JP5848224B2 - Creep damage evaluation method for nozzle welds - Google Patents

Creep damage evaluation method for nozzle welds Download PDF

Info

Publication number
JP5848224B2
JP5848224B2 JP2012227070A JP2012227070A JP5848224B2 JP 5848224 B2 JP5848224 B2 JP 5848224B2 JP 2012227070 A JP2012227070 A JP 2012227070A JP 2012227070 A JP2012227070 A JP 2012227070A JP 5848224 B2 JP5848224 B2 JP 5848224B2
Authority
JP
Japan
Prior art keywords
boiler
nozzle
creep damage
temperature
creep
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012227070A
Other languages
Japanese (ja)
Other versions
JP2014081086A (en
Inventor
後藤 弘樹
弘樹 後藤
中馬 康晴
康晴 中馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2012227070A priority Critical patent/JP5848224B2/en
Publication of JP2014081086A publication Critical patent/JP2014081086A/en
Application granted granted Critical
Publication of JP5848224B2 publication Critical patent/JP5848224B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating And Analyzing Materials By Characteristic Methods (AREA)

Description

本発明は、ボイラの管寄せに溶接されたボイラ管群の溶接部のクリープ損傷度を評価する方法に関する。   The present invention relates to a method for evaluating the degree of creep damage of a welded portion of a boiler tube group welded to a header of a boiler.

火力発電プラントに設けられたボイラ設備では、運転温度の上昇や、起動発停の頻度増加など、運転条件が厳しくなりつつある。管寄せと管寄せに接続されて管台を構成するボイラ管群との溶接部付近は、熱応力、内圧及び自重による曲げ応力等が付加する厳しい応力環境下にあるため、クリープ損傷の評価が不可欠となっている。従来、管台のクリープ解析は、非破壊検査によるクリープ損傷評価や、有限要素法を用いたクリープ損傷評価が行われてきた。しかし、これらのクリープ解析は、管台を構成するボイラ管1本を対象とした局所的な評価であり、これらのクリープ解析を数百本のボイラ管からなる管台全体の損傷評価に適用することはできない。   In boiler facilities installed in thermal power plants, operating conditions are becoming stricter, such as an increase in operating temperature and an increase in the frequency of starting and stopping. Since the vicinity of the welded part between the header and the boiler tube group connected to the header is under a severe stress environment to which thermal stress, internal pressure and bending stress due to its own weight are added, creep damage is evaluated. It has become indispensable. Conventionally, creep analysis of a nozzle has been performed by creep damage evaluation by nondestructive inspection or creep damage evaluation by a finite element method. However, these creep analyzes are local evaluations for one boiler pipe constituting the nozzle, and these creep analyzes are applied to damage evaluation of the entire nozzle nozzle composed of several hundred boiler pipes. It is not possible.

図9は、ボイラ炉の全体構成を模式的に示している。ボイラ炉100の壁は水が流れる炉壁管で構成され、ボイラ炉100の下部には、燃料や燃焼用空気が供給されるバーナ風箱111が炉壁の四隅に設けられている。ボイラ炉上部の煙道102には、通常複数の過熱器や再熱器が設けられている。図では、このうち最終段の過熱器106のみを図示している。過熱器106は、入口管寄せ108a及び出口管寄せ108bと、これらに接続されたボイラ管群110とで構成されている。バーナ風箱111付近で形成された燃焼ガスgは、例えば、図示のように旋回しながら上昇し、炉壁管を加熱すると共に、煙道102に配置されたボイラ管群110を加熱する。   FIG. 9 schematically shows the overall configuration of the boiler furnace. The wall of the boiler furnace 100 is composed of a furnace wall tube through which water flows, and burner wind boxes 111 to which fuel and combustion air are supplied are provided at the four corners of the furnace wall at the lower part of the boiler furnace 100. The flue 102 above the boiler furnace is usually provided with a plurality of superheaters and reheaters. In the figure, only the superheater 106 at the final stage is shown. The superheater 106 includes an inlet header 108a and an outlet header 108b, and a boiler tube group 110 connected thereto. The combustion gas g formed in the vicinity of the burner wind box 111 rises while swirling as shown in the figure, for example, heats the furnace wall tube and heats the boiler tube group 110 arranged in the flue 102.

図10(A)に示すように、入口管寄せ108a又は出口管寄せ108bは、ボイラ炉100の天井壁104より上方に配置され、ボイラ管群110はこれらから吊下され、天井壁104の上方で管台112を構成している。ボイラ管群110は天井壁104を貫通して、煙道102に配置されている。ボイラ管群110は図示しない支持部材によって支持されている。図10(B)に示すように、ボイラ管群110を構成するボイラ管114は、管台付根部位で入口管寄せ108a又は出口管寄せ108bに溶接されている。   As shown in FIG. 10A, the inlet header 108a or the outlet header 108b is arranged above the ceiling wall 104 of the boiler furnace 100, and the boiler tube group 110 is suspended from these, and above the ceiling wall 104. The nozzle 112 is constituted by the above. The boiler tube group 110 passes through the ceiling wall 104 and is disposed in the flue 102. The boiler tube group 110 is supported by a support member (not shown). As shown in FIG. 10 (B), the boiler tube 114 constituting the boiler tube group 110 is welded to the inlet header 108a or the outlet header 108b at the root portion of the nozzle base.

