、極めて有利である。   Moreover, according to this embodiment, the activated carbon fiber which has a pore can be obtained. The activated carbon fiber obtained by the production method of the present embodiment has a large proportion of pores having a small pore radius. For example, the pore radius of most pores calculated by the Dollimore-Heal method is 10 nm or less. The pore volume with a pore radius of 5 nm or less is 95% or more of the total pore volume, and the pore volume with a pore radius of 2 nm or less is 75% or more of the total pore volume. Has a sharp pore size distribution. The ability to adsorb activated carbon largely depends on the presence of pores having a small radius, particularly micropores having a radius of 2 nm. Therefore, the activated carbon fiber production method of the present invention, which can selectively obtain activated carbon fibers having a large ratio of pores having a small radius and high adsorption ability, is extremely advantageous.

なお、BET法で計算された市販ヤシ殻活性炭の比表面積は900m/g、細孔容積は0.58cm/gであったのに対して、本発明のリグニン活性炭素繊維の比表面積は1500〜2800m/gであり、細孔容積は0.7〜1.3cm/gである。このような比表面積が1500〜2800m/gであり、細孔容積が0.7〜1.3cm/gである、リグニン由来の活性炭素繊維もまた、本発明の一実施形態である。このリグニン由来の活性炭素繊維において、細孔半径5nm以下の細孔容積は、全細孔容積の95%以上であり、細孔半径2nm以下の細孔容積は、全細孔容積の75%以上である。なお、本明細書中で使用される細孔容積とは、定容量式ガス吸着法(吸着ガス:窒素)により得られた吸脱着等温線から解析して求められる細孔容積を意味し、例えば比表面積・細孔分布測定装置(ガス吸着装置)(日本ベル社製BELORP18)を用いて測定することができる。なお、本明細書中で用いられる細孔半径5nm又は2nm以下のマイクロポア細孔容積の割合は、たとえば比表面積・細孔分布測定装置(ガス吸着装置)(日本ベル社製BELORP18)を用いて測定することができる。 The specific surface area of the commercially available coconut shell activated carbon calculated by the BET method was 900 m 2 / g and the pore volume was 0.58 cm 3 / g, whereas the specific surface area of the lignin activated carbon fiber of the present invention was It is 1500-2800 m < 2 > / g, and pore volume is 0.7-1.3 cm < 3 > / g. Such activated carbon fiber derived from lignin having a specific surface area of 1500 to 2800 m 2 / g and a pore volume of 0.7 to 1.3 cm 3 / g is also an embodiment of the present invention. In this activated carbon fiber derived from lignin, the pore volume with a pore radius of 5 nm or less is 95% or more of the total pore volume, and the pore volume with a pore radius of 2 nm or less is 75% or more of the total pore volume. It is. The pore volume used in the present specification means a pore volume determined by analysis from an adsorption / desorption isotherm obtained by a constant volume gas adsorption method (adsorption gas: nitrogen), for example, It can be measured using a specific surface area / pore distribution measuring device (gas adsorption device) (BELORP18 manufactured by Nippon Bell Co., Ltd.). The ratio of the micropore pore volume having a pore radius of 5 nm or 2 nm or less used in the present specification is determined using, for example, a specific surface area / pore distribution measuring device (gas adsorption device) (BELORP18 manufactured by Bell Japan). Can be measured.

また、炭素繊維及び活性炭素繊維の製造コストには、高温での熱処理中に繊維の大きな重量現象を伴うため、前駆体の価格が大きく反映される。本発明の製造方法によれば、安価なリグニン原料から、高収率で炭素繊維及び活性炭素繊維を得ることができるので、コスト面で好適である。また、溶融紡糸をすることにより、より低コストで炭素繊維及び活性炭素繊維を製造することができる。   In addition, the production cost of the carbon fiber and the activated carbon fiber is accompanied by a large weight phenomenon of the fiber during the heat treatment at a high temperature, and thus the price of the precursor is greatly reflected. According to the production method of the present invention, carbon fibers and activated carbon fibers can be obtained from an inexpensive lignin raw material with high yield, which is preferable in terms of cost. Moreover, carbon fiber and activated carbon fiber can be produced at a lower cost by melt spinning.

以下、本発明を実施例によりさらに説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further, this invention is not limited to these.

実施例1:炭素繊維の製造1
平均分子量400のポリエチレングリコール(PEG)150gに0.75g(PEGに対して0.5%)の濃硫酸を加え、常温でよく攪拌させた。乾燥したスギ木粉30gをセパラブルフラスコに計り取り、つづいて調製したPEG液をすべて加えた。反応はフラスコを140℃に加熱したオイルバスに浸漬することにより開始した。フラスコ内の混合物は攪拌羽で攪拌しながら、常圧下で120分間反応させた。反応後、フラスコを冷水に浸漬し反応を終了した。反応物を96%ジオキサンで希釈し、ガラスフィルターで可溶部と不溶部に分画した。可溶部を、ナス型フラスコに移し、ロータリーエバポレーターでジオキサンと水分だけを取り除いた。残留した黒色の混合物に攪拌子を仕込み、再び140℃のオイルバスに浸漬した。この反応は攪拌しながら120分間行った。反応終了後、フラスコ内の混合物を、大過剰の蒸留水に滴下した。ガラスフィルターで水不溶部を採取し、真空乾燥させ、親水性基を有するリグニン誘導体を得た。収量は約10gであった。
Example 1: Production of carbon fiber 1
To 150 g of polyethylene glycol (PEG) having an average molecular weight of 400, 0.75 g (0.5% with respect to PEG) of concentrated sulfuric acid was added and stirred well at room temperature. 30 g of dried cedar wood flour was weighed into a separable flask, and then all of the prepared PEG solution was added. The reaction was initiated by immersing the flask in an oil bath heated to 140 ° C. The mixture in the flask was reacted for 120 minutes under normal pressure while stirring with a stirring blade. After the reaction, the reaction was completed by immersing the flask in cold water. The reaction product was diluted with 96% dioxane, and fractionated into a soluble part and an insoluble part with a glass filter. The soluble part was transferred to an eggplant-shaped flask, and only dioxane and water were removed by a rotary evaporator. The remaining black mixture was charged with a stirrer and immersed in an oil bath at 140 ° C. again. This reaction was carried out for 120 minutes with stirring. After completion of the reaction, the mixture in the flask was dropped into a large excess of distilled water. A water-insoluble portion was collected with a glass filter and vacuum-dried to obtain a lignin derivative having a hydrophilic group. Yield was about 10 g.

次に、得られた親水性基を有するリグニン誘導体を、ワイゼンベルク型混練押出し装置を用いた熱溶融紡糸に供した。紡糸温度は150℃で行い、前駆体繊維を得た。得られた前駆体繊維の写真を図1に示す。フラスコ中に5%の硫酸水溶液を仕込み、調製した前駆体繊維を浸漬させた。フラスコにコンデンサーを取り付けて、ホットプレート上で80℃まで加熱し、2時間保持し、酸処理を行った。反応後、前駆体繊維を取り出して蒸留水で洗い、乾燥させた。得られた不融化前駆体繊維の写真を図2に示す。   Next, the obtained lignin derivative having a hydrophilic group was subjected to hot melt spinning using a Weisenberg type kneading extrusion apparatus. The spinning temperature was 150 ° C. to obtain a precursor fiber. A photograph of the obtained precursor fiber is shown in FIG. A 5% aqueous sulfuric acid solution was charged into the flask, and the prepared precursor fiber was immersed therein. A condenser was attached to the flask, heated to 80 ° C. on a hot plate, held for 2 hours, and acid-treated. After the reaction, the precursor fiber was taken out, washed with distilled water, and dried. A photograph of the infusible precursor fiber obtained is shown in FIG.

上記の酸処理を行った前駆体繊維を炭化炉に静置して、窒素雰囲気下で1000℃まで加熱し、炭素化し、炭素繊維を得た。このリグニン炭素繊維を電子顕微鏡観測したところ、すでにいくつかの孔が観測された(図3)、表面積400m/gを示した。 The precursor fiber subjected to the acid treatment was left in a carbonization furnace, heated to 1000 ° C. in a nitrogen atmosphere, and carbonized to obtain a carbon fiber. When this lignin carbon fiber was observed with an electron microscope, several pores were already observed (FIG. 3), which showed a surface area of 400 m 2 / g.

実施例2:活性炭素繊維の製造1
活性炭素繊維製造のため、実施例1で得られたリグニン炭素繊維を水蒸気を用いて900℃で賦活処理を行った。得られた活性炭素繊維の写真を図4及び5に示す。賦活の度合いに応じて、比表面積をコントロールすることができた。1700m/gの比表面積を有する活性炭素繊維の賦活収率は50%と高収率であった。性能の高いものでは、2600m/gもの比表面積を有する活性炭素繊維が製造され、その際の賦活収率は25%と高収率であった。BET法で計算された比表面積1700m/gを有する活性炭素繊維の全細孔容積は、0.71cm3/gであり、細孔分析で得られた細孔半径5nm以下の細孔は、全細孔容積の99%、細孔半径2nm以下の細孔容積は、全細孔容積の93%であった。性能の高いものでは、BET法で計算された比表面積は2600m/gであり、全細孔容積は1.26cm3/gであり、細孔分析で得られた細孔半径5nm以下の細孔は全細孔容積の97%、細孔半径2nm以下の細孔容積は、全細孔容積の80%であった。
Example 2: Production of activated carbon fiber 1
In order to produce activated carbon fibers, the lignin carbon fibers obtained in Example 1 were subjected to activation treatment at 900 ° C. using water vapor. The photograph of the obtained activated carbon fiber is shown to FIG. The specific surface area could be controlled according to the degree of activation. The activation yield of activated carbon fibers having a specific surface area of 1700 m 2 / g was as high as 50%. With high performance, activated carbon fibers having a specific surface area of 2600 m 2 / g were produced, and the activation yield at that time was as high as 25%. The total pore volume of the activated carbon fiber having a specific surface area of 1700 m 2 / g calculated by the BET method is 0.71 cm 3 / g, and pores having a pore radius of 5 nm or less obtained by pore analysis are: 99% of the total pore volume, and the pore volume with a pore radius of 2 nm or less was 93% of the total pore volume. In the case of high performance, the specific surface area calculated by the BET method is 2600 m 2 / g, the total pore volume is 1.26 cm 3 / g, and the pore radius obtained by the pore analysis is 5 nm or less. The pores were 97% of the total pore volume, and the pore volumes having a pore radius of 2 nm or less were 80% of the total pore volume.

実施例3:炭素繊維の製造2
実施例1における親水性基を有するリグニン誘導体の調製を、木質バイオエタノール製造で副産したアルカリリグニンを原料としたリグニン誘導体の調製法で行った以外は、実施例1と同様の方法で、炭素繊維を製造した。アルカリリグニンは、スギチップをアルカリ蒸解して得られた蒸解黒液から取得した。10gのアルカリリグニンを100mLの1Nの水酸化ナトリウム水溶液に常温で攪拌しながら溶解した。
Example 3: Production 2 of carbon fiber
In the same manner as in Example 1, except that the preparation of the lignin derivative having a hydrophilic group in Example 1 was carried out by the method of preparing a lignin derivative using alkali lignin as a by-product in the production of woody bioethanol. A fiber was produced. Alkaline lignin was obtained from cooking black liquor obtained by alkaline cooking of cedar chips. 10 g of alkaline lignin was dissolved in 100 mL of 1N aqueous sodium hydroxide solution at room temperature with stirring.

グリシジル化合物としてエチレンオキサイドの繰り返し単位が9のポリエチレングリコールジグリシジルエーテル(ナガセケムテックス株式会社製、デナコールEX−841)を用いた。上記の10gアルカリリグニン1N水酸化ナトリウム溶液に、グリシジル化合物を10g加えた。溶液を70℃に加熱し、3時間攪拌して反応させた。反応は、酢酸を加えてpHを4にすることで終了させた。溶液を分子量3000以下を排除する限外濾過膜を装着した限外濾過装置に移し、濾過を行った。濾過後、残渣を集めて真空乾燥し、約17gのリグニン誘導体を得た。   As the glycidyl compound, polyethylene glycol diglycidyl ether having 9 ethylene oxide repeating units (manufactured by Nagase ChemteX Corporation, Denacol EX-841) was used. 10 g of glycidyl compound was added to the above 10 g alkaline lignin 1N sodium hydroxide solution. The solution was heated to 70 ° C. and stirred for 3 hours to react. The reaction was terminated by adding acetic acid to bring the pH to 4. The solution was transferred to an ultrafiltration apparatus equipped with an ultrafiltration membrane excluding a molecular weight of 3000 or less, and filtered. After filtration, the residue was collected and vacuum-dried to obtain about 17 g of lignin derivative.

次に、得られたリグニン誘導体を2軸エクストルーダーを用いた熱溶融紡糸に供した。溶融温度は130℃で行い、前駆体繊維を得た。続いて、フラスコ中に5%の硫酸水溶液を仕込み、調製した前駆体繊維を浸漬させた。フラスコにコンデンサーを取り付けて、ホットプレート上で80℃に加熱し、2時間保持し、酸処理を行った。反応後、前駆体繊維を取り出して蒸留水で洗い、乾燥させた。   Next, the obtained lignin derivative was subjected to hot melt spinning using a biaxial extruder. The melting temperature was 130 ° C. to obtain a precursor fiber. Subsequently, a 5% sulfuric acid aqueous solution was charged into the flask, and the prepared precursor fiber was immersed therein. A condenser was attached to the flask, heated to 80 ° C. on a hot plate, held for 2 hours, and acid-treated. After the reaction, the precursor fiber was taken out, washed with distilled water, and dried.

上記の酸処理を行った前駆体繊維を炭化炉に静置して、窒素雰囲気下で1000℃まで加熱して炭素化し、炭素繊維を得た。   The precursor fiber subjected to the acid treatment was left in a carbonization furnace and heated to 1000 ° C. in a nitrogen atmosphere to be carbonized to obtain a carbon fiber.

実施例4:活性炭素繊維の製造2
活性炭素繊維製造のため、実施例3で得られたリグニン炭素繊維を水蒸気を用いて900℃で賦活処理を行った。賦活の度合いに応じて、比表面積をコントロールすることができた。1700m/gの比表面積を有する活性炭素繊維の賦活収率は50%と高収率であった。性能の高いものでは、2600m/gもの比表面積を有する活性炭素繊維が製造され、その際の賦活収率は25%と高収率であった。
Example 4: Production of activated carbon fiber 2
In order to produce activated carbon fibers, the lignin carbon fibers obtained in Example 3 were subjected to activation treatment at 900 ° C. using water vapor. The specific surface area could be controlled according to the degree of activation. The activation yield of activated carbon fibers having a specific surface area of 1700 m 2 / g was as high as 50%. With high performance, activated carbon fibers having a specific surface area of 2600 m 2 / g were produced, and the activation yield at that time was as high as 25%.

実施例5:炭素繊維の製造3
実施例1における親水性基を有するリグニン誘導体の調製を、木質バイオエタノール製造で副産した蒸解黒液を乾燥させた粉末(黒液粉末)を原料とした調製法で行った以外は、実施例1と同様の方法で、炭素繊維を製造した。黒液粉末は、スギチップをアルカリ蒸解して得られた黒液を噴霧乾燥機で乾燥造粒した粉末を真空乾燥機で脱水して調製した。この黒液粉末は約半量のリグニンと約半量の固体の水酸化ナトリウムで構成される。10gの黒液粉末を50gの平均分子量400のポリエチレングリコールに加えて、攪拌羽を装着したフラスコで室温で1時間攪拌させた。反応はフラスコ内の混合物を攪拌させながらフラスコを120℃に加熱したオイルバスに浸漬することにより行った。常圧下で1時間反応させた後、フラスコを冷水に浸漬して反応を終了させた。常温に冷却された反応物は、蒸留水で洗い出し、さらに蒸留水を加え、ビーカー内で約3Lに調製した。ビーカー内の水溶液を攪拌しながら、酢酸で中和し、沈澱を生成せしめた。ガラスフィルターで沈澱を採取し、真空乾燥させ、親水基を有するリグニン誘導体を得た。収量は約5gであった。
Example 5: Production of carbon fiber 3
Except that the preparation of the lignin derivative having a hydrophilic group in Example 1 was carried out by a preparation method using a powder (black liquor powder) obtained by drying cooking black liquor by-produced in woody bioethanol production as a raw material. In the same manner as in No. 1, carbon fiber was produced. The black liquor powder was prepared by dehydrating a powder obtained by drying and granulating black liquor obtained by alkali digesting cedar chips with a spray drier. This black liquor powder is composed of about half of the lignin and about half of the solid sodium hydroxide. 10 g of black liquor powder was added to 50 g of polyethylene glycol having an average molecular weight of 400 and stirred at room temperature for 1 hour in a flask equipped with stirring blades. The reaction was performed by immersing the flask in an oil bath heated to 120 ° C. while stirring the mixture in the flask. After reacting for 1 hour under normal pressure, the reaction was completed by immersing the flask in cold water. The reaction product cooled to room temperature was washed out with distilled water, and further distilled water was added to prepare about 3 L in a beaker. While stirring, the aqueous solution in the beaker was neutralized with acetic acid to form a precipitate. The precipitate was collected with a glass filter and vacuum-dried to obtain a lignin derivative having a hydrophilic group. Yield was about 5 g.

次に、得られたリグニン誘導体を2軸エクストルーダーを用いた熱溶融紡糸に供した。溶融温度は130℃で行い、前駆体繊維を得た。続いて、フラスコ中に5%の硫酸水溶液を仕込み、調製した前駆体繊維を浸漬させた。フラスコにコンデンサーを取り付けて、ホットプレート上で80℃に加熱し、2時間保持し、酸処理を行った。反応後、前駆体繊維を取り出して蒸留水で洗い、乾燥させた。   Next, the obtained lignin derivative was subjected to hot melt spinning using a biaxial extruder. The melting temperature was 130 ° C. to obtain a precursor fiber. Subsequently, a 5% sulfuric acid aqueous solution was charged into the flask, and the prepared precursor fiber was immersed therein. A condenser was attached to the flask, heated to 80 ° C. on a hot plate, held for 2 hours, and acid-treated. After the reaction, the precursor fiber was taken out, washed with distilled water, and dried.

上記の酸処理を行った前駆体繊維を炭化炉に静置して、窒素雰囲気下で1000℃まで加熱して炭素化し、炭素繊維を得た。   The precursor fiber subjected to the acid treatment was left in a carbonization furnace and heated to 1000 ° C. in a nitrogen atmosphere to be carbonized to obtain a carbon fiber.

実施例6:活性炭素繊維の製造3
活性炭素繊維製造のため、実施例5で得られたリグニン炭素繊維を水蒸気を用いて900℃で賦活処理を行った。賦活の度合いに応じて、比表面積をコントロールすることができた。
Example 6: Production of activated carbon fiber 3
In order to produce activated carbon fibers, the lignin carbon fibers obtained in Example 5 were subjected to activation treatment at 900 ° C. using water vapor. The specific surface area could be controlled according to the degree of activation.

なお、上記実施例により得られた炭素繊維及び活性炭素繊維の測定は、以下の方法に基づき行った。   In addition, the measurement of the carbon fiber and activated carbon fiber obtained by the said Example was performed based on the following method.

(1)BET比表面積(m/g)
試料を約100mg採取し、減圧下250℃で12時間真空乾燥して秤量し、比表面積・細孔分布測定装置(日本ベル社製BELSORP18)を使用して測定した。液体窒素の沸点(−195.8℃)における窒素ガスの吸着量を相対圧が1.0×10−6〜0.95の範囲で測定し、試料の吸着等温線を作成した。相対圧1.0×10−6〜0.15の範囲での結果をもとに、BET法により重量あたりのBET比表面積(単位:m/g)を求めた。
(1) BET specific surface area (m 2 / g)
About 100 mg of a sample was collected, vacuum-dried under reduced pressure at 250 ° C. for 12 hours, weighed, and measured using a specific surface area / pore distribution measuring apparatus (BELSORP18 manufactured by Nippon Bell Co., Ltd.). The adsorption amount of nitrogen gas at the boiling point of liquid nitrogen (-195.8 ° C.) was measured in a relative pressure of 1.0 × 10 −6 to 0.95, and an adsorption isotherm for the sample was prepared. Based on the results in the relative pressure range of 1.0 × 10 −6 to 0.15, the BET specific surface area (unit: m 2 / g) per weight was determined by the BET method.

(2)全細孔容積(cm/g)
試料を約100mg採取し、減圧下250℃で12時間真空乾燥して秤量し、比表面積・細孔分布測定装置(日本ベル社製BELSORP18)を使用して測定した。液体窒素の沸点(−195.8℃)における窒素ガスの吸着量を相対圧が1.0×10−6〜0.95の範囲で測定し、試料の吸着等温線を作成した。相対圧0.95での結果より全細孔容積(単位:cm/g)を算出した。
(2) Total pore volume (cm 3 / g)
About 100 mg of a sample was collected, vacuum-dried under reduced pressure at 250 ° C. for 12 hours, weighed, and measured using a specific surface area / pore distribution measuring apparatus (BELSORP18 manufactured by Nippon Bell Co., Ltd.). The adsorption amount of nitrogen gas at the boiling point of liquid nitrogen (-195.8 ° C.) was measured in a relative pressure of 1.0 × 10 −6 to 0.95, and an adsorption isotherm for the sample was prepared. The total pore volume (unit: cm 3 / g) was calculated from the result at a relative pressure of 0.95.

(3)細孔半径5nm又は2nm以下の細孔容積(B)(cm/g)
試料を約100mg採取し、減圧下250℃で12時間真空乾燥して秤量し、比表面積・細孔分布測定装置(日本ベル社製BELSORP18)を使用して測定した。液体窒素の沸点(−195.8℃)における窒素ガスの吸着量を相対圧が1.0×10−6〜0.95の範囲で測定し、試料の吸着等温線を作成した。この結果をMP法によって解析範囲0〜5nm又は0〜2nm、t決定式Dollimore-Healの条件で解析し、吸着時の細孔径分布数表を得て、細孔半径5nm又は2nm以下の細孔容積B(単位:cm/g)を算出した。
(3) Pore volume with pore radius of 5 nm or 2 nm or less (B) (cm 3 / g)
About 100 mg of a sample was collected, vacuum-dried under reduced pressure at 250 ° C. for 12 hours, weighed, and measured using a specific surface area / pore distribution measuring apparatus (BELSORP18 manufactured by Nippon Bell Co., Ltd.). The adsorption amount of nitrogen gas at the boiling point of liquid nitrogen (-195.8 ° C.) was measured in a relative pressure of 1.0 × 10 −6 to 0.95, and an adsorption isotherm for the sample was prepared. This result is analyzed by MP method under the conditions of analysis range 0-5 nm or 0-2 nm, t determinant Dollimore-Heal, and a pore diameter distribution number table at the time of adsorption is obtained. The volume B (unit: cm 3 / g) was calculated.

本発明により、リグニンから、高性能な炭素繊維及び活性炭素繊維を、高収率で、効率良く製造する方法が提供された。本発明によれば、炭素繊維及び活性炭素繊維を安価な材料から高収率で、効率良く製造することができる。また、本発明によれば、リグニンを利用し、大きな付加価値を付与することにより、森林林業再生のためにも大いに貢献する。さらに、リグニンは大気中の二酸化炭素を固定化するので、本発明のリグニン利用法によれば、材料内に炭素を固定することができ、地球温暖化問題の対策にもつながる。   The present invention provides a method for efficiently producing high-performance carbon fibers and activated carbon fibers from lignin in high yield. According to the present invention, carbon fibers and activated carbon fibers can be efficiently produced from an inexpensive material in a high yield. In addition, according to the present invention, by using lignin and adding a great added value, it greatly contributes to the forestry and forestry regeneration. Furthermore, since lignin fixes carbon dioxide in the atmosphere, according to the lignin utilization method of the present invention, carbon can be fixed in the material, which leads to countermeasures against global warming.

Claims (9)

親水性基を有するリグニン誘導体を得る工程、該リグニン誘導体から前駆体繊維を形成する工程、該前駆体繊維を酸処理により不融化する工程、該前駆体繊維を炭素化する工程を含む、炭素繊維の製造方法であって、
前記親水性基を有するリグニン誘導体が、リグノセルロースを、ポリエチレングリコール、エチレングリコール、グリセリン、ポリグリセリンから選択される少なくとも1つの溶媒により加溶媒分解することにより得られたものであるか、又は
リグニンと、グリコール系化合物及びグリシジルエーテル系化合物から選択される親水性化合物とを反応させることにより得られたものである、炭素繊維の製造方法
Carbon fiber, including a step of obtaining a lignin derivative having a hydrophilic group, a step of forming a precursor fiber from the lignin derivative, a step of infusibilizing the precursor fiber by acid treatment, and a step of carbonizing the precursor fiber A manufacturing method of
The lignin derivative having a hydrophilic group is obtained by solvolysis of lignocellulose with at least one solvent selected from polyethylene glycol, ethylene glycol, glycerin, polyglycerin, or
A method for producing carbon fiber, which is obtained by reacting lignin with a hydrophilic compound selected from a glycol compound and a glycidyl ether compound .
前記親水性基を有するリグニン誘導体における親水性基が、アルコール性水酸基及びポリオキシアルキレン基から選択される基を少なくとも1つ含む、請求項1に記載の製造方法。   The production method according to claim 1, wherein the hydrophilic group in the lignin derivative having a hydrophilic group includes at least one group selected from an alcoholic hydroxyl group and a polyoxyalkylene group. 前記前駆体繊維を形成する工程において、溶融紡糸により前駆体繊維を形成する、請求項1又は2に記載の製造方法。 The manufacturing method according to claim 1 or 2 , wherein in the step of forming the precursor fiber, the precursor fiber is formed by melt spinning. 前記不融化する工程において、前駆体繊維が、0.1〜10%硫酸水溶液による酸処理により不融化される、請求項1〜のいずれか1項に記載の製造方法。 The manufacturing method according to any one of claims 1 to 3 , wherein in the infusifying step, the precursor fiber is infusible by acid treatment with a 0.1 to 10% aqueous sulfuric acid solution. 親水性基を有するリグニン誘導体を得る工程、該リグニン誘導体から前駆体繊維を形成する工程、該前駆体繊維を酸処理により不融化する工程、該不融化された前駆体繊維を炭素化して炭素繊維を形成する工程、該炭素繊維を賦活化する工程を含む、活性炭素繊維の製造方法であって、
前記親水性基を有するリグニン誘導体が、リグノセルロースを、ポリエチレングリコール、エチレングリコール、グリセリン、ポリグリセリンから選択される少なくとも1つの溶媒により加溶媒分解することにより得られたものであるか、又は
リグニンと、グリコール系化合物及びグリシジルエーテル系化合物から選択される親水性化合物とを反応させることにより得られたものである、活性炭素繊維の製造方法
A step of obtaining a lignin derivative having a hydrophilic group, a step of forming a precursor fiber from the lignin derivative, a step of infusibilizing the precursor fiber by acid treatment, and carbonizing the infusible precursor fiber to carbon fiber A process for forming activated carbon fiber, and a process for activating the carbon fiber, comprising the steps of :
The lignin derivative having a hydrophilic group is obtained by solvolysis of lignocellulose with at least one solvent selected from polyethylene glycol, ethylene glycol, glycerin, polyglycerin, or
A method for producing activated carbon fiber, which is obtained by reacting lignin with a hydrophilic compound selected from a glycol compound and a glycidyl ether compound .
前記親水性基を有するリグニン誘導体における親水性基が、アルコール性水酸基及びポリオキシアルキレン基から選択される基を少なくとも1つ含む、請求項に記載の製造方法。 The production method according to claim 5 , wherein the hydrophilic group in the lignin derivative having a hydrophilic group contains at least one group selected from an alcoholic hydroxyl group and a polyoxyalkylene group. 前記前駆体繊維を形成する工程において、溶融紡糸により前駆体繊維を形成する、請求項5又は6に記載の製造方法。 The manufacturing method according to claim 5 or 6 , wherein in the step of forming the precursor fiber, the precursor fiber is formed by melt spinning. 前記不融化する工程において、前駆体繊維が、0.1〜10%硫酸水溶液による酸処理により不融化される、請求項5〜7のいずれか1項に記載の製造方法。 The manufacturing method according to any one of claims 5 to 7 , wherein in the infusifying step, the precursor fiber is infusible by acid treatment with a 0.1 to 10% sulfuric acid aqueous solution. 比表面積が、1500〜2800m/gであり、細孔半径2nm以下の細孔容積が、全細孔容積の75%以上である、リグニン由来の活性炭素繊維。 A lignin-derived activated carbon fiber having a specific surface area of 1500 to 2800 m 2 / g and a pore volume having a pore radius of 2 nm or less of 75% or more of the total pore volume.
JP2012009060A 2012-01-19 2012-01-19 Lignin carbon fiber and method for producing activated carbon fiber Active JP5892487B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012009060A JP5892487B2 (en) 2012-01-19 2012-01-19 Lignin carbon fiber and method for producing activated carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012009060A JP5892487B2 (en) 2012-01-19 2012-01-19 Lignin carbon fiber and method for producing activated carbon fiber

Publications (2)

Publication Number Publication Date
JP2013147768A JP2013147768A (en) 2013-08-01
JP5892487B2 true JP5892487B2 (en) 2016-03-23

Family

ID=49045545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012009060A Active JP5892487B2 (en) 2012-01-19 2012-01-19 Lignin carbon fiber and method for producing activated carbon fiber

Country Status (1)

Country Link
JP (1) JP5892487B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104131364B (en) * 2014-07-15 2016-01-20 李文军 Agricultural crop straw carbon fiber production method
JP6344795B2 (en) * 2014-09-17 2018-06-20 国立研究開発法人森林研究・整備機構 Method for producing lignin carbon fiber
JP6795802B2 (en) * 2015-11-27 2020-12-02 国立研究開発法人産業技術総合研究所 Heat-resistant gas barrier film and its manufacturing method
JP6890821B2 (en) * 2016-04-21 2021-06-18 国立研究開発法人森林研究・整備機構 Glycollignin production method and its system
CN110902675B (en) * 2019-10-28 2022-08-23 广西科学院 Method for preparing special-shaped activated carbon and capacitance carbon by using lignin-modified inferior biomass
KR102486669B1 (en) * 2020-10-30 2023-01-10 한국세라믹기술원 Manufacturing method of porous activated carbon performing spray activation after acid treatment
WO2023153519A1 (en) * 2022-02-14 2023-08-17 群栄化学工業株式会社 Composition for producing activated carbon, method for producing same, molded body for producing activated carbon, method for producing same, fibers for producing activated carbon fibers, method for producing same, activated carbon precursor, activated carbon fiber precursor, carbide, carbon fibers, activated carbon, method for producing same, activated carbon fibers, and method for producing same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4006516B2 (en) * 2002-11-19 2007-11-14 国立大学法人北見工業大学 Carbon fiber manufacturing method
JP2006233395A (en) * 2005-02-28 2006-09-07 Kitami Institute Of Technology Carbon fiber and method for producing the same
JP2010242248A (en) * 2009-04-03 2010-10-28 Teijin Ltd Method for producing superfine carbon fiber

Also Published As

Publication number Publication date
JP2013147768A (en) 2013-08-01

Similar Documents

Publication Publication Date Title
JP5892487B2 (en) Lignin carbon fiber and method for producing activated carbon fiber
Ogale et al. Recent advances in carbon fibers derived from biobased precursors
Collins et al. Valorization of lignin in polymer and composite systems for advanced engineering applications–a review
Fang et al. Manufacture and application of lignin-based carbon fibers (LCFs) and lignin-based carbon nanofibers (LCNFs)
Park Carbon fibers
Chatterjee et al. Lignin‐derived advanced carbon materials
Oroumei et al. Thermal and rheological characteristics of biobased carbon fiber precursor derived from low molecular weight organosolv lignin
Baker et al. Recent advances in low‐cost carbon fiber manufacture from lignin
Luo et al. Lignin recovered from the near-neutral hemicellulose extraction process as a precursor for carbon fiber
JP6050762B2 (en) Method for producing lignin fiber
RU2628959C2 (en) Method of stabilization of lignin fiber for the purpose of following conversion to carbon fiber
Xu et al. Current overview of carbon fiber: Toward green sustainable raw materials
JP2013542276A (en) Thermoplastic lignin for carbon fiber manufacture
Bajpai Carbon fibre from lignin
Jiménez et al. Materials for activated carbon fiber synthesis
Vinod et al. Recent advancements in lignocellulose biomass-based carbon fiber: Synthesis, properties, and applications
Zhang Carbon fibers derived from dry-spinning of modified lignin precursors
Wu et al. Green and low-cost natural lignocellulosic biomass-based carbon fibers—Processing, properties, and applications in sports equipment: A review
Feng et al. Effect of p-TsOH pretreatment on separation of bagasse components and preparation of nanocellulose filaments
Parot et al. Electrospinning of softwood organosolv lignin without polymer addition
Bostan et al. Upscaling of lignin precursor melt spinning by bicomponent spinning and its use for carbon fibre production
JP2002038334A (en) Method for producing fine activated carbon fiber and fine activated carbon fiber produced thereby
JP6344795B2 (en) Method for producing lignin carbon fiber
Attwenger Value-added Lignin Based Carbon Fiber from Organosolv Fractionation of Poplar and Switchgrass
Jian Preparation and characterization of softwood lignin-based carbon fibers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150109

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160215

R150 Certificate of patent or registration of utility model

Ref document number: 5892487

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250