JP5851253B2 - Electric expansion valve - Google Patents

Electric expansion valve Download PDF

Info

Publication number
JP5851253B2
JP5851253B2 JP2012006041A JP2012006041A JP5851253B2 JP 5851253 B2 JP5851253 B2 JP 5851253B2 JP 2012006041 A JP2012006041 A JP 2012006041A JP 2012006041 A JP2012006041 A JP 2012006041A JP 5851253 B2 JP5851253 B2 JP 5851253B2
Authority
JP
Japan
Prior art keywords
valve
valve body
refrigerant
chamber
expansion valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012006041A
Other languages
Japanese (ja)
Other versions
JP2013145089A (en
Inventor
志村 智紀
智紀 志村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikoki Corp
Original Assignee
Fujikoki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikoki Corp filed Critical Fujikoki Corp
Priority to JP2012006041A priority Critical patent/JP5851253B2/en
Publication of JP2013145089A publication Critical patent/JP2013145089A/en
Application granted granted Critical
Publication of JP5851253B2 publication Critical patent/JP5851253B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Temperature-Responsive Valves (AREA)

Description

本発明は、カーエアコン等の冷凍サイクルに使用される膨張弁に係り、特に、既存の配管系統等に変更を必要とせずに従前の機械式膨張弁に置き換えることのできる電気式膨張弁に関する。   The present invention relates to an expansion valve used in a refrigeration cycle such as a car air conditioner, and more particularly to an electric expansion valve that can be replaced with a conventional mechanical expansion valve without requiring any change to an existing piping system or the like.

カーエアコン等の冷凍サイクルとして、従来、例えば、下記特許文献1(同文献の図4、図5参照)に示されるようなものが実用に供されている。   As a refrigeration cycle for a car air conditioner or the like, for example, the one shown in the following Patent Document 1 (see FIGS. 4 and 5 of the same document) has been put to practical use.

また、図6に示される如くのものも提案ないし実用に供されている。すなわち、図示例の冷凍サイクル100は、圧縮機101、凝縮器102、蒸発器103、内部熱交換器104、及び、機械式の膨張弁110(後述)を備え、内部熱交換器104において、凝縮器102から膨張弁110に導かれる高温高圧の冷媒(液相)と蒸発器103から圧縮機101の吸入側に導かれる低温低圧の冷媒(気相)との間で熱交換を行うようにしたものである(例えば、下記特許文献2も参照)。   Further, the one shown in FIG. 6 has been proposed or put into practical use. That is, the illustrated refrigeration cycle 100 includes a compressor 101, a condenser 102, an evaporator 103, an internal heat exchanger 104, and a mechanical expansion valve 110 (described later). In the internal heat exchanger 104, condensation is performed. Heat exchange is performed between the high-temperature and high-pressure refrigerant (liquid phase) led from the condenser 102 to the expansion valve 110 and the low-temperature and low-pressure refrigerant (gas phase) led from the evaporator 103 to the suction side of the compressor 101. (For example, see also Patent Document 2 below).

かかる冷凍サイクル100に使用されている機械式の膨張弁の一例を図7に示す。図示例の膨張弁110は、弁本体120の下部に内部熱交換器104からの高温冷媒を導入するための流入口121と弁口126付き弁座125を有する弁室124が設けられるとともに、中央部に流出口122が設けられ、また、弁本体120の上部左右に感温用流入口131及び流出口132が設けられ、弁本体120の最上部には、感温用流入口131から流出口132へ流れる冷媒の温度変化及び圧力変化に応動する感温感圧応動手段としてのダイアフラム装置140が取り付けられている。   An example of a mechanical expansion valve used in the refrigeration cycle 100 is shown in FIG. The expansion valve 110 in the illustrated example is provided with a valve chamber 124 having an inlet 121 for introducing the high-temperature refrigerant from the internal heat exchanger 104 and a valve seat 125 with a valve port 126 at the lower part of the valve body 120, and the center. The temperature sensing inlet 131 and the outlet 132 are provided on the upper left and right of the valve body 120, and the temperature sensing inlet 131 is provided at the uppermost part of the valve body 120. A diaphragm device 140 is attached as a temperature-sensitive pressure responsive means that responds to temperature changes and pressure changes of the refrigerant flowing to 132.

前記弁室124には、前記弁口126を開閉するボール弁体130と該ボール弁体130を閉弁方向に付勢するコイルばね127が縮装されている。   A ball valve body 130 that opens and closes the valve port 126 and a coil spring 127 that biases the ball valve body 130 in the valve closing direction are mounted in the valve chamber 124.

前記ダイアフラム装置140は、ボール弁体130を駆動ロッド135及び連結体136を介して開閉方向(上下方向)に駆動するためのダイアフラム142を有し、該ダイアフラム142を隔壁としてその上下には、上側圧力室143と下側圧力室144とが画成されている。上側圧力室143は所定圧力のガスが封入されてキャップ146で密閉されている。下側圧力室144は、連通開口部145を介して前記感温用流入口131及び流出口132に連通しており、前記ダイアフラム142の下面側には、蒸発器103から内部熱交換器104に導かれる低温冷媒の圧力が作用するようになっている。   The diaphragm device 140 includes a diaphragm 142 for driving the ball valve body 130 in the opening / closing direction (vertical direction) via the drive rod 135 and the coupling body 136, and the diaphragm 142 serves as a partition, A pressure chamber 143 and a lower pressure chamber 144 are defined. The upper pressure chamber 143 is sealed with a cap 146 filled with a gas having a predetermined pressure. The lower pressure chamber 144 communicates with the temperature-sensitive inlet 131 and the outlet 132 through a communication opening 145, and the lower surface side of the diaphragm 142 is connected from the evaporator 103 to the internal heat exchanger 104. The pressure of the introduced low-temperature refrigerant is applied.

なお、前記下側圧力室144、感温用流入口131及び流出口132と前記冷媒流出口122との連通・流通を遮断すべく、弁本体120における駆動ロッド135が通される内部中央付近に装着穴138が設けられるとともに、この装着穴138の内周面と駆動ロッド35の外周面との間にはシール材としてのOリング139が介装されている。また、弁室124の下部には、ばね圧調節用の蓋栓状ナット128が螺合せしめられ、この蓋栓状ナット128の非螺合部分と弁室124内周面との間にはシール材としてのOリング129が介装されている。   In addition, in order to block communication / circulation between the lower pressure chamber 144, the temperature sensing inlet 131 and the outlet 132, and the refrigerant outlet 122, the valve body 120 is located near the inner center where the drive rod 135 is passed. A mounting hole 138 is provided, and an O-ring 139 as a seal material is interposed between the inner peripheral surface of the mounting hole 138 and the outer peripheral surface of the drive rod 35. Further, a cap stopper nut 128 for adjusting the spring pressure is screwed into the lower portion of the valve chamber 124, and a seal is provided between the non-threaded portion of the cap stopper nut 128 and the inner peripheral surface of the valve chamber 124. An O-ring 129 as a material is interposed.

したがって、かかる構成の膨張弁110では、流出口122から前記蒸発器103へ導出される冷媒の流量(圧力降下度及び温度降下度)を、前記内部熱交換器104で熱交換を行う前の低温冷媒の温度及び圧力に応じて調整するようになっている。   Therefore, in the expansion valve 110 having such a configuration, the flow rate (pressure drop and temperature drop) of the refrigerant led out from the outlet 122 to the evaporator 103 is set to a low temperature before heat exchange is performed in the internal heat exchanger 104. The temperature is adjusted according to the temperature and pressure of the refrigerant.

また、図6に示された内部熱交換器104を備えない冷凍サイクル(例えば特許文献1参照)においては、膨張弁110の流入口121には凝縮器102(あるいは凝縮器の冷媒出口側に設けられたレシーバ)からの冷媒が導入され、流出口132より流出する冷媒は圧縮機101の吸入口へ導入される。   In the refrigeration cycle not including the internal heat exchanger 104 shown in FIG. 6 (see, for example, Patent Document 1), the condenser 121 (or the refrigerant outlet side of the condenser) is provided at the inlet 121 of the expansion valve 110. The refrigerant flowing out from the outlet 132 is introduced into the suction port of the compressor 101.

ところで、上記した如くの機械式膨張弁は、制御可能範囲が狭く、制御精度、自由度、多様性等も十分ではないので、この機械式膨張弁に代えて、電気式(電子制御式)の膨張弁(以下、電気式膨張弁と称す)を採用することが考えられている。   By the way, the mechanical expansion valve as described above has a narrow controllable range and does not have sufficient control accuracy, degree of freedom, diversity, and the like. Instead of this mechanical expansion valve, an electric (electronic control) type is used. It is considered to employ an expansion valve (hereinafter referred to as an electric expansion valve).

電気式膨張弁としては、例えば、特許文献3に所載のような、キャン、該キャンの内周に所定の間隙をあけて配在されたロータ、及びキャンに外嵌されたステータ等からなる、弁体駆動源としての電動モータと、弁体部がその下端部に設けられた棒状弁体と、冷媒入出口及び弁室が設けられた弁本体と、前記ロータの回転を利用して前記弁体を開閉駆動するねじ送り機構等の駆動機構とを備えた電動弁を用いることができる。   The electric expansion valve includes, for example, a can, a rotor disposed with a predetermined gap on the inner periphery of the can, a stator externally fitted to the can, and the like as described in Patent Document 3. An electric motor as a valve body drive source, a rod-shaped valve body having a valve body portion provided at the lower end thereof, a valve body provided with a refrigerant inlet / outlet and a valve chamber, and the rotation of the rotor An electric valve provided with a drive mechanism such as a screw feed mechanism that opens and closes the valve body can be used.

この電気式膨張弁の制御は、例えば、蒸発器から導出された低温冷媒の温度、圧力等を温度センサ、圧力センサ等で検出し、マイクロコンピュータを内蔵するコントロールユニットにおいて、その検出された温度、圧力等の情報に基づいて当該膨張弁の開度を調節するための制御信号を生成して、前記電動モータに供給するようにされ、これによって、前記弁軸が例えば回転しながら昇降して弁開度が調節され、これによって冷媒流出口から前記蒸発器へ導出される冷媒流量が制御される。   The electric expansion valve is controlled by, for example, detecting the temperature, pressure, etc. of the low-temperature refrigerant derived from the evaporator with a temperature sensor, a pressure sensor, etc., and in the control unit incorporating the microcomputer, the detected temperature, Based on information such as pressure, a control signal for adjusting the opening of the expansion valve is generated and supplied to the electric motor, whereby the valve shaft moves up and down while rotating, for example, The opening degree is adjusted, whereby the flow rate of the refrigerant led out from the refrigerant outlet to the evaporator is controlled.

なお、電気式膨張弁としては、上記した如くの、弁体駆動源として電動モータを主要部とする電動式のもの(電動式アクチュエータ)の他、ソレノイドを主要部とする電磁式のもの(電磁式アクチュエータ)を弁体駆動源とするものもある。   As described above, as an electric expansion valve, in addition to an electric type having an electric motor as a main part (electric actuator) as a valve body driving source, an electromagnetic type having a solenoid as a main part (electromagnetic) Some actuators use a valve-type drive source.

特許3545847号公報Japanese Patent No. 3545847 特開2010−121831号公報JP 2010-121831 A 特許4224187号公報Japanese Patent No. 4224187

ところで、上記した如くに、従前の機械式膨張弁に代えて電気式膨張弁を採用する場合、次のような事柄に留意する必要がある。すなわち、カーエアコン等においては、膨張弁を設置する部位(スペース)や配管系統は予め定められているので、当該電気式膨張弁においても、前記機械式膨張弁に設けられていた冷媒流入口121、冷媒流出口122に加えて、流量制御(感温感圧用)には用いないものの、流入口131及び流出口132は導管接続用に必要であり、その形成位置も大きく変更することはできない。   As described above, when an electric expansion valve is adopted instead of the conventional mechanical expansion valve, it is necessary to pay attention to the following matters. That is, in a car air conditioner or the like, since a part (space) and a piping system for installing an expansion valve are determined in advance, the refrigerant inlet 121 provided in the mechanical expansion valve also in the electric expansion valve. Although not used for flow rate control (for temperature-sensitive pressure) in addition to the refrigerant outlet 122, the inlet 131 and the outlet 132 are necessary for conduit connection, and the formation positions thereof cannot be changed greatly.

ここで、機械式膨張弁110においては、ダイアフラム装置140の耐久性等を考慮して(冷媒中の微小異物がダイアフラム装置部分に溜まらないようにする必要がある)、ダイアフラム装置140を上側となるように配置し、駆動ロッド135を感温用流入口131及び流出口132からなる横貫通路133、弁本体中央部付近に形成されたOリング装着穴138、この装着穴138の下側に設けられた案内孔134、冷媒流出口122が設けられた横孔123を通して垂下させて、ボール弁体130を昇降駆動するようにされている。このような機械式膨張弁に代えて電気式膨張弁を採用しようとする場合、弁体のアクチュエータとして前記ダイアフラム装置140(感温圧力応動手段)を電動モータに置き換えて、前記電動モータを弁本体120の最上部に配置し、かつ前記駆動ロッド135に代えて、下端部に弁体部が設けられた弁軸を垂下させた構成にすると、弁軸を昇降させなければならないので、前記感温用の横貫通路133と冷媒流出口122が設けられた横孔123との間を封止するためのOリング139部分が大きな抵抗となり、電動モータとして、駆動トルクが比較的大きなものを用いることが要求され、大きなコストアップ、大型化、消費エネルギの増大等を招いてしまう。   Here, in the mechanical expansion valve 110, considering the durability of the diaphragm device 140 and the like (it is necessary to prevent minute foreign substances in the refrigerant from collecting in the diaphragm device portion), the diaphragm device 140 is on the upper side. The drive rod 135 is provided in a horizontal through passage 133 including a temperature-sensitive inlet 131 and outlet 132, an O-ring mounting hole 138 formed near the center of the valve body, and provided below the mounting hole 138. The ball valve body 130 is driven up and down by being suspended through the guide hole 134 and the lateral hole 123 provided with the refrigerant outlet 122. When an electric expansion valve is to be employed instead of such a mechanical expansion valve, the diaphragm device 140 (temperature-sensitive pressure responsive means) is replaced with an electric motor as a valve body actuator, and the electric motor is replaced by a valve body. 120, and instead of the drive rod 135, a valve shaft having a valve body portion provided at the lower end portion is suspended, the valve shaft must be raised and lowered. O-ring 139 portion for sealing between the horizontal through passage 133 for use and the horizontal hole 123 provided with the refrigerant outlet 122 has a large resistance, and an electric motor having a relatively large driving torque should be used. Is required, resulting in a large cost increase, an increase in size, an increase in energy consumption, and the like.

これを回避するには、電動モータを当該膨張弁の底部側に下向き(逆向き)に配置すればよいが、電動モータを底部側に下向き(逆向き)に配置すると、冷媒中に混入されているオイルが電動モータのキャン内に溜まり、動作安定性、耐久性、信頼性等が損なわれるおそれがある。   In order to avoid this, the electric motor may be disposed downward (reverse) on the bottom side of the expansion valve. However, if the electric motor is disposed downward (reverse) on the bottom side, the electric motor is mixed into the refrigerant. Oil that has accumulated inside the can of the electric motor may impair operational stability, durability, reliability, and the like.

本発明は、上記事情に鑑みてなされたもので、その目的とするところは、動作安定性、耐久性、信頼性等を損なうことなく、従前の機械式膨張弁に置き換えることができ、コストアップ、大型化、消費エネルギの増大等を可及的に抑えることのできる電気式膨張弁を提供することにある。   The present invention has been made in view of the above circumstances, and its purpose is to replace a conventional mechanical expansion valve without impairing operational stability, durability, reliability, etc., and increase the cost. An object of the present invention is to provide an electric expansion valve that can suppress an increase in size, an increase in energy consumption, and the like as much as possible.

前記の目的を達成すべく、本発明に係る電気式膨張弁は、基本的には、弁本体の左右方向一側部に冷媒流入口が設けられるとともに、弁本体の左右方向他側部に冷媒流出口が設けられ、前記冷媒流入口と冷媒流出口との間に弁口が付いた弁座を有する弁室が設けられるとともに、前記弁本体の上部の左右に導管接続用流入口及び導管接続用流出口が設けられ、かつ、前記弁口を開閉するための弁体部を有する棒状弁体と、該棒状弁体を前記弁口開閉方向に昇降させるための弁体駆動源とを備え、前記弁体駆動源は、前記弁本体の下部前面側に斜め上向きに配置されていることを特徴としている。 In order to achieve the above object, the electric expansion valve according to the present invention is basically provided with a refrigerant inlet on one side portion in the left-right direction of the valve body and on the other side portion in the left-right direction of the valve body. An outlet is provided, a valve chamber having a valve seat with a valve opening between the refrigerant inlet and the refrigerant outlet is provided, and a conduit connecting inlet and a conduit connection are provided on the left and right of the upper part of the valve body. use the outlet is provided, and comprises a rod-shaped valve body having a valve body for opening and closing the valve port and a valve body drive source for raising and lowering the rod-shaped valve body to the opening and closing direction of the valve port The valve body drive source is arranged obliquely upward on the lower front side of the valve body.

好ましい態様では、前記弁体駆動源側に前記棒状弁体及び前記弁座を有する筒状弁室形成体が配在されるとともに、前記弁本体の下部前面側に、斜め上向きに、前記筒状弁室形成体が挿入される段付き穴が設けられ、該段付き穴の内周側で前記筒状弁室形成体の外周側に前記冷媒流入口が開口する冷媒流入室が形成されるとともに、該冷媒流入室と前記弁室とが前記筒状弁室形成体に設けられた透孔を介して連通せしめられる。 In a preferred embodiment, a tubular valve chamber forming body having the rod-shaped valve body and the valve seat is disposed on the valve body drive source side, and the tubular body is formed obliquely upward on the lower front side of the valve body. A stepped hole into which the valve chamber forming body is inserted is provided, and a refrigerant inflow chamber is formed on the inner peripheral side of the stepped hole on the outer peripheral side of the cylindrical valve chamber forming body. The refrigerant inflow chamber and the valve chamber are communicated with each other through a through hole provided in the cylindrical valve chamber forming body.

他の好ましい態様では、前記段付き穴に、前記弁体駆動源と、前記筒状弁室形成体と、前記棒状弁体とからなる組立体が斜め上向きに取付固定される。   In another preferred embodiment, an assembly composed of the valve body drive source, the tubular valve chamber forming body, and the rod-shaped valve body is attached and fixed obliquely upward in the stepped hole.

他の好ましい態様では、前記段付き穴における前記弁口より下流側に冷媒流出室が設けられるとともに、該冷媒流出室と前記冷媒流出口とが直線状の縦孔により連通せしめられる。   In another preferred embodiment, a refrigerant outflow chamber is provided downstream of the valve port in the stepped hole, and the refrigerant outflow chamber and the refrigerant outflow port are communicated with each other by a straight vertical hole.

前記弁体駆動源として、好ましくは、電動モータを主要部とする電動式アクチュエータが使用される。   As the valve body drive source, an electric actuator mainly including an electric motor is preferably used.

他の好ましい態様では、前記弁体駆動源として、ソレノイドを主要部とする電磁式アクチュエータが使用される。   In another preferred embodiment, an electromagnetic actuator having a solenoid as a main part is used as the valve body drive source.

本発明に係る電気式膨張弁は、機械式膨張弁と同様に、弁本体には、冷媒流入口及び冷媒流出口が設けられるとともに、弁本体の上部の左右には、機械式膨張弁における感温用流入口及び感温用流出口の代わりとなる導管接続用流入口及び導管接続用流出口が設けられ、かつ、弁体駆動源と棒状弁体とが弁本体の下部前面側に斜め上向きに配置されるので、弁体はOリング等による抵抗をさほど受けず、また、冷媒中に混入されているオイルがキャン内に溜まるようなこともないので、動作安定性、耐久性、信頼性等を損なうことなく、従前の機械式膨張弁に置き換えることができ、コストアップ、大型化、消費エネルギの増大等を効果的に抑えることができる。   The electrical expansion valve according to the present invention is provided with a refrigerant inlet and a refrigerant outlet in the valve body, and the left and right sides of the upper part of the valve body are similar to those of the mechanical expansion valve. A conduit connection inlet and a conduit connection outlet are provided instead of the temperature inlet and the temperature sensing outlet, and the valve body drive source and the rod-shaped valve body are obliquely upward toward the lower front side of the valve body. Therefore, the valve body is not subject to much resistance due to O-rings, etc., and the oil mixed in the refrigerant does not accumulate in the can, so that the operation stability, durability, and reliability are improved. It is possible to replace the conventional mechanical expansion valve without impairing the above, and it is possible to effectively suppress an increase in cost, an increase in size, an increase in energy consumption, and the like.

本発明に係る電気式膨張弁の一実施例を示す右上斜視図。The upper right perspective view which shows one Example of the electric expansion valve which concerns on this invention. 図1に示される電気式膨張弁の正面図。The front view of the electric expansion valve shown by FIG. 図2のX-X矢視線に従う部分破断断面図。FIG. 3 is a partially broken cross-sectional view taken along the line XX of FIG. (A)は図1に示される電気式膨張弁の右側面図、(B)は(A)のY-Y矢視線に従う拡大断面図。(A) is a right side view of the electric expansion valve shown in FIG. 1, (B) is an enlarged cross-sectional view according to the YY arrow line of (A). 図1に示される電気式膨張弁の左側面図。The left view of the electric expansion valve shown by FIG. カーエアコン等の膨張弁が使用されている冷凍サイクルを示す回路図。The circuit diagram which shows the refrigerating cycle in which expansion valves, such as a car air conditioner, are used. 従来の機械式膨張弁の一例を示す縦断面図。The longitudinal cross-sectional view which shows an example of the conventional mechanical expansion valve.

以下、本発明の電気式膨張弁の実施形態を図面を参照しながら説明する。   Hereinafter, embodiments of an electric expansion valve of the present invention will be described with reference to the drawings.

図1は、本発明に係る電気式膨張弁の一実施例を示す右上斜視図、図2は、その正面図、図3は、図2のX-X矢視線に従う部分破断断面図、図4(A)は右側面図、(B)は(A)のY-Y矢視線に従う拡大断面図、図5は左側面図である。   1 is an upper right perspective view showing an embodiment of an electric expansion valve according to the present invention, FIG. 2 is a front view thereof, FIG. 3 is a partially broken sectional view taken along the line XX of FIG. (A) is a right side view, (B) is an enlarged cross-sectional view taken along the line YY of (A), and FIG. 5 is a left side view.

図示例の電気式膨張弁1は、特許文献1あるいは特許文献2(図6参照)に示されたようなカーエアコン等の冷凍サイクルにおいて、機械式膨張弁に置き換えて使用するものであり、弁本体10と、弁体駆動源としての電動モータ(ステッピングモータ)50とを有している。電動弁としてのステッピングモータ50の構成は前述した特許文献3等に所載のものと基本的には同じであるので、内部は図示が省略されている。この電動モータは、例えば弁本体にキャンが取り付けられ、該キャンの外周にはステータが、また該キャンの内部にはロータ及び該ロータの回転を弁体の進退動に変換するねじ機構等を備えている。   The electric expansion valve 1 in the illustrated example is used in place of a mechanical expansion valve in a refrigeration cycle such as a car air conditioner as shown in Patent Document 1 or Patent Document 2 (see FIG. 6). It has a main body 10 and an electric motor (stepping motor) 50 as a valve body drive source. Since the configuration of the stepping motor 50 as an electric valve is basically the same as that described in Patent Document 3 and the like described above, the inside is not shown. This electric motor has, for example, a can attached to a valve main body, a stator on the outer periphery of the can, and a rotor inside the can and a screw mechanism for converting the rotation of the rotor into forward and backward movement of the valve body. ing.

弁本体10は、設置状態において水平面に略垂直な垂直面11a及び斜め下向き面11bからなる前面11、垂直面からなる後面12、垂直面からなる左側面13、垂直面からなる右側面14、上に凸の丸みが付けられた上面15、及び水平面16a、前面側斜め上向き面16b、及び後面側斜め上向き面16cからなる底面16を有する、設置部位(スペース)を考慮した変形直方体状とされている。この弁本体は、例えばアルミニウムなどの金属あるいは樹脂等により形成されている。   In the installed state, the valve body 10 includes a front surface 11 composed of a vertical surface 11a and a diagonally downward surface 11b substantially perpendicular to a horizontal surface, a rear surface 12 composed of a vertical surface, a left side surface 13 composed of a vertical surface, a right side surface 14 composed of a vertical surface, and an upper surface. A deformed rectangular parallelepiped shape in consideration of an installation site (space), which has a convexly rounded top surface 15 and a bottom surface 16 composed of a horizontal surface 16a, a front side obliquely upward surface 16b, and a rear side obliquely upward surface 16c. Yes. The valve body is formed of a metal such as aluminum or a resin, for example.

該弁本体10には、図7に示される機械式膨張弁110と略同様に、その右側面14の下部に冷媒流入口21が開口せしめられとともに、その左側面13の中央部付近に冷媒流出口22が開口せしめられ、また、弁本体10の上部の左右に、それぞれ従来例における感温用流入口131及び感温用流出口132に代えて、略同じ寸法形状の導管接続用流入口31及び導管接続用流出口32が設けられている。この導管接続用流入口31及び導管接続用流出口32は、本発明実施例の電気式膨張弁1においては、弁本体10の内部を真直ぐに貫通する孔の両端であり、単に蒸発器から内部熱交換器に向かう冷媒流路の一部を構成するだけで、流量制御には全く関与しない。なお、冷媒流入口21は、前述した機械式膨張弁110の冷媒導入口121より前面11側に若干寄せられているが、この程度の位置変更は、導管や継手類を例えば曲げることなどで容易に対応できる。   In the valve main body 10, a refrigerant inlet 21 is opened at the lower part of the right side surface 14 and the refrigerant flow near the central part of the left side surface 13 is substantially the same as the mechanical expansion valve 110 shown in FIG. 7. An outlet 22 is opened, and in addition to the temperature-sensitive inlet 131 and the temperature-sensitive outlet 132 in the conventional example, the conduit connecting inlets 31 having substantially the same size and shape are provided on the left and right of the upper part of the valve body 10, respectively. And a conduit connection outlet 32 is provided. In the electric expansion valve 1 according to the embodiment of the present invention, the conduit connection inlet 31 and the conduit connection outlet 32 are both ends of a hole that passes straight through the inside of the valve body 10, and are simply connected to the interior from the evaporator. It only forms part of the refrigerant flow path toward the heat exchanger and does not participate in flow rate control at all. The refrigerant inlet 21 is slightly moved closer to the front surface 11 side than the refrigerant inlet 121 of the mechanical expansion valve 110 described above, but such a position change can be easily performed by bending a conduit or a joint, for example. It can correspond to.

また、弁本体10の上部において、左右側面13-14間を貫通するように取付用ピンが通される2個の段付きの貫通孔61、61が横並びに設けられるとともに、右側面14には、同じく取付用に供される非貫通の段付きの横穴62、62やねじ穴63、63が設けられている。   Further, in the upper part of the valve body 10, two stepped through holes 61, 61 through which mounting pins are passed so as to penetrate between the left and right side surfaces 13-14 are provided side by side. Similarly, non-through stepped lateral holes 62 and 62 and screw holes 63 and 63 provided for mounting are provided.

また、前記モータ50側には、前記弁本体10とは別体の、弁口26付き弁座25を有する筒状弁室形成体20(図4(B))が連結されている。弁本体10における前面11の下部の斜め下向き面11bには、該斜め下向き面11bに垂直、言い換えれば斜め上向きに、前記筒状弁室形成体20の下部20aが挿入される挿入部17a、該挿入部17aより大径の大径部17b、及び該大径部17bより上側の例えばめねじからなる取付部17cを有する段付き穴17が開口せしめられており、該段付き穴17に、前記モータ50と、前記筒状弁室形成体20と、前記弁口26を開閉すべく前記モータ50により回転しながら昇降せしめられる棒状弁体30と、からなる組立体50Aが例えばおねじが形成されたリング状連結体19、及び必要であればその他の適宜の手段を介して斜め上向きに取付固定されている。   Further, a tubular valve chamber forming body 20 (FIG. 4B) having a valve seat 25 with a valve port 26, which is separate from the valve main body 10, is connected to the motor 50 side. An insertion portion 17a into which the lower portion 20a of the tubular valve chamber forming body 20 is inserted perpendicularly to the obliquely downward surface 11b, in other words, obliquely upward, on the obliquely downward surface 11b of the lower surface of the front surface 11 of the valve body 10; A stepped hole 17 having a large diameter portion 17b larger in diameter than the insertion portion 17a and an attachment portion 17c made of, for example, a female screw on the upper side of the large diameter portion 17b is opened. An assembly 50A including a motor 50, the cylindrical valve chamber forming body 20, and a rod-shaped valve body 30 that is lifted and lowered by the motor 50 to open and close the valve port 26 is formed with, for example, a male screw. It is attached and fixed obliquely upward via a ring-shaped connecting body 19 and other appropriate means if necessary.

前記段付き穴17の大径部17bの内周側で前記筒状弁室形成体20における中間部20bの外周側には、前記冷媒流入口21の奥部21aが開口する円環状の冷媒流入室35が形成されるとともに、該冷媒流入室35と弁室24とが筒状弁室形成体20に設けられた複数個の透孔36を介して連通せしめられている。   An annular refrigerant inflow in which the inner portion 20b of the cylindrical valve chamber forming body 20 and the inner portion 20b of the stepped hole 17 are open at the inner portion 20b of the refrigerant inlet 21 is provided. A chamber 35 is formed, and the refrigerant inflow chamber 35 and the valve chamber 24 are communicated with each other through a plurality of through holes 36 provided in the tubular valve chamber forming body 20.

また、前記段付き穴17及び筒状弁室形成体20における弁口26付き弁座25より下流側には冷媒流出室37が設けられるとともに、該冷媒流出室37と前記冷媒流出口22とが、直線状の縦孔18により連通せしめられている。縦孔18は、一端(下端)が底面16(の水平面16a)に開口し、他端(上端)が冷媒流出口22に開口せしめられており、その下端部は、蓋栓部材28が螺合せしめられて閉塞されており、この蓋栓部材28の非螺合部分と縦孔18内周面との間にはシール材としてのOリング29が介装されている。また、筒状弁室形成体20の下部20aと段付き穴17の挿入部17aとの間にもシール材としてのOリング39が介装されている。   Further, a refrigerant outflow chamber 37 is provided downstream of the stepped hole 17 and the valve seat 25 with the valve port 26 in the tubular valve chamber forming body 20, and the refrigerant outflow chamber 37 and the refrigerant outflow port 22 are provided. The straight vertical holes 18 communicate with each other. The vertical hole 18 has one end (lower end) opened to the bottom surface 16 (the horizontal surface 16a thereof) and the other end (upper end) opened to the refrigerant outlet port 22. The lower end portion of the vertical hole 18 is screwed with the lid plug member 28. The O-ring 29 as a sealing material is interposed between the non-threaded portion of the lid plug member 28 and the inner peripheral surface of the vertical hole 18. Further, an O-ring 39 as a sealing material is also interposed between the lower portion 20 a of the tubular valve chamber forming body 20 and the insertion portion 17 a of the stepped hole 17.

かかる構成のもとでは、冷媒は、内部熱交換器104の出口(あるいは凝縮器またはレシーバの出口)→冷媒流入口21(奥部21a)→冷媒流入室35→筒状弁室形成体20の透孔36→弁室24→弁体部30aと弁口26付き弁座25との間に形成される、弁体リフト量に応じた隙間→冷媒流出室37→縦孔18→冷媒流出口22→蒸発器103の入口→蒸発器103の出口→導管接続用流入口31→導管接続用流出口32→内部熱交換器104の入口(あるいは圧縮機の吸入口)へと流れる。   Under such a configuration, the refrigerant is discharged from the outlet of the internal heat exchanger 104 (or the outlet of the condenser or the receiver) → the refrigerant inlet 21 (back part 21a) → the refrigerant inlet chamber 35 → the cylindrical valve chamber forming body 20. Through hole 36 → valve chamber 24 → gap formed between valve body portion 30a and valve seat 25 with valve port 26 according to valve body lift amount → refrigerant outlet chamber 37 → vertical hole 18 → refrigerant outlet 22 → The inlet of the evaporator 103 → the outlet of the evaporator 103 → the inlet 31 for connecting the conduit → the outlet 32 for connecting the conduit → the inlet of the internal heat exchanger 104 (or the inlet of the compressor).

このような構成とされた本実施例の電気式膨張弁1においては、機械式膨張弁と同様に、弁本体10には、冷媒流入口21及び冷媒流出口22が設けられるとともに、弁本体10の上部の左右には、機械式膨張弁における感温用流入口131及び感温用流出口132と同じ寸法形状の導管接続用流入口31及び導管接続用流出口32が設けられ、かつ、モータ50と、筒状弁室形成体20と、棒状弁体30とからなる組立体50Aが弁本体10の下部前面11側に斜め上向きに取付固定されているので、弁体30はOリング等による抵抗を受けず、また、冷媒中に混入されているオイルがモータ50のキャン内に溜まるようなこともないので、動作安定性、耐久性、信頼性等を損なうことなく、従前の機械式膨張弁に置き換えることができ、コストアップ、大型化、消費エネルギの増大等を効果的に抑えることができる。   In the electric expansion valve 1 of this embodiment configured as described above, the valve main body 10 is provided with a refrigerant inlet 21 and a refrigerant outlet 22 as well as the mechanical expansion valve. The conduit connection inlet 31 and the conduit connection outlet 32 having the same dimensions and shape as the temperature-sensitive inlet 131 and the temperature-sensitive outlet 132 in the mechanical expansion valve are provided on the left and right of the top of the motor, and the motor 50, the tubular valve chamber forming body 20 and the rod-shaped valve body 30 are mounted and fixed obliquely upward on the lower front surface 11 side of the valve body 10, so that the valve body 30 is formed by an O-ring or the like. Since there is no resistance and the oil mixed in the refrigerant does not accumulate in the can of the motor 50, the conventional mechanical expansion is performed without impairing operational stability, durability, reliability and the like. Can be replaced with a valve, Strike up, large in size, and the like can be effectively suppress the increase of energy consumption.

さて、前述の説明においては、ステッピングモータは特許文献3等に所載のものと基本的には同じであるものとしたが、その構成はいかなるものであっても良い。またロータの回転を減速して弁体に伝達する減速機構を備えたものであっても良い。   In the above description, the stepping motor is basically the same as that described in Patent Document 3 or the like, but any configuration may be used. Further, it may be provided with a speed reduction mechanism for reducing the rotation of the rotor and transmitting it to the valve body.

また、上記実施例においては、カーエアコン等の冷凍サイクル用の電気式膨張弁を例示したが、本発明に係る電気式膨張弁は、ヒートポンプ式冷暖房システム等にも適用できるものである。   Moreover, in the said Example, although the electric expansion valve for refrigeration cycles, such as a car air-conditioner, was illustrated, the electric expansion valve which concerns on this invention is applicable also to a heat pump type | formula air conditioning system etc.

また、上記実施例においては、弁体駆動源として電動モータを使用したものを例示したが、本発明はこれに限られることはなく、弁体駆動源としてソレノイドを主要部とする電磁式のもの(電磁式アクチュエータ)を使用することもできる。   Further, in the above-described embodiment, an example in which an electric motor is used as the valve body drive source is illustrated, but the present invention is not limited to this, and an electromagnetic type having a solenoid as a main part as the valve body drive source. (Electromagnetic actuator) can also be used.

1 電気式膨張弁
10 弁本体
17 段付き穴
18 縦孔
20 筒状弁室形成体
21 冷媒流入口
22 冷媒流出口
24 弁室
25 弁座
26 弁口
30 棒状弁体
31 導管接続用流入口
32 導管接続用流出口
35 冷媒流入室
36 透孔
37 冷媒流出室
50 ステッピングモータ
50A 組立体
DESCRIPTION OF SYMBOLS 1 Electric type expansion valve 10 Valve body 17 Stepped hole 18 Vertical hole 20 Cylindrical valve chamber formation body 21 Refrigerant inlet 22 Refrigerant outlet 24 Valve chamber 25 Valve seat 26 Valve port 30 Rod-shaped valve body 31 Inlet 32 for conduit connection Outlet for conduit connection 35 Refrigerant inflow chamber 36 Through hole 37 Refrigerant outflow chamber 50 Stepping motor 50A assembly

Claims (6)

弁本体の左右方向一側部に冷媒流入口が設けられるとともに、弁本体の左右方向他側部に冷媒流出口が設けられ、前記冷媒流入口と冷媒流出口との間に弁口が付いた弁座を有する弁室が設けられるとともに、前記弁本体の上部の左右に導管接続用流入口及び導管接続用流出口が設けられ、かつ、前記弁口を開閉するための弁体部を有する棒状弁体と、該棒状弁体を前記弁口開閉方向に昇降させるための弁体駆動源とを備えた電気式膨張弁であって、
前記弁体駆動源は、前記弁本体の下部前面側に斜め上向きに配置されていることを特徴とする電気式膨張弁。
A refrigerant inlet is provided at one side of the valve body in the left-right direction, a refrigerant outlet is provided at the other side of the valve body in the left-right direction, and a valve port is provided between the refrigerant inlet and the refrigerant outlet . A rod chamber having a valve chamber having a valve seat, having a conduit connecting inlet and a conduit connecting outlet on the left and right of the upper part of the valve body, and having a valve body portion for opening and closing the valve port a valve body, an electric expansion valve that includes a valve body drive source for raising and lowering the rod-shaped valve body to the opening and closing direction of the valve port,
The electric valve according to claim 1, wherein the valve body drive source is disposed obliquely upward on the lower front side of the valve body.
前記弁体駆動源側に前記棒状弁体及び前記弁座を有する筒状弁室形成体が配在されるとともに、前記弁本体の下部前面側に、斜め上向きに、前記筒状弁室形成体が挿入される段付き穴が設けられ、該段付き穴の内周側で前記筒状弁室形成体の外周側に前記冷媒流入口が開口する冷媒流入室が形成されるとともに、該冷媒流入室と前記弁室とが前記筒状弁室形成体に設けられた透孔を介して連通せしめられていることを特徴とする請求項1に記載の電気式膨張弁。 A cylindrical valve chamber forming body having the rod-shaped valve body and the valve seat is disposed on the valve body drive source side, and the cylindrical valve chamber forming body is obliquely upward on the lower front side of the valve body. And a refrigerant inflow chamber is formed on the inner peripheral side of the stepped hole on the outer peripheral side of the cylindrical valve chamber forming body. The electric expansion valve according to claim 1, wherein the chamber and the valve chamber are communicated with each other through a through hole provided in the tubular valve chamber forming body. 前記段付き穴に、前記弁体駆動源と、前記筒状弁室形成体と、前記棒状弁体とからなる組立体が斜め上向きに取付固定されていることを特徴とする請求項2に記載の電気式膨張弁。   The assembly comprising the valve body drive source, the tubular valve chamber forming body, and the rod-shaped valve body is attached and fixed obliquely upward in the stepped hole. Electric expansion valve. 前記段付き穴における前記弁口より下流側に冷媒流出室が設けられるとともに、該冷媒流出室と前記冷媒流出口とが直線状の縦孔により連通せしめられていることを特徴とする請求項2又は3に記載の電気式膨張弁。   The refrigerant outflow chamber is provided downstream of the valve port in the stepped hole, and the refrigerant outflow chamber and the refrigerant outflow port are communicated with each other by a straight vertical hole. Or the electric type expansion valve of 3. 前記弁体駆動源として、電動モータを主要部とする電動式アクチュエータが使用されていることを特徴とする請求項1から4のいずれか一項に記載の電気式膨張弁。 The electric expansion valve according to any one of claims 1 to 4, wherein an electric actuator mainly including an electric motor is used as the valve body drive source. 前記弁体駆動源として、ソレノイドを主要部とする電磁式アクチュエータが使用されていることを特徴とする請求項1から4のいずれか一項に記載の電気式膨張弁。 The electric expansion valve according to any one of claims 1 to 4, wherein an electromagnetic actuator having a solenoid as a main part is used as the valve body drive source.
JP2012006041A 2012-01-16 2012-01-16 Electric expansion valve Active JP5851253B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012006041A JP5851253B2 (en) 2012-01-16 2012-01-16 Electric expansion valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012006041A JP5851253B2 (en) 2012-01-16 2012-01-16 Electric expansion valve

Publications (2)

Publication Number Publication Date
JP2013145089A JP2013145089A (en) 2013-07-25
JP5851253B2 true JP5851253B2 (en) 2016-02-03

Family

ID=49040967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012006041A Active JP5851253B2 (en) 2012-01-16 2012-01-16 Electric expansion valve

Country Status (1)

Country Link
JP (1) JP5851253B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6700974B2 (en) * 2016-05-25 2020-05-27 株式会社不二工機 Electric expansion valve
EP3839306A4 (en) * 2018-11-28 2022-06-22 Zhejiang Sanhua Intelligent Controls Co., Ltd. Electric valve and thermal management assembly

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001141336A (en) * 1999-11-16 2001-05-25 Izumi Giken:Kk Motor expansion valve
JP4153277B2 (en) * 2002-09-25 2008-09-24 株式会社不二工機 Electric expansion valve
US7240694B2 (en) * 2004-07-09 2007-07-10 Danfoss A/S Flow control valve for refrigeration system
JP4351622B2 (en) * 2004-12-06 2009-10-28 株式会社鷺宮製作所 Flow control valve, expansion valve for refrigeration cycle apparatus, and refrigeration cycle apparatus
WO2007130769A2 (en) * 2006-03-31 2007-11-15 Parker-Hannifin Corporation Electronic block valve
JP2008051147A (en) * 2006-08-22 2008-03-06 Saginomiya Seisakusho Inc Flow control valve and air conditioner incorporating this

Also Published As

Publication number Publication date
JP2013145089A (en) 2013-07-25

Similar Documents

Publication Publication Date Title
JP6194157B2 (en) Motorized valve
JP3145048U (en) Electric expansion valve and refrigeration cycle
US8763419B2 (en) Motor-operated valve and refrigeration cycle using the same
JP5390181B2 (en) Expansion valve, heat pump refrigeration cycle and air conditioner
JP5572330B2 (en) Motorized valve
JP4570473B2 (en) Valve device and refrigeration cycle device
JP6182363B2 (en) Expansion valve
EP3249322B1 (en) Electric expansion valve
KR20200006090A (en) Method of manufacturing electronic expansion valves, thermal management assemblies, cooling systems, and electronic expansion valves
JP4570484B2 (en) Composite valve, heat pump type air conditioner and control method thereof
EP2479520B1 (en) Three-way electromagnetic valve
JP5851253B2 (en) Electric expansion valve
JP2010121831A (en) Refrigerating cycle
JP2007211701A (en) Flow rate detection device in variable displacement compressor
JP6018807B2 (en) Expansion valve
KR100375454B1 (en) Electronic expansion valve of air conditioner system for automobile
KR101397897B1 (en) Air conditioner and method thereof
JP2007211703A (en) Flow rate detection device in variable displacement compressor
JP5256006B2 (en) Expansion valve and refrigeration cycle
JP2010249247A (en) Motor-operated valve and refrigeration cycle using the same
JP6194403B2 (en) Motorized valve
CN105673499A (en) Float-type transmitter and compressor and multi-split air-conditioning system adopting same
JP2008209019A (en) Oil quantity measuring device
JP2011133157A (en) Expansion valve
JP4648692B2 (en) Switching valve device for compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141017

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151202

R150 Certificate of patent or registration of utility model

Ref document number: 5851253

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250