図11に示すように、管台112は、管寄せ108の周方向に向けて平面状に配置された10数本程度からなるパネル状管群116が、管寄せ108の軸方向へ数十列整列して構成されている。実際の管台では、ボイラ炉内での燃焼ガスの流れ状態によって、1パネル状管群116内でも温度差が発生し、管寄せ全体でも、軸方向で温度差が発生している。このような温度分布が発生しているため、厳密には、管台112を構成するボイラ管1本々々に加わる熱応力が異なってくる。そのため、ボイラ管群全体の管台溶接部wのクリープ損傷度を評価し、管理する必要がある。   As shown in FIG. 11, the nozzle 112 includes several dozen rows of panel-like tube groups 116 made up of about 10 or more arranged in a plane in the circumferential direction of the header 108 in the axial direction of the header 108. It is arranged and arranged. In an actual nozzle, a temperature difference occurs in the one-panel tube group 116 due to the flow state of the combustion gas in the boiler furnace, and a temperature difference also occurs in the axial direction in the entire header. Since such a temperature distribution is generated, strictly speaking, the thermal stress applied to each boiler tube constituting the nozzle 112 is different. Therefore, it is necessary to evaluate and manage the creep damage degree of the nozzle welded portion w of the entire boiler tube group.

特許文献1には、管台溶接部のクリープ損傷を評価する方法が開示されている。この表方法は、溶接部の使用温度、圧力及び形状に関するデータから該溶接部に加わる応力を算出し、算出した応力と使用材料の応力破断データとの関係から、溶接部のクリープ損傷率を求め、求めた損傷率を非破壊検査で求めた溶接部の損傷率に基づいて修正するようにしたものである。   Patent Document 1 discloses a method for evaluating creep damage of a welded portion of a nozzle. This table method calculates the stress applied to the weld from the data on the use temperature, pressure and shape of the weld, and obtains the creep damage rate of the weld from the relationship between the calculated stress and the stress rupture data of the material used. Then, the obtained damage rate is corrected based on the damage rate of the welded portion obtained by the nondestructive inspection.

特開平11−142399号公報JP-A-11-142399

特許文献1に開示された評価方法は、管台を構成するボイラ管1本を対象とした局所的な評価であり、数百本のボイラ管群からなる管台全体の溶接部wの損傷評価を行うものではない。そのため、特許文献1に開示された評価方法を管台全体の溶接部の損傷評価に適用した場合、単純計算でボイラ管の本数倍の時間を要することになる。従って、特許文献1の評価方法を管台全体の損傷評価にそのまま適用することは困難である。   The evaluation method disclosed in Patent Document 1 is a local evaluation for one boiler pipe constituting the nozzle, and the damage evaluation of the welded portion w of the entire nozzle including a group of several hundred boiler tubes. Is not something to do. Therefore, when the evaluation method disclosed in Patent Document 1 is applied to damage evaluation of the welded portion of the entire nozzle, the time required for the number of boiler tubes by simple calculation is required. Therefore, it is difficult to apply the evaluation method of Patent Document 1 as it is to damage evaluation of the entire nozzle.

本発明は、かかる従来技術の課題に鑑み、管台を構成するボイラ管群の管寄せとの溶接部全体を対象としたクリープ解析を行うと共に、ボイラ管1本毎にきめ細かい損傷評価を可能とすることを目的とする。   In view of the problems of the related art, the present invention enables creep analysis for the entire welded portion of the header of the boiler tube group constituting the nozzle and enables detailed damage evaluation for each boiler tube. The purpose is to do.

かかる目的を達成するため、本発明の管台溶接部のクリープ損傷評価方法は、管寄せに溶接されて管台を構成するボイラ管群が、平面状に配置されたパネル状管群が管寄せの軸方向に多数列に配置されたボイラ管群であり、管寄せとボイラ管群との溶接部のクリープ損傷度を評価するボイラ管台のクリープ損傷評価方法において、管寄せに接続されたボイラ管のうち、異なる温度域毎に複数の代表ボイラ管を選定し、代表ボイラ管の温度を検出する第1工程と、管台を流れる蒸気の状態値を検出し、溶接部周囲の燃焼ガスの流動状態を考慮し、第1工程で検出した代表ボイラ管の温度から、溶接部の温度分布を推定する第2工程と、溶接部の温度分布と各ボイラ管に加わる荷重とから、ボイラ管毎にボイラ管に加わる応力パターンを選定する第3工程と、第2工程で推定した温度分布と、第3工程で選定した応力パターンとからクリープ解析を行い、ボイラ管毎にクリープ損傷度を評価する第4工程とからなるものである。   In order to achieve this object, the creep damage evaluation method for a welded base of the present invention includes a panel of tubular tubes arranged in a plane, wherein the boiler tube group that is welded to the header and forms the nozzle is formed. Boiler tube group arranged in multiple rows in the axial direction of the Among the pipes, a plurality of representative boiler pipes are selected for different temperature ranges, the first step of detecting the temperature of the representative boiler pipes, the state value of the steam flowing through the nozzles, and the combustion gas around the weld For each boiler tube, the second step of estimating the temperature distribution of the welded portion from the temperature of the representative boiler tube detected in the first step in consideration of the flow state, and the temperature distribution of the welded portion and the load applied to each boiler tube. The stress pattern applied to the boiler tube And third step, the temperature distribution estimated in the second step, performed creep analysis and a stress pattern selected in the third step, is made of a fourth step of evaluating creep damage degree for each boiler tubes.

第1工程では、管台を構成する多数のボイラ管から、管寄せの軸方向及び1パネル状管群の中で、異なる温度域毎に複数の代表ボイラ管を選定し、これらの温度を計測する。ボイラ管群全体の温度分布は、燃焼ガスの流れ状態に左右される。燃焼ガスの流れ状態は、バーナ風箱の位置や、燃料や空気の噴射方向等で異なる。例えば、図8に示すように、四隅の配置されたバーナ風箱111の噴射方向を中央の仮想円に対して接線方向へ向けることで、旋回流を形成できる。これによって、炉壁管を均一に加熱できる。   In the first step, a number of representative boiler pipes are selected for each different temperature range in the axial direction of the header and one panel-like pipe group from the many boiler pipes that make up the nozzle, and these temperatures are measured. To do. The temperature distribution of the entire boiler tube group depends on the flow state of the combustion gas. The flow state of the combustion gas varies depending on the position of the burner wind box, the injection direction of fuel and air, and the like. For example, as shown in FIG. 8, a swirl flow can be formed by directing the jet direction of the burner wind box 111 arranged at the four corners in a tangential direction with respect to the central virtual circle. Thereby, the furnace wall tube can be heated uniformly.

第2工程では、管台を流れる蒸気の状態値を検出し、該状態値に基づき、かつ燃焼ガスの流動状態を考慮することで、温度分布の推定精度を向上できる。管台を構成するボイラ管には、内部を流れる流体によって加わる内圧による応力や、熱応力及び自重によって付加される曲げ応力、圧縮応力又は引張応力等が付加される。これらの応力はボイラ管毎に異なるので、第3工程では、ボイラ管1本毎に、管台に加わる応力パターンを選定する。   In the second step, the state value of the steam flowing through the nozzle is detected, and the estimation accuracy of the temperature distribution can be improved based on the state value and considering the flow state of the combustion gas. The boiler tube constituting the nozzle is subjected to stress due to internal pressure applied by the fluid flowing inside, bending stress, compressive stress, tensile stress or the like applied by thermal stress and its own weight. Since these stresses are different for each boiler tube, in the third step, a stress pattern applied to the nozzle is selected for each boiler tube.

このように選定した温度分布及び応力パターンに基づいて、クリープ解析を行う。このクリープ解析は従来公知のクリープ解析、例えば、有限要素法を用いたクリープ解析を行う。そして、このクリープ解析結果から各ボイラ管の管台溶接部のクリープ損傷度を求める。これによって、管台を構成する多数のボイラ管のクリープ損傷度を1本毎にきめ細かく推定できる。   Creep analysis is performed based on the temperature distribution and stress pattern thus selected. This creep analysis is a conventionally known creep analysis, for example, a creep analysis using a finite element method. And the creep damage degree of the nozzle weld part of each boiler pipe is calculated | required from this creep analysis result. Thereby, the creep damage degree of many boiler pipes constituting the nozzle can be estimated finely for each pipe.

本発明の第2工程は、管台を流れる蒸気の温度、総流量(管台全体の流量)及び圧力を検出する第1ステップと、例えば、数値流体力学(CFD)を応用し、溶接部周囲の燃焼ガス通路を格子状に区分けし、流れ方程式の近似解から格子毎に燃焼ガスの圧力、流速及び密度を近似的に求める第2ステップと、第1ステップで検出した検出値、及び第2ステップで求めた燃焼ガスの流動状態値から、各ボイラ管を流れる蒸気の温度、流量、及び各ボイラ管に伝達される熱流速を算出する第3ステップと、第3ステップで算出した算出値から、管台全体の温度分布を推定する第4ステップと、第1工程で検出した代表ボイラ管の温度から、第4ステップで推定した管台全体の温度分布を修正する第5ステップとから構成するとよい。これによって、溶接部の温度分布を精度良く推定できる。   The second step of the present invention applies the first step of detecting the temperature of the steam flowing through the nozzle, the total flow rate (flow rate of the entire nozzle) and the pressure, for example, computational fluid dynamics (CFD) and The combustion gas passages are divided into grids, and the second step for approximately obtaining the pressure, flow velocity and density of the combustion gas for each grid from the approximate solution of the flow equation, the detected value detected in the first step, and the second From the flow state value of the combustion gas obtained in the step, the third step for calculating the temperature and flow rate of the steam flowing through each boiler pipe, and the heat flow rate transmitted to each boiler pipe, and the calculated value calculated in the third step The fourth step is to estimate the temperature distribution of the entire nozzle, and the fifth step is to correct the temperature distribution of the entire nozzle estimated in the fourth step from the temperature of the representative boiler pipe detected in the first step. Good. Thereby, the temperature distribution of the welded portion can be estimated with high accuracy.

本発明において、管台を構成するボイラ管に対して非破壊検査を併用し、非破壊検査で得られたクリープ損傷度と、第4工程で得られたクリープ損傷度とを比較し、第4工程で得られたクリープ損傷度を修正するとよい。これによって、本発明により推定したクリープ損傷度の精度を検証できると共に、本発明で推定するクリープ損傷度の精度を高めることができる。   In the present invention, the non-destructive inspection is used in combination with the boiler pipe constituting the nozzle, and the creep damage degree obtained by the non-destructive inspection is compared with the creep damage degree obtained in the fourth step. The creep damage obtained in the process should be corrected. Accordingly, the accuracy of the creep damage degree estimated according to the present invention can be verified, and the accuracy of the creep damage degree estimated according to the present invention can be increased.

また、本発明の第4工程で得られた溶接部のクリープ損傷度から、ボイラ管毎に余寿命を推定するとよい。これによって、管台を構成するボイラ管群の取替え箇所及び取替え時期を、ボイラ管1本毎にきめ細かく推定できる。従って、ボイラ管の取替えに要する手間及びコストを低減できる。   Moreover, it is good to estimate the remaining life for every boiler pipe | tube from the creep damage degree of the welding part obtained at the 4th process of this invention. Thereby, the replacement location and replacement time of the boiler tube group constituting the nozzle can be estimated in detail for each boiler tube. Therefore, the labor and cost required for replacing the boiler tube can be reduced.

本発明によれば、ボイラ管台を構成する多数のボイラ管のクリープ損傷度を1本毎にきめ細かく推定できる。これによって、ボイラ管の取替え時期を精度良く推定できるので、ボイラ管の使用期間を延ばすことができると共に、ボイラ管の取替えに要する手間及びコストを低減できる。   ADVANTAGE OF THE INVENTION According to this invention, the creep damage degree of many boiler pipes which comprise a boiler nozzle can be estimated finely for every one. As a result, it is possible to accurately estimate the replacement time of the boiler tube, so that it is possible to extend the usage period of the boiler tube and reduce the labor and cost required for replacement of the boiler tube.

本発明の一実施形態の全体工程を示すフロー図である。It is a flowchart which shows the whole process of one Embodiment of this invention. 前記実施形態で評価対象となった管寄せ及び管台を示し、(A)はその正面図であり、(B)はその側面図である。The header and the nozzle which became evaluation object in the said embodiment are shown, (A) is the front view, (B) is the side view. 前記実施形態における温度検出値を示す図表である。It is a graph which shows the temperature detection value in the said embodiment. 図1中のS12の各ステップを示すフロー図である。It is a flowchart which shows each step of S12 in FIG. 前記実施形態で推定されたパネル内温度分布を示す線図である。It is a diagram which shows the temperature distribution in a panel estimated in the said embodiment. 前記実施形態で推定された管寄せ軸方向の温度分布を示す線図である。It is a diagram which shows the temperature distribution of the header axis direction estimated in the said embodiment. 前記実施形態で非破壊検査方法を示す説明図である。It is explanatory drawing which shows the nondestructive inspection method in the said embodiment. 前記実施形態で、本発明による損傷率と非破壊検査による損傷率とを比較した線図である。In the said embodiment, it is the diagram which compared the damage rate by this invention, and the damage rate by a nondestructive inspection. ボイラ炉全体の斜視図である。It is a perspective view of the whole boiler furnace. (A)は管寄せ及び管台の正面図であり、(B)は管台の溶接部を示す一部拡大図である。(A) is a front view of a header and a nozzle, (B) is a partially enlarged view showing a welded portion of the nozzle. 管寄せの軸方向に温度分布を示す斜視図である。It is a perspective view which shows temperature distribution in the axial direction of a header.

以下、本発明を図に示した実施形態を用いて詳細に説明する。但し、この実施形態に記載されている構成部品の寸法、材質、形状、その相対配置などは特に特定的な記載がない限り、この発明の範囲をそれのみに限定する趣旨ではない。   Hereinafter, the present invention will be described in detail with reference to embodiments shown in the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the component parts described in this embodiment are not intended to limit the scope of the present invention to that unless otherwise specified.

本発明方法の一実施形態を図1〜図8に基づいて説明する。図1において、本実施形態では、管台12、特に溶接部wのクリープ損傷度を求める。まず、評価対象となる管台12を構成するボイラ管群の中から代表となるボイラ管を選定し、選定されたボイラ管の管台部分の温度を計測する(S10)。図2は評価対象となった管寄せ及び管台を示す。図2において、管寄せ10に接続されたボイラ管群は、軸方向に1〜56列のパネル状管群#1〜#56で構成されている。1つのパネル状管群は、管寄せ10の周方向に一平面をなすように配置された15個のボイラ管で構成されている。図中、中心線Oはボイラ中心を示し、Wは管台付根溶接領域を示す。   One embodiment of the method of the present invention will be described with reference to FIGS. In FIG. 1, in this embodiment, the creep damage degree of the nozzle 12, particularly the welded portion w is obtained. First, a representative boiler pipe is selected from the group of boiler pipes constituting the nozzle base 12 to be evaluated, and the temperature of the nozzle section of the selected boiler pipe is measured (S10). FIG. 2 shows the header and the nozzle for evaluation. In FIG. 2, the boiler tube group connected to the header 10 is composed of 1 to 56 rows of panel-like tube groups # 1 to # 56 in the axial direction. One panel-like tube group is composed of 15 boiler tubes arranged so as to form one plane in the circumferential direction of the header 10. In the figure, the center line O indicates the boiler center, and W indicates the nozzle root welding region.

図3は選定された代表ボイラ管の温度計測値を示す。代表ボイラ管は、管寄せ10の軸方向及び周方向に分散するように、即ち、管寄せ10の軸方向(パネル番号1〜56)及び1つのパネル状管群(管番号1〜15)の中で、異なる温度域に属するボイラ管14を選定する。図中に記載された数値は温度計測値(℃)を示し、温度計測値が記載されたボイラ管が選定された代表ボイラ管である。   FIG. 3 shows the measured temperature values of the selected representative boiler tubes. The representative boiler tubes are distributed in the axial direction and the circumferential direction of the header 10, that is, in the axial direction (panel numbers 1 to 56) of the header 10 and one panel-like tube group (tube numbers 1 to 15). Among them, the boiler tubes 14 belonging to different temperature ranges are selected. The numerical value described in the figure indicates a measured temperature value (° C.), and is a representative boiler tube in which the boiler tube in which the measured temperature value is described is selected.

次に、管寄せ10及び管台12の全体の熱伝導解析を行う(S12)。図4に示すように、この工程では、まず、ボイラ管14の上流側及び下流側に接続された管寄せにおける状態の温度及び圧力、及び管台12全体の総蒸気流量を検出する(S120)。次に、数値流体力学(CFD)を用い、溶接部wの周囲の燃焼ガス通路を格子状に区分けし、流れ方程式の近似解から格子毎に燃焼ガスの圧力、流速及び密度を近似的に求める(S122)。さらに、S120で検出した蒸気の状態値、及びS122で求めた燃焼ガスの流動状態値から、各ボイラ管14を流れる蒸気の温度、流量、及び各ボイラ管14に伝達される熱流速を算出する(S124)。   Next, the entire heat conduction analysis of the header 10 and the nozzle 12 is performed (S12). As shown in FIG. 4, in this step, first, the temperature and pressure of the state of the header connected to the upstream side and the downstream side of the boiler pipe 14 and the total steam flow rate of the entire nozzle 12 are detected (S120). . Next, using computational fluid dynamics (CFD), the combustion gas passage around the weld w is divided into a grid, and the pressure, flow velocity, and density of the combustion gas are approximately determined for each grid from the approximate solution of the flow equation. (S122). Further, the temperature and flow rate of the steam flowing through each boiler tube 14 and the heat flow rate transmitted to each boiler tube 14 are calculated from the state value of the steam detected at S120 and the flow state value of the combustion gas obtained at S122. (S124).

次に、S124で算出した算出値から、管台12全体の温度分布を推定する(S126)。
その後、S120で検出した代表ボイラ管の温度に基づいて、S126で推定した管台12全体の温度分布を修正する(S128)。図5は、こうして推定したパネル状管内の温度分布を示し、図6は、管寄せ10の軸方向の温度分布である。
Next, the temperature distribution of the entire nozzle 12 is estimated from the calculated value calculated in S124 (S126).
Thereafter, based on the temperature of the representative boiler pipe detected in S120, the temperature distribution of the entire nozzle 12 estimated in S126 is corrected (S128). FIG. 5 shows the temperature distribution in the panel tube thus estimated, and FIG. 6 shows the temperature distribution in the axial direction of the header 10.

次に、図1に戻り、ボイラ管1本毎にボイラ管に付加される応力パターンを選定する(S14)。ボイラ管には、内部を流れる流体によって付加される内圧と、高温雰囲気下で発生する熱応力と、自重によって付加される応力とが付加される。自重によって付加される応力は、圧縮応力、引張応力又は曲げ応力であり、ボイラ管毎に異なる。相対的に温度が高いボイラ管は熱伸びが大きいため、圧縮応力が付加される傾向にある。一方、相対的に温度が低いボイラ管は熱伸びが小さいため、引張応力が付加される傾向にある。そのため、温度が低いボイラ管のほうがクリープボイドが発生しやすくなるが、クリープ損傷は温度の影響が大きいため、どちらのクリープ損傷が大きくなるかは一概に言えない。即ち、応力と温度のバランスを的確に反映した評価が必要となる。   Next, returning to FIG. 1, a stress pattern applied to the boiler pipe is selected for each boiler pipe (S14). An internal pressure applied by the fluid flowing inside, a thermal stress generated in a high temperature atmosphere, and a stress applied by its own weight are added to the boiler tube. The stress applied by its own weight is a compressive stress, a tensile stress, or a bending stress, and is different for each boiler tube. A boiler tube having a relatively high temperature tends to be subjected to compressive stress because of its large thermal elongation. On the other hand, boiler tubes with relatively low temperatures tend to be subjected to tensile stress because of their low thermal elongation. For this reason, creep voids are more likely to occur in a boiler tube having a lower temperature. However, since creep damage is greatly affected by temperature, it cannot be generally determined which creep damage is greater. That is, an evaluation that accurately reflects the balance between stress and temperature is required.

次に、S12で推定した温度分布及びS14で選定した応力パターンに基づいて、管台全体のクリープ解析を行う(S16)。このクリープ解析は従来公知のクリープ解析法を用いる。例えば、S12で推定された温度分布により発生する熱応力、とその他の外力(内圧、自重による曲げ応力等の応力)による発生応力を含めてクリープ解析を行う。ここで、熱応力については、長時間保持により緩和挙動(時間の経過とともに応力値が徐々に低下する現象)を示す。そのため、熱応力については、緩和挙動を考慮した応力履歴を推定する。なお、緩和特性は材質によって決まる。   Next, based on the temperature distribution estimated in S12 and the stress pattern selected in S14, a creep analysis of the entire nozzle is performed (S16). This creep analysis uses a conventionally known creep analysis method. For example, the creep analysis is performed including the thermal stress generated by the temperature distribution estimated in S12 and the generated stress due to other external forces (stresses such as bending stress due to internal pressure and own weight). Here, the thermal stress exhibits relaxation behavior (a phenomenon in which the stress value gradually decreases with time) when held for a long time. Therefore, for thermal stress, a stress history that takes relaxation behavior into consideration is estimated. The relaxation characteristics are determined by the material.

内圧、自重により発生する応力については保持時間による変化は無いため、一定として緩和挙動を考慮した熱応力に足し合わせる。こうして得られた応力履歴と、管台12を構成する材料固有の公知のクリープ破断曲線より、時々刻々のクリープ損傷率を蓄積し、トータルのクリープ損傷率を算出する。   Since the stress generated by the internal pressure and its own weight does not change with the holding time, it is added to the thermal stress considering the relaxation behavior as a constant. From the stress history thus obtained and a known creep rupture curve specific to the material constituting the nozzle 12, the creep damage rate is accumulated every moment, and the total creep damage rate is calculated.

ここまでの工程で、管台全体のクリープ損傷率を求めることができるが、さらに、非破壊検査結果と比較検証し、非破壊検査に基づいて本実施形態で求めたクリープ損傷度を修正する。これによって、本実施形態で求めたクリープ損傷率の精度を高めることができる(S20)。以下、この検証の工程を説明する。図7は、本実施形態で行った非破壊検査方法を示す。まず、模擬試験体20を製作する。模擬試験体20は、実際の管寄せ10に見立てた板状試験体22に、実際のボイラ管に見立てた管体24を溶接して製作する。図7の溶接部wは、図10(B)の溶接部wに見立てている。   The creep damage rate of the entire nozzle can be obtained by the steps so far, and further, the creep damage rate obtained in the present embodiment is corrected based on the nondestructive inspection by comparing with the nondestructive inspection result. Thereby, the accuracy of the creep damage rate obtained in the present embodiment can be increased (S20). Hereinafter, the verification process will be described. FIG. 7 shows a nondestructive inspection method performed in the present embodiment. First, the mock test body 20 is manufactured. The simulated test body 20 is manufactured by welding a plate-like test body 22 that looks like an actual header 10 to a pipe body 24 that looks like an actual boiler pipe. The welded portion w in FIG. 7 is regarded as the welded portion w in FIG.

模擬試験体20を、実際のボイラ炉内と同じ温度雰囲気下に置き、管体24の先端に、矢印方向に周期的に荷重を付加した後で、溶接部wに発生するクリープボイドの個数密度を計測する。そして、計測したボイド個数密度からクリープ損傷率を求める。次に、実装置の管台でクリープボイドの個数密度を計測する。そして、模擬試験体20で求めたボイド個数密度とクリープ損傷率との関係(図7)から、実装置の管台14のクリープ損傷率を推定する。   The simulated test body 20 is placed in the same temperature atmosphere as that in the actual boiler furnace, and a load is periodically applied to the tip of the tube body 24 in the direction of the arrow. Measure. Then, the creep damage rate is obtained from the measured void number density. Next, the number density of creep voids is measured with the nozzle of the actual device. And the creep damage rate of the nozzle 14 of an actual apparatus is estimated from the relationship (FIG. 7) of the void number density calculated | required with the simulation test body 20. FIG.

図8は、こうして求めた本実施形態のクリープ損傷率を横軸に取り、模擬試験体20で求めたクリープ損傷率を縦軸に取った線図である。図中、□印は、実装置で本実施形態の評価方法によって求めたクリープ損傷率をプロットしたものである。△印は、従来の評価方法で求めたクリープ損傷率をプロットしたものである。即ち、管台を構成するボイラ管群のうち、1本のボイラ管のクリープ損傷率を求め、それから管台全体のクリープ損傷度を推定したものである。図から、従来の評価方法は、クリープ損傷率を高く推定しがちであることがわかる。そのため、管台を構成するボイラ管の取替え時期を短く推定しがちであり、その分取替えに要するコストが高くなっている。   FIG. 8 is a diagram in which the creep damage rate of the present embodiment obtained in this way is taken on the horizontal axis, and the creep damage rate obtained by the simulated specimen 20 is taken on the vertical axis. In the figure, □ marks plot the creep damage rate obtained by the evaluation method of the present embodiment using an actual device. The Δ mark plots the creep damage rate obtained by the conventional evaluation method. That is, the creep damage rate of one boiler pipe among the boiler pipe groups constituting the nozzle is obtained, and the creep damage degree of the entire nozzle is estimated from the obtained damage rate. From the figure, it can be seen that the conventional evaluation method tends to estimate the creep damage rate high. For this reason, it is easy to estimate the replacement time of the boiler pipe constituting the nozzle, and the cost required for the replacement is high.

図1に戻り、次に、S18で得たクリープ損傷率に基づいて、管台を構成するボイラ管12の予寿命を推定する(S24)。予寿命が十分であれば、経年監視とし(S24)、予寿命が十分でなければ、取替えを要するボイラ管及びその取替え時期を推定する(S26)。   Returning to FIG. 1, next, the pre-life of the boiler pipe 12 constituting the nozzle is estimated based on the creep damage rate obtained in S18 (S24). If the pre-life is sufficient, aging monitoring is performed (S24), and if the pre-life is not sufficient, the boiler pipe that requires replacement and its replacement time are estimated (S26).

本実施形態によれば、管寄せ10に設けられた管台12を構成するボイラ管群全体を評価対象とし、ボイラ管1本毎にきめ細かくクリープ損傷率を推定できる。その際、多数のボイラ管14から、管寄せ10の軸方向及び1パネル状管群の中で、異なる温度域毎に複数の代表ボイラ管を選定し、これらの計測値からボイラ管群全体の温度分布を推定するので、温度分布の推定精度を向上できる。この場合、数値流体力学(CFD)を用い、溶接部wの周囲の空間を格子状に区分けし、流れ方程式の近似解から格子毎に燃焼ガスの圧力、流速及び密度を近似的に求め、さらに、推定した温度分布を代表ボイラ管の計測値と照らして修正するので、ボイラ管群全体の温度分布を精度良く推定できる。   According to this embodiment, the whole boiler tube group which comprises the nozzle 12 provided in the header 10 is made into evaluation object, and a creep damage rate can be estimated finely for every boiler tube. At that time, a plurality of representative boiler pipes are selected for each different temperature range from the large number of boiler pipes 14 in the axial direction of the header 10 and the one-panel tube group, and the entire boiler tube group is determined from these measured values. Since the temperature distribution is estimated, the estimation accuracy of the temperature distribution can be improved. In this case, using computational fluid dynamics (CFD), the space around the weld w is divided into a grid, and the pressure, flow velocity, and density of the combustion gas are approximately determined for each grid from the approximate solution of the flow equation. Since the estimated temperature distribution is corrected in light of the measured value of the representative boiler tube, the temperature distribution of the entire boiler tube group can be estimated with high accuracy.

また、こうして推定した温度分布に基づいて、ボイラ管1本毎に応力パターンを設定しているので、1本のボイラ管のクリープ損傷率から管台全体のボイラ管のクリープ損傷率を推定する従来方法と比べて、ボイラ管1本毎にきめ細かいクリープ損傷率を推定できる。従って、ボイラ管1本毎に予寿命を正確に推定できて、ボイラ管の取替えに要する手間やコストを低減できる。   In addition, since a stress pattern is set for each boiler tube based on the temperature distribution thus estimated, the creep damage rate of the boiler tube of the entire nozzle is estimated from the creep damage rate of one boiler tube. Compared with the method, a fine creep damage rate can be estimated for each boiler tube. Therefore, the pre-life can be accurately estimated for each boiler tube, and the labor and cost required for replacing the boiler tube can be reduced.

また、本実施形態によって推定された溶接部wの損傷率から、ボイラ管毎に余寿命を推定できるので、管台を構成するボイラ管群の取替え箇所及び取替え時期を、ボイラ管1本毎にきめ細かく推定できる。   Moreover, since the remaining life can be estimated for each boiler pipe from the damage rate of the welded portion w estimated according to the present embodiment, the replacement location and replacement timing of the boiler pipe group constituting the nozzle are determined for each boiler pipe. It can be estimated in detail.

なお、本実施形態では、非破壊検査方法として、模擬試験体20を用いた非破壊検査を行った。代わりに、金属組織をレプリカ膜に写し取り、非破壊的に金属組織の変化を観察することで損傷度を診断するレプリカ法を用いるようにしてもよい。   In the present embodiment, as a nondestructive inspection method, a nondestructive inspection using the simulated specimen 20 was performed. Instead, a replica method of diagnosing the degree of damage by copying the metal structure on a replica film and observing changes in the metal structure nondestructively may be used.

本発明によれば、ボイラ管寄せの管台を構成する多数のボイラ管群の管寄せとの溶接部全体を対象とし、かつボイラ管1本毎のきめ細かいクリープ損傷評価が可能になる。   ADVANTAGE OF THE INVENTION According to this invention, the detailed creep damage evaluation for every boiler pipe is attained for the whole welding part with the header of many boiler pipe groups which comprise the nozzle head of a boiler header.

10,108 管寄せ
12,112 管台
14,114 ボイラ管
20 模擬試験体
22 板状試験体
24 管体
100 ボイラ炉
102 煙道
104 天井壁
106 過熱器
108a 入口管寄せ
108b 出口管寄せ
110 ボイラ管群
111 バーナ風箱
116 パネル状管群
O ボイラ中心
W 管台付根溶接領域
w 溶接部
#1〜#56 パネル状管群
10,108 header 12,112 nozzle 14,114 boiler tube 20 simulated test specimen 22 plate specimen 24 pipe 100 boiler furnace 102 flue 104 ceiling wall 106 superheater 108a inlet header 108b outlet header 110 boiler pipe Group 111 Burner-like box 116 Panel-shaped tube group O Boiler center W Tubular root welding region w Welded part # 1 to # 56 Panel-shaped tube group

Claims (4)

管寄せに溶接されて管台を構成するボイラ管群が、平面状に配置されたパネル状管群が管寄せの軸方向に多数列に配置されたボイラ管群であり、該管寄せと該ボイラ管群との溶接部のクリープ損傷度を評価する管台溶接部のクリープ損傷評価方法において、
前記管寄せに接続されたボイラ管のうち、異なる温度域毎に複数の代表ボイラ管を選定し、該代表ボイラ管の温度を検出する第1工程と、
前記管台を流れる蒸気の状態値を検出し、前記溶接部周囲の燃焼ガスの流動状態を考慮し、第1工程で検出した代表ボイラ管の温度から、該溶接部の温度分布を推定する第2工程と、
前記温度分布と各ボイラ管に加わる荷重とから、ボイラ管毎にボイラ管に加わる応力パターンを選定する第3工程と、
第2工程で推定した温度分布と、第3工程で選定した応力パターンとからクリープ解析を行い、ボイラ管毎にクリープ損傷度を評価する第4工程とからなることを特徴とする管台溶接部のクリープ損傷評価方法。
The boiler tube group which is welded to the header and forms the nozzle is a boiler tube group in which panel-like tube groups arranged in a plane are arranged in multiple rows in the axial direction of the header, In the creep damage evaluation method for the nozzle weld, which evaluates the creep damage of the weld with the boiler tube group,
A first step of selecting a plurality of representative boiler tubes for each different temperature range from the boiler tubes connected to the header, and detecting the temperature of the representative boiler tubes;
The state value of the steam flowing through the nozzle is detected, the flow state of the combustion gas around the weld is taken into account, and the temperature distribution of the weld is estimated from the temperature of the representative boiler tube detected in the first step. Two steps,
A third step of selecting a stress pattern applied to the boiler pipe for each boiler pipe from the temperature distribution and the load applied to each boiler pipe;
A nozzle welded portion comprising a fourth step of performing a creep analysis from the temperature distribution estimated in the second step and the stress pattern selected in the third step and evaluating the creep damage degree for each boiler tube Creep damage evaluation method.
前記第2工程は、
前記管台を流れる蒸気の温度、総流量及び圧力を検出する第1ステップと、
前記溶接部周囲の燃焼ガス通路を格子状に区分けし、流れ方程式の近似解から格子毎に燃焼ガスの圧力、流速及び密度を近似的に求める第2ステップと、
前記第1ステップで検出した検出値、及び前記第2ステップで求めた燃焼ガスの流動状態値から、各ボイラ管を流れる蒸気の温度、流量、及び各ボイラ管に伝達される熱流速を算出する第3ステップと、
前記第3ステップで算出した算出値から、管台全体の温度分布を推定する第4ステップと、
前記第1工程で検出した代表ボイラ管の温度から、前記第4ステップで推定した管台全体の温度分布を修正する第5ステップとからなることを特徴とする請求項1に記載の管台溶接部のクリープ損傷評価方法。
The second step includes
A first step of detecting the temperature, total flow rate and pressure of the steam flowing through the nozzle;
A second step of dividing the combustion gas passage around the weld into a grid, and approximately calculating the pressure, flow rate and density of the combustion gas for each grid from the approximate solution of the flow equation;
From the detected value detected in the first step and the flow state value of the combustion gas obtained in the second step, the temperature and flow rate of the steam flowing through each boiler pipe and the heat flow rate transmitted to each boiler pipe are calculated. The third step;
A fourth step of estimating the temperature distribution of the entire nozzle from the calculated value calculated in the third step;
2. The nozzle welding according to claim 1, further comprising a fifth step of correcting a temperature distribution of the entire nozzle estimated in the fourth step from the temperature of the representative boiler tube detected in the first step. Creep damage evaluation method for parts.
管台を構成するボイラ管に対して非破壊検査を行い、該非破壊検査で得られたクリープ損傷度と、前記第4工程で得られたクリープ損傷度とを比較し、第4工程で得られたクリープ損傷度を修正することを特徴とする請求項1に記載の管台溶接部のクリープ損傷評価方法。   A non-destructive inspection is performed on the boiler pipe constituting the nozzle, and the creep damage degree obtained in the non-destructive inspection is compared with the creep damage degree obtained in the fourth step. The creep damage evaluation method for a welded portion of a nozzle according to claim 1, wherein the creep damage degree is corrected. 前記第4工程で得られたクリープ損傷度から、ボイラ管毎に余寿命を推定することを特徴とする請求項1に記載の管台溶接部のクリープ損傷評価方法。   The creep damage evaluation method for a nozzle welded portion according to claim 1, wherein the remaining life is estimated for each boiler tube from the degree of creep damage obtained in the fourth step.
JP2012227070A 2012-10-12 2012-10-12 Creep damage evaluation method for nozzle welds Expired - Fee Related JP5848224B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012227070A JP5848224B2 (en) 2012-10-12 2012-10-12 Creep damage evaluation method for nozzle welds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012227070A JP5848224B2 (en) 2012-10-12 2012-10-12 Creep damage evaluation method for nozzle welds

Publications (2)

Publication Number Publication Date
JP2014081086A JP2014081086A (en) 2014-05-08
JP5848224B2 true JP5848224B2 (en) 2016-01-27

Family

ID=50785435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012227070A Expired - Fee Related JP5848224B2 (en) 2012-10-12 2012-10-12 Creep damage evaluation method for nozzle welds

Country Status (1)

Country Link
JP (1) JP5848224B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7206990B2 (en) * 2019-02-15 2023-01-18 株式会社Ihi Heat transfer tube damage detection device, boiler system, and heat transfer tube damage detection method
CN112580202B (en) * 2020-12-15 2024-05-17 西安西热电站信息技术有限公司 State evaluation method for high Wen Jixiang adapter tube and tube seat based on metal inspection

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3171285B2 (en) * 1993-05-18 2001-05-28 石川島播磨重工業株式会社 Creep damage evaluation method for heat transfer tubes.
JP3553259B2 (en) * 1996-02-13 2004-08-11 バブコック日立株式会社 Damage evaluation method of stub nozzle near boiler tube
JP3532448B2 (en) * 1999-04-06 2004-05-31 バブコック日立株式会社 Method and apparatus for evaluating remaining creep life of heat transfer tube

Also Published As

Publication number Publication date
JP2014081086A (en) 2014-05-08

Similar Documents

Publication Publication Date Title
US8591102B2 (en) Measuring device for a heat exchanger
CN109253870B (en) The assessment device and method in biomass fuel boiler heat-exchange tube service life
KR102236672B1 (en) Simulation Apparatus for Boiler Tube
JP2019534411A (en) System for measuring air mass flow into a gas turbine
CN113049376B (en) Creep fatigue damage assessment method for superheater tube plate
JP5380219B2 (en) Method for estimating metal temperature and life of boiler heat transfer tubes
KR101174469B1 (en) Life assessment method for piping
JP5848224B2 (en) Creep damage evaluation method for nozzle welds
Gaetani et al. Entropy wave generator for indirect combustion noise experiments in a high-pressure turbine
CN104596772A (en) Method and device for assessing air-oil mist mixed-state gaseous phase coking of aviation engine oil
KR101174280B1 (en) Tube defects monitoring method during post weld heat treatment for nuclear steam generator
Madejski et al. Analysis of fouling degree of individual heating surfaces in a pulverized coal fired boiler
JP4808110B2 (en) Damage assessment method
JP2010191494A (en) System and method for diagnosing remaining life of high temperature plant equipment
JP7142545B2 (en) Boiler tube leak diagnostic system and boiler tube leak diagnostic method
RU2546845C1 (en) Test device for low-endurance thermal fatigue of structural materials in gas flows
CN111684453A (en) Maintenance management menu determining method and equipment maintenance management method
JP7075256B2 (en) How to evaluate the remaining life of piping
Hannink et al. A coupled CFD-FEM strategy to predict thermal fatigue in mixing tees of nuclear reactors
Findeisen et al. Evaluation of numerical methods to predict temperature distributions of an experimentally investigated convection-cooled gas-turbine blade
Naď et al. Thermal load non-uniformity estimation for superheater tube bundle damage evaluation
Luque et al. A new experimental facility to investigate combustor-turbine interactions in gas turbines with multiple can combustors
Farrell et al. Crack growth monitoring on industrial plant using established electrical resistance scanner technology
KR102006828B1 (en) Erosion and high-temperature corrosion monitoring apparatus using the bimetal
JP4767184B2 (en) Soundness evaluation method for boiler pipes and attached pipes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151126

R151 Written notification of patent or utility model registration

Ref document number: 5848224

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees