JP5875311B2 - Conductive particles and uses thereof - Google Patents

Conductive particles and uses thereof Download PDF

Info

Publication number
JP5875311B2
JP5875311B2 JP2011216217A JP2011216217A JP5875311B2 JP 5875311 B2 JP5875311 B2 JP 5875311B2 JP 2011216217 A JP2011216217 A JP 2011216217A JP 2011216217 A JP2011216217 A JP 2011216217A JP 5875311 B2 JP5875311 B2 JP 5875311B2
Authority
JP
Japan
Prior art keywords
resin
particles
carbon nanofibers
conductive layer
dispersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011216217A
Other languages
Japanese (ja)
Other versions
JP2013077427A (en
Inventor
萩原 正弘
正弘 萩原
修 坂谷
修 坂谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Mitsubishi Materials Electronic Chemicals Co Ltd
Original Assignee
Mitsubishi Materials Corp
Jemco Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp, Jemco Inc filed Critical Mitsubishi Materials Corp
Priority to JP2011216217A priority Critical patent/JP5875311B2/en
Priority to PCT/JP2012/075196 priority patent/WO2013047809A1/en
Publication of JP2013077427A publication Critical patent/JP2013077427A/en
Application granted granted Critical
Publication of JP5875311B2 publication Critical patent/JP5875311B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • C09D7/62Additives non-macromolecular inorganic modified by treatment with other compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/70Additives characterised by shape, e.g. fibres, flakes or microspheres
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/02Apparatus for electrographic processes using a charge pattern for laying down a uniform charge, e.g. for sensitising; Corona discharge devices
    • G03G15/0208Apparatus for electrographic processes using a charge pattern for laying down a uniform charge, e.g. for sensitising; Corona discharge devices by contact, friction or induction, e.g. liquid charging apparatus
    • G03G15/0216Apparatus for electrographic processes using a charge pattern for laying down a uniform charge, e.g. for sensitising; Corona discharge devices by contact, friction or induction, e.g. liquid charging apparatus by bringing a charging member into contact with the member to be charged, e.g. roller, brush chargers
    • G03G15/0233Structure, details of the charging member, e.g. chemical composition, surface properties
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/06Apparatus for electrographic processes using a charge pattern for developing
    • G03G15/08Apparatus for electrographic processes using a charge pattern for developing using a solid developer, e.g. powder developer
    • G03G15/0806Apparatus for electrographic processes using a charge pattern for developing using a solid developer, e.g. powder developer on a donor element, e.g. belt, roller
    • G03G15/0818Apparatus for electrographic processes using a charge pattern for developing using a solid developer, e.g. powder developer on a donor element, e.g. belt, roller characterised by the structure of the donor member, e.g. surface properties
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/14Apparatus for electrographic processes using a charge pattern for transferring a pattern to a second base
    • G03G15/16Apparatus for electrographic processes using a charge pattern for transferring a pattern to a second base of a toner pattern, e.g. a powder pattern, e.g. magnetic transfer
    • G03G15/1605Apparatus for electrographic processes using a charge pattern for transferring a pattern to a second base of a toner pattern, e.g. a powder pattern, e.g. magnetic transfer using at least one intermediate support
    • G03G15/162Apparatus for electrographic processes using a charge pattern for transferring a pattern to a second base of a toner pattern, e.g. a powder pattern, e.g. magnetic transfer using at least one intermediate support details of the the intermediate support, e.g. chemical composition
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G21/00Arrangements not provided for by groups G03G13/00 - G03G19/00, e.g. cleaning, elimination of residual charge
    • G03G21/0005Arrangements not provided for by groups G03G13/00 - G03G19/00, e.g. cleaning, elimination of residual charge for removing solid developer or debris from the electrographic recording medium
    • G03G21/0011Arrangements not provided for by groups G03G13/00 - G03G19/00, e.g. cleaning, elimination of residual charge for removing solid developer or debris from the electrographic recording medium using a blade; Details of cleaning blades, e.g. blade shape, layer forming
    • G03G21/0017Details relating to the internal structure or chemical composition of the blades
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/24Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/10Encapsulated ingredients

Description

本発明は、電子機器部材などの導電層形成材として好適な導電性粒子に関し、より詳しくは、安定で優れた導電性を有し、電子機器部材について高品質の導電層を形成することができる導電性粒子とその製造方法および用途に関する。
The present invention relates to conductive particles suitable as a conductive layer forming material for electronic device members, and more specifically, has stable and excellent conductivity, and can form a high-quality conductive layer for electronic device members. The present invention relates to conductive particles, a method for producing the same, and applications.

電子写真分野における電気抵抗の制御方法として、カーボンブラック等の電子導電剤や第四級アンモニウム塩等のイオン導電剤をマトリックスポリマー中に分散することが知られており、近年では導電材料としてカーボンナノチューブを用いた電気抵抗の制御方法が提案されている。 As a method for controlling electric resistance in the field of electrophotography, it is known to disperse an electron conductive agent such as carbon black and an ionic conductive agent such as a quaternary ammonium salt in a matrix polymer. There has been proposed a method of controlling electrical resistance using the.

しかし、従来は電子写真方式の複写機、プリンター、ファクシミリ等の画像形成装置において、カーボンナノチューブの分散性が劣り、電気抵抗のばらつきが大きいという問題があった。これらの問題を解決するために、特許第4196780号公報(特許文献1)には、固形ポリマーが溶解可能な溶媒中にカーボンナノチューブを予備分散させることによってカーボンナノチューブの凝集物(塊)をほぐした後、固形ポリマーを加えてカーボンナノチューブと混練することによって、固形ポリマー中でのカーボンナノチューブの分散性に優れ、電気抵抗のばらつきが小さい電子写真機器用導電性組成物を調製できることが記載されている。しかし、この組成物は電気抵抗のばらつきが0.7〜0.8桁ほどであるため高精度化できないなどの問題がある。 However, conventionally, image forming apparatuses such as electrophotographic copying machines, printers, facsimiles, and the like have a problem in that the dispersibility of carbon nanotubes is inferior and electric resistance varies greatly. In order to solve these problems, in Japanese Patent No. 4196780 (Patent Document 1), carbon nanotube aggregates (lumps) are loosened by pre-dispersing the carbon nanotubes in a solvent capable of dissolving the solid polymer. After that, it is described that a conductive composition for an electrophotographic apparatus can be prepared by adding a solid polymer and kneading with carbon nanotubes so that the dispersibility of carbon nanotubes in the solid polymer is small and variation in electric resistance is small. . However, since this composition has a variation in electric resistance of about 0.7 to 0.8 digits, there is a problem that high accuracy cannot be achieved.

特許4196780号公報Japanese Patent No. 4196780

本発明は、従来の上記問題を解決したものであり、安定で優れた導電性を有し、電子機器部材について高品質の導電層を形成することができる導電性粒子とその製造方法および用途を提供する。
The present invention solves the above-mentioned conventional problems, and provides conductive particles having stable and excellent conductivity and capable of forming a high-quality conductive layer for an electronic device member, a method for producing the same, and uses thereof. provide.

本発明によれば、以下の構成によって上記課題を解決した導電性粒子とその製造方法が提供される。
〔1〕樹脂粒子100質量部に対して5〜30質量部のカーボンナノファイバーによって樹脂粒子表面が網目状に被覆されることによって導電層が形成されており、該カーボンナノファイバーの酸素含有量が8〜20wt%であることを特徴とする導電性粒子。
〔2〕カーボンナノファイバー含有量5〜10wt%のエタノール分散液における石英セルを含むヘーズ値が0.3〜0.6%である分散性を有するカーボンナノファイバーによって導電層が形成されている上記[1]に記載する導電性粒子。
〔3〕カーボンナノファイバーの平均繊維径が1nm〜100nmであってアスペクト比が5以上である上記[1]または上記[2]に記載する導電性粒子。
〔4〕樹脂粒子が、アクリル樹脂、ポリブタジエン樹脂、ポリスチレン樹脂、ポリエチレン、ポリプロピレン、又はこれらの共重合体、ベンゾグアナミン樹脂、フェノール樹脂、ポリアミド樹脂、フッ素系樹脂、シリコーン樹脂、エポキシ系樹脂、ポリエステル樹脂からなる群より選ばれた少なくとも1種の球状粒子である上記[1]〜上記[3]の何れかに記載された導電性粒子。
〔5〕硝酸濃度が10〜30wt%の硝酸と硫酸の混酸中にカーボンナノファイバーを浸漬し、100℃〜200℃の温度下で表面を酸化処理することによって酸素含有量を8〜20wt%に制御したカーボンナノファイバーを用い、該カーボンナノファイバーを溶媒に分散させ、この分散液に樹脂粒子を結着剤と共に加えて撹拌することによって、上記樹脂粒子の表面に上記カーボンナノファイバーが均一に網目状に付着した導電性粒子を調製する導電性粒子の製造方法。
According to this invention, the electroconductive particle which solved the said subject with the following structures, and its manufacturing method are provided.
[1] The conductive layer is formed by coating the surface of the resin particles with 5 to 30 parts by mass of carbon nanofibers with respect to 100 parts by mass of the resin particles , and the oxygen content of the carbon nanofibers is Conductive particles characterized by being 8 to 20 wt% .
[2] The conductive layer is formed of carbon nanofibers having dispersibility in which an haze value including a quartz cell in an ethanol dispersion having a carbon nanofiber content of 5 to 10 wt% is 0.3 to 0.6%. The electroconductive particle as described in [1].
[3] The conductive particles according to [1] or [2] above, wherein the carbon nanofibers have an average fiber diameter of 1 nm to 100 nm and an aspect ratio of 5 or more.
[4] The resin particles are acrylic resin, polybutadiene resin, polystyrene resin, polyethylene, polypropylene, or a copolymer thereof, benzoguanamine resin, phenol resin, polyamide resin, fluorine resin, silicone resin, epoxy resin, polyester resin. The conductive particles according to any one of [1] to [3] above, which are at least one kind of spherical particles selected from the group consisting of:
[5] Carbon nanofibers are immersed in a mixed acid of nitric acid and sulfuric acid having a nitric acid concentration of 10 to 30 wt%, and the oxygen content is adjusted to 8 to 20 wt% by oxidizing the surface at a temperature of 100 ° C to 200 ° C. Using the controlled carbon nanofibers, the carbon nanofibers are dispersed in a solvent, and the resin particles are added to the dispersion together with a binder, followed by stirring, whereby the carbon nanofibers are uniformly distributed on the surface of the resin particles. The manufacturing method of the electroconductive particle which prepares the electroconductive particle adhering to the shape.

さらに、本発明によれば、上記導電性粒子を用いた以下の用途が提供される。
〔6〕上記[1]〜上記[4]の何れかに記載する導電性粒子が極性溶媒および水から選ばれた一種以上の分散媒に分散している導電層形成用分散液。
〔7〕上記[6]に記載する導電層形成用分散液に結着剤を添加した導電層形成用塗料。
〔8〕上記[6]に記載する分散液または上記[7]に記載する塗料によって形成された導電層を有する電子機器用部材。
〔9〕上記[1]〜上記[4]の何れかに記載する導電性粒子を含む電子写真機器用現像剤担持体。
〔10〕上記[8]に記載する部材が現像ロール、帯電ロール、転写ロール、除電ロール、クリーニングロール、現像ブレード、帯電ブレード、クリーニングブレード、または転写ベルトである電子写真機器用部材。
Furthermore, according to this invention, the following uses using the said electroconductive particle are provided.
[6] A dispersion for forming a conductive layer in which the conductive particles according to any one of [1] to [4] are dispersed in one or more dispersion media selected from a polar solvent and water.
[7] A paint for forming a conductive layer obtained by adding a binder to the dispersion for forming a conductive layer described in [6].
[8] An electronic device member having a conductive layer formed of the dispersion liquid described in [6] above or the paint described in [7] above.
[9] A developer carrying member for an electrophotographic apparatus, comprising the conductive particles according to any one of [1] to [4].
[10] A member for an electrophotographic apparatus, wherein the member described in [8] is a developing roll, a charging roll, a transfer roll, a static elimination roll, a cleaning roll, a developing blade, a charging blade, a cleaning blade, or a transfer belt.

本発明の導電性粒子は、カーボンナノファイバーによって粒子表面が網目状に被覆されているので粒子表面に導電層が均一に形成されており、優れた導電性を有する導電層を形成することができる。 In the conductive particles of the present invention, since the particle surface is coated in a mesh shape with carbon nanofibers, the conductive layer is uniformly formed on the particle surface, and a conductive layer having excellent conductivity can be formed. .

本発明の導電性粒子に用いられるカーボンナノファイバーは表面の酸化処理によって親水性を有するので水などの極性溶媒に分散させたときに分散性が良く、また酸化処理による酸素含有量を8〜20wt%に制御したので高い導電性を維持しており、安定で優れた導電性を有する導電層を形成することができる。 Since the carbon nanofibers used for the conductive particles of the present invention have hydrophilicity due to the surface oxidation treatment, the carbon nanofibers have good dispersibility when dispersed in a polar solvent such as water, and the oxygen content by the oxidation treatment is 8 to 20 wt. %, The high conductivity is maintained, and a conductive layer having a stable and excellent conductivity can be formed.

従って、本発明の導電性粒子が分散した分散液ないし塗料によって導電層を形成することによって、電気抵抗のばらつきが非常に少ない電子機器用部材を得ることができる。 Therefore, by forming the conductive layer from the dispersion liquid or the coating material in which the conductive particles of the present invention are dispersed, it is possible to obtain an electronic device member with very little variation in electrical resistance.

例えば、本発明の導電性粒子を用いて導電層を形成した電子写真機器用の現像剤担持体によれば、高品質の画像を得ることができる。また、本発明の導電性粒子は現像ロール、帯電ロール、転写ロール、除電ロール、クリーニングロール、現像ブレード、帯電ブレード、クリーニングブレード、または転写ベルトなどの電子写真機器用部材について、導電層形成材として好適であり、本発明の導電性粒子を用いることによって、高品質の電子機器用部材を得ることができる。 For example, according to the developer carrier for an electrophotographic apparatus in which a conductive layer is formed using the conductive particles of the present invention, a high quality image can be obtained. The conductive particles of the present invention can be used as a conductive layer forming material for members for electrophotographic equipment such as a developing roll, a charging roll, a transfer roll, a static elimination roll, a cleaning roll, a developing blade, a charging blade, a cleaning blade, or a transfer belt. By using the conductive particles of the present invention, a high-quality electronic device member can be obtained.

以下、本発明を実施形態に基づいて具体的に説明する。
本発明の導電性粒子は、樹脂粒子100質量部に対して5〜30質量部のカーボンナノファイバーによって樹脂粒子表面が網目状に被覆されることによって導電層が形成されており、該カーボンナノファイバーの酸素含有量が8〜20wt%であることを特徴とする導電性粒子である。
Hereinafter, the present invention will be specifically described based on embodiments.
In the conductive particles of the present invention, the conductive layer is formed by coating the surface of the resin particles with 5 to 30 parts by mass of carbon nanofibers with respect to 100 parts by mass of the resin particles , and the carbon nanofibers are formed. The conductive particles are characterized by having an oxygen content of 8 to 20 wt% .

導電性粒子のカーボンナノファイバーの含有量は、樹脂粒子100質量部に対して5〜30質量部が適当であり、8〜25質量部が好ましい。この含有量が5質量部より少ないと導電性を高める効果が乏しく、30質量部より多いとカーボンナノファイバーの密着性が劣るようになるので好ましくない。 5-30 mass parts is suitable with respect to 100 mass parts of resin particles, and, as for content of the carbon nanofiber of electroconductive particle, 8-25 mass parts is preferable. When the content is less than 5 parts by mass, the effect of increasing the conductivity is poor, and when the content is more than 30 parts by mass, the adhesion of the carbon nanofibers is inferior.

樹脂粒子表面の導電層を形成するカーボンナノファイバーは、ファイバー表面が酸化処理されており、該酸化処理による酸素含有量が8〜20wt%に制御されているものが好ましい。ファイバー表面が酸化処理されることによって親水性を有し、かつ酸素含有量が8〜20wt%に制御されていることによって高い導電性を維持することができる。酸素含有量が8wt%より少ないと親水性が十分ではなく、極性溶媒に分散させたときに分散性に劣りヘーズが高くなる。一方、酸素含有量が20wt%より多いと、導電性が低下する傾向がある。 The carbon nanofibers that form the conductive layer on the resin particle surface are preferably those in which the fiber surface is oxidized and the oxygen content by the oxidation treatment is controlled to 8 to 20 wt%. The fiber surface is hydrophilic by being oxidized and high conductivity can be maintained by controlling the oxygen content to 8 to 20 wt%. When the oxygen content is less than 8 wt%, the hydrophilicity is not sufficient, and when dispersed in a polar solvent, the dispersibility is poor and the haze is increased. On the other hand, when the oxygen content is more than 20 wt%, the conductivity tends to decrease.

カーボンナノファイバーの表面酸化処理において、酸素含有量を8〜20wt%に制御した酸化処理を行うには、例えば、硝酸濃度が10〜30wt%の硝酸と硫酸の混酸を用い、100℃以上で表面処理すればよい。 In the surface oxidation treatment of carbon nanofibers, in order to perform the oxidation treatment with the oxygen content controlled to 8 to 20 wt%, for example, a mixed acid of nitric acid and sulfuric acid having a nitric acid concentration of 10 to 30 wt% is used. What to do

硝酸と硫酸の混酸において、硝酸の濃度比が30wt%より高いと酸化処理が過度になり、カーボンナノファイバーの酸素含有量が20wt%を超えるようになる。一方、硝酸の濃度比が10wt%より低いと酸化処理が不十分になり、カーボンナノファイバーの酸素含有量は8wt%より少なくなる。 In the mixed acid of nitric acid and sulfuric acid, if the concentration ratio of nitric acid is higher than 30 wt%, the oxidation treatment becomes excessive, and the oxygen content of the carbon nanofiber exceeds 20 wt%. On the other hand, if the concentration ratio of nitric acid is lower than 10 wt%, the oxidation treatment becomes insufficient, and the oxygen content of the carbon nanofibers becomes lower than 8 wt%.

酸化処理は、硝酸と硫酸の混酸中にカーボンナノファイバーを浸漬し、100℃以上の温度下で反応させればよい。液温は100℃〜200℃が良く、100℃〜160℃がより好ましい。100℃未満の液温では酸化が不十分になり親水性が低くなるので、樹脂粒子表面に網目状に被覆させたときに被覆の均一性および密着性が劣る。一方、液温が200℃を超えると酸化処理が過度になる。 The oxidation treatment may be performed by immersing the carbon nanofibers in a mixed acid of nitric acid and sulfuric acid and reacting at a temperature of 100 ° C. or higher. The liquid temperature is preferably from 100 ° C to 200 ° C, more preferably from 100 ° C to 160 ° C. When the liquid temperature is less than 100 ° C., the oxidation becomes insufficient and the hydrophilicity becomes low. Therefore, when the resin particle surface is coated in a mesh shape, the coating uniformity and adhesion are inferior. On the other hand, when the liquid temperature exceeds 200 ° C., the oxidation treatment becomes excessive.

上記酸化処理において、硝酸と硫酸の混酸とカーボンナノファイバーとの量比は、カーボンナノファイバー1重量部に対して混酸1〜100重量部の範囲が適当である。 In the above oxidation treatment, the amount ratio of the mixed acid of nitric acid and sulfuric acid and the carbon nanofiber is suitably in the range of 1 to 100 parts by weight of the mixed acid with respect to 1 part by weight of the carbon nanofiber.

混酸の硝酸濃度比および処理条件を上記のように調整した酸化処理を行うことによって、カーボンナノファイバー表面にカルボキシル基などが導入され、酸素含有量を8〜20wt%に制御したカーボンナノファイバーを得ることができる。この酸素は、XPS分析するとC−O結合のピーク定量値が2〜5%であり、C−O結合を有する基によって導入されている。このカーボンナノファイバーは適度な親水性を有し、アルコールなどの極性溶媒に分散させたときに分散性に優れた分散液が得られる。 By performing the oxidation treatment in which the nitric acid concentration ratio of the mixed acid and the treatment conditions are adjusted as described above, a carbon nanofiber in which a carboxyl group or the like is introduced to the surface of the carbon nanofiber and the oxygen content is controlled to 8 to 20 wt% is obtained. be able to. This oxygen has a peak quantitative value of C—O bond of 2 to 5% according to XPS analysis and is introduced by a group having a C—O bond. This carbon nanofiber has moderate hydrophilicity, and a dispersion having excellent dispersibility can be obtained when dispersed in a polar solvent such as alcohol.

本発明の導電性粒子に用いるカーボンナノファイバーは、繊維径1〜100nm、アスペクト比5以上で、X線回折測定によるグラファイト層の[002]面の間隔が0.35nm以下であるものが好ましい。繊維径とアスペクト比が上記範囲のカーボンナノファイバーは、溶媒に分散させたときに相互に十分な接触点を形成することができるので、高い導電性を有する導電性塗膜を得ることができる。また、X線回折測定によるグラファイト層の[002]面の積層間隔が上記範囲内であるカーボンナノファイバーは結晶性が高いため、電気抵抗が小さく、従って高導電性の材料を得ることができる。さらに、カーボンナノファイバーの圧密体の体積抵抗値が1.0Ω・cm以下であると、良好な導電性を発揮することができる。 The carbon nanofibers used for the conductive particles of the present invention preferably have a fiber diameter of 1 to 100 nm, an aspect ratio of 5 or more, and a [002] plane interval of the graphite layer by X-ray diffraction measurement of 0.35 nm or less. Since carbon nanofibers having a fiber diameter and an aspect ratio in the above range can form sufficient contact points when dispersed in a solvent, a conductive coating film having high conductivity can be obtained. In addition, carbon nanofibers having a [002] plane interval of the graphite layer within the above range by X-ray diffraction measurement have high crystallinity, and therefore have low electrical resistance, and thus a highly conductive material can be obtained. Furthermore, when the volume resistance value of the compacted carbon nanofiber is 1.0 Ω · cm or less, good conductivity can be exhibited.

上記カーボンナノファイバーは、一酸化炭素を主な原料ガスとした気相成長法によって製造することができる。この気相成長法によって製造されたカーボンナノファイバーは、トルエン着色透過率が概ね95%以上であり、分散性の観点から好ましい。 The carbon nanofiber can be produced by a vapor phase growth method using carbon monoxide as a main raw material gas. Carbon nanofibers produced by this vapor phase growth method have a toluene coloring transmittance of approximately 95% or more, which is preferable from the viewpoint of dispersibility.

酸化処理したカーボンナノファイバーを溶媒に分散させ、この分散液に樹脂粒子を結着剤と共に加えて攪拌することによって、樹脂粒子の表面にカーボンナノファイバーが均一に網目状に付着した導電性粒子スラリーを調製することができる。 Conductive particle slurry in which carbon nanofibers are uniformly attached to the surface of the resin particles by dispersing the oxidized carbon nanofibers in a solvent, and adding the resin particles to the dispersion together with a binder and stirring. Can be prepared.

本発明の導電性粒子に用いる樹脂粒子は、例えば、アクリル樹脂、ポリブタジエン樹脂、ポリスチレン樹脂、ポリエチレン、ポリプロピレン、又はこれらの共重合体、ベンゾグアナミン樹脂、フェノール樹脂、ポリアミド樹脂フッ素系樹脂、シリコーン樹脂、エポキシ系樹脂、ポリエステル樹脂からなる群より選ばれた少なくとも1種の樹脂からなる粒子を用いることができる。さらに、上記樹脂粒子は球状粒子が好ましい。 Resin particles used for the conductive particles of the present invention include, for example, acrylic resin, polybutadiene resin, polystyrene resin, polyethylene, polypropylene , or a copolymer thereof, benzoguanamine resin, phenol resin, polyamide resin , fluorine resin, silicone resin, Particles made of at least one resin selected from the group consisting of epoxy resins and polyester resins can be used. Furthermore, the resin particles are preferably spherical particles.

本発明は、上記導電性粒子を溶剤(分散媒)に分散させた導電層形成用の分散液を含む。分散媒としては極性溶媒が好ましく、例えばN-メチルピロリドン、ジメチルアセトアミド、ジメチルホルムアミド、水などを用いることができる。 The present invention includes a dispersion for forming a conductive layer in which the conductive particles are dispersed in a solvent (dispersion medium). The dispersion medium is preferably a polar solvent, and for example, N-methylpyrrolidone, dimethylacetamide, dimethylformamide, water and the like can be used.

さらに、本発明は上記分散液に結着剤を添加してなる塗料を含む。また、本発明の導電性粒子を含む組成物は、電子機器用部材に必要な物質を添加した塗料、スラリー、ペーストなどの形態で利用することができる。 Furthermore, the present invention includes a paint obtained by adding a binder to the dispersion. Moreover, the composition containing the electroconductive particle of this invention can be utilized with forms, such as a coating material, a slurry, and a paste which added the substance required for the member for electronic devices.

本発明の導電性粒子を含む分散液、または塗料によって、各種の電子機器用部材について導電性に優れた導電層を形成することができる。 A conductive layer excellent in conductivity can be formed for various electronic device members by using the dispersion liquid or the paint containing the conductive particles of the present invention.

例えば、電子写真機器用の部材ないし材料として、本発明の導電性粒子を用いることによって高品質の現像剤担持体を得ることができる。また、本発明の導電性粒子を用いることによって、現像ロール、帯電ロール、転写ロール、除電ロール、クリーニングロール、現像ブレード、帯電ブレード、クリーニングブレード、または転写ベルトについて高品質の電子写真機器用部材を得ることができる。 For example, a high-quality developer carrier can be obtained by using the conductive particles of the present invention as a member or material for an electrophotographic apparatus. Further, by using the conductive particles of the present invention, a high-quality electrophotographic apparatus member can be obtained for a developing roll, a charging roll, a transfer roll, a static elimination roll, a cleaning roll, a developing blade, a charging blade, a cleaning blade, or a transfer belt. Can be obtained.

本発明の実施例を比較例と共に以下に示す。なお、本発明の範囲は以下の実施例に限定されない。
〔実施例1:酸化処理〕
市販のカーボンナノファイバー(CNFと略記する。三菱マテリアル社製品、繊維径20nm、アスペクト比5以上)を用い、市販の濃硝酸(濃度60wt%)および濃硫酸(濃度95wt%)を用い、表1に示す条件にて表面酸化処理を行い、酸素含有量を制御した表面処理CNFを得た。酸化処理の結果を表1に示す。酸素含有量は不活性ガス搬送融解赤外線吸収法によって測定した。
Examples of the present invention are shown below together with comparative examples. The scope of the present invention is not limited to the following examples.
[Example 1: Oxidation treatment]
Using commercially available carbon nanofibers (abbreviated as CNF; manufactured by Mitsubishi Materials Corporation, fiber diameter 20 nm, aspect ratio 5 or more), commercially available concentrated nitric acid (concentration 60 wt%) and concentrated sulfuric acid (concentration 95 wt%), Table 1 Surface oxidation treatment was performed under the conditions shown in Table 1 to obtain surface-treated CNF with controlled oxygen content. The results of the oxidation treatment are shown in Table 1. The oxygen content was measured by an inert gas carrier melting infrared absorption method.

Figure 0005875311
Figure 0005875311

〔実施例2:分散液、塗料組成物〕
表1のCNFを乾燥して粉末化し、その粉末をエタノールに混合し、ビーズミルを使用してエタノール分散液を調製した。分散液のCNF含有量を表2に示す。
この分散液に乾燥塗膜固形分中のCNF含有量が4.5wt%になるようにアクリル樹脂溶液を混合して塗料組成物を調製した。この塗料組成物を、バーコーターを用いて、厚さ100μmのポリエステルフィルムの表面に、塗工量0.25g/m2になるように塗布し、80℃で3分間乾燥して塗膜を作製した。
[Example 2: Dispersion, coating composition]
The CNF in Table 1 was dried and powdered, the powder was mixed with ethanol, and an ethanol dispersion was prepared using a bead mill. Table 2 shows the CNF content of the dispersion.
An acrylic resin solution was mixed with this dispersion so that the CNF content in the dry coating film solids was 4.5 wt% to prepare a coating composition. This coating composition was applied to the surface of a 100 μm thick polyester film using a bar coater so that the coating amount was 0.25 g / m 2 and dried at 80 ° C. for 3 minutes to produce a coating film. did.

このCNF分散液のヘーズ、塗膜の表面抵抗率、および塗膜のヘーズ(%)を測定した。これらのヘーズはスガ試験機製ヘーズメーターを用いて測定した。分散液のヘーズ値は、CNF濃度が40ppmになるように分散媒を用いて希釈し、この希釈液を光路長3mmの石英セルに入れ、石英セルのヘーズ(0.3%)を含んで測定した。塗膜のヘーズは、ベースフィルムであるポリエステルフィルムのヘーズ(1.8%)を含んで測定した。塗膜の表面抵抗率(Ω/□)は三菱化学製ハイレスタUPを用いて二重リング電極法にて測定した。これらの結果を表2に示す。 The haze of the CNF dispersion, the surface resistivity of the coating film, and the haze (%) of the coating film were measured. These hazes were measured using a Suga Test Instruments haze meter. The haze value of the dispersion is diluted with a dispersion medium so that the CNF concentration is 40 ppm, and this diluted solution is put into a quartz cell having an optical path length of 3 mm, and includes the haze (0.3%) of the quartz cell. did. The haze of the coating film was measured including the haze (1.8%) of the polyester film as the base film. The surface resistivity (Ω / □) of the coating film was measured by a double ring electrode method using Hiresta UP manufactured by Mitsubishi Chemical. These results are shown in Table 2.

Figure 0005875311
Figure 0005875311

表2に示すように、酸素含有量が10wt%より少ないB1のCNFは溶媒での分散性が悪い。一方、酸素含有量が20wt%より多いB2のCNFは溶媒での分散性はよいが、塗膜の表面抵抗が高くなる。一方、A1〜A6のCNF(酸素含有量8〜20wt%)はCNF濃度40ppmに希釈した分散液のヘーズは0.6以下であり、またCNF含有量4.5wt%の塗膜のヘーズは2.2以下であって、CNFの分散性が良く、また表面抵抗(Ω/□)は5.6×106以下であり、高い導電性を有している。 As shown in Table 2, B1 CNF having an oxygen content of less than 10 wt% has poor dispersibility in a solvent. On the other hand, B2 CNF having an oxygen content of more than 20 wt% has good dispersibility in a solvent, but the surface resistance of the coating film becomes high. On the other hand, CNFs of A1 to A6 (oxygen content 8 to 20 wt%) have a haze of a dispersion diluted to a CNF concentration of 40 ppm of 0.6 or less, and a coating film having a CNF content of 4.5 wt% has a haze of 2 The dispersibility of CNF is good, and the surface resistance (Ω / □) is 5.6 × 10 6 or less, and it has high conductivity.

〔実施例3:導電性部材の製造〕
表1に示すCNFを乾燥し、ビーズミルを使用して粉末にし、このCNF粉末が5wt%濃度のN−メチルピロリドン分散液を調製した。
ポリアミド樹脂粒子を樹脂粒子とし、この樹脂粒子100質量部に対してCNFを表3に示す質量部となるように、上記N−メチルピロリドン分散液に上記樹脂粒子を添加し、混合攪拌して樹脂粒子表面に網目状被覆導電層を形成した。この組成物に塗料用マトリックスポリマーとしてポリアミドイミドを樹脂成分100部に対してCNFが0.5部となるように加えて導電層形成用塗料を調製し、この塗料を用いて単層構造の転写ベルト(厚み0.2mm)を作製した。電気特性の評価結果を表3に示す。電気抵抗はJIS K 6911に準じて電圧10Vの抵抗を10点測定し、その平均を電気抵抗平均値とし、10点のばらつきを桁で示した。
[Example 3: Production of conductive member]
The CNF shown in Table 1 was dried and powdered using a bead mill, and an N-methylpyrrolidone dispersion having a CWT powder concentration of 5 wt% was prepared.
Polyamide resin particles are used as resin particles, and the resin particles are added to the N-methylpyrrolidone dispersion so that the CNF is 100 parts by mass with respect to 100 parts by mass of the resin particles. A mesh-like coated conductive layer was formed on the particle surface. Polyamideimide as a matrix polymer for coating is added to this composition so that CNF is 0.5 part with respect to 100 parts of resin component, and a coating for forming a conductive layer is prepared. A belt (thickness 0.2 mm) was produced. Table 3 shows the evaluation results of the electrical characteristics. The electrical resistance was measured at 10 points according to JIS K 6911 at a voltage of 10V, and the average was taken as the electrical resistance average value.

表3に示すように、本発明の実施例に係る試料(A1〜A6)は何れも優れた導電性を有し、電気抵抗のばらつきが0.5桁以下と小さいため、電子写真機器に適用した場合に高精度化が可能である。
一方、比較例C1はCNF量が少なく、また比較例C2はCNF量が過剰であるため、何れも電気抵抗および電気抵抗のばらつきが何れも大きい。比較例C3は表面処理が不十分なCNFを用いているので電気抵抗および電気抵抗のばらつきが何れも大きい。
As shown in Table 3, the samples (A1 to A6) according to the examples of the present invention all have excellent electrical conductivity, and the variation in electric resistance is as small as 0.5 digits or less, so that they are applied to electrophotographic equipment. In this case, high accuracy can be achieved.
On the other hand, Comparative Example C1 has a small amount of CNF, and Comparative Example C2 has an excessive amount of CNF. Since Comparative Example C3 uses CNF with insufficient surface treatment, both the electrical resistance and the variation in electrical resistance are large.

Figure 0005875311
Figure 0005875311

Claims (10)

樹脂粒子100質量部に対して5〜30質量部のカーボンナノファイバーによって樹脂粒子表面が網目状に被覆されることによって導電層が形成されており、該カーボンナノファイバーの酸素含有量が8〜20wt%であることを特徴とする導電性粒子。 A conductive layer is formed by coating the surface of the resin particles with 5 to 30 parts by mass of carbon nanofibers with respect to 100 parts by mass of the resin particles , and the oxygen content of the carbon nanofibers is 8 to 20 wt%. % Of conductive particles. カーボンナノファイバー含有量5〜10wt%のエタノール分散液における石英セルを含むヘーズ値が0.3〜0.6%である分散性を有するカーボンナノファイバーによって導電層が形成されている請求項1に記載する導電性粒子。The conductive layer is formed of carbon nanofibers having dispersibility in which a haze value including a quartz cell in an ethanol dispersion having a carbon nanofiber content of 5 to 10 wt% is 0.3 to 0.6%. Conductive particles to be described. カーボンナノファイバーの平均繊維径が1nm〜100nmであってアスペクト比が5以上である請求項1または請求項2に記載する導電性粒子。 The conductive particles according to claim 1 or 2, wherein the carbon nanofibers have an average fiber diameter of 1 nm to 100 nm and an aspect ratio of 5 or more. 樹脂粒子が、アクリル樹脂、ポリブタジエン樹脂、ポリスチレン樹脂、ポリエチレン、ポリプロピレン、又はこれらの共重合体、ベンゾグアナミン樹脂、フェノール樹脂、ポリアミド樹脂、フッ素系樹脂、シリコーン樹脂、エポキシ系樹脂、ポリエステル樹脂からなる群より選ばれた少なくとも1種の球状粒子である請求項1〜請求項3の何れかに記載された導電性粒子。 The resin particles are selected from the group consisting of acrylic resin, polybutadiene resin, polystyrene resin, polyethylene, polypropylene, or a copolymer thereof, benzoguanamine resin, phenol resin, polyamide resin, fluorine resin, silicone resin, epoxy resin, and polyester resin. The electroconductive particle according to any one of claims 1 to 3, wherein the electroconductive particle is at least one selected spherical particle. 硝酸濃度が10〜30wt%の硝酸と硫酸の混酸中にカーボンナノファイバーを浸漬し、100℃〜200℃の温度下で表面を酸化処理することによって酸素含有量を8〜20wt%に制御したカーボンナノファイバーを用い、該カーボンナノファイバーを溶媒に分散させ、この分散液に樹脂粒子を結着剤と共に加えて撹拌することによって、上記樹脂粒子の表面に上記カーボンナノファイバーが均一に網目状に付着した導電性粒子を調製する導電性粒子の製造方法。Carbon whose oxygen content is controlled to 8 to 20 wt% by dipping carbon nanofibers in a mixed acid of nitric acid and sulfuric acid with a nitric acid concentration of 10 to 30 wt% and oxidizing the surface at a temperature of 100 to 200 ° C By using nanofibers, the carbon nanofibers are dispersed in a solvent, and the resin particles are added to the dispersion together with a binder, followed by stirring, so that the carbon nanofibers adhere uniformly to the surface of the resin particles. The manufacturing method of the electroconductive particle which prepares the electroconductive particle which carried out. 請求項1〜請求項4の何れかに記載する導電性粒子が極性溶媒および水から選ばれた一種以上の分散媒に分散している導電層形成用分散液。
Conductive layer forming dispersion conductive particles are dispersed in one or more dispersion media selected from a polar solvent and water according to any one of claims 1 to 4.
請求項6に記載する導電層形成用分散液に結着剤を添加した導電層形成用塗料。 A conductive layer-forming coating material obtained by adding a binder to the conductive layer-forming dispersion liquid according to claim 6. 請求項6に記載する分散液または請求項7に記載する塗料によって形成された導電層を有する電子機器用部材。 The member for electronic devices which has a conductive layer formed with the dispersion liquid described in Claim 6, or the coating material described in Claim 7. 請求項1〜請求項4の何れかに記載する導電性粒子を含む電子写真機器用現像剤担持体。 A developer carrier for electrophotographic equipment, comprising the conductive particles according to claim 1. 請求項8に記載する部材が現像ロール、帯電ロール、転写ロール、除電ロール、クリーニングロール、現像ブレード、帯電ブレード、クリーニングブレード、または転写ベルトである電子写真機器用部材。
A member for an electrophotographic apparatus, wherein the member according to claim 8 is a developing roll, a charging roll, a transfer roll, a static elimination roll, a cleaning roll, a developing blade, a charging blade, a cleaning blade, or a transfer belt.
JP2011216217A 2011-09-30 2011-09-30 Conductive particles and uses thereof Expired - Fee Related JP5875311B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011216217A JP5875311B2 (en) 2011-09-30 2011-09-30 Conductive particles and uses thereof
PCT/JP2012/075196 WO2013047809A1 (en) 2011-09-30 2012-09-28 Conductive particles and application therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011216217A JP5875311B2 (en) 2011-09-30 2011-09-30 Conductive particles and uses thereof

Publications (2)

Publication Number Publication Date
JP2013077427A JP2013077427A (en) 2013-04-25
JP5875311B2 true JP5875311B2 (en) 2016-03-02

Family

ID=47995832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011216217A Expired - Fee Related JP5875311B2 (en) 2011-09-30 2011-09-30 Conductive particles and uses thereof

Country Status (2)

Country Link
JP (1) JP5875311B2 (en)
WO (1) WO2013047809A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104718579A (en) 2012-07-24 2015-06-17 株式会社大赛璐 Conductive fiber-coated particle, curable composition and cured article derived from curable composition
WO2015111738A1 (en) * 2014-01-23 2015-07-30 株式会社ダイセル Film-shaped adhesive including electroconductive-fiber-coated particles
JP6095761B1 (en) * 2015-12-28 2017-03-15 三菱商事株式会社 Granular composition with carbon-based conductive material and method for producing the same
JP6939672B2 (en) * 2017-03-29 2021-09-22 東レ株式会社 Method for manufacturing conductive particles
CN107102489A (en) * 2017-06-20 2017-08-29 深圳市华星光电技术有限公司 A kind of anisotropic conductive adhesive paste, conducting sphere and preparation method thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004279916A (en) * 2003-03-18 2004-10-07 Minolta Co Ltd Developing device and image forming apparatus
JP4770139B2 (en) * 2004-08-10 2011-09-14 東レ株式会社 Conductive particles and anisotropic conductive material composition
JP4696598B2 (en) * 2005-03-04 2011-06-08 Jfeエンジニアリング株式会社 carbon nanotube
JP2007023149A (en) * 2005-07-15 2007-02-01 National Institute Of Advanced Industrial & Technology Polyimide in which carbon nanotube is dispersed and conductivity is controlled
JP5025126B2 (en) * 2005-12-07 2012-09-12 リグナイト株式会社 Conductive phenol resin composite material, method for producing conductive phenol resin composite material, conductive composite carbonized material, conductive resin composition, secondary battery electrode, electrode carbon material, electric double layer capacitor polarizable electrode
JP2008156560A (en) * 2006-12-26 2008-07-10 Nitta Ind Corp Imide-modified elastomer and belt formulated with carbon nanotube
JP5603059B2 (en) * 2009-01-20 2014-10-08 大陽日酸株式会社 Composite resin material particles and method for producing the same
JP2011060432A (en) * 2009-09-04 2011-03-24 Ube Industries Ltd Particle covered with fine carbon fiber
JP5663855B2 (en) * 2009-09-30 2015-02-04 東レ株式会社 Conductive composite and negative electrode for lithium ion battery.

Also Published As

Publication number Publication date
JP2013077427A (en) 2013-04-25
WO2013047809A1 (en) 2013-04-04

Similar Documents

Publication Publication Date Title
JP5875311B2 (en) Conductive particles and uses thereof
JP6217395B2 (en) Dispersion of carbon nanotube-containing composition and conductive molded body
JP3962433B2 (en) Method for loosening hollow carbon microfibers, electrically conductive transparent carbon microfiber agglomerated films, and coating compositions for forming such films
JP5292714B2 (en) Liquid containing carbon nanotube and method for producing transparent conductive film thereof
Chen et al. All‐solid‐state flexible asymmetric supercapacitors fabricated by the binder‐free hydrophilic carbon cloth@ MnO2 and hydrophilic carbon cloth@ polypyrrole electrodes
JP5074837B2 (en) Method for producing flat silver powder, flat silver powder, and conductive paste
CN1543399A (en) Coatings containing carbon nanotubes
JP2008138039A (en) Carbon nanofiber-dispersed polyimide varnish and coating film thereof
JP2008288189A (en) Method of forming transparent conductive film containing carbon nanotube and binder, and transparent conductive film formed thereby
Hatala et al. The effect of the ink composition on the performance of carbon-based conductive screen printing inks
WO2015076390A1 (en) Carbon heating composition and carbon heating element
JP2013231129A (en) Method of manufacturing coating containing carbon nanotube, forming method of coating layer containing carbon nanotube, coating layer containing carbon nanotube, and laminate provided with the coating layer
EP2219995A1 (en) Carbon nanotube films and methods of forming films of carbon nanotubes by dispersing in a superacid
KR20110074603A (en) Electrificating member, method for manufacturing the electrificating member, process cartridge, and electrophotographic device
JPWO2020129872A1 (en) Carbon nanotube dispersion liquid and its manufacturing method
JP2016195103A (en) Composite conductive particle and method for producing the same, and conductive resin
Claypole et al. The effect of plasma functionalization on the print performance and time stability of graphite nanoplatelet electrically conducting inks
EP3667682B1 (en) Slurry for flexible electrodes, and flexible electrode using same
JP6241586B2 (en) Method for producing carbon nanofiber and method for producing dispersion and composition thereof
WO2024024162A1 (en) Carbon material dispersion and use thereof
JP2007298692A (en) Anisotropic conductive polyimide belt and method for manufacturing the same
Zhang et al. Preparation, characterization, and surface conductivity of nanocomposites with hollow graphitic carbon nanospheres as fillers in polymethylmethacrylate matrix
JP5894755B2 (en) Method for producing fluorinated carbon nanofiber and method for producing fluorinated carbon nanofiber-containing material
JP2007077551A (en) Conductive fiber, raised fabric for conductive brush, conductive brush
JP2016204398A (en) Inorganic pigment particle and production method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150715

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151007

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160119

R150 Certificate of patent or registration of utility model

Ref document number: 5875311

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees