JP5881605B2 - High melting point metal powder for thermal spraying, high melting point metal sprayed film using the same, and thermal sprayed parts - Google Patents

High melting point metal powder for thermal spraying, high melting point metal sprayed film using the same, and thermal sprayed parts Download PDF

Info

Publication number
JP5881605B2
JP5881605B2 JP2012524543A JP2012524543A JP5881605B2 JP 5881605 B2 JP5881605 B2 JP 5881605B2 JP 2012524543 A JP2012524543 A JP 2012524543A JP 2012524543 A JP2012524543 A JP 2012524543A JP 5881605 B2 JP5881605 B2 JP 5881605B2
Authority
JP
Japan
Prior art keywords
powder
melting point
thermal spraying
metal powder
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012524543A
Other languages
Japanese (ja)
Other versions
JPWO2012008413A1 (en
Inventor
勉 森岡
勉 森岡
孝浩 奥畑
孝浩 奥畑
佐野 孝
孝 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Materials Co Ltd
Original Assignee
Toshiba Corp
Toshiba Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Materials Co Ltd filed Critical Toshiba Corp
Priority to JP2012524543A priority Critical patent/JP5881605B2/en
Publication of JPWO2012008413A1 publication Critical patent/JPWO2012008413A1/en
Application granted granted Critical
Publication of JP5881605B2 publication Critical patent/JP5881605B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/08Metallic material containing only metal elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/052Metallic powder characterised by the size or surface area of the particles characterised by a mixture of particles of different sizes or by the particle size distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Description

本発明は、MoやWなどの溶射用高融点金属粉末およびそれを用いた高融点金属溶射膜並びに溶射部品に係り、特に、取扱い性および成膜性が良好であり、粒径のばらつきが少なく厚さが均一な溶射膜が得られ易く、また焼結操作が不要であり調製が容易な溶射用高融点金属粉末およびそれを用いた高融点金属溶射膜並びに溶射部品に関する。   The present invention relates to a high-melting-point metal powder for thermal spraying such as Mo and W, and a high-melting-point metal sprayed film and a sprayed part using the same, and in particular, handling property and film forming property are good and there is little variation in particle size. The present invention relates to a high-melting-point metal powder for thermal spraying, a high-melting-point metal sprayed film using the same, and a thermal-sprayed part, which can be easily obtained with a uniform thickness and does not require a sintering operation.

溶射とは、セラミックス材料または金属材料を加熱・溶融して、基材(被施工物)の表面に吹き付けて被膜を形成する成膜方法である。加熱用の熱源としては、燃焼炎やプラズマなどが使用される。溶射方式は、フレーム溶射、爆発溶射、電気式溶射、高速フレーム溶射などがあり、近年は材料を溶融しないで被膜を形成するコールドスプレー法も開発されている。   Thermal spraying is a film forming method in which a ceramic material or a metal material is heated and melted and sprayed onto the surface of a substrate (workpiece) to form a film. A combustion flame, plasma, or the like is used as a heat source for heating. Thermal spraying methods include flame spraying, explosion spraying, electric spraying, high-speed flame spraying, and the like. In recent years, a cold spray method for forming a film without melting a material has been developed.

溶射は、溶融する材料であれば適用できるため、金属、セラミックス、サーメットやプラスチックなど様々な材料が使用されている。そのため、溶射した被膜の用途も様々であり、耐摩耗性膜、耐食性膜、耐熱性膜等として利用され、自動車部品、産業機械部品、成膜装置用部品など種々の産業分野に適用されている。   Since thermal spraying can be applied to any material that melts, various materials such as metals, ceramics, cermets, and plastics are used. Therefore, the sprayed coating has various uses and is used as a wear-resistant film, a corrosion-resistant film, a heat-resistant film, etc., and is applied to various industrial fields such as automobile parts, industrial machine parts, film forming apparatus parts, etc. .

ところで、溶射を行うには、溶射材料を粉末または線材(ワイヤー状、棒状)にして加熱源に供給することになる。フレーム溶射を例に挙げると、線状の溶射材料を使う方式を溶線式フレーム溶射(wire flame spraying)法と呼び、粉末状の溶融材料を使う方式を粉末式フレーム溶射(powder flame spraying)法と呼ばれている。   By the way, in order to perform thermal spraying, a thermal spray material is made into powder or a wire (wire shape, rod shape), and is supplied to a heating source. Taking flame spraying as an example, a method using a linear thermal spray material is called a wire flame spraying method, and a method using a powdered molten material is called a powder flame spraying method. being called.

上記溶線式フレーム溶射法によれば、燃焼炎に線状溶射材料を連続的に供給できることから、材料の供給量を一定にコントロールし易く均一な溶射膜が得られ易いという利点がある。   According to the hot wire flame spraying method, since the linear thermal spray material can be continuously supplied to the combustion flame, there is an advantage that it is easy to control the supply amount of the material to be constant and to obtain a uniform thermal spray film.

しかしながら、溶射材料を線材に加工しなければならないことから、炭素鋼、アルミニウムや亜鉛など比較的加工し易い材料には好適であるが、モリブデンやタングステンなどの硬い高融点金属に適用する場合はコストアップの要因となっていた。   However, since the thermal spray material must be processed into a wire, it is suitable for materials that are relatively easy to process, such as carbon steel, aluminum, and zinc, but costs are low when applied to hard refractory metals such as molybdenum and tungsten. It was a factor of up.

このため、高融点金属を溶射するときは粉末式フレーム溶射法が適用されることが多かった。溶射用粉末として、例えば、特開2004−300555号公報(特許文献1)が開示されている。特許文献1では、平均粒径が10μm以下のMo粉末を造粒焼結法によって粒径範囲(粒度範囲)が5〜75μmである溶射用粉末や45〜250μmの溶射用粉末を得ていた。   For this reason, when flame spraying a refractory metal, a powder flame spraying method is often applied. For example, Japanese Patent Application Laid-Open No. 2004-300555 (Patent Document 1) is disclosed as a thermal spraying powder. In Patent Document 1, a powder for thermal spraying having a particle size range (particle size range) of 5 to 75 μm or a powder for thermal spraying of 45 to 250 μm was obtained by granulating and sintering Mo powder having an average particle size of 10 μm or less.

特開2004−300555号公報JP 2004-300555 A

上記のような従来の溶射用粉末の調製方法によれば、微細な原料粉末を造粒焼結法により処理して平均粒径を増大化させることにより、溶射ノズル(燃焼炎)への溶射材料の供給量を大きくすることが可能であるため、成膜量および成膜速度を増加させることはできる。   According to the conventional method for preparing a thermal spraying powder as described above, a fine material powder is processed by a granulation sintering method to increase the average particle size, thereby spraying a thermal spray material to a thermal spray nozzle (combustion flame). Therefore, the amount of film formation and the film formation rate can be increased.

しかしながら、造粒焼結法により得た粒径範囲は、5〜75μmまたは45〜250μmとなるように粒径のばらつきが大きい。例えば、粒径範囲が5〜75μmである場合、5μmの粉末と75μmの粉末とが混在した状態となる。小さな粒子と大きな粒子が混在した状態で溶射を行うと、瞬間的な溶射用粉末の供給量にばらつきが生じてしまうため厚さが均一な膜が得られ難いという問題が生じていた。また、造粒した粉末を焼結により一体化すると、焼結する工程が必要なためコストアップの要因となっていた。   However, the particle size range obtained by the granulation sintering method has a large variation in particle size so as to be 5 to 75 μm or 45 to 250 μm. For example, when the particle size range is 5 to 75 μm, 5 μm powder and 75 μm powder are mixed. When the thermal spraying is performed in a state where small particles and large particles are mixed, there is a problem in that it is difficult to obtain a film having a uniform thickness because the supply amount of the instantaneous thermal spray powder varies. Further, when the granulated powder is integrated by sintering, a process for sintering is required, which has been a cause of cost increase.

