JP5891609B2 - Passivation method - Google Patents

Passivation method Download PDF

Info

Publication number
JP5891609B2
JP5891609B2 JP2011120399A JP2011120399A JP5891609B2 JP 5891609 B2 JP5891609 B2 JP 5891609B2 JP 2011120399 A JP2011120399 A JP 2011120399A JP 2011120399 A JP2011120399 A JP 2011120399A JP 5891609 B2 JP5891609 B2 JP 5891609B2
Authority
JP
Japan
Prior art keywords
pipe
gas
gas supply
ozone
supply pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011120399A
Other languages
Japanese (ja)
Other versions
JP2012246543A (en
Inventor
敏徳 三浦
敏徳 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP2011120399A priority Critical patent/JP5891609B2/en
Publication of JP2012246543A publication Critical patent/JP2012246543A/en
Application granted granted Critical
Publication of JP5891609B2 publication Critical patent/JP5891609B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Chemical Treatment Of Metals (AREA)
  • Heat Treatment Of Articles (AREA)

Description

本発明は鋼材表面を不動態化処理する技術に関する。   The present invention relates to a technique for passivating a steel surface.

半導体部品の高集積化、高性能化のために半導体製造装置の原料ガス供給系に係る鋼材(例えばステンレス鋼)はその表面が不動態処理されることで当該鋼材の成分に由来する不純物質の原料ガスへの混入の抑制が図られている。   Steel materials (for example, stainless steel) related to the raw material gas supply system of semiconductor manufacturing equipment for high integration and high performance of semiconductor parts are subjected to passive treatment on the surface, so that impurities derived from the components of the steel materials Suppression of mixing into the raw material gas is attempted.

不動態化処理には濃硝酸等の強酸化剤が適用されているが、当該酸化剤の取り扱いに注意が必要であること及び不動態膜への強酸化剤の成分混入を懸念し、近年ではオゾンガスを利用した処理法が適用され始めている(例えば特許文献1,2)。   A strong oxidizing agent such as concentrated nitric acid is applied to the passivation treatment. However, due to concerns about the handling of the oxidizing agent and the inclusion of strong oxidizing agent components in the passive film, Treatment methods using ozone gas are beginning to be applied (for example, Patent Documents 1 and 2).

特許文献1の処理法はオゾン含有量が0.5〜10vol%の乾燥酸素雰囲気中で150〜300℃のもとで1〜50時間の処理時間をかけて鋼材の表面に酸化不動態膜を形成する。   In the treatment method of Patent Document 1, an oxidation passivation film is formed on the surface of a steel material over a treatment time of 1 to 50 hours at 150 to 300 ° C. in a dry oxygen atmosphere having an ozone content of 0.5 to 10 vol%. Form.

特許文献2の処理法はオゾンガス濃度50vol%以上の高濃度オゾンガスを鋼材の表面に供して当該表面に不動態膜を形成しているが、オゾンの特性上高温で処理することができないので20〜60℃のもと処理時間に20〜40時間をかけている。   In the treatment method of Patent Document 2, a high-concentration ozone gas having an ozone gas concentration of 50 vol% or more is applied to the surface of the steel material to form a passive film on the surface. The treatment time is 20 to 40 hours at 60 ° C.

特開平5−287496号公報Japanese Patent Laid-Open No. 5-287696 特開平9−195031号公報Japanese Patent Laid-Open No. 9-195031 特公平5−17164号公報Japanese Patent Publication No. 5-17164

鈴木亮輔、太田勝也、小野勝敏,「オゾンガス酸化による液体CrO3を用いた鉄の耐酸化皮膜生成」,第10回日本オゾン協会年次研究講演会,2000年10月25,26日,滋賀県立県民交流センター,講演番号20,講演集pp.83−86Ryosuke Suzuki, Katsuya Ota, Katsutoshi Ono, "Oxidation film formation of iron using liquid CrO3 by ozone gas oxidation", 10th Annual Meeting of the Japan Ozone Society, October 25 and 26, 2000, Shiga Prefectural Exchange Center, Lecture Number 20, Lecture Collection pp. 83-86 Fu Su, Jack G. Calvert, John H. Shaw,"A FT IR Spectroscopic Study of the Ozone-Ethene Reaction Mechanism in O2-Rich Mixtures", The Journal of Physical Chemistry, Vol. 84, No.3, 1980, pages 239-246Fu Su, Jack G. Calvert, John H. Shaw, "A FT IR Spectroscopic Study of the Ozone-Ethene Reaction Mechanism in O2-Rich Mixtures", The Journal of Physical Chemistry, Vol. 84, No. 3, 1980, pages 239-246 株式会社スリーボンド・テクニカルニュース編集委員会編,「紫外線―オゾンによる表面処理」,スリーボンド・テクニカルニュース,昭和62年3月20日発行,pp.1〜103Bond Technical News Editorial Board, “Ultraviolet-Ozone Surface Treatment”, ThreeBond Technical News, published on March 20, 1987, pp. 1-10

上述のようにオゾンを用いた鋼材の不動態処理は室温または室温よりも高温の条件にも関わらず数十時間に及ぶ長い処理時間を要する。また、鋼材であるステンレス鋼の成分の一つであるクロムは約100〜200℃程度でオゾンと反応して融点の低い過酸化物を形成させてしまう(非特許文献1)。さらに、高温の加熱ではオゾンが高温の雰囲気に曝された時点でほとんど酸素に分解されるので、鋼材の表面での酸化効果は期待できない。したがって、加熱された雰囲気のもとでのオゾンによる鋼材表面の不動態化は半導体製造装置の製造コストの観点からも有効ではない。   As described above, the passive treatment of steel using ozone requires a long treatment time of several tens of hours regardless of the room temperature or a temperature higher than the room temperature. Further, chromium, which is one of the components of stainless steel, which is a steel material, reacts with ozone at about 100 to 200 ° C. to form a peroxide having a low melting point (Non-patent Document 1). Furthermore, since the ozone is almost decomposed into oxygen when exposed to a high temperature atmosphere in high temperature heating, the oxidation effect on the surface of the steel material cannot be expected. Therefore, the passivation of the steel material surface by ozone under a heated atmosphere is not effective from the viewpoint of the manufacturing cost of the semiconductor manufacturing apparatus.

本発明はかかる事情に鑑みなされたものでその目的はより一層短時間に鋼材表面を不動態化できる不動態化処理方法の提供にある。   The present invention has been made in view of such circumstances, and an object thereof is to provide a passivation treatment method capable of passivating a steel material surface in a shorter time.

そこで、本発明の不動態化処理方法はオゾンガスとオゾン分解因子とを鋼材に供してこの鋼材の表面を不動態化処理する。前記オゾン分解因子としては不飽和炭化水素、紫外光が例示される。   Therefore, the passivation treatment method of the present invention applies ozone gas and an ozonolysis factor to a steel material to passivate the surface of the steel material. Examples of the ozonolysis factor include unsaturated hydrocarbons and ultraviolet light.

本発明の態様としては、鋼材から成る配管の内面を不動態化処理する不動態化処理方法であって、鋼材から成る配管内にオゾンガス供給管を当該配管と同軸に挿通して当該供給管の先端付近の外周面からオゾンガスを供給すると共に当該外周面と当該配管の内面との間隙にオゾン分解因子として不飽和炭化水素ガスを供給しながら前記外周面を当該配管の軸方向に動作させることにより当該配管の内面を不動態化する。
以上の方法によれば、配管系の施工過程で逐次に各配管の内面を不動態化処理できる。
As an aspect of the present invention, there is provided a passivation processing method for passivating an inner surface of a pipe made of steel, and an ozone gas supply pipe is inserted coaxially with the pipe into the pipe made of steel. By supplying ozone gas from the outer peripheral surface near the tip and operating the outer peripheral surface in the axial direction of the piping while supplying unsaturated hydrocarbon gas as an ozone decomposition factor to the gap between the outer peripheral surface and the inner surface of the piping Passivate the inner surface of the pipe.
According to the above method, the inner surface of each pipe can be passivated sequentially in the construction process of the pipe system.

以上の発明によればより一層短時間に鋼材表面を不動態化できる。   According to the above invention, the steel surface can be passivated in a shorter time.

発明の実施形態1に係る不動態化処理方法を説明した概略断面図。The schematic sectional drawing explaining the passivation processing method which concerns on Embodiment 1 of invention. 発明の実施形態2に係る不動態化処理方法を説明した概略断面図。The schematic sectional drawing explaining the passivation processing method which concerns on Embodiment 2 of invention. 発明の実施形態3に係る不動態化処理方法を説明した概略断面図。The schematic sectional drawing explaining the passivation processing method which concerns on Embodiment 3 of invention. 発明の実施形態4に係る不動態化処理方法を説明した概略断面図。The schematic sectional drawing explaining the passivation processing method which concerns on Embodiment 4 of invention. 発明の実施形態5に係る不動態化処理方法を説明した概略断面図。The schematic sectional drawing explaining the passivation processing method which concerns on Embodiment 5 of invention. 発明の実施形態に係る方法で処理したステンレス鋼の表面のXPS測定結果。The XPS measurement result of the surface of the stainless steel processed with the method which concerns on embodiment of invention.

以下、図面を参照しながら本発明の実施の形態について説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

[実施形態1]
図1に示した実施形態1に係る不動態化処理では鋼材からなる配管1bの内面に対してオゾンガスと共にオゾン分解因子として不飽和炭化水素ガスを供して当該内面を不動態化する。本実施形態では不動態化済みの既存の配管1aに新たな配管1bが接続される毎にこの配管1bの内面が不動態化処理される。
[Embodiment 1]
In the passivation treatment according to the first embodiment shown in FIG. 1, the inner surface of the pipe 1b made of steel is provided with an unsaturated hydrocarbon gas as an ozonolysis factor together with ozone gas to passivate the inner surface. In this embodiment, every time a new pipe 1b is connected to the existing pipe 1a that has been passivated, the inner surface of the pipe 1b is passivated.

既存の配管1aの一端側には配管1a,1b内にてガス流を生じさせるための真空ポンプ2が予め気密に接続される。オゾンガスはオゾン発生装置3から供給されるようになっている。オゾン発生装置3は周知のオゾン発生装置(例えば特許文献3に開示のオゾン発生装置)を適用すればよい。特許文献3のオゾン発生装置はオゾン濃度100vol%のオゾンガスを供給できるが、オゾン濃度10vol%以上好ましくは20vol%以上のオゾンガスを供給できるオゾンガス発生装置であれば特に限定しない。不飽和炭化水素ガスは当該ガスを充填したボンベ4から供給される。不飽和炭化水素ガスとしてはエチレンガスが例示される。   A vacuum pump 2 for generating a gas flow in the pipes 1a and 1b is airtightly connected in advance to one end side of the existing pipe 1a. The ozone gas is supplied from the ozone generator 3. The ozone generator 3 may be a known ozone generator (for example, an ozone generator disclosed in Patent Document 3). The ozone generator of Patent Document 3 can supply ozone gas with an ozone concentration of 100 vol%, but is not particularly limited as long as it is an ozone gas generator that can supply ozone gas with an ozone concentration of 10 vol% or more, preferably 20 vol% or more. The unsaturated hydrocarbon gas is supplied from a cylinder 4 filled with the gas. An example of the unsaturated hydrocarbon gas is ethylene gas.

オゾン発生装置3には伸縮自在のガス供給管5が接続されている。ガス供給管5としてはオゾン耐性の材料(石英、不動態化処理されたステンレス等)から成る伸縮配管構造のものやフレキシブル配管構造のものが挙げられる。伸縮配管構造のものは二重配管の外側の配管部が駆動装置によって動作可能なものが挙げられる。   A stretchable gas supply pipe 5 is connected to the ozone generator 3. Examples of the gas supply pipe 5 include an expansion pipe structure made of ozone-resistant material (quartz, passivated stainless steel, etc.) and a flexible pipe structure. The thing of the expansion pipe structure can be one in which the pipe section outside the double pipe can be operated by a driving device.

ガス供給管5は配管1bよりも小径であり且つ先端部が密閉されている。また、ガス供給管5の先端付近の外周面にはオゾンガスを散気するための散気孔51が複数形成されている。ガス供給管5は配管1bの不動態化処理時に配管1b内に挿通され、配管1bの軸方向に伸縮動作可能となるようにマニホールド継ぎ手6にて支持される。ガス供給管5を気密に動作できるようにガス供給管5とマニホールド継ぎ手6との間に気密部材としてOリング61を介在させている。マニホールド継ぎ手6は配管1bの施工時すなわち配管1bを配管1aに接続する際に配管1aと対向しない配管1bの端部に装着される。また、マニホールド継ぎ手6にはボンベ4から不飽和炭化水素ガスが供されるガス供給管7が接続される。   The gas supply pipe 5 has a smaller diameter than the pipe 1b and is sealed at the tip. A plurality of air diffusion holes 51 are provided on the outer peripheral surface in the vicinity of the tip of the gas supply pipe 5 to diffuse ozone gas. The gas supply pipe 5 is inserted into the pipe 1b during the passivating process of the pipe 1b, and is supported by the manifold joint 6 so as to be able to extend and contract in the axial direction of the pipe 1b. An O-ring 61 is interposed as an airtight member between the gas supply pipe 5 and the manifold joint 6 so that the gas supply pipe 5 can be operated in an airtight manner. The manifold joint 6 is attached to the end of the pipe 1b that does not face the pipe 1a when the pipe 1b is constructed, that is, when the pipe 1b is connected to the pipe 1a. Further, a gas supply pipe 7 to which unsaturated hydrocarbon gas is supplied from the cylinder 4 is connected to the manifold joint 6.

図1を参照しながら本実施形態の不動態化処理について説明する。   The passivating process of this embodiment will be described with reference to FIG.

不動態化済みの配管1aの一端側に配管1aと同径の新たな配管1bが溶接固定される。配管1aのもう一端側には真空ポンプ2が気密に接続される。次いで、ガス供給管5,7を備えたマニホールド継ぎ手6が配管1bの一端側に装着される。ガス供給管5は配管1b内に導入された先端部が配管1aと配管1bとの接続部分と略同位置となるように設定される。   A new pipe 1b having the same diameter as the pipe 1a is welded and fixed to one end of the passivated pipe 1a. A vacuum pump 2 is hermetically connected to the other end of the pipe 1a. Next, a manifold joint 6 having gas supply pipes 5 and 7 is attached to one end side of the pipe 1b. The gas supply pipe 5 is set so that the tip portion introduced into the pipe 1b is substantially at the same position as the connecting portion between the pipe 1a and the pipe 1b.

次いで、室温のもとで真空ポンプ2によって配管1a,1b内を負圧状態(数百Pa以下例えば200Pa)にした状態で配管1bとガス供給管5との間隙にガス供給管7から不飽和炭化水素ガスを供給する。一方、ガス供給管5の散気孔51からはオゾンガスを供給して配管1a,1b内にてオゾンと不飽和炭化水素とを反応させる。この反応により生じた原子状酸素やOHラジカル等の酸化性化学種(非特許文献2)によって配管1bの内面が酸化されクロム酸化物(Cr23)から成る不動態膜が形成される。その後、一定時間毎(例えば10分間毎)に散気孔51の位置がオゾンガスのガス流の上流方向に移行するようにガス供給管5を縮小させる。ガス供給管5の先端部がマニホールド継ぎ手6側の配管1bの一端に達した時点で配管1bの内面の不動態化が完了する。 Next, in the state where the inside of the pipes 1a and 1b is brought into a negative pressure state (several hundred Pa or less, for example, 200 Pa) by the vacuum pump 2 at room temperature, the gap between the pipe 1b and the gas supply pipe 5 is unsaturated from the gas supply pipe 7 Supply hydrocarbon gas. On the other hand, ozone gas is supplied from the diffuser hole 51 of the gas supply pipe 5 to react ozone and unsaturated hydrocarbons in the pipes 1a and 1b. The inner surface of the pipe 1b is oxidized by oxidizing chemical species (Non-patent Document 2) such as atomic oxygen and OH radical generated by this reaction, and a passive film made of chromium oxide (Cr 2 O 3 ) is formed. Thereafter, the gas supply pipe 5 is reduced so that the position of the diffuser holes 51 moves in the upstream direction of the ozone gas flow at regular intervals (for example, every 10 minutes). Passivation of the inner surface of the pipe 1b is completed when the tip of the gas supply pipe 5 reaches one end of the pipe 1b on the manifold joint 6 side.

また、この不動態化処理した配管1bの内面に対してオゾンガスのみを供すると、当該表面に残留した不飽和炭化水素の構成成分が分解される。これにより、不飽和炭化水素由来の不純物を除去できる。この過程は炭素成分の混入を避けなければならないプロセス・用途で使用される配管の不動態化に好適である。   Moreover, when only ozone gas is provided to the inner surface of the passivated pipe 1b, the constituent components of the unsaturated hydrocarbon remaining on the surface are decomposed. Thereby, impurities derived from unsaturated hydrocarbons can be removed. This process is suitable for passivating piping used in processes and applications in which mixing of carbon components must be avoided.

配管1bの不動態化が完了すると、ガス供給管5,7と共にマニホールド継ぎ手6が配管1bから外される。そして、この配管1bの一端に新たな配管が溶接されると、上述と同じ方法で当該配管の内面が不動態化処理される。新たに配管が増設される毎にこの不動態化処理が実行される。   When the passivation of the pipe 1b is completed, the manifold joint 6 together with the gas supply pipes 5 and 7 is removed from the pipe 1b. When a new pipe is welded to one end of the pipe 1b, the inner surface of the pipe is passivated by the same method as described above. This passivating process is executed every time a new pipe is added.

ステンレス製(SUS304)の配管の内面を処理温度50℃、圧力200Pa、オゾンガス(オゾン濃度100vol%):不飽和炭化水素(エチレン)=2:1の雰囲気のもとで本実施形態の処理方法により10分間処理した後のXPS測定結果を図6に示した。配管の内面にてCr23の形成が確認された。従来ではステンレス製の鋼材の不動態化処理に数時間以上要していたのに対して本実施例によれば60分未満の短時間で鋼材表面を不動態化できることが示された。 The inner surface of the pipe made of stainless steel (SUS304) is treated at a processing temperature of 50 ° C., a pressure of 200 Pa, ozone gas (ozone concentration: 100 vol%): unsaturated hydrocarbon (ethylene) = 2: 1 under the atmosphere of this embodiment. FIG. 6 shows the XPS measurement results after 10 minutes of treatment. Formation of Cr 2 O 3 was confirmed on the inner surface of the pipe. Conventionally, it took several hours or more to passivate the stainless steel material, but according to this example, it was shown that the steel surface can be passivated in a short time of less than 60 minutes.

[実施形態2]
図2に示された実施形態2の不動態化処理はガス供給管5から不飽和炭化水素ガスを供給する一方でガス供給管5と配管1a,1bとの間隙にオゾンガスを供給すること以外は実施形態1と同じ処理態様を成している。すなわち、ガス供給管5には不飽和炭化水素ガスを供給するボンベ4が接続される一方でガス供給管7にはオゾン発生装置3が接続されている。
[Embodiment 2]
The passivating process of the second embodiment shown in FIG. 2 is that except that the unsaturated hydrocarbon gas is supplied from the gas supply pipe 5 while ozone gas is supplied to the gap between the gas supply pipe 5 and the pipes 1a and 1b. This is the same processing mode as that of the first embodiment. That is, the gas supply pipe 5 is connected to the cylinder 4 for supplying unsaturated hydrocarbon gas, while the gas supply pipe 7 is connected to the ozone generator 3.

図2を参照しながら本実施形態の不動態化処理について説明する。   The passivation process of this embodiment will be described with reference to FIG.

配管1aの一端側に配管1aと同径の新たな配管1bが溶接固定される。配管1aのもう一端側には真空ポンプ2が気密に接続される。次いで、ガス供給管5,7を備えたマニホールド継ぎ手6が配管1bの一端側に装着される。ガス供給管5は配管1b内に導入された先端部が配管1aと配管1bとの接続部分と略同位置となるように設定される。   A new pipe 1b having the same diameter as the pipe 1a is welded and fixed to one end of the pipe 1a. A vacuum pump 2 is hermetically connected to the other end of the pipe 1a. Next, a manifold joint 6 having gas supply pipes 5 and 7 is attached to one end side of the pipe 1b. The gas supply pipe 5 is set so that the tip portion introduced into the pipe 1b is substantially at the same position as the connecting portion between the pipe 1a and the pipe 1b.

次いで、室温のもとで真空ポンプ2によって配管1a,1b内を負圧状態(数百Pa以下例えば200Pa)にした状態で配管1bとガス供給管5との間隙にガス供給管7からオゾンガスを供給する。一方、ガス供給管5の散気孔51からは不飽和炭化水素ガスを供給して配管1a,1b内にてオゾンと不飽和炭化水素とを反応させる。この反応により生じた原子状酸素やOHラジカル等の酸化性化学種によって配管1bの内面が酸化されクロム酸化物(Cr23)から成る不動態膜が形成される。 Subsequently, ozone gas is supplied from the gas supply pipe 7 to the gap between the pipe 1b and the gas supply pipe 5 in a state where the inside of the pipes 1a and 1b is brought into a negative pressure state (several hundred Pa or less, for example, 200 Pa) by the vacuum pump 2 at room temperature. Supply. On the other hand, unsaturated hydrocarbon gas is supplied from the air diffuser hole 51 of the gas supply pipe 5 to react ozone and unsaturated hydrocarbon in the pipes 1a and 1b. The inner surface of the pipe 1b is oxidized by oxidizing chemical species such as atomic oxygen and OH radicals generated by this reaction, and a passive film made of chromium oxide (Cr 2 O 3 ) is formed.

その後、一定時間毎(例えば10分間毎)に散気孔51の位置がオゾンガスのガス流の上流方向に移行するようにガス供給管5を縮小させる。ガス供給管5の先端部がマニホールド継ぎ手6側の配管1bの一端に達した時点で配管1bの内面の不動態化が完了する。また、この不動態化処理した配管1bの内面に対してオゾンガスのみが供されることで、当該表面に残留した不飽和炭化水素の構成成分が分解除去される。   Thereafter, the gas supply pipe 5 is reduced so that the position of the diffuser holes 51 moves in the upstream direction of the ozone gas flow at regular intervals (for example, every 10 minutes). Passivation of the inner surface of the pipe 1b is completed when the tip of the gas supply pipe 5 reaches one end of the pipe 1b on the manifold joint 6 side. Moreover, only ozone gas is provided to the inner surface of the passivated pipe 1b, whereby the constituent components of the unsaturated hydrocarbon remaining on the surface are decomposed and removed.

配管1bの不動態化が完了すると、ガス供給管5,7と共にマニホールド継ぎ手6が配管1bから外される。そして、この配管1bの一端に新たな配管が溶接されると、上述と同じ方法で当該配管の内面が不動態化処理される。新たに配管が増設される毎にこの不動態化処理が実行される。   When the passivation of the pipe 1b is completed, the manifold joint 6 together with the gas supply pipes 5 and 7 is removed from the pipe 1b. When a new pipe is welded to one end of the pipe 1b, the inner surface of the pipe is passivated by the same method as described above. This passivating process is executed every time a new pipe is added.

[実施形態3]
図3に示された実施形態3の不動態化処理はオゾンガスを供給するガス供給管8と不飽和炭化水素ガスを供給するガス供給管9とを配管1b内に同軸挿通しこのガス供給管8,9を配管1bの軸方向に移動させることにより配管1bの内面を不動態化処理する。実施形態1,2と同様に既存の配管1aの一端側には配管1a,1b内にてガス流を生じさせるための真空ポンプ2が予め気密に接続される。
[Embodiment 3]
In the passivating process of the third embodiment shown in FIG. 3, a gas supply pipe 8 for supplying ozone gas and a gas supply pipe 9 for supplying unsaturated hydrocarbon gas are coaxially inserted into the pipe 1b. , 9 are moved in the axial direction of the pipe 1b to passivate the inner surface of the pipe 1b. As in the first and second embodiments, a vacuum pump 2 for generating a gas flow in the pipes 1a and 1b is airtightly connected in advance to one end of the existing pipe 1a.

ガス供給管8はガス供給管9よりも小径に形成されていると共に先端部が密閉されている一方で先端付近の外周面にはオゾンガスを散気するための散気孔81が複数形成されている。ガス供給管8は散気孔81が形成された外周面がガス供給管9から露出した状態でガス供給管9と同軸にガス供給管9内に具備される。ガス供給管8はオゾン発生装置3に接続されている。   The gas supply pipe 8 is formed to have a smaller diameter than the gas supply pipe 9 and the tip is sealed. On the outer peripheral surface near the tip, a plurality of air holes 81 are provided to diffuse ozone gas. . The gas supply pipe 8 is provided in the gas supply pipe 9 coaxially with the gas supply pipe 9 in a state where the outer peripheral surface in which the air diffusion holes 81 are formed is exposed from the gas supply pipe 9. The gas supply pipe 8 is connected to the ozone generator 3.

ガス供給管9は配管1bの軸方向に動作可能となるように配管1bの一端にて継ぎ手10によって気密に支持される。ガス供給管9と継ぎ手10との間には気密部材としてOリング101を介在させることでガス供給管9を気密に動作できるようになっている。継ぎ手10は配管1bの施工時すなわち配管1bを配管1aに接続する際に配管1aと対向しない配管1bの端部に装着される。ガス供給管9は不飽和炭化水素ガスが充填されたボンベ4に接続されている。   The gas supply pipe 9 is airtightly supported by the joint 10 at one end of the pipe 1b so as to be operable in the axial direction of the pipe 1b. The gas supply pipe 9 can be operated in an airtight manner by interposing an O-ring 101 as an airtight member between the gas supply pipe 9 and the joint 10. The joint 10 is attached to the end of the pipe 1b not facing the pipe 1a when the pipe 1b is constructed, that is, when the pipe 1b is connected to the pipe 1a. The gas supply pipe 9 is connected to a cylinder 4 filled with unsaturated hydrocarbon gas.

また、実施形態2と同様にガス供給管8から不飽和炭化水素ガスを供給する一方でガス供給管9からオゾンガスを供給するようにしてもよい。   Further, as in the second embodiment, the ozone gas may be supplied from the gas supply pipe 9 while the unsaturated hydrocarbon gas is supplied from the gas supply pipe 8.

図3を参照しながら本実施形態の不動態化処理について説明する。   The passivating process of the present embodiment will be described with reference to FIG.

配管1aの一端側に配管1aと同径の新たな配管1bが溶接固定される。配管1aのもう一端側には真空ポンプ2が気密に接続される。次いで、ガス供給管9を備えた継ぎ手10が配管1bの一端側に装着される。ガス供給管8は配管1b内に導入された先端部が配管1aと配管1bとの接続部分と略同位置となるように設定される。   A new pipe 1b having the same diameter as the pipe 1a is welded and fixed to one end of the pipe 1a. A vacuum pump 2 is hermetically connected to the other end of the pipe 1a. Next, a joint 10 provided with a gas supply pipe 9 is attached to one end side of the pipe 1b. The gas supply pipe 8 is set so that the tip portion introduced into the pipe 1b is substantially at the same position as the connecting portion between the pipe 1a and the pipe 1b.

次いで、室温のもとで真空ポンプ2によって配管1a,1b内を負圧状態(数百Pa以下例えば200Pa)にした状態でボンベ4から不飽和炭化水素ガスをガス供給管9内に供給する。一方、オゾン発生装置3で生成されたオゾンガスをガス供給管8の散気孔81から供給して配管1a,1b内にてオゾンと不飽和炭化水素とを反応させる。この反応により生じた原子状酸素やOHラジカル等の酸化性化学種によって配管1bの内面が酸化されクロム酸化物(Cr23)から成る不動態膜が形成される。 Next, an unsaturated hydrocarbon gas is supplied from the cylinder 4 into the gas supply pipe 9 in a state where the inside of the pipes 1 a and 1 b is brought into a negative pressure state (several hundred Pa or less, for example, 200 Pa) by the vacuum pump 2 at room temperature. On the other hand, ozone gas generated by the ozone generator 3 is supplied from the diffuser hole 81 of the gas supply pipe 8 to react ozone and unsaturated hydrocarbons in the pipes 1a and 1b. The inner surface of the pipe 1b is oxidized by oxidizing chemical species such as atomic oxygen and OH radicals generated by this reaction, and a passive film made of chromium oxide (Cr 2 O 3 ) is formed.

その後、一定時間毎(例えば10分間毎)に散気孔81の位置がオゾンガスのガス流の上流方向に移行するようにガス供給管8,9を配管1bの軸方向に移動させる。ガス供給管8の先端部が継ぎ手10側の配管1bの一端に達した時点で配管1bの内面の不動態化が完了する。また、この不動態化処理した配管1bの内面に対してオゾンガスのみが供されることで、当該表面に残留した不飽和炭化水素の構成成分が分解除去される。   Thereafter, the gas supply pipes 8 and 9 are moved in the axial direction of the pipe 1b so that the position of the air diffuser 81 is shifted in the upstream direction of the ozone gas flow at regular time intervals (for example, every 10 minutes). Passivation of the inner surface of the pipe 1b is completed when the tip of the gas supply pipe 8 reaches one end of the pipe 1b on the joint 10 side. Moreover, only ozone gas is provided to the inner surface of the passivated pipe 1b, whereby the constituent components of the unsaturated hydrocarbon remaining on the surface are decomposed and removed.

配管1bの不動態化が完了すると、ガス供給管9と共に継ぎ手10が配管1bから外される。そして、この配管1bの一端に新たな配管が溶接されると、上述と同じ方法で当該配管の内面が不動態化処理される。新たに配管が増設される毎にこの不動態化処理が実行される。   When the passivation of the pipe 1b is completed, the joint 10 is removed from the pipe 1b together with the gas supply pipe 9. When a new pipe is welded to one end of the pipe 1b, the inner surface of the pipe is passivated by the same method as described above. This passivating process is executed every time a new pipe is added.

[実施形態4]
図4に示された実施形態4の処理態様は配管1b内にオゾンガスと不飽和炭化水素ガスとの混合ガスを供給するガス供給管11を配管1bと同軸に挿通させている。そして、ガス供給管11の先端付近の外周面から前記オゾンガスと前記不飽和炭化水素ガスとの混合ガスを供給しながらガス供給管11を配管1bの軸方向に動作させることにより配管1bの内面を不動態化する。
[Embodiment 4]
In the processing mode of Embodiment 4 shown in FIG. 4, a gas supply pipe 11 for supplying a mixed gas of ozone gas and unsaturated hydrocarbon gas is inserted into the pipe 1b coaxially with the pipe 1b. The inner surface of the pipe 1b is moved by operating the gas supply pipe 11 in the axial direction of the pipe 1b while supplying a mixed gas of the ozone gas and the unsaturated hydrocarbon gas from the outer peripheral surface near the tip of the gas supply pipe 11. Passivate.

ガス供給管11はその一端がオゾン発生装置3に接続されている。配管1b内に導入される先端部は密閉されている一方で先端付近の外周面にはオゾンガスを散気するための散気孔111が複数形成されている。   One end of the gas supply pipe 11 is connected to the ozone generator 3. The front end portion introduced into the pipe 1b is sealed, while a plurality of air diffusion holes 111 are formed on the outer peripheral surface near the front end to diffuse ozone gas.

ガス供給管11の内部には不飽和炭化水素ガスを供給するためのガス供給管12がガス供給管11と同軸に具備されている。ガス供給管12もガス供給管11と同様に先端部が密閉されている一方で先端付近の外周面には不飽和炭化水素ガスを散気するための散気孔121が複数形成されている。   Inside the gas supply pipe 11, a gas supply pipe 12 for supplying unsaturated hydrocarbon gas is provided coaxially with the gas supply pipe 11. Similarly to the gas supply pipe 11, the gas supply pipe 12 is sealed at the tip, while a plurality of gas diffusion holes 121 are formed on the outer peripheral surface near the tip to diffuse unsaturated hydrocarbon gas.

ガス供給管11,12は実施形態1に係るガス供給管5と同様にオゾン耐性の材料(石英、不動態化処理されたステンレス等)から構成される。尚、実施形態2と同様にガス供給管11から不飽和炭化水素ガスを供給する一方でガス供給管12からオゾンガスを供給するようにしてもよい。   The gas supply pipes 11 and 12 are made of an ozone-resistant material (quartz, passivated stainless steel, etc.) in the same manner as the gas supply pipe 5 according to the first embodiment. Note that, similarly to the second embodiment, the unsaturated hydrocarbon gas may be supplied from the gas supply pipe 11 while the ozone gas may be supplied from the gas supply pipe 12.

図4を参照しながら本実施形態の不動態化処理について説明する。   The passivation process of this embodiment will be described with reference to FIG.

配管1aの一端側に配管1aと同径の新たな配管1bが溶接固定される。配管1aのもう一端側には真空ポンプ2が気密に接続される。次いで、ガス供給管11を備えた継ぎ手10が配管1bの一端側に装着される。ガス供給管11は配管1b内に導入された先端部が配管1aと配管1bとの接続部分と略同位置となるように設定される。   A new pipe 1b having the same diameter as the pipe 1a is welded and fixed to one end of the pipe 1a. A vacuum pump 2 is hermetically connected to the other end of the pipe 1a. Next, the joint 10 including the gas supply pipe 11 is attached to one end side of the pipe 1b. The gas supply pipe 11 is set so that the tip portion introduced into the pipe 1b is substantially at the same position as the connecting portion between the pipe 1a and the pipe 1b.

次いで、室温のもとで真空ポンプ2によって配管1a,1b内を負圧状態(数百Pa以下例えば200Pa)にした状態でボンベ4から供給された不飽和炭化水素ガスがガス供給管12の散気孔121からガス供給管11内に供される。また、オゾン発生装置3からはオゾンガスがガス供給管11内に供される。そして、ガス供給管11の散気孔111からは前記オゾンガスと前記不飽和炭化水素の混合ガスが配管1bの内面に供される。前記混合ガスはオゾンガスと不飽和炭化水素ガスとの反応により生じた酸化性化学種(原子状酸素やOHラジカル)等)を含んでいる。配管1bの内面は前記酸化性化学種によって酸化されてクロム酸化物(Cr23)から成る不動態膜が形成される。 Next, the unsaturated hydrocarbon gas supplied from the cylinder 4 in a state where the pipes 1 a and 1 b are brought into a negative pressure state (several hundred Pa or less, for example, 200 Pa) by the vacuum pump 2 at room temperature is dispersed in the gas supply pipe 12. The gas is supplied from the pores 121 into the gas supply pipe 11. Further, ozone gas is supplied from the ozone generator 3 into the gas supply pipe 11. And the mixed gas of the said ozone gas and the said unsaturated hydrocarbon is provided to the inner surface of the piping 1b from the diffuser hole 111 of the gas supply pipe | tube 11. FIG. The mixed gas contains oxidizing chemical species (atomic oxygen, OH radicals, etc.) generated by the reaction between ozone gas and unsaturated hydrocarbon gas. The inner surface of the pipe 1b is oxidized by the oxidizing chemical species to form a passive film made of chromium oxide (Cr 2 O 3 ).

その後、一定時間毎(例えば10分間毎)に散気孔111の位置がオゾンガスのガス流の上流方向に移行するようにガス供給管11を配管1bの軸方向に移動させる。ガス供給管11の先端部が継ぎ手10側の配管1bの一端に達した時点で配管1bの内面の不動態化が完了する。また、この不動態化処理した管1bの内面に対してオゾンガスのみが供されることで、当該表面に残留した不飽和炭化水素の構成成分が分解除去される。   Thereafter, the gas supply pipe 11 is moved in the axial direction of the pipe 1b so that the position of the diffuser hole 111 moves in the upstream direction of the ozone gas flow at regular intervals (for example, every 10 minutes). Passivation of the inner surface of the pipe 1b is completed when the tip of the gas supply pipe 11 reaches one end of the pipe 1b on the joint 10 side. Further, only ozone gas is supplied to the inner surface of the passivated tube 1b, whereby the constituent components of the unsaturated hydrocarbon remaining on the surface are decomposed and removed.

配管1bの不動態化が完了すると、ガス供給管11と共に継ぎ手10が配管1bから外される。そして、この配管1bの一端に新たな配管が溶接されると、上述と同じ方法で当該配管の内面が不動態化処理される。新たに配管が増設される毎にこの不動態化処理が実行される。   When the passivation of the pipe 1b is completed, the joint 10 is removed from the pipe 1b together with the gas supply pipe 11. When a new pipe is welded to one end of the pipe 1b, the inner surface of the pipe is passivated by the same method as described above. This passivating process is executed every time a new pipe is added.

[実施形態5]
図5に示された実施形態5の不動態化処理では配管1b内に光供給管13を挿通して光供給管13の端面からオゾン分解因子として紫外光を照射させると共に光供給管13と配管1bとの間隙にオゾンガスを供給する。そして、この状態で光供給管13の端面を配管1bの軸方向に動作させることにより配管1bの内面を不動態化する。実施形態1〜4と同様に既存の配管1aの一端側には配管1a,1b内にてガス流を生じさせるための真空ポンプ2が予め気密に接続される。
[Embodiment 5]
In the passivating process of the fifth embodiment shown in FIG. 5, the light supply pipe 13 is inserted into the pipe 1b to irradiate ultraviolet light from the end face of the light supply pipe 13 as an ozone decomposition factor, and the light supply pipe 13 and the pipe. Ozone gas is supplied to the gap with 1b. In this state, the inner surface of the pipe 1b is passivated by operating the end face of the light supply pipe 13 in the axial direction of the pipe 1b. As in the first to fourth embodiments, a vacuum pump 2 for generating a gas flow in the pipes 1a and 1b is airtightly connected in advance to one end side of the existing pipe 1a.

光供給管13は配管1bよりも小径に形成された光ファイバーからなり、マニホールド継ぎ手14によって配管1b内に当該配管1bと略同軸に気密に挿通されている。光ファイバーは紫外光を透過させると共にオゾンに耐性のある石英から成るものが適用される。また、配管1b内に導入された光供給管13の先端部の位置を調節できるように光供給管13とマニホールド継ぎ手14との間に気密部材としてOリング141を介在させている。光供給管13の動作手段には例えば光ファイバー用の巻き取り装置が適用される。   The light supply pipe 13 is made of an optical fiber having a diameter smaller than that of the pipe 1b, and is inserted into the pipe 1b by a manifold joint 14 in an airtight manner substantially coaxially with the pipe 1b. An optical fiber made of quartz that transmits ultraviolet light and is resistant to ozone is applied. Further, an O-ring 141 is interposed as an airtight member between the light supply pipe 13 and the manifold joint 14 so that the position of the tip of the light supply pipe 13 introduced into the pipe 1b can be adjusted. For example, an optical fiber winding device is applied to the operation means of the light supply tube 13.

配管1b内に導入されない方の光供給管13の一端には紫外光領域を含む光(250nm程度の波長領域を含む光)を発する光源15が具備されている。光源15には周知の紫外光の光源を適用すればよい。マニホールド継ぎ手14は配管1bの施工時すなわち配管1bを配管1aに接続する際に配管1aと対向しない配管1bの端部に装着される。また、マニホールド継ぎ手14にはオゾン発生装置3からオゾンガスが供されるガス供給管16が接続される。   A light source 15 that emits light including an ultraviolet region (light including a wavelength region of about 250 nm) is provided at one end of the light supply tube 13 that is not introduced into the pipe 1b. A known ultraviolet light source may be applied as the light source 15. The manifold joint 14 is attached to the end of the pipe 1b that does not face the pipe 1a when the pipe 1b is constructed, that is, when the pipe 1b is connected to the pipe 1a. A gas supply pipe 16 to which ozone gas is supplied from the ozone generator 3 is connected to the manifold joint 14.

図5を参照しながら本実施形態の不動態化処理について説明する。   The passivation process of this embodiment will be described with reference to FIG.

不動態化済みの配管1aの一端側に配管1aと同径の新たな配管1bが溶接固定される。配管1aのもう一端側には真空ポンプ2が気密に接続される。次いで、マニホールド継ぎ手14が配管1bの一端側に装着される。光供給管13は配管1b内に導入された先端部が配管1aと配管1bとの接続部分と略同位置となるように設定される。   A new pipe 1b having the same diameter as the pipe 1a is welded and fixed to one end of the passivated pipe 1a. A vacuum pump 2 is hermetically connected to the other end of the pipe 1a. Next, the manifold joint 14 is attached to one end side of the pipe 1b. The light supply pipe 13 is set so that the tip portion introduced into the pipe 1b is substantially at the same position as the connecting portion between the pipe 1a and the pipe 1b.

次いで、室温のもとで真空ポンプ2によって配管1a,1b内を負圧状態(数百Pa以下例えば200Pa)にした状態で配管1bと光供給管13との間隙にガス供給管16からオゾンガスを供給する。一方、光供給管13の端面からは光源15の光が配管1b内のオゾンガスのガス流に照射される。この照射によって生じた酸化性化学種である原子状酸素(非特許文献3)によって配管1bの内面が酸化されクロム酸化物(Cr23)から成る不動態膜が形成される。 Next, ozone gas is supplied from the gas supply pipe 16 into the gap between the pipe 1b and the light supply pipe 13 in a state where the inside of the pipes 1a and 1b is brought into a negative pressure state (several hundred Pa or less, for example, 200 Pa) by the vacuum pump 2 at room temperature. Supply. On the other hand, the light from the light source 15 is irradiated from the end face of the light supply pipe 13 onto the ozone gas flow in the pipe 1b. The inner surface of the pipe 1b is oxidized by atomic oxygen (Non-patent Document 3), which is an oxidizing chemical species generated by this irradiation, to form a passive film made of chromium oxide (Cr 2 O 3 ).

その後、一定時間毎(例えば10分間毎)に光供給管13の端面の位置がオゾンガスのガス流の上流方向に移行するように光供給管13を配管1bの軸方向に動作させる。光供給管13の先端部がマニホールド継ぎ手14側の配管1bの一端に達した時点で配管1bの内面の不動態化が完了する。   Thereafter, the light supply pipe 13 is operated in the axial direction of the pipe 1b so that the position of the end face of the light supply pipe 13 shifts in the upstream direction of the ozone gas flow at regular intervals (for example, every 10 minutes). Passivation of the inner surface of the pipe 1b is completed when the tip of the light supply pipe 13 reaches one end of the pipe 1b on the manifold joint 14 side.

配管1bの不動態化が完了すると、光供給管13と共にマニホールド継ぎ手14が配管1bから外される。そして、この配管1bの一端に新たな配管が溶接されると、上述と同じ方法で当該配管の内面が不動態化処理される。新たに配管が増設される毎にこの不動態化処理が実行される。尚、本実施形態ではオゾン分解因子に不飽和炭化水素ガスを用いていないので不飽和炭化水素由来成分の除去過程が不要となる。   When the passivation of the pipe 1b is completed, the manifold joint 14 together with the light supply pipe 13 is removed from the pipe 1b. When a new pipe is welded to one end of the pipe 1b, the inner surface of the pipe is passivated by the same method as described above. This passivating process is executed every time a new pipe is added. In the present embodiment, since the unsaturated hydrocarbon gas is not used for the ozonolysis factor, the process of removing the unsaturated hydrocarbon-derived component is unnecessary.

ステンレス製(SUS304)の配管の内面を処理温度30℃、圧力60Pa、波長250nmを含む紫外光の照射のもとオゾン濃度100vol%のガス雰囲気で本実施形態の処理方法により10分間処理した。本実施例においても、図6に示された特性図と略同等のXPS結果が得られ、室温に近い温度条件のもとでも60分未満の短時間で鋼材表面を不動態化できるが示された。   The inner surface of a stainless steel (SUS304) pipe was treated by a treatment method of this embodiment for 10 minutes in a gas atmosphere having an ozone concentration of 100 vol% under irradiation with ultraviolet light including a treatment temperature of 30 ° C., a pressure of 60 Pa, and a wavelength of 250 nm. Also in this example, an XPS result substantially equivalent to the characteristic diagram shown in FIG. 6 is obtained, and it is shown that the steel surface can be passivated in a short time of less than 60 minutes even under a temperature condition close to room temperature. It was.

1a,1b…配管
5,8,9,10,11,12…ガス供給管
13…光供給管
51,81,111,121…散気孔
1a, 1b ... piping 5, 8, 9, 10, 11, 12 ... gas supply tube 13 ... light supply tube 51, 81, 111, 121 ... air diffuser

Claims (2)

鋼材から成る配管の内面を不動態化処理する不動態化処理方法であって、
鋼材から成る配管内にオゾンガス供給管を当該配管と同軸に挿通して当該供給管の先端付近の外周面からオゾンガスを供給すると共に当該外周面と当該配管の内面との間隙にオゾン分解因子として不飽和炭化水素ガスを供給しながら前記外周面を当該配管の軸方向に動作させることにより当該配管の内面を不動態化すること
を特徴とする不導態化処理方法。
A passivation treatment method for passivating the inner surface of a pipe made of steel,
An ozone gas supply pipe is inserted coaxially with the pipe into the pipe made of steel to supply ozone gas from the outer peripheral surface in the vicinity of the tip of the supply pipe, and the gap between the outer peripheral surface and the inner surface of the pipe is not an ozone decomposition factor. A passivation treatment method, wherein the inner surface of the pipe is passivated by operating the outer peripheral surface in the axial direction of the pipe while supplying a saturated hydrocarbon gas.
前記不動態化処理した配管の内面に対してオゾンガスのみを供することを特徴とする請求項1に記載の不動態化処理方法。 The passivation treatment method according to claim 1 , wherein only ozone gas is provided to the inner surface of the passivated pipe.
JP2011120399A 2011-05-30 2011-05-30 Passivation method Expired - Fee Related JP5891609B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011120399A JP5891609B2 (en) 2011-05-30 2011-05-30 Passivation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011120399A JP5891609B2 (en) 2011-05-30 2011-05-30 Passivation method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2015168477A Division JP6052357B2 (en) 2015-08-28 2015-08-28 Passivation method

Publications (2)

Publication Number Publication Date
JP2012246543A JP2012246543A (en) 2012-12-13
JP5891609B2 true JP5891609B2 (en) 2016-03-23

Family

ID=47467275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011120399A Expired - Fee Related JP5891609B2 (en) 2011-05-30 2011-05-30 Passivation method

Country Status (1)

Country Link
JP (1) JP5891609B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101847538B1 (en) 2015-03-12 2018-04-10 메이덴샤 코포레이션 Method and apparatus for resin modification
JP6057030B1 (en) 2015-05-21 2017-01-11 株式会社明電舎 Resin modification method
CN106191847B (en) * 2016-08-26 2018-05-22 青岛张氏机械有限公司 The agent of piston rod passive oxidation and its application in silver gray piston rod is prepared

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01197588A (en) * 1988-01-30 1989-08-09 Sony Corp Surface treatment of adherend
JP3127228B2 (en) * 1990-06-11 2001-01-22 工業技術院長 Metal surface modification method
JP2987754B2 (en) * 1996-01-17 1999-12-06 岩谷産業株式会社 Passivation treatment method for high purity gas in piping
GB0321665D0 (en) * 2003-09-16 2003-10-15 Macdonald David M Means for killing pathogens in atmosphere and on surfaces including skin
JP4897255B2 (en) * 2005-07-19 2012-03-14 三菱レイヨン株式会社 Water treatment apparatus and method
JP4621848B2 (en) * 2006-03-20 2011-01-26 岩谷産業株式会社 Method for making oxide thin film
GB2468865B (en) * 2009-03-24 2014-04-16 Tri Air Developments Ltd Improved air decontamination device

Also Published As

Publication number Publication date
JP2012246543A (en) 2012-12-13

Similar Documents

Publication Publication Date Title
JP5891609B2 (en) Passivation method
JP2016129227A5 (en)
CN107180774B (en) System and method for gas phase hydroxyl radical processing of substrates
CN104355389B (en) A kind of method and apparatus of removing hardly degraded organic substance in water
JP6052357B2 (en) Passivation method
JP6178091B2 (en) Nitric oxide gas recovery device
JP5540337B2 (en) Exhaust gas treatment method and treatment apparatus
US20170144894A1 (en) Pressure-Less Ozonated DI-Water (DIO3) Recirculation Reclaim System
JP4709608B2 (en) Radical treatment equipment
JP2017123892A (en) Sterilization method and sterilization device
US20110272271A1 (en) Apparatus and method for injecting microfluidic
JP5558028B2 (en) Ion exchange resin treatment method and treatment apparatus
JP5561729B2 (en) Surface oxidation method for carbon materials
JP2008173617A (en) Water treatment apparatus and water treating method
JP6294656B2 (en) Method for oxidizing nanocarbons
JP2005097420A (en) Method for surface modification of fine particle
JP5782137B2 (en) CO transformation device and transformation method
CN113275331B (en) Method and special device for material surface treatment
JP4509651B2 (en) Fiber surface modification method and apparatus
CN206915904U (en) A kind of wastewater treatment equipment
CN116002842B (en) Method for degrading carbamazepine by activating peroxyacetic acid with carbon nano tube supported catalyst
CN208553686U (en) One kind being used for organic exhaust gas oxidation processes purification device
JP2018083140A (en) Exhaust gas depression detoxification method, and apparatus therefor
JP2017160093A (en) Ozone generator and ozone generation method
RU2295384C1 (en) Photothermocatalytic reactor of the sanitary purification of the disposable gases

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141014

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160208

R150 Certificate of patent or registration of utility model

Ref document number: 5891609

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees