JP5887163B2 - Solid electrolytic capacitor - Google Patents

Solid electrolytic capacitor Download PDF

Info

Publication number
JP5887163B2
JP5887163B2 JP2012037753A JP2012037753A JP5887163B2 JP 5887163 B2 JP5887163 B2 JP 5887163B2 JP 2012037753 A JP2012037753 A JP 2012037753A JP 2012037753 A JP2012037753 A JP 2012037753A JP 5887163 B2 JP5887163 B2 JP 5887163B2
Authority
JP
Japan
Prior art keywords
cathode
solid electrolytic
conductive adhesive
electrolytic capacitor
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012037753A
Other languages
Japanese (ja)
Other versions
JP2013175512A (en
Inventor
和明 齋藤
和明 齋藤
陽洋 川合
陽洋 川合
荒木 健二
健二 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2012037753A priority Critical patent/JP5887163B2/en
Publication of JP2013175512A publication Critical patent/JP2013175512A/en
Application granted granted Critical
Publication of JP5887163B2 publication Critical patent/JP5887163B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

本発明は、固体電解コンデンサに関するものである。   The present invention relates to a solid electrolytic capacitor.

従来から、弁作用金属としてタンタル、ニオブ、アルミニウム等を用いた固体電解コンデンサは、小型で静電容量が大きく、周波数特性に優れることから、CPU等の高速で動作するデバイスを駆動するためのスイッチング電源回路等に広く使用されている。   Conventionally, solid electrolytic capacitors using tantalum, niobium, aluminum, etc. as valve metals are small in size, large in capacitance, and excellent in frequency characteristics, so switching for driving devices such as CPUs that operate at high speeds Widely used in power supply circuits.

近年、携帯型電子機器の発展に伴い、固体電解コンデンサの小型化及び薄型化が進んでいる。これらに対応するために、弁作用金属の箔を使ったコンデンサ素子を積層し、モールド樹脂を用いて外装を形成する固体電解コンデンサが使用されている。このような固体電解コンデンサとして、特許文献1のような構成が開示されている。   In recent years, along with the development of portable electronic devices, solid electrolytic capacitors have been reduced in size and thickness. In order to cope with these, a solid electrolytic capacitor is used in which capacitor elements using valve action metal foil are laminated and an exterior is formed using a mold resin. As such a solid electrolytic capacitor, a configuration as in Patent Document 1 is disclosed.

特許文献1には、コンデンサ素子の陰極部が導電性接着剤によって互いに接続され、積層体が形成された固体電解コンデンサが記載されている。積層体の周囲はモールド樹脂により被覆され、外装が形成される。   Patent Document 1 describes a solid electrolytic capacitor in which cathode parts of capacitor elements are connected to each other by a conductive adhesive to form a laminate. The periphery of the laminate is covered with a mold resin to form an exterior.

従来の固体電解コンデンサの一例を図面を用いて説明する。図2は、従来の固体電解コンデンサの構成を説明する概略断面図である。   An example of a conventional solid electrolytic capacitor will be described with reference to the drawings. FIG. 2 is a schematic cross-sectional view illustrating the configuration of a conventional solid electrolytic capacitor.

図2に示すように、陽極部130と陰極部140を備えたコンデンサ素子100が、銀フィラーを含んだ導電性接着剤からなる導電性接着部129を介して積層され、積層体210が形成されている。積層体210は、陰極部140が導電性接着部129を介して基板145に設けられた陰極端子131と電気的に接続され、陽極部130も陽極端子132に電気的に接続されている。さらにモールド樹脂により外装150が形成され、従来の固体電解コンデンサ220が構成されている。   As shown in FIG. 2, the capacitor element 100 including the anode part 130 and the cathode part 140 is laminated via a conductive adhesive part 129 made of a conductive adhesive containing a silver filler, so that a laminate 210 is formed. ing. In the laminate 210, the cathode portion 140 is electrically connected to the cathode terminal 131 provided on the substrate 145 through the conductive adhesive portion 129, and the anode portion 130 is also electrically connected to the anode terminal 132. Furthermore, the exterior 150 is formed of mold resin, and the conventional solid electrolytic capacitor 220 is configured.

特開2005−079463号公報Japanese Patent Laying-Open No. 2005-0779463

従来の固体電解コンデンサにおいて、陰極部同士や陰極端子と接続するために形成された導電性接着部には、導電性接着剤の塗布むらや残留した気泡による空隙が生じやすい。そのような状態で外装を設けるためモールド樹脂による成形を行った場合、成形圧力により空隙部分に接する陰極部が歪み、誘電体層が損傷して漏れ電流(LC)が増加してしまうという課題がある。   In the conventional solid electrolytic capacitor, the conductive adhesive portion formed to connect the cathode portions to each other and the cathode terminal is likely to generate unevenness in the application of the conductive adhesive and voids due to remaining bubbles. When molding is performed with a mold resin to provide an exterior in such a state, there is a problem that the cathode portion in contact with the gap portion is distorted by the molding pressure, the dielectric layer is damaged, and the leakage current (LC) increases. is there.

本発明は、上記課題を解決するためになされたもので、その目的は外装のためのモールド樹脂による成形時の応力の分散と緩和を行い、LCの増加を抑制した固体電解コンデンサを提供することである。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a solid electrolytic capacitor that suppresses an increase in LC by dispersing and mitigating stress at the time of molding with a molding resin for an exterior. It is.

すなわち、本発明の固体電解コンデンサは、絶縁部により陽極部と陰極部に区分され、前記陰極部は、平板状の弁作用金属の表面に多孔質層を備え、前記多孔質層の表面に誘電体層、固体電解質層、陰極層を順次設けて形成され、前記陽極部は、前記絶縁部から導出された前記弁作用金属よりなるコンデンサ素子を有し、前記コンデンサ素子は、前記陰極部に設けられた導電性接着部を介して複数積層されて積層体が形成されるとともに、前記陰極部が前記導電性接着部を介して、基板に設けられた陰極端子に電気的に接続され、前記陽極部と陽極端子が電気的に接続され、絶縁材料により全面を覆う外装を備えた固体電解コンデンサであって、前記積層体は、前記陰極部の長手方向に平行な面の中央部にある導電性接着部の全体または一部が、導電性接着剤を介して、コの字の導電性部材により帯状に覆われ、前記導電性部材の端部は、前記導電性接着剤を介して前記陰極端子に電気的、機械的に接続されることを特徴とする。 That is, the solid electrolytic capacitor of the present invention is divided into an anode part and a cathode part by an insulating part, and the cathode part has a porous layer on the surface of a flat valve action metal, and a dielectric layer is formed on the surface of the porous layer. A body layer, a solid electrolyte layer, and a cathode layer are sequentially provided, and the anode portion includes a capacitor element made of the valve metal derived from the insulating portion, and the capacitor element is provided in the cathode portion. A plurality of stacked layers are formed through the conductive adhesive portions, and the cathode portion is electrically connected to a cathode terminal provided on a substrate via the conductive adhesive portions, and the anode A solid electrolytic capacitor having an exterior in which a portion and an anode terminal are electrically connected and the entire surface is covered with an insulating material, wherein the laminated body is electrically conductive at a central portion of a surface parallel to the longitudinal direction of the cathode portion the whole or a part of the adhesive portion , Via a conductive adhesive, covered with band by shape of the conductive members co, the end of the conductive member, electrically, mechanically connected to the cathode terminal through the conductive adhesive It is characterized by being.

また、本発明の固体電解コンデンサは、前記導電性接着部が、前記導電性接着剤を介して前記導電性部材に覆われていることを特徴とする。   The solid electrolytic capacitor according to the present invention is characterized in that the conductive adhesive portion is covered with the conductive member via the conductive adhesive.

また、本発明の固体電解コンデンサは、前記導電性部材が、銅または銅合金からなることが好ましい。   In the solid electrolytic capacitor of the present invention, it is preferable that the conductive member is made of copper or a copper alloy.

本発明によれば、固体電解コンデンサの積層体において、陰極部の長手方向に平行な面が、導電性接着剤を介して、連続した導電性部材を用いて帯状に覆われ、さらに導電性部材の端部が陰極端子に機械的、電気的に接続されることによって、陰極部に対するモールド時の成形応力が分散し緩和され、コンデンサ素子の歪みを小さくでき、LCの増加を抑制した固体電解コンデンサの提供が可能となる。   According to the present invention, in the laminated body of the solid electrolytic capacitor, the surface parallel to the longitudinal direction of the cathode portion is covered with a continuous conductive member via the conductive adhesive, and further the conductive member. The solid electrolytic capacitor in which the end portion of the capacitor is mechanically and electrically connected to the cathode terminal, so that the molding stress on the cathode portion is dispersed and relaxed, the distortion of the capacitor element can be reduced, and the increase in LC is suppressed. Can be provided.

また、本発明によれば、また、導電性部材の端部を陰極端子に電気的に接続しているため、ESRを低下させた固体電解コンデンサの提供が可能となる。   In addition, according to the present invention, since the end portion of the conductive member is electrically connected to the cathode terminal, it is possible to provide a solid electrolytic capacitor with reduced ESR.

本発明の固体電解コンデンサの構成を説明する図であり、図1(a)は、コンデンサ素子の概略断面図、図1(b)は、コンデンサ素子の積層体の正面図、図1(c)は、固体電解コンデンサの斜視透視図。It is a figure explaining the structure of the solid electrolytic capacitor of this invention, FIG.1 (a) is a schematic sectional drawing of a capacitor | condenser element, FIG.1 (b) is a front view of the laminated body of a capacitor | condenser element, FIG.1 (c) FIG. 3 is a perspective perspective view of a solid electrolytic capacitor. 従来の固体電解コンデンサの構成を説明する概略断面図。The schematic sectional drawing explaining the structure of the conventional solid electrolytic capacitor.

本発明の実施の形態を図面を参照して説明する。   Embodiments of the present invention will be described with reference to the drawings.

(実施の形態)
図1は、本発明の固体電解コンデンサの構成を説明する図であり、図1(a)は、コンデンサ素子の概略断面図、図1(b)は、コンデンサ素子の積層体の正面図、図1(c)は、固体電解コンデンサの斜視透視図である。
(Embodiment)
FIG. 1 is a diagram for explaining the configuration of a solid electrolytic capacitor according to the present invention. FIG. 1 (a) is a schematic sectional view of a capacitor element, FIG. 1 (b) is a front view of a multilayer body of capacitor elements, and FIG. 1 (c) is a perspective perspective view of a solid electrolytic capacitor.

図1(a)に示すように、コンデンサ素子20は、絶縁樹脂からなる絶縁部8により、陽極部10と陰極部15に区分されている。   As shown in FIG. 1A, the capacitor element 20 is divided into an anode portion 10 and a cathode portion 15 by an insulating portion 8 made of an insulating resin.

アルミニウム箔等の弁作用金属からなる金属体1は、エッチングによる多孔質層3とアルミニウムの地金である金属体芯2からなり、矩形状をした平板状をなしている。誘電体層(図示せず)は、金属体1の表面を電解酸化させた膜であり、多孔質層3の内部にも形成される。   A metal body 1 made of a valve action metal such as an aluminum foil is composed of a porous layer 3 formed by etching and a metal core 2 that is a bare metal of aluminum, and has a rectangular flat plate shape. The dielectric layer (not shown) is a film obtained by electrolytically oxidizing the surface of the metal body 1, and is also formed inside the porous layer 3.

陰極部15は、誘電体層を設けた多孔質層3の表面に固体電解質層4を設け、さらにグラファイト層5、銀ペースト層6からなる陰極層を順次設けて形成される。   The cathode portion 15 is formed by providing a solid electrolyte layer 4 on the surface of the porous layer 3 provided with a dielectric layer, and further sequentially providing a cathode layer composed of a graphite layer 5 and a silver paste layer 6.

陽極部10は、絶縁部8から導出した金属体芯2と、材質が42アロイ等からなるスペーサ7で構成される。金属体芯2とスペーサ7は溶接等で電気的に接続されている。   The anode part 10 includes a metal core 2 led out from the insulating part 8 and a spacer 7 made of 42 alloy or the like. The metal core 2 and the spacer 7 are electrically connected by welding or the like.

図1(b)に示すように、積層体50は、複数のコンデンサ素子20において、陽極部10同士が溶接等で電気的に接続される。また、陰極部15同士が、陰極部15の主面に銀フィラー等を含有した導電性接着剤が塗布されて、導電性接着部11が形成され電気的に接続されている。塗布方法は、ディスペンサ等を用いて行う。導電性接着部11は、加熱により硬化されている。   As shown in FIG. 1B, in the multilayer body 50, the anode portions 10 are electrically connected to each other in a plurality of capacitor elements 20 by welding or the like. The cathode portions 15 are electrically connected to each other by applying a conductive adhesive containing silver filler or the like to the main surface of the cathode portion 15 to form the conductive adhesive portion 11. The coating method is performed using a dispenser or the like. The conductive adhesive portion 11 is cured by heating.

続いて、図1(c)に示すように、積層体50は、陽極部10と陰極部15と絶縁部8を有するコンデンサ素子20からなり、従来の固体電解コンデンサと同様に、陰極部15が基板19に設けられた陰極端子17と導電性接着部(図示なし、図1(b)の導電性接着部11と同等)で接続される。金属体芯2とスペーサ7からなる陽極部10も導電性接着剤で陽極端子18に接続される。   Subsequently, as shown in FIG. 1C, the multilayer body 50 is composed of a capacitor element 20 having an anode part 10, a cathode part 15, and an insulating part 8, and the cathode part 15 is formed in the same manner as a conventional solid electrolytic capacitor. The cathode terminal 17 provided on the substrate 19 is connected to a conductive adhesive portion (not shown, equivalent to the conductive adhesive portion 11 in FIG. 1B). The anode part 10 composed of the metal core 2 and the spacer 7 is also connected to the anode terminal 18 with a conductive adhesive.

ここで、本発明の固体電解コンデンサ70は、積層体50における陰極部の長手方向に平行な面が、周囲導電性接着剤13を介して、連続した導電性部材16により帯状に覆われ、さらに導電性部材16の2つの導電性部材端部14(片側のみ図示)が陰極端子17に電気的、機械的に接続されている。これによって、外装25を設けるためにモールド樹脂による成形が行われても、陰極部15に対する成形時の応力が分散し緩和され、陰極部15の歪みを小さくできる。そのため導電性接着部に塗布むらや残留した気泡等による空隙が生じていても、誘電体層の損傷を低減でき、LCの増加を抑制した固体電解コンデンサ70を得ることが可能となる。   Here, in the solid electrolytic capacitor 70 of the present invention, a surface parallel to the longitudinal direction of the cathode portion in the multilayer body 50 is covered with a continuous conductive member 16 with a continuous conductive member 16 in a band shape, and further, Two conductive member ends 14 (only one side is shown) of the conductive member 16 are electrically and mechanically connected to the cathode terminal 17. As a result, even when molding with a molding resin is performed to provide the exterior 25, the stress during molding on the cathode portion 15 is dispersed and relaxed, and the distortion of the cathode portion 15 can be reduced. Therefore, even if there is a gap due to uneven coating or residual bubbles in the conductive adhesive portion, damage to the dielectric layer can be reduced, and it is possible to obtain a solid electrolytic capacitor 70 in which an increase in LC is suppressed.

その後、モールド樹脂の成形により外装25が設けられ本発明の固体電解コンデンサ70が完成する。   Thereafter, the exterior 25 is provided by molding a mold resin, and the solid electrolytic capacitor 70 of the present invention is completed.

また、前述したように、導電性部材端部14を陰極端子17に電気的、機械的に接続しているため、従来の固体電解コンデンサよりESRを低下させた固体電解コンデンサを得ることが可能となる。   Further, as described above, since the conductive member end portion 14 is electrically and mechanically connected to the cathode terminal 17, it is possible to obtain a solid electrolytic capacitor having a lower ESR than a conventional solid electrolytic capacitor. Become.

なお、導電性部材16は、さらに効率的、効果的にモールド樹脂による成形応力を分散し緩和することから、陰極部15における導電性接着部11の全体を覆うように形状を決定し、配置することが好ましい。   In addition, since the conductive member 16 disperses and relaxes the molding stress caused by the mold resin more efficiently and effectively, the conductive member 16 is determined and arranged so as to cover the entire conductive adhesive portion 11 in the cathode portion 15. It is preferable.

また、導電性部材16は、陰極部15における導電性接着部11の一部分を覆うように配置してもよい。理由としては、陰極部15における導電性接着部11の一部分を覆うだけでもモールド樹脂による成形時の応力を低減し緩和することが期待できるからである。   Further, the conductive member 16 may be arranged so as to cover a part of the conductive adhesive portion 11 in the cathode portion 15. The reason is that it can be expected that the stress at the time of molding with the mold resin can be reduced and alleviated by simply covering a part of the conductive adhesive portion 11 in the cathode portion 15.

さらに導電性部材16の厚みは、成形応力に対する強度も得られ、かつ体積効率の許容できる厚みに適宜決定することが望ましい。   Further, it is desirable that the thickness of the conductive member 16 is appropriately determined to be a thickness that can provide strength against molding stress and can allow volume efficiency.

さらに導電性部材16は、導電率が良好で、かつ成形圧力に対する強度も得られることから銅または銅合金からなることが好ましい。また、導電性部材16の表面処理として、耐食性を向上させるためにニッケル、銀等のメッキを施してもよい。   Furthermore, it is preferable that the conductive member 16 is made of copper or a copper alloy because the electrical conductivity is good and the strength against the molding pressure is obtained. Further, as a surface treatment of the conductive member 16, nickel, silver or the like may be plated in order to improve corrosion resistance.

なお、製造工程において、導電性部材16を陰極部15に配置するタイミングは、積層体50形成する前、つまり導電性部材16を整列冶具(ガイド)として用い、コンデンサ素子20を一枚ずつ導電性部材16に積層させていく場合、または積層体50を形成した後に導電性部材16を覆うように配置する場合のいずれでもよく、固体電解コンデンサが完成した時に十分に電気的、機械的に陰極端子に接続されていればよい。   In the manufacturing process, the conductive member 16 is arranged on the cathode portion 15 at a timing before the stacked body 50 is formed, that is, the conductive member 16 is used as an alignment jig (guide), and the capacitor elements 20 are made conductive one by one. It may be either laminated on the member 16 or disposed so as to cover the conductive member 16 after the laminated body 50 is formed. When the solid electrolytic capacitor is completed, the cathode terminal is sufficiently electrically and mechanically provided. It only has to be connected to.

また、周囲導電性接着剤13は、導電性接着部11と同様の導電性接着剤を用いて形成してかまわない。   In addition, the surrounding conductive adhesive 13 may be formed using the same conductive adhesive as that of the conductive adhesive portion 11.

弁作用金属は、アルミニウムの他に、ニオブ、チタンまたはこれらの合金等から適宜選定できる。   The valve action metal can be appropriately selected from niobium, titanium or alloys thereof in addition to aluminum.

固体電解質層は、二酸化マンガンや、ポリピロール、3,4−エチレンジオキシチオフェン、ポリアニリン等の導電性高分子およびその誘導体で構成される。なお、固体電解質層までの製造方法は、化学酸化重合法等の公知の方法で実施可能である。   The solid electrolyte layer is composed of a conductive polymer such as manganese dioxide, polypyrrole, 3,4-ethylenedioxythiophene, polyaniline, and derivatives thereof. In addition, the manufacturing method to a solid electrolyte layer can be implemented by well-known methods, such as a chemical oxidation polymerization method.

また、本発明は、実施の形態において、2端子型の固体電解コンデンサを例に説明したが、3端子型の固体電解コンデンサにも適用可能である。   Further, the present invention has been described by taking a two-terminal type solid electrolytic capacitor as an example in the embodiment, but can also be applied to a three-terminal type solid electrolytic capacitor.

以下に本発明の実施例を詳述する。   Examples of the present invention are described in detail below.

実施例では、図1に示す構成の固体電解コンデンサを作製した。まず、厚さ150μmの弁作用金属であるアルミニウム箔を、エッチングにより粗面化して多孔質層を形成した。さらにアジピン二水素アンモニウム水溶液を用いて、3Vの直流電圧を印加し、多孔質層の表面に誘電体皮膜を形成し、金属体を得た。この金属体を長さ6.5mm×幅3.7mmの矩形形状に打ち抜き、エポキシ樹脂からなる絶縁樹脂を用いて、絶縁部を形成し、陽極部と陰極部になる部分に区分した。陰極部となる部分の長さは、5.4mmとした。   In the example, a solid electrolytic capacitor having the configuration shown in FIG. 1 was produced. First, an aluminum foil, which is a valve metal having a thickness of 150 μm, was roughened by etching to form a porous layer. Further, a 3 V direct-current voltage was applied using an adipine dihydrogen ammonium aqueous solution to form a dielectric film on the surface of the porous layer to obtain a metal body. This metal body was punched into a rectangular shape having a length of 6.5 mm and a width of 3.7 mm, and an insulating part was formed using an insulating resin made of an epoxy resin, and was divided into a part to be an anode part and a cathode part. The length of the portion that becomes the cathode portion was 5.4 mm.

続いて、陰極部となる部分に化学酸化重合法を用いてポリ(3,4−エチレンジオキシチオフェン)からなる固体電解質層を形成した。さらに固体電解質層の表面に、グラファイト層、銀ペーストからなる陰極層を形成した。グラファイト層、銀ペースト層は、それぞれ加熱し、硬化させた。   Subsequently, a solid electrolyte layer made of poly (3,4-ethylenedioxythiophene) was formed on the portion to be the cathode portion using a chemical oxidative polymerization method. Further, a cathode layer made of a graphite layer and a silver paste was formed on the surface of the solid electrolyte layer. Each of the graphite layer and the silver paste layer was heated and cured.

さらに陽極部となる金属体の端部に、レーザを照射し、多孔質層を含めて誘電体層を除去し金属体芯を形成した。その後、材質が42アロイからなる厚さ200μmのスペーサを陽極部となる端部に超音波溶接で接続し、実施例のコンデンサ素子を作製した。   Further, the end portion of the metal body serving as the anode portion was irradiated with a laser, and the dielectric layer including the porous layer was removed to form a metal core. Thereafter, a spacer having a thickness of 200 μm made of 42 alloy was connected to an end portion serving as an anode portion by ultrasonic welding to produce a capacitor element of the example.

続いて、専用の冶具を用いて、コンデンサ素子を3枚積層し、積層体を作製した。なお、陰極部同士の接続は、主面部に銀フィラーを含む導電性接着剤を塗布した後、加熱し硬化させ、導電性接着部を形成することにより実施した。陽極部同士はレーザ溶接で接続した。   Subsequently, three capacitor elements were laminated using a dedicated jig to produce a laminate. The cathode portions were connected by applying a conductive adhesive containing a silver filler to the main surface portion, and then heating and curing to form a conductive adhesive portion. The anode parts were connected by laser welding.

次に、事前にコの字に加工していた導電性部材である銅板の内側の3面に銀ペーストを塗布した。この銅板を積層体における陰極部の長手方向に平行な面の中央部を覆うように配置した。この時、銅板が、陰極部に形成した導電性接着部の全体を覆っていることを確認した。導電性接着剤の硬化は、150℃、30分間で実施した。なお、銅板の厚さは、0.2mm、幅は、2.7mmであり、表面にニッケルと銀の2層のめっきを施していた。   Next, the silver paste was apply | coated to three surfaces inside the copper plate which is an electroconductive member processed into the U shape beforehand. This copper plate was disposed so as to cover the central part of the plane parallel to the longitudinal direction of the cathode part in the laminate. At this time, it was confirmed that the copper plate had covered the whole electroconductive adhesion part formed in the cathode part. The conductive adhesive was cured at 150 ° C. for 30 minutes. The copper plate had a thickness of 0.2 mm, a width of 2.7 mm, and two layers of nickel and silver were plated on the surface.

続いて、銅板を配置した積層体の陽極部と陰極部をそれぞれ、基板に設けた陽極端子と陰極端子に接続し、さらに銅板の2つの端部も、導電性接着剤を介して陰極端子に接続した。その後、ガラスフィラーを含むエポキシ樹脂を射出成形し、外装を設けて本発明の固体電解コンデンサを完成させた。固体電解コンデンサの作製数は100個とした。   Subsequently, the anode part and the cathode part of the laminate in which the copper plate is arranged are connected to the anode terminal and the cathode terminal provided on the substrate, respectively, and the two ends of the copper plate are also connected to the cathode terminal via the conductive adhesive. Connected. Thereafter, an epoxy resin containing a glass filler was injection molded, and an exterior was provided to complete the solid electrolytic capacitor of the present invention. The number of manufactured solid electrolytic capacitors was 100.

(比較例)
比較例は、図2に示す構成の固体電解コンデンサを作製した。導電性部材である銅板で、陰極部を覆わなかった以外は実施例と同様にした。
(Comparative example)
The comparative example produced the solid electrolytic capacitor of the structure shown in FIG. The same procedure as in Example was performed except that the cathode portion was not covered with a copper plate as a conductive member.

表1に本発明の実施例と比較例における固体電解コンデンサの評価結果を示す。評価項目は、固体電解コンデンサにおいて、2Vの直流電圧を印加し60秒後のLCと100KHzにおける等価直列抵抗(ESR)を測定した。ESRとLCは平均値である。   Table 1 shows the evaluation results of the solid electrolytic capacitors in Examples and Comparative Examples of the present invention. As evaluation items, in a solid electrolytic capacitor, a DC voltage of 2 V was applied, and LC after 60 seconds and an equivalent series resistance (ESR) at 100 KHz were measured. ESR and LC are average values.

Figure 0005887163
Figure 0005887163

表1に示すように、本発明の実施例は、比較例と比べて、LC、ESRとも小さくなっている。   As shown in Table 1, in the example of the present invention, both LC and ESR are smaller than those in the comparative example.

以上、本発明の実施例を説明したが、本発明は、これらの実施例に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更があっても本発明に含まれる。すなわち、当業者であれば、当然なしえるであろう各種変形、修正もまた本発明に含まれる。   As mentioned above, although the Example of this invention was described, this invention is not limited to these Examples, Even if there is a design change of the range which does not deviate from the summary of this invention, it is included in this invention. That is, various changes and modifications that can be naturally made by those skilled in the art are also included in the present invention.

1 金属体
2 金属体芯
3 多孔質層
4 固体電解質層
5 グラファイト層
6 銀ペースト層
7 スペーサ
8 絶縁部
10、130 陽極部
11、129 導電性接着部
13 周囲導電性接着剤
14 導電性部材端部
15、140 陰極部
16 導電性部材
17、131 陰極端子
18、132 陽極端子
19、145 基板
20、100 コンデンサ素子
25、150 外装
50、210 積層体
70、220 固体電解コンデンサ
DESCRIPTION OF SYMBOLS 1 Metal body 2 Metal body core 3 Porous layer 4 Solid electrolyte layer 5 Graphite layer 6 Silver paste layer 7 Spacer 8 Insulating part 10, 130 Anode part 11, 129 Conductive adhesive part 13 Peripheral conductive adhesive 14 Conductive member end Portions 15 and 140 Cathode portion 16 Conductive members 17 and 131 Cathode terminals 18 and 132 Anode terminals 19 and 145 Substrate 20 and 100 Capacitor elements 25 and 150 Exterior 50 and 210 Laminate 70 and 220 Solid electrolytic capacitor

Claims (3)

絶縁部により陽極部と陰極部に区分され、前記陰極部は、平板状の弁作用金属の表面に多孔質層を備え、前記多孔質層の表面に誘電体層、固体電解質層、陰極層を順次設けて形成され、前記陽極部は、前記絶縁部から導出された前記弁作用金属よりなるコンデンサ素子を有し、
前記コンデンサ素子は、前記陰極部に設けられた導電性接着部を介して複数積層されて積層体が形成されるとともに、前記陰極部が前記導電性接着部を介して、基板に設けられた陰極端子に電気的に接続され、前記陽極部と陽極端子が電気的に接続され、絶縁材料により全面を覆う外装を備えた固体電解コンデンサであって、
前記積層体は、前記陰極部の長手方向に平行な面の中央部にある導電性接着部の全体または一部が、導電性接着剤を介して、コの字の導電性部材により帯状に覆われ、前記導電性部材の端部は、前記導電性接着剤を介して前記陰極端子に電気的、機械的に接続されることを特徴とする固体電解コンデンサ。
It is divided into an anode part and a cathode part by an insulating part, and the cathode part is provided with a porous layer on the surface of a flat valve action metal, and a dielectric layer, a solid electrolyte layer, and a cathode layer are provided on the surface of the porous layer. The anode part has a capacitor element made of the valve metal that is led out from the insulating part.
A plurality of the capacitor elements are stacked via a conductive adhesive portion provided on the cathode portion to form a laminate, and the cathode portion is provided on a substrate via the conductive adhesive portion. A solid electrolytic capacitor that is electrically connected to a terminal, the anode part and the anode terminal are electrically connected, and has an exterior covering the entire surface with an insulating material,
In the laminated body, the whole or a part of the conductive adhesive portion in the central portion of the surface parallel to the longitudinal direction of the cathode portion is covered with a U-shaped conductive member with a conductive adhesive. The solid electrolytic capacitor is characterized in that an end portion of the conductive member is electrically and mechanically connected to the cathode terminal via the conductive adhesive.
前記導電性接着部は、前記導電性接着剤を介して前記導電性部材に覆われていることを特徴とする請求項1に記載の固体電解コンデンサ。   The solid electrolytic capacitor according to claim 1, wherein the conductive adhesive portion is covered with the conductive member via the conductive adhesive. 前記導電性部材は、銅または銅合金からなることを特徴とする請求項1または2に記載の固体電解コンデンサ。   The solid electrolytic capacitor according to claim 1, wherein the conductive member is made of copper or a copper alloy.
JP2012037753A 2012-02-23 2012-02-23 Solid electrolytic capacitor Active JP5887163B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012037753A JP5887163B2 (en) 2012-02-23 2012-02-23 Solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012037753A JP5887163B2 (en) 2012-02-23 2012-02-23 Solid electrolytic capacitor

Publications (2)

Publication Number Publication Date
JP2013175512A JP2013175512A (en) 2013-09-05
JP5887163B2 true JP5887163B2 (en) 2016-03-16

Family

ID=49268193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012037753A Active JP5887163B2 (en) 2012-02-23 2012-02-23 Solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP5887163B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102150550B1 (en) 2018-10-10 2020-09-01 삼성전기주식회사 Multilayer ceramic electronic component array

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4645490B2 (en) * 2006-03-16 2011-03-09 日本電気株式会社 High frequency filter
JP4899758B2 (en) * 2006-09-29 2012-03-21 株式会社村田製作所 Lead frame member for solid electrolytic capacitors
JP2008198639A (en) * 2007-02-08 2008-08-28 Nichicon Corp Solid-state electrolytic capacitor
JP4889039B2 (en) * 2007-09-20 2012-02-29 Necトーキン株式会社 Surface mount capacitor case and surface mount capacitor
JP2009295604A (en) * 2008-06-02 2009-12-17 Panasonic Corp Solid electrolytic capacitor
JP2011035084A (en) * 2009-07-31 2011-02-17 Sanyo Electric Co Ltd Solid electrolytic capacitor

Also Published As

Publication number Publication date
JP2013175512A (en) 2013-09-05

Similar Documents

Publication Publication Date Title
JP5466722B2 (en) Solid electrolytic capacitor
JP4731389B2 (en) Multilayer solid electrolytic capacitor and manufacturing method thereof
WO2018074407A1 (en) Solid electrolytic capacitor and method for producing solid electrolytic capacitor
EP3226270B1 (en) Solid electrolytic capacitor
JP2007116064A (en) Laminated solid electrolytic capacitor
US20130182374A1 (en) Solid electrolytic capacitor and method for producing the same
TWI466155B (en) Lower-face electrode type solid electrolytic multilayer capacitor and mounting member having the same
CN107785172B (en) Solid electrolytic capacitor
JP5887163B2 (en) Solid electrolytic capacitor
JP2004087713A (en) Aluminum solid electrolytic capacitor
JP2004158577A (en) Process for producing laminated large area aluminum solid electrolytic capacitor and capacitor produced by that process
JP4026819B2 (en) Manufacturing method of multilayer aluminum solid electrolytic capacitor and capacitor by the method
JP6774745B2 (en) Solid electrolytic capacitors and their manufacturing methods
JP5892803B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP5429392B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2012134389A (en) Solid electrolytic capacitor
JP2010251643A (en) Manufacturing method of stacked capacitor
WO2006129639A1 (en) Solid electrolytic capacitor and method for manufacturing same
JP4936458B2 (en) Multilayer solid electrolytic capacitor
JP6475417B2 (en) Solid electrolytic capacitor element, manufacturing method thereof, and solid electrolytic capacitor
JP5754179B2 (en) Manufacturing method of solid electrolytic capacitor
JP5411047B2 (en) Multilayer solid electrolytic capacitor and manufacturing method thereof
JP4124360B2 (en) Manufacturing method of solid electrolytic capacitor
JP2010147274A (en) Solid electrolytic capacitor
JP2005268681A (en) Manufacturing method of solid electrolytic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150204

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20150204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160108

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160215

R150 Certificate of patent or registration of utility model

Ref document number: 5887163

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250