本発明は、上記従来の問題点を解決するためになされたものであり、取扱い性および成膜性が良好であり、粒径のばらつきが少なく厚さが均一な溶射膜が得られ易く、また焼結操作が不要であり調製が容易な溶射用高融点金属粉末およびそれを用いた高融点金属溶射膜並びに溶射部品を提供することを目的とする。   The present invention has been made in order to solve the above-mentioned conventional problems, and it is easy to obtain a sprayed coating having good handleability and film formability, having little variation in particle size and uniform thickness, and An object of the present invention is to provide a refractory metal powder for thermal spraying that does not require a sintering operation and is easy to prepare, a refractory metal sprayed film using the same, and a thermal sprayed part.

本発明に係る溶射用高融点金属粉末は、1次粒子の平均粒径が1〜10μmであり、この1次粒子が接着した2次粒子の平均粒径が20〜150μmであり、粒径が20〜150μmである2次粒子の割合が全体の70質量%以上であり、上記1次粒子はモリブデン粉末またはタングステン粉末のいずれか1種と、Ni、Co、Cr、希土類元素およびこれら元素の化合物の少なくとも1種以上の第二成分粉末を0.005〜30質量%の割合で混合されており、上記モリブデン粉末またはタングステン粉末の平均粒径よりも第二成分粉末の平均粒径の方が小さいことを特徴とする。 The refractory metal powder for thermal spraying according to the present invention has an average primary particle size of 1 to 10 μm, an average particle size of secondary particles adhered to the primary particles of 20 to 150 μm, and a particle size of is 20~150μm Ri der proportion to 70 wt% of the total of secondary particles, the primary particles of any one of molybdenum powder or tungsten powder, Ni, Co, Cr, rare earth elements and these elements At least one or more second component powders of the compound are mixed in a proportion of 0.005 to 30% by mass, and the average particle size of the second component powder is larger than the average particle size of the molybdenum powder or tungsten powder. It is small .

また上記溶射用高融点金属粉末において、前記粒径が20〜150μmである2次粒子の割合が90〜100質量%であることがより好ましい。さらに上記溶射用高融点金属粉末において、前記2次粒子が、1次粒子を樹脂バインダーにより接着して調製されていることが好ましい。   In the refractory metal powder for thermal spraying, the proportion of secondary particles having a particle size of 20 to 150 μm is more preferably 90 to 100% by mass. Furthermore, in the high melting point metal powder for thermal spraying, the secondary particles are preferably prepared by bonding the primary particles with a resin binder.

さらに上記溶射用高融点金属粉末において、前記1次粒子の純度が99.9質量%以上であるモリブデン粉末またはタングステン粉末のいずれか1種であることが好ましい。また、前記1次粒子はモリブデン粉末またはタングステン粉末のいずれか1種と、Ni、Co、Cr、希土類元素およびこれら元素の化合物の少なくとも1種以上の第二成分粉末を0.005〜30質量%の割合で混合されていることが好ましい。   Furthermore, in the above-mentioned high melting point metal powder for thermal spraying, it is preferable that the primary particles are any one of molybdenum powder and tungsten powder having a purity of 99.9% by mass or more. Further, the primary particles are 0.005 to 30% by mass of any one of molybdenum powder and tungsten powder, and at least one second component powder of Ni, Co, Cr, rare earth elements and compounds of these elements. It is preferable that they are mixed in the ratio.

また上記溶射用高融点金属粉末において、前記モリブデン粉末またはタングステン粉末の平均粒径よりも第二成分粉末の平均粒径の方が小さいことが好ましい。さらに前記2次粒子のかさ密度が1〜5g/cmであることが好ましい。In the high melting point metal powder for thermal spraying, it is preferable that the average particle size of the second component powder is smaller than the average particle size of the molybdenum powder or tungsten powder. Furthermore, it is preferable that the bulk density of the secondary particles is 1 to 5 g / cm 3 .

さらに上記溶射用高融点金属粉末において、前記溶射用高融点金属粉末の流動性が50sec/50g以下であることが好ましい。   Further, in the high melting point metal powder for thermal spraying, the fluidity of the high melting point metal powder for thermal spraying is preferably 50 sec / 50 g or less.

また、本発明に係る高融点金属溶射膜は、上記の溶射用高融点金属粉末を溶射して基材上に形成されていることを特徴とする。   The refractory metal sprayed film according to the present invention is characterized in that it is formed on a substrate by spraying the above-mentioned refractory metal powder for thermal spraying.

さらに本発明に係る溶射部品は、上記の高融点金属溶射膜を基材表面に具備したことを特徴とする。   Furthermore, the thermal spray component according to the present invention is characterized in that the above-mentioned refractory metal thermal spray film is provided on the substrate surface.

本発明に係る溶射用高融点金属粉末によれば、所定粒径範囲を有する2次粒子の重量割合を多く規定しているので、溶射ノズルに対する溶射用粉末の供給量を一定に制御することが可能であり、また制御管理が容易になるため、厚さが均一な高融点金属溶射膜を得ることができる。また、焼結操作を実施せず、1次粒子を接着した2次粒子を使用しているために、コストアップを防止することも可能になる。   According to the refractory metal powder for thermal spraying according to the present invention, since the weight ratio of secondary particles having a predetermined particle size range is specified in a large amount, the supply amount of the thermal spraying powder to the thermal spray nozzle can be controlled to be constant. Since it is possible and control management becomes easy, it is possible to obtain a refractory metal sprayed film having a uniform thickness. In addition, since the sintering operation is not performed and the secondary particles to which the primary particles are bonded are used, it is possible to prevent an increase in cost.

本発明に係る高融点金属粉末の一実施例を示す図。The figure which shows one Example of the refractory metal powder which concerns on this invention. 本発明に係る溶射用高融点金属の一例を示す図。The figure which shows an example of the refractory metal for thermal spraying which concerns on this invention. 本発明に係る溶射用高融点金属の他の一例を示す図。The figure which shows another example of the refractory metal for thermal spraying which concerns on this invention.

本発明に係る溶射用高融点金属粉末は、1次粒子の平均粒径が1〜10μmであり、この1次粒子が接着した2次粒子の平均粒径が20〜150μmであり、粒径が20〜150μmである2次粒子の割合が全体の70質量%以上であることを特徴とする。また上記溶射用高融点金属粉末において、前記粒径が20〜150μmである2次粒子の割合が90〜100質量%であることが好ましい。   The refractory metal powder for thermal spraying according to the present invention has an average primary particle size of 1 to 10 μm, an average particle size of secondary particles adhered to the primary particles of 20 to 150 μm, and a particle size of The ratio of the secondary particle which is 20-150 micrometers is 70 mass% or more of the whole, It is characterized by the above-mentioned. In the refractory metal powder for thermal spraying, the proportion of secondary particles having a particle size of 20 to 150 μm is preferably 90 to 100% by mass.

ここで高融点金属とは、タングステン(融点3400℃)、モリブデン(融点2620℃)、レニウム(融点3180℃)、ハフニウム(融点2230℃)など、融点が2000℃以上の金属を示す。また、1次粒子とは高融点金属粉末1個のことを示し、2次粒子とは1次粒子が複数個固まった粒子のことを示す。1次粒子が固まるとは、凝集して固まった状態や、接着剤またはバインダーなどを介して相互に接着した状態を示す。   Here, the refractory metal refers to a metal having a melting point of 2000 ° C. or higher, such as tungsten (melting point 3400 ° C.), molybdenum (melting point 2620 ° C.), rhenium (melting point 3180 ° C.), hafnium (melting point 2230 ° C.). Further, the primary particle indicates one refractory metal powder, and the secondary particle indicates a particle in which a plurality of primary particles are hardened. The term “primary particles are solidified” indicates a state in which the primary particles are aggregated and solidified, or a state in which the primary particles are bonded to each other via an adhesive or a binder.

図1は1次粒子1と二次粒子2とが混在した状態の一例を示す。図中、符号1が溶射用高融点金属粉末の1次粒子であり、符号2が溶射用高融点金属粉末の2次粒子である。   FIG. 1 shows an example of a state in which primary particles 1 and secondary particles 2 are mixed. In the figure, reference numeral 1 denotes primary particles of the high melting point metal powder for thermal spraying, and reference numeral 2 denotes secondary particles of the high melting point metal powder for thermal spraying.

本発明の溶射用高融点金属粉末では、1次粒子の平均粒径が1〜10μmであり、この平均粒径1〜10μmの粒子同士を接着して結合した2次粒子の平均粒径が20〜150μmであり、粒径20〜150μmの2次粒子の割合が全体で70質量%以上であることを特徴とするものである。   In the refractory metal powder for thermal spraying of the present invention, the average particle diameter of primary particles is 1 to 10 μm, and the average particle diameter of secondary particles obtained by bonding and bonding particles having an average particle diameter of 1 to 10 μm is 20. The ratio of secondary particles having a particle diameter of 20 to 150 μm is 70% by mass or more as a whole.

1次粒子が接着した2次粒子は、接着剤やバインダーなどの有機物を使用して1次粒子を接着して調製することが好ましい。有機物であれば溶射工程の熱により焼失するので高融点金属粉末の特性に悪影響を与えることが少ない。   The secondary particles to which the primary particles are bonded are preferably prepared by bonding the primary particles using an organic substance such as an adhesive or a binder. If it is an organic substance, it is burned down by the heat of the thermal spraying process, and therefore, the characteristics of the high melting point metal powder are hardly adversely affected.

また、1次粒子の平均粒径が1μm未満となる場合では、個々の粉末が過度に微細であり取扱い性が悪化してしまう一方、平均粒径が10μmを超えて粗大になると、2次粒子のサイズが必要以上に大きくなり、溶射材料の供給速度が不安定になってしまうおそれがある。また、2次粒子の平均粒径が20μm未満では2次粒子とする効果が小さい一方、平均粒径が150μmを超えるとサイズが過大であるため、溶射工程における材料供給量のばらつきを招き、均一な成膜操作が困難になる。   In addition, when the average particle size of the primary particles is less than 1 μm, the individual powders are excessively fine and the handleability deteriorates. On the other hand, when the average particle size exceeds 10 μm and becomes coarse, the secondary particles There is a possibility that the size of the thermal spray material becomes unnecessarily large and the supply rate of the thermal spray material becomes unstable. In addition, when the average particle size of the secondary particles is less than 20 μm, the effect of forming the secondary particles is small. On the other hand, when the average particle size exceeds 150 μm, the size is excessive. Film forming operation becomes difficult.

本発明では、粒径が20〜150μmである2次粒子の重量割合が80質量%以上となるように規定される。さらに、この粒径が20〜150μmである2次粒子の重量割合が、さらには90質量%以上100質量%以下であることが好ましい。   In the present invention, the weight ratio of secondary particles having a particle diameter of 20 to 150 μm is defined to be 80% by mass or more. Furthermore, it is preferable that the weight ratio of the secondary particles having a particle diameter of 20 to 150 μm is 90% by mass or more and 100% by mass or less.

ところで、フレーム溶射などの溶射工程では、溶射炎中に溶射材料を供給することになる。しかしながら、溶射材料が粉末である場合には、溶射材料の粉末サイズの大小によって、得られる溶射膜の膜厚や成膜速度が変化してしまう。つまり、同じ組成の溶射材料を使用した場合においても、粒径が1μmの溶射材料と粒径が20μmの溶射材料とでは、成膜量が大きく異なる。   By the way, in a thermal spraying process such as flame spraying, a thermal spray material is supplied into the thermal spray flame. However, when the thermal spray material is a powder, the film thickness and the deposition rate of the thermal spray film to be obtained vary depending on the size of the thermal spray material powder. That is, even when spraying materials having the same composition are used, the amount of film formation differs greatly between the spraying material having a particle size of 1 μm and the spraying material having a particle size of 20 μm.

溶射炎へ溶射材料を安定的に供給するためには、高融点金属を線材または棒材にすることが従来から採用されているが、高硬度の高融点金属を線材または棒材に加工するためには複雑な工程が必要であり、溶射操作のコストアップ要因となる。   In order to stably supply the thermal spray material to the thermal spray flame, it has been conventionally used to use a refractory metal as a wire or rod, but to process a high-hardness refractory metal into a wire or rod. Requires a complicated process, which increases the cost of the spraying operation.

これに対して、本発明では、微細な1次粒子を、ある程度の粒径を有する2次粒子に加工し、その2次粒子の割合を多くすることにより、溶射炎への高融点金属粉末の供給量を安定化させている。溶射炎への高融点金属粉末の供給量が安定することにより、成膜量も安定するため膜厚が均一な高融点金属膜が容易に得られる。また、線材や棒材よりも粉末状の溶射材料の方が溶融しやすいので、同じ燃焼炎(溶射炎)であれば成膜速度を上昇されることが可能である。   On the other hand, in the present invention, fine primary particles are processed into secondary particles having a certain particle size, and the proportion of the secondary particles is increased to increase the melting point of the refractory metal powder to the spray flame. The supply amount is stabilized. By stabilizing the supply amount of the refractory metal powder to the thermal spraying flame, the film formation amount is also stabilized, so that a refractory metal film having a uniform film thickness can be easily obtained. In addition, since the powdered thermal spray material is more easily melted than the wire or rod, the deposition rate can be increased with the same combustion flame (thermal spray flame).

高融点金属粉末の粒径の絶対値が、本発明で規定した範囲であれば、溶射材料としての高融点金属粉末の供給のばらつきを低減することが可能となる。図2および図3は本発明に係る溶射用高融点金属粉末の2次粒子の構成例を示した。   If the absolute value of the particle diameter of the refractory metal powder is within the range specified in the present invention, it is possible to reduce the variation in the supply of the refractory metal powder as the thermal spray material. 2 and 3 show examples of the structure of secondary particles of the refractory metal powder for thermal spraying according to the present invention.

図2および図3において、符号2が溶射用高融点金属粉末の2次粒子である。図3には2次粒子の粒径を示すLを記載した。溶射用高融点金属粉末の1次粒子および2次粒子の粒径は、簡易的には以下の方法で測定できる。すなわち、それぞれの粉末群の拡大写真を撮り、そこに写る粒子の最大径を粒径とし、それぞれ50個の粒子について測定しそれを平均粒径とする方法である。1次粒子径についてはFSSS粒径を用いてもよい。   2 and 3, reference numeral 2 denotes secondary particles of the high melting point metal powder for thermal spraying. FIG. 3 shows L indicating the particle size of the secondary particles. The particle diameters of the primary particles and secondary particles of the refractory metal powder for thermal spraying can be simply measured by the following method. That is, this is a method of taking an enlarged photograph of each powder group, setting the maximum diameter of particles appearing therein as the particle diameter, measuring 50 particles, and setting it as the average particle diameter. The FSSS particle size may be used for the primary particle size.

また、複数個の1次粒子を樹脂バインダーにより相互に接着した2次粒子を用いることが好ましい。2次粒子は前述の通り、1次粒子同士が接着したものであるが、この接着態様としては、応力による接合や樹脂バインダーによる接合など様々な態様がある。樹脂バインダーによって接着した金属粉末であれば、溶射炎に投入したときに樹脂バインダーが焼失するので溶融した1次粒子成分を成膜できる。一方、応力により接合した金属粉末の場合には、2次粒子そのものが溶融して成膜されるので、2次粒子のサイズが過大であると成膜の厚さや成膜量のばらつきにつながる。   In addition, it is preferable to use secondary particles in which a plurality of primary particles are bonded to each other with a resin binder. As described above, the secondary particles are those in which the primary particles are bonded to each other, and there are various modes such as bonding by stress and bonding by a resin binder. If it is a metal powder bonded with a resin binder, the resin binder is burned out when it is put into a thermal spray flame, so that a molten primary particle component can be formed into a film. On the other hand, in the case of metal powder bonded by stress, the secondary particles themselves are melted to form a film. Therefore, if the size of the secondary particles is too large, the thickness of the film and the amount of film formation will vary.

樹脂バインダーは、樹脂であれば特に限定されるものではないが、ポリビニルアルコール(PVA)、シリコーン樹脂、エポキシ樹脂など1000℃以上の溶射炎で焼失するものであれば好適である。   The resin binder is not particularly limited as long as it is a resin. However, any resin binder such as polyvinyl alcohol (PVA), silicone resin, epoxy resin, etc. that can be burned away by a thermal spray flame of 1000 ° C. or higher is suitable.

また、高融点金属粉末は、1次粒子が純度99.9質量%以上のモリブデン粉末またはタングステン粉末のいずれか1種で構成されていることが好ましい。高融点金属の純度は、求める溶射膜の特性に応じて定められるが、純度が高い方が融点のばらつきが少ないため安定した溶射膜がより得易くなる。特に、高融点金属は線材や棒材への加工が困難であり、モリブデンやタングステンは粉末状態で使用する方がより好ましい。   The refractory metal powder is preferably composed of any one of molybdenum powder and tungsten powder whose primary particles have a purity of 99.9% by mass or more. The purity of the refractory metal is determined according to the required properties of the sprayed coating. However, a higher purity makes it easier to obtain a stable sprayed coating because there is less variation in melting point. In particular, refractory metals are difficult to process into wires and rods, and molybdenum and tungsten are more preferably used in a powder state.

また、高融点金属粉末の1次粒子は、モリブデン粉末またはタングステン粉末のいずれか1種と、Ni、Co、Cr、希土類元素およびこれら元素の化合物の少なくとも1種以上の第二成分粉末を0.005〜30質量%混合したものであってもよい。   Further, the primary particles of the refractory metal powder include 0.1% of any one of molybdenum powder and tungsten powder, and at least one second component powder of Ni, Co, Cr, rare earth elements and compounds of these elements. 005-30 mass% may be mixed.

溶射膜に求められる特性に応じて、Ni、Co、Cr、希土類元素およびこれら元素の化合物の少なくとも1種以上の第二成分粉末を0.005〜30質量%の割合で混合することも効果的である。   It is also effective to mix Ni, Co, Cr, rare earth elements and at least one second component powder of a compound of these elements in a proportion of 0.005 to 30% by mass depending on the properties required for the sprayed film. It is.

混合としては、高融点金属粉末に第二成分の粉末を混合する方式が好ましい。例えば、高融点金属と第二成分の合金粉末とを予め製造してもよいが、合金化工程がコストアップの要因となる。一方、第二成分の粉末を混合する方式であれば、粉末を混合するだけでよいので、溶射用高融点金属粉末の調製が極めて簡単になる。また、高融点金属粉末を溶射する溶射炎は非常に高温であるから、第二成分粉末は溶射炎により溶射される。   As the mixing, a method of mixing the powder of the second component with the refractory metal powder is preferable. For example, the refractory metal and the alloy powder of the second component may be manufactured in advance, but the alloying process causes a cost increase. On the other hand, if it is a system which mixes the powder of a 2nd component, since it is only necessary to mix a powder, preparation of the refractory metal powder for thermal spraying becomes very easy. Further, since the spray flame for spraying the refractory metal powder is very high temperature, the second component powder is sprayed by the spray flame.

また、第二成分粉末の平均粒径は高融点金属粉末と同様に、1〜10μmの範囲が好ましい。また、モリブデン粉末またはタングステン粉末の平均粒径よりも第二成分粉末の平均粒径の方が小さいことが好ましい。第二成分の平均粒径が高融点金属粉末(モリブデン、タングステンなど)よりも大きいと、混合粉末中に第二成分が均一に混合されない領域が生じるおそれがある。第二成分は一般的に高融点金属粉末よりも融点が低い。そのため、あまり粒径が大きいと溶射膜の組成ばらつきの原因になる。溶射膜の組成ばらつきを低減するためには第二成分粉末の混合量は10質量%以下が好ましい。   Further, the average particle size of the second component powder is preferably in the range of 1 to 10 μm, like the refractory metal powder. Moreover, it is preferable that the average particle diameter of the second component powder is smaller than the average particle diameter of the molybdenum powder or the tungsten powder. When the average particle size of the second component is larger than that of the refractory metal powder (molybdenum, tungsten, etc.), there may be a region where the second component is not uniformly mixed in the mixed powder. The second component generally has a lower melting point than the refractory metal powder. For this reason, if the particle size is too large, it causes a variation in the composition of the sprayed film. In order to reduce the variation in the composition of the sprayed film, the mixing amount of the second component powder is preferably 10% by mass or less.

また、2次粒子のかさ密度が1〜5g/cmであることが好ましい。本発明では2次粒子の割合がより多い方が好ましい。しかしながら、2次粒子のかさ密度が1g/cm未満と過度に低いと、相対的に樹脂バインダー量が過多となり、高融点金属粉末の溶射炎への供給量が低下してしまう。Moreover, it is preferable that the bulk density of a secondary particle is 1-5 g / cm < 3 >. In the present invention, it is preferable that the ratio of secondary particles is larger. However, if the bulk density of the secondary particles is too low, less than 1 g / cm 3 , the amount of the resin binder is relatively excessive, and the supply amount of the refractory metal powder to the thermal spray flame is reduced.

一方、上記2次粒子のかさ密度が5g/cmを超えて高い場合には、1次粒子間に樹脂バインダーが入り込まず、1次粒子同士が応力により直接接合した状態となり易いので好ましくない。上記2次粒子のかさ密度は、アルキメデス法により測定可能である。On the other hand, when the bulk density of the secondary particles is higher than 5 g / cm 3 , the resin binder does not enter between the primary particles, and the primary particles are easily joined directly by stress, which is not preferable. The bulk density of the secondary particles can be measured by the Archimedes method.

また、溶射用高融点金属粉末の流動性が50sec/50g以下であることが好ましい。この場合の流動性は、溶射装置における溶射材料の流れ方を示す指標となり、溶射用高融点金属粉末のみから成る場合や高融点金属粉末と樹脂バインダーとを混合した場合など、いずれの場合においても管理項目となる。   The fluidity of the high melting point metal powder for thermal spraying is preferably 50 sec / 50 g or less. The fluidity in this case is an index indicating how the thermal spray material flows in the thermal spraying apparatus. In any case, such as when only consisting of a refractory metal powder for thermal spraying or when a refractory metal powder and a resin binder are mixed. It becomes a management item.

すなわち、溶射炎への溶射材料の供給は、溶射ノズル近傍に設けた供給口に溶射材料を投入しながら実施される。このとき、溶射材料にある程度の流動性が付与されていれば、供給口に若干の傾斜を持たせることにより、重力によって自然流下するので、溶射材料の安定供給が実現し、成膜量の安定化につながる。また、溶射材料に流動性を付与した場合には、溶射用高融点金属粉末の溶射炎への供給システムも自動化し易い。   That is, the spraying material is supplied to the spraying flame while the spraying material is introduced into a supply port provided in the vicinity of the spraying nozzle. At this time, if a certain degree of fluidity is imparted to the thermal spray material, it will flow down naturally due to gravity by giving a slight inclination to the supply port, thereby realizing a stable supply of the thermal spray material and a stable deposition amount. Leading to In addition, when fluidity is imparted to the thermal spray material, it is easy to automate the supply system of the high melting point metal powder for thermal spraying to the thermal spray flame.

なお、上記流動性の測定操作は、JIS−K−6760に準じた押し出し型プラストメーターを用い、樹脂バインダーと溶射用高融点金属粉末との混合物50gが所定孔から押し出されるまでに要する時間(秒)で測定することにより実施できる。   The fluidity measurement operation was performed using an extrusion type plastometer according to JIS-K-6760, and the time required for 50 g of the mixture of the resin binder and the high melting point metal powder for thermal spraying to be extruded from a predetermined hole (seconds). ).

本発明に係る溶射用高融点金属粉末を使用した場合には、線材を用いる場合と比較して大幅なコストダウンを可能とした上で、成膜量の均一化を図ることができる。また、第二成分を混合した溶射膜を形成する場合においても、高融点金属粉末に第二成分粉末を混合するだけで溶射用金属粉末を簡単に調製できるので、成膜材料の変更にも柔軟に対応できる。また、溶射用高融点金属粉末のかさ密度や流動性を制御することにより、成膜量の均一化のみならず、成膜工程の自動化など、溶射設備の簡素化および溶射用高融点金属粉末の取扱い性も向上させることができる。   When the refractory metal powder for thermal spraying according to the present invention is used, the film formation amount can be made uniform while allowing a significant cost reduction as compared with the case of using a wire. In addition, when forming a sprayed coating with the second component mixed, the metal powder for thermal spraying can be easily prepared simply by mixing the second component powder with the refractory metal powder. It can correspond to. In addition, by controlling the bulk density and fluidity of the refractory metal powder for thermal spraying, not only the film deposition amount is made uniform, but also the automation of the film deposition process, etc. Handleability can also be improved.

このような溶射用高融点金属粉末を溶射して基材上に成膜することにより、様々な高融点金属溶射膜を得ることができる。また、このような溶射膜を具備する様々な溶射部品に適用することが可能となる。   By spraying such a refractory metal powder for thermal spraying to form a film on a substrate, various refractory metal sprayed films can be obtained. Moreover, it becomes possible to apply to various thermal spray components which comprise such a thermal spray film.

溶射部品は、溶射膜を有する部品であれば特に限定されるものではないが、耐摩耗性膜、耐食性膜、耐熱性膜などの機能を備えた自動車部品、産業機械部品、成膜装置用部品など種々の分野に適用可能である。また、溶射膜の膜厚は、特に限定されるものではなく、10〜500μmの範囲が好適である。より好ましくは20〜400μmの範囲である。   The thermal sprayed part is not particularly limited as long as it is a part having a thermal sprayed film, but is an automotive part, an industrial machine part, or a part for a film forming apparatus having functions such as a wear resistant film, a corrosion resistant film, and a heat resistant film. It can be applied to various fields. Moreover, the film thickness of a sprayed film is not specifically limited, The range of 10-500 micrometers is suitable. More preferably, it is the range of 20-400 micrometers.

次に、本発明に係る溶射用高融点金属粉末の製造方法について説明する。本発明に係る溶射用高融点金属粉末は前述の構成を有するものである限り、その製造方法は特に限定されるものではないが、高い効率で製造するための方法として、次の方法が挙げられる。   Next, the manufacturing method of the high melting point metal powder for thermal spraying which concerns on this invention is demonstrated. As long as the refractory metal powder for thermal spraying according to the present invention has the above-described configuration, its production method is not particularly limited, but the following method can be mentioned as a method for producing with high efficiency. .

まず、平均粒径が1〜10μmである高融点金属粉末を用意する。例えば、目的とする材料が高純度Mo粉末である場合には、予め純度が99.9%以上であるMo粉末を用意する。   First, a refractory metal powder having an average particle diameter of 1 to 10 μm is prepared. For example, when the target material is high-purity Mo powder, Mo powder having a purity of 99.9% or more is prepared in advance.

通常、1次粒子の平均粒径が1〜10μmである高融点金属粉末であっても、一部が結合した2次粒子が混在している粉末が多い。この2次粒子は1次粒子が応力により結合したものである。そのため、1次粒子を十分に解砕しほぐすために、回転式アトマイザーなどにより粉砕工程を実施する。また、第二成分を使用する場合は、第一成分としての高融点金属粉末に第二成分粉末を混合する方法が好適である。   Usually, even if the refractory metal powder has an average primary particle diameter of 1 to 10 μm, there are many powders in which secondary particles partially bonded are mixed. These secondary particles are those in which primary particles are bonded by stress. Therefore, in order to sufficiently disintegrate and loosen the primary particles, a pulverization step is performed using a rotary atomizer or the like. Moreover, when using a 2nd component, the method of mixing a 2nd component powder with the high melting-point metal powder as a 1st component is suitable.

次にスプレードライヤーなどの造粒機を使用して2次粒子を形成し直す。このとき、必要に応じて樹脂バインダーを混合すると、樹脂バインダーにより1次粒子を接着した2次粒子を容易に得ることができる。上記樹脂バインダーの添加量については任意であるが、2次粒子のかさ密度が1〜5g/cmの範囲となり、流動性が50sec/50g以下になるように混合することが好ましい。Next, secondary particles are formed again using a granulator such as a spray dryer. At this time, if a resin binder is mixed as necessary, secondary particles in which the primary particles are bonded by the resin binder can be easily obtained. The addition amount of the resin binder is arbitrary, but it is preferable to mix so that the bulk density of the secondary particles is in the range of 1 to 5 g / cm 3 and the fluidity is 50 sec / 50 g or less.

次に得られた2次粒子の平均粒径が20〜150μmであれば、そのまま完成品としてもよいし、更に粒径を絶対値で20〜150μmにしたい場合は、粒径が20μm以上の粒子を通さない篩および粒径が150μmを超えた粒子を通さない篩の2種の篩を使用した篩分け工程を実施することが効果的である。   Next, if the average particle size of the obtained secondary particles is 20 to 150 μm, it may be used as a finished product as it is, or if the particle size is to be 20 to 150 μm in absolute value, particles having a particle size of 20 μm or more. It is effective to carry out a sieving step using two types of sieves: a sieve that does not pass through and a sieve that does not pass through particles with a particle size exceeding 150 μm.

[実施例]
(実施例1〜5および比較例1)
原料粉末として表1に示す平均粒径を有し、純度が99.9質量%以上であるモリブデン粉末を用意した。次に、表1に示すように、必要に応じ、第二成分粉末を添加した。これらの原料粉末をスプレードライヤーを使用して、樹脂バインダーと混合した。次に、必要に応じ、粒径が20μm未満および150μmを超えるものを除外する篩分け工程を実施した。これらの工程により表1に示すような溶射用高融点金属粉末を調製した。得られた溶射用高融点金属粉末の2次粒子は樹脂バインダーにより接着された粒子であった。
[Example]
(Examples 1-5 and Comparative Example 1)
A molybdenum powder having an average particle size shown in Table 1 and a purity of 99.9% by mass or more was prepared as a raw material powder. Next, as shown in Table 1, the second component powder was added as necessary. These raw material powders were mixed with a resin binder using a spray dryer. Next, as necessary, a sieving step was performed to exclude particles having a particle size of less than 20 μm and more than 150 μm. Through these steps, a refractory metal powder for thermal spraying as shown in Table 1 was prepared. The secondary particles of the obtained refractory metal powder for thermal spraying were particles bonded with a resin binder.

また、比較例1として樹脂バインダーと混合工程を行う前の実施例1と同じMo原料粉末を用意した。各実施例および比較例に係る溶射用高融点金属粉末における2次粒子の平均粒径、2次粒子の全粒子の割合(wt%)、2次粒子のかさ密度および流動性を調査測定した。   Moreover, the same Mo raw material powder as Example 1 before performing a mixing process with a resin binder as the comparative example 1 was prepared. The average particle diameter of secondary particles in the high-melting point metal powder for thermal spraying according to each example and comparative example, the ratio (wt%) of the total particles of the secondary particles, and the bulk density and fluidity of the secondary particles were investigated and measured.

また、実施例4の第二成分であるCo粉末の平均粒径は3μm、実施例5のY粉末の平均粒径は5μmとした。The average particle size of the Co powder as the second component of Example 4 was 3 μm, and the average particle size of the Y 2 O 3 powder of Example 5 was 5 μm.

ここで2次粒子の平均粒径は、拡大写真により50個以上の2次粒子を撮影し、各写真に写る2次粒子の最大径を粒径とし、50個の平均値を2次粒子の平均粒径とした。また、2次粒子が50個以上写る拡大写真中に存在する1次粒子と2次粒子の個数を調べて、2次粒子の割合を質量%(wt%)で計算した。また2次粒子の密度はアルキメデス法で調査した。流動性は前述した押し出し型プラストメーターを使用して調査した。その調査測定結果を下記表1に示す。   Here, the average particle size of the secondary particles is obtained by taking 50 or more secondary particles by an enlarged photograph, and taking the maximum diameter of the secondary particles in each photo as the particle size, and calculating the average value of 50 particles of the secondary particles. The average particle size was taken. Further, the number of primary particles and secondary particles present in an enlarged photograph showing 50 or more secondary particles was examined, and the ratio of secondary particles was calculated in mass% (wt%). The density of secondary particles was investigated by the Archimedes method. The fluidity was investigated using the above-described extrusion type plastometer. The survey and measurement results are shown in Table 1 below.

Figure 0005881605
Figure 0005881605

(実施例6〜10および比較例2)
原料粉末として表2に示すような平均粒径を有し、純度が99.9質量%以上であるタングステン粉末を用意した。次に、表2に示すように必要に応じ、第二成分粉末を添加した。これらの各金属粉末を、スプレードライヤーを使用して樹脂バインダーと混合した。
(Examples 6 to 10 and Comparative Example 2)
A tungsten powder having an average particle size as shown in Table 2 and a purity of 99.9% by mass or more was prepared as a raw material powder. Next, as shown in Table 2, the second component powder was added as necessary. Each of these metal powders was mixed with a resin binder using a spray dryer.

次に、必要に応じ、粒径が20μm未満および粒径が150μmを超える金属粉末を除外する篩分け工程を実施した。これらの処理工程により表2に示すような各実施例及び比較例に係る溶射用高融点金属粉末を調製した。   Next, if necessary, a sieving step was performed to exclude metal powder having a particle size of less than 20 μm and a particle size of more than 150 μm. Through these treatment steps, refractory metal powders for thermal spraying according to Examples and Comparative Examples as shown in Table 2 were prepared.

なお、得られた溶射用高融点金属粉末は、その2次粒子は樹脂バインダーにより接着された粒子であった。また、実施例9における第二成分であるNi粉末は平均粒径が2μmであり、実施例10における第二成分であるCr粉末の平均粒径は1μmとした。   The obtained refractory metal powder for thermal spraying was a particle in which the secondary particles were adhered by a resin binder. Further, the Ni powder as the second component in Example 9 had an average particle size of 2 μm, and the Cr powder as the second component in Example 10 had an average particle size of 1 μm.

なお、比較例2として樹脂バインダーと混合工程を行う前の実施例6と同じMo原料粉末を用意した。各実施例にかかる溶射用高融点金属粉末中の2次粒子の平均粒径、2次粒子の全粒子に対する重量割合(wt%)、2次粒子のかさ密度および流動性を調査測定した。   In addition, the same Mo raw material powder as Example 6 before performing a mixing process with a resin binder as the comparative example 2 was prepared. The average particle diameter of secondary particles in the high-melting-point metal powder for thermal spraying according to each example, the weight ratio (wt%) of the secondary particles to the total particles, and the bulk density and fluidity of the secondary particles were investigated and measured.

すなわち、2次粒子の平均粒径は以下のように測定した。すなわち、拡大写真により50個以上の2次粒子を撮影し、各写真に写る2次粒子の最大径を粒径とし、50個の平均値を2次粒子の平均粒径とした。また、2次粒子が50個以上写る拡大写真中に存在する1次粒子および2次粒子の個数を計数して、2次粒子の重量割合を質量%(wt%)で示した。また、2次粒子のかさ密度はアルキメデス法で調査した。さらに流動性は前述の押し出し型プラストメーターにより調査した。それらの調査測定結果を下記表2に示す。   That is, the average particle diameter of the secondary particles was measured as follows. That is, 50 or more secondary particles were photographed with an enlarged photograph, the maximum diameter of secondary particles in each photograph was taken as the particle size, and the average value of 50 particles was taken as the average particle size of the secondary particles. Further, the number of primary particles and secondary particles present in an enlarged photograph showing 50 or more secondary particles was counted, and the weight ratio of the secondary particles was expressed in mass% (wt%). The bulk density of the secondary particles was investigated by Archimedes method. Furthermore, the fluidity was investigated by the above-described extrusion type plastometer. The results of the survey measurements are shown in Table 2 below.

Figure 0005881605
Figure 0005881605

次に、上記実施例1〜10および比較例1〜2に係る溶射用高融点金属粉末を用いて溶射膜を形成した。具体的には粉末式フレーム溶射装置(powder flame spraying device)を用いて成膜した。基材として縦30cm×横30cm×厚さ2mmのステンレス鋼(SUS)を用いた。そして基材表面上に縦5cm×横5cmの溶射膜を一定時間かけて溶射処理をしたときの膜厚のばらつきを調査した。縦5×横5cmの溶射膜を5か所に形成し、膜厚の最大値と最小値との差を求め、下記の算式に代入して溶射膜の膜厚のばらつきを計算した。   Next, the thermal spray film was formed using the high melting point metal powder for thermal spraying according to Examples 1 to 10 and Comparative Examples 1 and 2. Specifically, the film was formed by using a powder frame spraying device. Stainless steel (SUS) 30 cm long × 30 cm wide × 2 mm thick was used as the substrate. And the dispersion | variation in the film thickness when the spraying process of 5 cm long x 5 cm wide spraying treatment on the base-material surface over a fixed time was investigated. The sprayed film of 5 × 5 cm was formed in five places, the difference between the maximum value and the minimum value of the film thickness was determined, and the dispersion of the film thickness of the sprayed film was calculated by substituting it into the following formula.

溶射膜の厚さのばらつき(%)=[(膜厚の最大値−膜厚の最小値)/(膜厚の最大値+膜厚の最小値)]×100(%)。 Variation in thickness of sprayed film (%) = [(maximum value of film thickness−minimum value of film thickness) / (maximum value of film thickness + minimum value of film thickness)] × 100 (%).

その測定計算結果を下記表3に示す。   The measurement calculation results are shown in Table 3 below.

Figure 0005881605
Figure 0005881605

上記表3に示す結果から明らかなように、各実施例に係る溶射用高融点金属粉末を用いて形成された溶射膜においては、溶射膜の膜厚のばらつきが8%以下と小さく、均一な溶射膜が形成されていることが判明した。また、2次粒子のかさ密度が1〜5g/cmであり、かつ流動性が50sec/50g以下である実施例1〜9に係る溶射膜では、膜厚のばらつきが5%以下であり、さらに均一成膜性が改善されていた。As is apparent from the results shown in Table 3 above, in the sprayed film formed using the refractory metal powder for thermal spraying according to each example, the variation in the film thickness of the sprayed film is as small as 8% or less and uniform. It was found that a sprayed film was formed. Moreover, in the sprayed film which concerns on Examples 1-9 whose bulk density of secondary particle | grains is 1-5 g / cm < 3 > and whose fluidity is 50 sec / 50g or less, the dispersion | variation in film thickness is 5% or less, Furthermore, the uniform film forming property was improved.

一方、2次粒子の粒径やその重量割合を制御していない比較例に係る溶射膜においては、膜厚のばらつきが大きく、均一成膜性は得られなかった。これは溶射材料の供給量のばらつきに起因するものである。また、各比較例の溶射膜においては、各実施例の溶射膜と比較して、膜厚が薄い部分が多く検出された。   On the other hand, in the sprayed film according to the comparative example in which the particle size of the secondary particles and the weight ratio thereof are not controlled, the film thickness varies greatly and the uniform film forming property cannot be obtained. This is due to variations in the amount of sprayed material supplied. Moreover, in the sprayed film of each comparative example, many parts with a thin film thickness were detected compared with the sprayed film of each Example.

次に実施例1〜5および比較例1において調製した各溶射用高融点金属粉末を使用して、膜厚200μm×縦5cm×横5cmの寸法の溶射膜を得たときの成膜時間を測定した。   Next, using each of the high melting point metal powders for thermal spraying prepared in Examples 1 to 5 and Comparative Example 1, the film formation time was measured when a thermal spray film having a thickness of 200 μm × length 5 cm × width 5 cm was obtained. did.

各成膜時間は、実施例1において調製した溶射用高融点金属粉末を使用した場合を基準値(100)として相対的な時間比を調査した。すなわち、時間比が100より大きい場合は、同一寸法(膜厚200μm×縦5cm×横5cm)の溶射膜を形成する場合に、実施例1よりも多くの溶射時間が必要になることを示すものである。その測定結果を下記表4に示す。   As for each film formation time, a relative time ratio was investigated with the case where the high melting point metal powder for thermal spraying prepared in Example 1 was used as a reference value (100). That is, when the time ratio is larger than 100, it indicates that more spraying time is required than in Example 1 when forming a sprayed film having the same dimensions (film thickness 200 μm × length 5 cm × width 5 cm). It is. The measurement results are shown in Table 4 below.

Figure 0005881605
Figure 0005881605

上記表4に示す結果から明らかなように、各実施例に係る溶射用高融点金属粉末を使用して形成された溶射被膜は、比較例1の溶射被膜と比較して、成膜速度が約30%も改善されていることが判明した。   As is apparent from the results shown in Table 4 above, the thermal spray coating formed using the high-melting point metal powder for thermal spraying according to each example has a film formation rate of about 1% compared with the thermal spray coating of Comparative Example 1. 30% improvement was found.

以上説明の通り、本発明に係る溶射用高融点金属粉末によれば、所定粒径範囲を有する2次粒子の重量割合を多く規定しているので、溶射ノズルに対する溶射用粉末の供給量を一定に制御することが可能であり、また制御管理が容易になるため、厚さが均一な高融点金属溶射膜を得ることができる。また、焼結操作を実施せず、1次粒子を簡単に接着した2次粒子を使用しているために、コストアップを防止することも可能になる。   As described above, according to the refractory metal powder for thermal spraying according to the present invention, since the weight ratio of secondary particles having a predetermined particle size range is specified in a large amount, the supply amount of the thermal spraying powder to the thermal spray nozzle is constant. In addition, since the control can be easily controlled, a high melting point metal sprayed film having a uniform thickness can be obtained. Further, since the secondary particles obtained by simply adhering the primary particles are used without performing the sintering operation, it is possible to prevent an increase in cost.

1…溶射用高融点金属粉末(1次粒子)
2…溶射用高融点金属(2次粒子)
L…溶射用高融点金属(2次粒子)の粒径
1 ... High melting point metal powder for thermal spraying (primary particles)
2 ... High melting point metal for thermal spraying (secondary particles)
L: Particle size of high melting point metal (secondary particles) for thermal spraying

Claims (8)

1次粒子の平均粒径が1〜10μmであり、この1次粒子が接着した2次粒子の平均粒径が20〜150μmであり、粒径が20〜150μmである2次粒子の割合が全体の70質量%以上であり、上記1次粒子はモリブデン粉末またはタングステン粉末のいずれか1種と、Ni、Co、Cr、希土類元素およびこれら元素の化合物の少なくとも1種以上の第二成分粉末を0.005〜30質量%の割合で混合されており、上記モリブデン粉末またはタングステン粉末の平均粒径よりも第二成分粉末の平均粒径の方が小さいことを特徴とする溶射用高融点金属粉末。 The average particle size of the primary particles is 1 to 10 μm, the average particle size of the secondary particles to which the primary particles are bonded is 20 to 150 μm, and the ratio of the secondary particles whose particle size is 20 to 150 μm is the whole. 70 mass% or more der is, the primary particles of any one of molybdenum powder or tungsten powder, Ni, Co, Cr, at least one kind of the second component powder of a compound of the rare earth elements and these elements Refractory metal powder for thermal spraying , which is mixed at a ratio of 0.005 to 30% by mass, and the average particle size of the second component powder is smaller than the average particle size of the molybdenum powder or tungsten powder . 前記粒径が20〜150μmである2次粒子の割合が90〜100質量%であることを特徴とする請求項1記載の溶射用高融点金属粉末。 2. The high melting point metal powder for thermal spraying according to claim 1, wherein a ratio of secondary particles having a particle diameter of 20 to 150 μm is 90 to 100 mass%. 前記2次粒子が、1次粒子を樹脂バインダーにより接着して調製されていることを特徴とする請求項1または請求項2のいずれか1項に記載の溶射用高融点金属粉末。 The high melting point metal powder for thermal spraying according to any one of claims 1 and 2, wherein the secondary particles are prepared by adhering primary particles with a resin binder. 前記1次粒子は純度が99.9質量%以上であるモリブデン粉末またはタングステン粉末のいずれか1種であることを特徴とする請求項1ないし請求項3のいずれか1項に記載の溶射用高融点金属粉末。 The high temperature for thermal spraying according to any one of claims 1 to 3, wherein the primary particles are any one of molybdenum powder and tungsten powder having a purity of 99.9% by mass or more. Melting point metal powder. 前記2次粒子のかさ密度が1〜5g/cmであることを特徴とする請求項1ないし請求項のいずれか1項に記載の溶射用高融点金属粉末。 The high melting point metal powder for thermal spraying according to any one of claims 1 to 4 , wherein a bulk density of the secondary particles is 1 to 5 g / cm 3 . 前記溶射用高融点金属粉末の流動性が50sec/50g以下であることを特徴とする請求項1ないし請求項のいずれか1項に記載の溶射用高融点金属粉末。 The high melting point metal powder for thermal spraying according to any one of claims 1 to 5 , wherein fluidity of the high melting point metal powder for thermal spraying is 50 sec / 50 g or less. 請求項1ないし請求項のいずかれ1項に記載の溶射用高融点金属粉末を溶射して基材上に形成されていることを特徴とする高融点金属溶射膜。 A refractory metal sprayed film formed on a substrate by spraying the refractory metal powder for thermal spraying according to any one of claims 1 to 6 . 請求項記載の高融点金属溶射膜を基材表面に具備したことを特徴とする溶射部品。 A thermal spray component comprising the refractory metal thermal spray film according to claim 7 on a substrate surface.
JP2012524543A 2010-07-12 2011-07-11 High melting point metal powder for thermal spraying, high melting point metal sprayed film using the same, and thermal sprayed parts Active JP5881605B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012524543A JP5881605B2 (en) 2010-07-12 2011-07-11 High melting point metal powder for thermal spraying, high melting point metal sprayed film using the same, and thermal sprayed parts

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010158127 2010-07-12
JP2010158127 2010-07-12
PCT/JP2011/065799 WO2012008413A1 (en) 2010-07-12 2011-07-11 Refractory metal powder for thermal spraying, and refractory metal thermally-sprayed film and thermally-sprayed components using same
JP2012524543A JP5881605B2 (en) 2010-07-12 2011-07-11 High melting point metal powder for thermal spraying, high melting point metal sprayed film using the same, and thermal sprayed parts

Publications (2)

Publication Number Publication Date
JPWO2012008413A1 JPWO2012008413A1 (en) 2013-09-09
JP5881605B2 true JP5881605B2 (en) 2016-03-09

Family

ID=45469411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012524543A Active JP5881605B2 (en) 2010-07-12 2011-07-11 High melting point metal powder for thermal spraying, high melting point metal sprayed film using the same, and thermal sprayed parts

Country Status (3)

Country Link
JP (1) JP5881605B2 (en)
CN (1) CN102985581B (en)
WO (1) WO2012008413A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103781934B (en) * 2011-10-20 2017-12-15 株式会社东芝 Spraying Mo powder and Mo coating films and Mo the spraying membrane element using it
CN103276339A (en) * 2013-05-20 2013-09-04 甘肃锐拓硬面材料有限公司 Nickel-base tungsten rare earth alloy powder for thermal spraying and preparation method thereof
KR101890507B1 (en) 2014-07-03 2018-08-21 플란제 에스이 Method for producing a layer
CA2956746C (en) * 2014-09-18 2022-03-01 Oerlikon Metco (Us) Inc. Pre-formulated powder feedstock

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58113369A (en) * 1981-12-28 1983-07-06 Showa Denko Kk Powder material for melt-spraying and its production
JPS63169371A (en) * 1986-12-29 1988-07-13 Toyota Motor Corp Formation of thermal spraying ceramic layer
JPH04231450A (en) * 1990-05-23 1992-08-20 Gte Prod Corp Improved method for processing spray coating nickel alloy and molybdenum powder
JP2009527640A (en) * 2006-02-17 2009-07-30 クライマックス エンジニアード マテリアルズ リミテッド ライアビリティ カンパニー High density molybdenum metal powder and method for producing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58113369A (en) * 1981-12-28 1983-07-06 Showa Denko Kk Powder material for melt-spraying and its production
JPS63169371A (en) * 1986-12-29 1988-07-13 Toyota Motor Corp Formation of thermal spraying ceramic layer
JPH04231450A (en) * 1990-05-23 1992-08-20 Gte Prod Corp Improved method for processing spray coating nickel alloy and molybdenum powder
JP2009527640A (en) * 2006-02-17 2009-07-30 クライマックス エンジニアード マテリアルズ リミテッド ライアビリティ カンパニー High density molybdenum metal powder and method for producing the same

Also Published As

Publication number Publication date
JPWO2012008413A1 (en) 2013-09-09
WO2012008413A1 (en) 2012-01-19
CN102985581B (en) 2016-08-24
CN102985581A (en) 2013-03-20

Similar Documents

Publication Publication Date Title
JP5788906B2 (en) Abrasive composition and method for producing the same
KR102048062B1 (en) Titanium powder, its products, and sintered products
CN105764634B (en) Using goal approach/material pair powder is suitable for, by being superimposed the method for manufacturing component with high energy beam melting or sintered powder grains
JP5881605B2 (en) High melting point metal powder for thermal spraying, high melting point metal sprayed film using the same, and thermal sprayed parts
CN104936727B (en) The method for preparing the dusty spray of nitrogen chromium
JP6254823B2 (en) Nickel silicide sputtering target and manufacturing method thereof
KR102432787B1 (en) ODS alloy powder, production method thereof by plasma treatment, and use thereof
WO2016004985A1 (en) Sinterable feedstock for use in 3d printing devices
US11946132B2 (en) Chalcogenide sputtering target and method of making the same
US20140287165A1 (en) Cladding composition with flux particles
Tarasi et al. Enhancement of amorphous phase formation in alumina–YSZ coatings deposited by suspension plasma spray process
US10576543B2 (en) Alloying metal materials together during additive manufacturing or one or more parts
US10913129B2 (en) Additive manufacturing an object from material with a selective diffusion barrier
JP5890843B2 (en) Mo powder for thermal spraying, Mo sprayed film using the same, and Mo sprayed film parts
JP2012112012A (en) Powder for hvaf thermal spraying, and method for forming thermal-sprayed film
JP2006176818A (en) Powder for thermal spraying
JPWO2019123989A1 (en) Powder material, powder material for additional manufacturing, and method of manufacturing powder material
JP2011184713A (en) Functionally gradient material in which compound particle is gradient-dispersed
JP2004002938A (en) Target material for sputtering or ion plating and method of producing the same
JP2006118013A (en) Powder for thermal spraying, thermal spraying method and thermally sprayed coating
TWI546414B (en) Porcelain gold coating
JP2012167301A (en) Thermal spraying powder and method for producing thermal spraying powder
Wenzelburger et al. Advances in Thermal Spray Deposition of Billets for Particle Reinforced Light Metals
JPS63297529A (en) Production of composite material
JP2009221588A (en) Sputtering target for phase change film formation with less particle generation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160202

R150 Certificate of patent or registration of utility model

Ref document number: 5881605

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150