JP5840116B2 - Secondary battery state estimation apparatus and method - Google Patents

Secondary battery state estimation apparatus and method Download PDF

Info

Publication number
JP5840116B2
JP5840116B2 JP2012256577A JP2012256577A JP5840116B2 JP 5840116 B2 JP5840116 B2 JP 5840116B2 JP 2012256577 A JP2012256577 A JP 2012256577A JP 2012256577 A JP2012256577 A JP 2012256577A JP 5840116 B2 JP5840116 B2 JP 5840116B2
Authority
JP
Japan
Prior art keywords
secondary battery
parameter
amount
state estimation
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012256577A
Other languages
Japanese (ja)
Other versions
JP2014105995A (en
Inventor
浩一 横山
浩一 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Furukawa Automotive Systems Inc
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Furukawa Automotive Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD., Furukawa Automotive Systems Inc filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2012256577A priority Critical patent/JP5840116B2/en
Priority to PCT/JP2013/080075 priority patent/WO2014080764A1/en
Publication of JP2014105995A publication Critical patent/JP2014105995A/en
Application granted granted Critical
Publication of JP5840116B2 publication Critical patent/JP5840116B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/16Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to battery ageing, e.g. to the number of charging cycles or the state of health [SoH]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/005Detection of state of health [SOH]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/60Navigation input
    • B60L2240/66Ambient conditions
    • B60L2240/662Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/80Time limits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/16Driver interactions by display
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/44Control modes by parameter estimation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Description

本発明は、二次電池の劣化状態を推定する状態推定装置及び方法の技術分野に関し、特に車両に搭載され、回生などによる充電や放電を行う二次電池の状態推定装置及び方法の技術分野に関する。   The present invention relates to a technical field of a state estimation device and method for estimating a deterioration state of a secondary battery, and more particularly to a technical field of a state estimation device and method for a secondary battery that is mounted on a vehicle and performs charging and discharging by regeneration or the like. .

近年、自動車において、走行の快適性の向上のために多くの電気デバイスが用いられており、このようなデバイスに電力の供給を行う鉛蓄電池などの二次電池の重要性が高まっている。自動車に搭載される二次電池においては、エンジン始動時に二次電池から種々のデバイスなどの負荷への電力の供給があるとともに、オルタネータから二次電池への電力の供給があり、充電および放電が繰り返し発生する。   In recent years, many electric devices are used in automobiles to improve driving comfort, and the importance of secondary batteries such as lead-acid batteries for supplying electric power to such devices is increasing. In a secondary battery mounted on an automobile, power is supplied from the secondary battery to a load such as various devices when the engine is started, and power is supplied from the alternator to the secondary battery. It occurs repeatedly.

一方で、二次電池は、充放電の繰り返しや、充放電が行われない状態での保存によって次第に劣化が進行し、動作時間が短くなることが知られている。自動車に搭載される二次電池は、例えば、電動ステアリングや電動ブレーキなどの自動車の走行に関する電装部品に対して電力の供給を行っているため、安全性の面からも、二次電池の劣化状態、言い換えれば、寿命を正確に知りたいとの要望が強く存在する。   On the other hand, it is known that the secondary battery gradually deteriorates due to repeated charge / discharge or storage without charge / discharge, and the operation time is shortened. Secondary batteries installed in automobiles, for example, supply power to electrical components related to automobile driving such as electric steering and electric brakes. In other words, there is a strong desire to know the lifespan accurately.

そこで、二次電池の充放電量を経時的に積算し、電池の総容量(Full Charge Capacity)の変化を把握することで電池の劣化状態を推定する方法が用いられることがある。例えば、充放電サイクルの回数に起因するサイクル劣化と、時間経過による電池の保存劣化とに基づいて、電池の劣化状態を推定する劣化推定装置が知られている(特許文献1)。この劣化推定装置によれば、積算された電池の充電量が、各時点において把握される二次電池の総容量に達した際に、充放電サイクルの回数に基づいて二次電池の総容量を補正する処理を行っている。更に、補正された二次電池の総容量に対して、充放電が行われない状態での保存劣化の度合いについて、環境温度に基づく補正を行うことで、二次電池の劣化状態の推定を行っている。   Therefore, a method of estimating the deterioration state of the battery by accumulating the charge / discharge amount of the secondary battery over time and grasping the change of the total battery capacity (Full Charge Capacity) may be used. For example, a degradation estimation device that estimates a degradation state of a battery based on cycle degradation caused by the number of charge / discharge cycles and storage degradation of the battery over time is known (Patent Document 1). According to this deterioration estimation device, when the accumulated charge amount of the battery reaches the total capacity of the secondary battery ascertained at each time point, the total capacity of the secondary battery is calculated based on the number of charge / discharge cycles. A correction process is performed. Furthermore, the deterioration state of the secondary battery is estimated by performing a correction based on the environmental temperature on the degree of storage deterioration when charging / discharging is not performed on the corrected total capacity of the secondary battery. ing.

特開2003−92836号公報Japanese Patent Laid-Open No. 2003-92936

ところで、特許文献1に開示される技術では、積算された充電量が、把握されている現時点の電池の総容量に達した際にサイクル量を加味した補正を電池の総容量に施していることから、電池が満充電にならないと電池容量の補正が行われない。今日の自動車においては、オルタネータの負荷を制御し、二次電池を満充電に至らない所定の充電量に収め、電池の長寿命化が図られている。このため、電池が満充電状態になりにくいため、上述の技術では電池の総容量の補正が行われず、結果として、総容量に誤差が生じやすいことを意味している。   By the way, in the technique disclosed in Patent Document 1, when the accumulated charge amount reaches the grasped current total capacity of the battery, the total capacity of the battery is corrected in consideration of the cycle amount. Therefore, the battery capacity is not corrected unless the battery is fully charged. In today's automobiles, the load of the alternator is controlled to keep the secondary battery in a predetermined charge amount that does not reach full charge, thereby extending the battery life. For this reason, since the battery is unlikely to be fully charged, the above-described technique does not correct the total capacity of the battery, and as a result, it means that the total capacity is likely to have an error.

また、環境温度による電池の保存劣化については、必ずしも温度の影響を受けないとの実験例がある。逆に、温度が高い状態で、電池の放充電が多い場合に、電池が劣化しやすいとの実験例もある。また、充放電を頻繁に行う二次電池においては、電気化学反応による極板表面でのイオンの生成・消滅反応、及び電解液の拡散や対流によるイオンの移動のそれぞれの影響を受け、二次電池の劣化が進行することも知られている。
したがって、特許文献1に開示された、二次電池の充放電サイクルによる電池容量の補正や、温度に基づく保存劣化量の検出のみでは、正確な電池の劣化状態を推定するには十分ではないとの技術的な問題があった。
In addition, there is an experimental example that battery storage deterioration due to environmental temperature is not necessarily influenced by temperature. On the other hand, there is an experiment example that the battery is likely to deteriorate when the battery is discharged and charged frequently at a high temperature. In secondary batteries that are charged and discharged frequently, the secondary battery is affected by the formation and annihilation reactions of ions on the electrode surface due to electrochemical reactions and the movement of ions due to diffusion and convection of the electrolyte. It is also known that battery deterioration proceeds.
Therefore, the correction of the battery capacity by the charge / discharge cycle of the secondary battery and the detection of the storage deterioration amount based on the temperature disclosed in Patent Document 1 are not sufficient for accurately estimating the deterioration state of the battery. There was a technical problem.

本発明は、上述した技術的な問題点に鑑み為されたものであり、二次電池の劣化状態を高精度に推定し得る二次電池の状態推定装置及び方法を提供することを課題とする。   The present invention has been made in view of the above-described technical problems, and an object of the present invention is to provide a secondary battery state estimation device and method that can estimate the deterioration state of a secondary battery with high accuracy. .

上記課題を解決するために、本発明に係る二次電池の状態推定装置は、車両に搭載される二次電池の劣化状態を推定する二次電池の状態推定装置であって、第1検出手段と、第2検出手段と、補正手段と、推定手段とを備える。   In order to solve the above problems, a state estimation device for a secondary battery according to the present invention is a state estimation device for a secondary battery that estimates a deterioration state of a secondary battery mounted on a vehicle, and includes first detection means. And a second detection means, a correction means, and an estimation means.

第1検出手段は、二次電池の劣化に直接的に影響する使用状況に係るパラメータである第1パラメータを検出する手段である。具体的には、第1検出手段は、前記二次電池の充電が行われている充電時間、放電が行われている放電時間、前記二次電池の充電量、放電量、内部抵抗、減液量、前記車両が走行している走行時間及び前記車両が停止している停止時間の少なくとも一つを第1パラメータとして検出する。例えば、第1検出手段は、電力系統に配置される電圧検出手段及び電流検出手段、ECU(Engine Control Unit)から走行あるいは停止の情報を得る情報通信手段、並びにこれらの手段により得られた情報を処理可能なマイコンなど処理装置を含んでなる。   The first detection means is means for detecting a first parameter that is a parameter relating to a use situation that directly affects the deterioration of the secondary battery. Specifically, the first detection means includes a charging time during which the secondary battery is charged, a discharging time during which the secondary battery is discharged, a charging amount, a discharging amount, an internal resistance, and a liquid reduction of the secondary battery. At least one of an amount, a travel time during which the vehicle is traveling, and a stop time during which the vehicle is stopped is detected as a first parameter. For example, the first detection means includes voltage detection means and current detection means arranged in the power system, information communication means for obtaining information on running or stopping from an ECU (Engine Control Unit), and information obtained by these means. It includes a processing device such as a processable microcomputer.

第2検出手段は、二次電池の劣化に間接的に影響する、保存劣化や分極、成層化、電流変化率などのパラメータである第2パラメータを検出する手段である。具体的には、第2検出手段は、前記二次電池の充電率、該二次電池の温度と該二次電池の周囲の気温との温度差、成層化量、分極量及び所定時間あたりの電流変化率の少なくとも一つを第2パラメータとして検出する。例えば、第2検出手段は、温度検出手段、電圧検出手段、電流検出手段など、二次電池に取り付けられるセンサ類と、各センサにおいて検出された情報を処理可能なマイコンなど処理装置を含んでなる。   The second detection means is means for detecting a second parameter that is a parameter such as storage deterioration, polarization, stratification, and current change rate that indirectly affects the deterioration of the secondary battery. Specifically, the second detection means includes a charging rate of the secondary battery, a temperature difference between the temperature of the secondary battery and an ambient temperature of the secondary battery, a stratification amount, a polarization amount, and a predetermined time. At least one of the current change rates is detected as the second parameter. For example, the second detection means includes sensors attached to the secondary battery, such as temperature detection means, voltage detection means, and current detection means, and a processing device such as a microcomputer that can process information detected by each sensor. .

補正手段は、前記第2パラメータを用いて、前記第1パラメータを補正する、例えば、マイコンなど処理装置である。推定手段は、前記補正された第1パラメータに基づいて、前記二次電池の劣化度の推定を行う、例えば、マイコンなどの処理装置である。   The correcting means is a processing device such as a microcomputer that corrects the first parameter using the second parameter. The estimation means is a processing device such as a microcomputer that estimates the deterioration degree of the secondary battery based on the corrected first parameter.

上述した構成により、本発明の二次電池の状態推定装置は、二次電池の状態を示す第2パラメータを用いて、二次電池の使用状況を示す第1パラメータを補正したうえで、劣化度合いの推定を行っている。   With the configuration described above, the state estimation device for a secondary battery according to the present invention corrects the first parameter indicating the usage status of the secondary battery using the second parameter indicating the state of the secondary battery, and then the degree of deterioration. Is estimated.

例えば、二次電池の充放電が行われない、車両の停止時などの不使用状態では、環境温度との温度差によって、経時的な劣化の進行度合いは異なる。また、二次電池の充電率が低い状態での使用時に、サルフェーションの発生などにより、正確な放電容量を検出できない虞がある。また、電解液を含む鉛蓄電池などの二次電池においては、分極や成層化、電解液の過度な減少などによって生じた充放電効率の低下を考慮したうえで、状態を推定することができる。また、鉛蓄電池の電解液の減液量が多くなると、電解液中の希硫酸濃度の上昇によって正極板の腐食劣化が促進され、電池の容量低下が進行することもある。また、電解液面の低下によって電極板が電解液から露出することによる放電容量の急激な低下や、負極板と負極板を集合溶接するストラップとの接続部の腐食などの劣化が生じることもある。   For example, in a non-use state such as when the secondary battery is not charged or discharged or when the vehicle is stopped, the degree of progress of deterioration with time varies depending on the temperature difference from the environmental temperature. Further, when the secondary battery is used in a state where the charging rate is low, there is a possibility that an accurate discharge capacity cannot be detected due to the occurrence of sulfation. Further, in a secondary battery such as a lead storage battery containing an electrolytic solution, the state can be estimated in consideration of a decrease in charge and discharge efficiency caused by polarization, stratification, excessive reduction of the electrolytic solution, and the like. In addition, when the amount of the electrolyte solution in the lead storage battery is increased, corrosion deterioration of the positive electrode plate is promoted due to an increase in the concentration of dilute sulfuric acid in the electrolyte solution, and the battery capacity may decrease. In addition, due to the decrease in the electrolyte surface, the discharge capacity may be drastically reduced due to the electrode plate being exposed from the electrolyte, and the deterioration of the connection between the negative electrode plate and the strap that collectively welds the negative electrode plate may occur. .

本発明の二次電池の状態推定装置によれば、計測された充放電時間、走行時間、停止時間、充放電電気量、内部抵抗及び減液量など、二次電池の使用状況を示すパラメータを第1パラメータとし、上述した二次電池の状態に係る第2パラメータを用いて、第1パラメータを逐次補正している。状態推定装置は、補正した第1パラメータについて、所定時間ごとに累積し、モデル式に当てはめることで、二次電池の容量変化率を算出している。このような処理のため、正確な二次電池の劣化状態の推定を実現できる。   According to the secondary battery state estimation apparatus of the present invention, parameters indicating the usage status of the secondary battery, such as the measured charge / discharge time, travel time, stop time, charge / discharge electricity amount, internal resistance and liquid reduction amount, are provided. The first parameter is sequentially corrected using the second parameter relating to the state of the secondary battery described above as the first parameter. The state estimation device calculates the capacity change rate of the secondary battery by accumulating the corrected first parameter every predetermined time and applying it to the model formula. Due to such processing, it is possible to accurately estimate the deterioration state of the secondary battery.

本発明に係る二次電池の状態推定装置の一の態様では、前記第1検出手段は、前記第1パラメータを所定周期毎に検出し、前記第2検出手段は、前記第2パラメータを前記所定周期毎に検出する。前記補正手段は、最新の周期において検出された前記第2パラメータを用いて、最新の周期において検出された前記第1パラメータを補正する。前記推定手段は、前記補正された第1パラメータのうち、前記充電時間、前記放電時間、前記充電量、前記放電量、前記走行時間及び前記停止時間について、前回の周期までの累積値に加算した上で、該累積値を前記二次電池の劣化度の推定に用いる。   In one aspect of the state estimation device for a secondary battery according to the present invention, the first detection means detects the first parameter at predetermined intervals, and the second detection means detects the second parameter as the predetermined parameter. Detect every cycle. The correction means corrects the first parameter detected in the latest cycle by using the second parameter detected in the latest cycle. The estimation unit adds the charging time, the discharging time, the charging amount, the discharging amount, the traveling time, and the stopping time among the corrected first parameters to an accumulated value up to the previous cycle. Above, the accumulated value is used to estimate the degree of deterioration of the secondary battery.

この態様によれば、二次電池の充放電に係る情報を経時的に累積することで、二次電池の劣化度合いを正確に推定することができる。このとき、累積される第1パラメータの各検出値について、二次電池の劣化の度合いを示す第2パラメータを用いた補正が行われるため、より精度の高い推定が可能となる。   According to this aspect, the degree of deterioration of the secondary battery can be accurately estimated by accumulating information related to charging / discharging of the secondary battery over time. At this time, since each of the accumulated detection values of the first parameter is corrected using the second parameter indicating the degree of deterioration of the secondary battery, more accurate estimation is possible.

本発明に係る二次電池の状態推定装置の他の態様では、前記推定手段は、前記補正された第1パラメータのそれぞれについて、前記二次電池の特性に応じた重み付けを行ったうえで、前記二次電池の劣化度の推定を行う。   In another aspect of the state estimation device for a secondary battery according to the present invention, the estimation unit weights each of the corrected first parameters according to the characteristics of the secondary battery, and Estimate the degree of deterioration of the secondary battery.

この態様によれば、補正された第1パラメータのそれぞれについて、補正を行った後に、推定対象の二次電池の特性に応じた加重を行った上で、二次電池の状態の推定が行われる。これにより、例えば、二次電池の劣化への影響が大きいパラメータについては、推定時の影響を大きくし、二次電池の劣化への影響が小さいパラメータについては、推定時の影響を小さくした上で、劣化状態の推定を行うことができる。このようなパラメータ毎の状態推定への影響の大小については、二次電池の特性に応じて決定されるため、例えば、二次電池の種別や使用状態などを考慮した適切な劣化状態の推定を実現することができる。   According to this aspect, after correcting each of the corrected first parameters, the weight of the estimation target secondary battery is weighted, and then the state of the secondary battery is estimated. . As a result, for example, for parameters that have a large impact on secondary battery degradation, the impact at the time of estimation is increased, and for parameters that have a small impact on secondary battery degradation, the impact at the time of estimation is reduced. The deterioration state can be estimated. Since the magnitude of the influence on the state estimation for each parameter is determined according to the characteristics of the secondary battery, for example, an appropriate deterioration state estimation that considers the type and usage state of the secondary battery is performed. Can be realized.

本発明に係る二次電池の状態推定装置の他の態様では、前記二次電池の初期容量を取得する初期値取得手段を更に備え、前記補正手段は、前記二次電池の初期容量に対して、前記補正された第1パラメータを適用することで、前記二次電池の劣化度の推定を行う。   In another aspect of the state estimation device for a secondary battery according to the present invention, the battery further includes an initial value acquisition unit that acquires an initial capacity of the secondary battery, and the correction unit is configured to obtain an initial capacity of the secondary battery. The deterioration degree of the secondary battery is estimated by applying the corrected first parameter.

この態様の初期値取得手段は、例えば、二次電池の製造元が提供する初期容量を取得することや、二次電池の内部抵抗、電解液抵抗、極板の反応抵抗など、二次電池の内部状態を示すパラメータから算出することにより、二次電池の初期容量を高精度に取得する。このため、初期容量に基づく二次電池の劣化度合いの推定についても、高精度に実現することができる。   The initial value acquisition means of this aspect is, for example, the acquisition of the initial capacity provided by the manufacturer of the secondary battery, the internal resistance of the secondary battery, the electrolyte resistance, the reaction resistance of the electrode plate, etc. By calculating from the parameter indicating the state, the initial capacity of the secondary battery is obtained with high accuracy. For this reason, estimation of the degree of deterioration of the secondary battery based on the initial capacity can also be realized with high accuracy.

上記課題を解決するために、本発明に係る二次電池の状態推定装置は、車両に搭載される二次電池の劣化状態を推定する二次電池の状態推定装置であって、第1検出工程と、第2検出工程と、補正工程と、推定工程とを備える。   In order to solve the above problems, a state estimation device for a secondary battery according to the present invention is a state estimation device for a secondary battery that estimates a deterioration state of a secondary battery mounted on a vehicle, and includes a first detection step. And a second detection step, a correction step, and an estimation step.

第1検出工程では、上述した第1検出手段が行うものと同様の動作が行われる。第2検出工程では、上述した第2検出手段が行うものと同様の動作が行われる。推定工程では、上述した推定手段が行うものと同様の動作が行われる。補正工程では、上述した補正手段が行うものと同様の動作が行われる。なお、本発明の二次電池の状態推定方法は、上述した二次電池の状態推定装置が取り得る種々の態様と同様の態様を取り得る。   In the first detection step, the same operation as that performed by the first detection means described above is performed. In the second detection step, the same operation as that performed by the second detection means described above is performed. In the estimation step, the same operation as that performed by the estimation means described above is performed. In the correction process, an operation similar to that performed by the correction means described above is performed. The secondary battery state estimation method of the present invention can take the same aspects as the various aspects that the above-described secondary battery state estimation apparatus can take.

本発明の二次電池の状態推定装置によれば、二次電池の劣化状態を示す容量変化率を高精度に推定することができる。特に、電解液を含む鉛蓄電池などの二次電池においては、分極や成層化により生じた放電効率の低下を考慮したうえで、状態を推定することができる。   According to the state estimation device for a secondary battery of the present invention, it is possible to estimate the capacity change rate indicating the deterioration state of the secondary battery with high accuracy. In particular, in a secondary battery such as a lead storage battery containing an electrolytic solution, the state can be estimated in consideration of a decrease in discharge efficiency caused by polarization or stratification.

本発明の状態推定装置が搭載される車両の基本的な構成を示す概略図である。It is the schematic which shows the basic composition of the vehicle by which the state estimation apparatus of this invention is mounted. 本発明の状態推定装置が搭載される車両の電力系統の基本的な構成を示す概略図である。It is the schematic which shows the fundamental structure of the electric power system of the vehicle by which the state estimation apparatus of this invention is mounted. 本発明の状態推定装置の制御部の構成を示す概略図である。It is the schematic which shows the structure of the control part of the state estimation apparatus of this invention. 二次電池の状態推定における各パラメータの関係を示すテーブルである。It is a table which shows the relationship of each parameter in the state estimation of a secondary battery. 二次電池の状態推定の一連の処理の流れを示すフローチャートである。It is a flowchart which shows the flow of a series of processes of the state estimation of a secondary battery.

以下、本発明の実施の形態について、図面を参照して詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

(1)基本的な構成
はじめに、図1を参照して、本発明の二次電池の状態推定装置が搭載される車両の基本的な構成について説明する。図1は、本発明の二次電池の状態推定装置の一実施例である状態推定装置30と、該状態推定装置に接続される二次電池が搭載される車両1を示す概略図である。
(1) Basic Configuration First, a basic configuration of a vehicle on which the secondary battery state estimation device of the present invention is mounted will be described with reference to FIG. FIG. 1 is a schematic diagram showing a state estimation device 30 which is an embodiment of a state estimation device for a secondary battery of the present invention and a vehicle 1 on which a secondary battery connected to the state estimation device is mounted.

図1において、車両1は、エンジン10及び電力系統20を備える。エンジン10は、車両1の主たる動力源として、車両1の走行を実現する。   In FIG. 1, a vehicle 1 includes an engine 10 and an electric power system 20. The engine 10 realizes traveling of the vehicle 1 as a main power source of the vehicle 1.

電力系統20は、車両1に搭載されるECUや電装部品、該電装部品に電力を供給する二次電池である鉛蓄電池24及び該鉛蓄電池24を充電するオルタネータなどを含む電気回路である。また、電力系統20は、本発明の「状態推定装置」の一具体例である状態推定装置30を含む。   The electric power system 20 is an electric circuit including an ECU mounted on the vehicle 1, an electrical component, a lead storage battery 24 that is a secondary battery that supplies power to the electrical component, an alternator that charges the lead storage battery 24, and the like. The power system 20 includes a state estimation device 30 that is a specific example of the “state estimation device” of the present invention.

状態推定装置30と、該状態推定装置30が組み込まれる車両1の電力系統20の構成について、図2を参照して説明する。図2は、状態推定装置30と、該状態推定装置30が組み込まれる車両1の電力系統20を示すブロック図である。図示されるように、電力系統20は、状態推定装置30、鉛蓄電池24、オルタネータ26、スタータモータ28及び負荷29を含む。   The configuration of the state estimation device 30 and the power system 20 of the vehicle 1 in which the state estimation device 30 is incorporated will be described with reference to FIG. FIG. 2 is a block diagram showing the state estimation device 30 and the power system 20 of the vehicle 1 in which the state estimation device 30 is incorporated. As illustrated, the power system 20 includes a state estimation device 30, a lead storage battery 24, an alternator 26, a starter motor 28, and a load 29.

状態推定装置30は、後述するようにCPU(Central Processing Unit)、ROM(Read Only Memory)及びRAM(Random Access Memory)などのメモリを備え、車両1のエンジン10を始めとする各部の動作を制御可能な電子制御ユニットである。   The state estimation device 30 includes a memory such as a CPU (Central Processing Unit), a ROM (Read Only Memory), and a RAM (Random Access Memory) as will be described later, and controls the operation of each unit including the engine 10 of the vehicle 1. Possible electronic control unit.

状態推定装置30は、電圧センサ21、電流センサ22、及び温度センサ23に接続され、各センサからの出力を参照し、鉛蓄電池24の状態を検出する。電圧センサ21は、鉛蓄電池24の端子電圧を検出し、状態推定装置30に通知する。電流センサ22は、鉛蓄電池24に流れる電流を検出し、状態推定装置30に通知する。温度センサ23は、鉛蓄電池24の温度及び鉛蓄電池24の周囲の環境温度を検出し、状態推定装置30に通知する。   The state estimation device 30 is connected to the voltage sensor 21, the current sensor 22, and the temperature sensor 23, and detects the state of the lead storage battery 24 with reference to the output from each sensor. The voltage sensor 21 detects the terminal voltage of the lead storage battery 24 and notifies the state estimation device 30 of it. The current sensor 22 detects a current flowing through the lead storage battery 24 and notifies the state estimation device 30 of the current. The temperature sensor 23 detects the temperature of the lead storage battery 24 and the ambient temperature around the lead storage battery 24 and notifies the state estimation device 30 of the detected temperature.

状態推定装置30は、不図示のECUから車両1の速度、アクセル開度、スロットル開度、またはエンジン10の制御信号など、車両1が走行状態にあるか停止状態にあるかを示す情報を受け取り、各状態における経過時間である走行時間及び停止時間を計測する、本発明の「第1検出手段」の一具体例としての動作を実現する。   The state estimation device 30 receives information indicating whether the vehicle 1 is running or stopped, such as the speed of the vehicle 1, the accelerator opening, the throttle opening, or the control signal of the engine 10 from an ECU (not shown). The operation as a specific example of the “first detection means” of the present invention that measures the travel time and stop time, which are the elapsed time in each state, is realized.

鉛蓄電池24は、本発明の「二次電池」の一具体例であって、例えば、正極(陽極板)に二酸化鉛、負極(陰極板)に海綿状の鉛、電解液として希硫酸を用いた、液式鉛蓄電池である。鉛蓄電池24は、スタータモータ28及び負荷29に対して電力供給が可能となるよう接続されており、また、オルタネータ26による充電が可能となるよう接続される。   The lead storage battery 24 is a specific example of the “secondary battery” of the present invention. For example, lead dioxide is used for the positive electrode (anode plate), spongy lead is used for the negative electrode (cathode plate), and dilute sulfuric acid is used as the electrolyte. It is a liquid lead acid battery. The lead storage battery 24 is connected so that electric power can be supplied to the starter motor 28 and the load 29, and is connected so that charging by the alternator 26 is possible.

放電回路25は、例えば、直列接続された半導体スイッチと抵抗素子などを含む回路であって、状態推定装置30の制御に応じて、鉛蓄電池24の放電を実行し、その時の電流電圧挙動から状態推定装置30が内部抵抗を得る、いわゆるアクティブ方式により内部抵抗を測定するための回路である。内部抵抗を測定する手段としては、バッテリ充放電時(特にエンジンクランキング時など大電流放電時)の電流電圧挙動から内部抵抗を測定するパッシブ方式も存在し、本発明ではいずれの方式を用いることも可能である。   The discharge circuit 25 is, for example, a circuit including a semiconductor switch and a resistance element connected in series. The discharge circuit 25 discharges the lead storage battery 24 according to the control of the state estimation device 30, and the state is determined from the current voltage behavior at that time. This is a circuit for measuring the internal resistance by a so-called active method in which the estimation device 30 obtains the internal resistance. As a means for measuring the internal resistance, there is a passive method for measuring the internal resistance from the current-voltage behavior during battery charging / discharging (especially during engine cranking), and any method is used in the present invention. Is also possible.

オルタネータ26は、エンジン10によって駆動され、発生した交流電力を整流回路によって直流電力に変換し、鉛蓄電池24を充電する。
スタータモータ28は、例えば、直流回転電機であって、鉛蓄電池24から供給される電力によって回転力を発生し、エンジン10を始動する。
The alternator 26 is driven by the engine 10, converts the generated AC power into DC power by a rectifier circuit, and charges the lead storage battery 24.
The starter motor 28 is, for example, a DC rotating electric machine, and generates a rotational force by the electric power supplied from the lead storage battery 24 to start the engine 10.

負荷28は、例えば、電動ステアリングモータ、デフォッガ、イグニッションコイル、カーオーディオ、またはカーナビゲーションなど、鉛蓄電池24から供給される電力によって動作する車両1の電装部品である。   The load 28 is an electrical component of the vehicle 1 that is operated by electric power supplied from the lead storage battery 24, such as an electric steering motor, a defogger, an ignition coil, a car audio, or a car navigation.

なお、上述した構成は一例であって、本発明の「充電制御装置」は、車両1の電力系統20に備わる公知の構成を用いて実現してもよく、また既存の電力系統20に対して、上述した各構成を後発的に取り付けることでも実現可能である。   The above-described configuration is an example, and the “charge control device” of the present invention may be realized by using a known configuration provided in the power system 20 of the vehicle 1, and may be implemented with respect to the existing power system 20. This can also be realized by attaching each of the above-described configurations later.

図3は、図2に示される状態推定装置30の詳細な構成例を示す図である。図示されるように、状態推定装置30は、CPU(Central Processing Unit)30a、ROM(Read Only Memory)30b、RAM(Random Access Memory)30c、通信部30d、表示部30e、I/F(Interface)30fを有し、各部がバス30gによって接続されている。CPU30aは、ROM30bに格納されているプログラム30baに基づいて各部を制御する。ROM30bは、半導体メモリ等によって構成され、プログラム30ba等を格納している。RAM30cは、半導体メモリ等によって構成され、あらかじめ格納されるものや、プログラム30baを実行する際に生成されるものなどの各パラメータを格納するデータベース30caを格納する。通信部30dは、例えば、不図示のECUなどに接続され、通信により相互に情報を授受する。表示部30eは、例えば、液晶ディスプレイなどの表示装置であって、CPU30aから供給される情報を表示する。インタフェース30fは、電圧センサ22、電流センサ22、温度センサ23及びエンジン10から入力される信号をデジタル信号に変換して取り込む、情報入力用のインタフェースである。   FIG. 3 is a diagram showing a detailed configuration example of the state estimation device 30 shown in FIG. As illustrated, the state estimation device 30 includes a CPU (Central Processing Unit) 30a, a ROM (Read Only Memory) 30b, a RAM (Random Access Memory) 30c, a communication unit 30d, a display unit 30e, and an I / F (Interface). 30f and each part is connected by a bus 30g. The CPU 30a controls each unit based on a program 30ba stored in the ROM 30b. The ROM 30b is configured by a semiconductor memory or the like, and stores a program 30ba and the like. The RAM 30c is configured by a semiconductor memory or the like, and stores a database 30ca that stores parameters such as those stored in advance and those generated when the program 30ba is executed. The communication unit 30d is connected to, for example, an unillustrated ECU, and exchanges information with each other by communication. The display unit 30e is a display device such as a liquid crystal display, for example, and displays information supplied from the CPU 30a. The interface 30f is an information input interface that converts a signal input from the voltage sensor 22, the current sensor 22, the temperature sensor 23, and the engine 10 into a digital signal and takes it in.

状態推定装置30のCPU30aは、インタフェース30fを介して入力された情報を処理し、鉛蓄電池24の劣化状態の判定を行う、本発明の「補正手段」及び「推定手段」の一具体例としての処理を実行する。   The CPU 30a of the state estimation device 30 processes information input via the interface 30f and determines the deterioration state of the lead storage battery 24 as a specific example of the “correction unit” and “estimation unit” of the present invention. Execute the process.

(2)動作例
続いて、状態推定装置30の動作について説明する。
(2) Operation Example Next, the operation of the state estimation device 30 will be described.

状態推定装置30は、各センサから入力される情報に基づき、鉛蓄電池24の劣化状態を示すパラメータとして、例えば、容量変化率(ΔSOH:State Of Health)を推定する。   The state estimation device 30 estimates, for example, a capacity change rate (ΔSOH: State Of Health) as a parameter indicating the deterioration state of the lead storage battery 24 based on information input from each sensor.

具体的には、鉛蓄電池24の容量変化率ΔSOHの推定のために、状態推定装置30は、第1パラメータ群として、車両1の走行時間(t_run)、停止時間(t_stop)、二次電池2の充電時間(t_chg)、放電時間(t_dischg)、二次電池2の充電電気量(Ah_chg)、放電電気量(Ah_dischg)、内部抵抗(R)及び電解液の減液量(d_mass)のうち少なくとも一つを用いる。   Specifically, in order to estimate the capacity change rate ΔSOH of the lead storage battery 24, the state estimation device 30 includes, as the first parameter group, the travel time (t_run), stop time (t_stop), secondary battery 2 of the vehicle 1. Charging time (t_chg), discharging time (t_dischg), amount of charge of secondary battery 2 (Ah_chg), amount of discharge electricity (Ah_dischg), internal resistance (R), and amount of decrease in electrolyte (d_mass) Use one.

また、状態推定装置30は、第1パラメータ群の各パラメータを補正するために、第2パラメータ群となる、二次電池2の充電率(SOC)、温度(T_batt)、環境温度と二次電池の温度T_battとの温度差(ΔT)、成層化量(q_st)、分極量(q_OV)及び所定時間当たりの電流変化率(ΔI)のうち少なくとも一つを用いて補正パラメータA、B、C、・・・、Hを算出する。   In addition, the state estimation device 30 corrects each parameter of the first parameter group, and the charge rate (SOC), temperature (T_batt), environmental temperature, and secondary battery of the secondary battery 2 that become the second parameter group. Correction parameters A, B, C, at least one of a temperature difference (ΔT), a stratification amount (q_st), a polarization amount (q_OV), and a current change rate (ΔI) per predetermined time. ..., H is calculated.

第2パラメータ群として検出される各パラメータについて具体的に説明する。鉛蓄電池24の充電率SOCは、鉛蓄電池24の充電状態を示す指標である。充電率SOCが低い状態での放電時には、例えば、鉛蓄電池の電極板の表面においてサルフェーションが発生し、鉛蓄電池24の充放電効率が劣化することがある。このため、二次電池の充電率SOCを適宜把握し、補正パラメータとして用いることで、鉛蓄電池24の状態推定の精度を高めることができる。なお、状態推定装置30においては、鉛蓄電池24の開放端電圧と電流値とから充電率SOCの具体的な値を検知しているが、その他の何らかの手段によって検知されてもよい。   Each parameter detected as the second parameter group will be specifically described. The charge rate SOC of the lead storage battery 24 is an index indicating the state of charge of the lead storage battery 24. At the time of discharging in a state where the charging rate SOC is low, for example, sulfation may occur on the surface of the electrode plate of the lead storage battery, and the charge / discharge efficiency of the lead storage battery 24 may deteriorate. For this reason, the accuracy of state estimation of the lead storage battery 24 can be improved by appropriately grasping the charging rate SOC of the secondary battery and using it as a correction parameter. In the state estimation device 30, the specific value of the charging rate SOC is detected from the open-circuit voltage and the current value of the lead storage battery 24, but may be detected by some other means.

鉛蓄電池24の温度T_battは、温度センサによって検出される鉛蓄電池24自体の温度であり、環境温度との温度差ΔTは、鉛蓄電池24の周囲の気温と鉛蓄電池24の温度T_battとの温度差である。   The temperature T_batt of the lead storage battery 24 is the temperature of the lead storage battery 24 itself detected by the temperature sensor, and the temperature difference ΔT from the environmental temperature is the temperature difference between the ambient temperature of the lead storage battery 24 and the temperature T_batt of the lead storage battery 24. It is.

例えば、車両1の停止時など、充放電による鉛蓄電池24への電流の出入りが少ない場合には、環境温度が比較的に高い場合であっても、二次電池の劣化は比較的進行しにくい。他方で、例えば、車両1の走行時など、二次電池の環境温度が高く、且つ充放電による電流の出入りが多い場合、二次電池の劣化が比較的進行しやすくなる。鉛蓄電池24の温度T_batt及び温度差ΔTを定期的に把握し、補正パラメータとして用いることで、鉛蓄電池24の劣化状態推定の精度を高めることができる。   For example, when the current flowing into and from the lead storage battery 24 due to charging / discharging is small, such as when the vehicle 1 is stopped, the deterioration of the secondary battery is relatively difficult to proceed even when the environmental temperature is relatively high. . On the other hand, for example, when the environmental temperature of the secondary battery is high and the amount of current flowing in and out due to charging / discharging is high, such as when the vehicle 1 is traveling, deterioration of the secondary battery is relatively easy to proceed. By periodically grasping the temperature T_batt and the temperature difference ΔT of the lead storage battery 24 and using them as correction parameters, the accuracy of estimation of the deterioration state of the lead storage battery 24 can be improved.

成層化量q_stは、内部に硫酸を含む電解液を備える鉛蓄電池において、充放電中に生じた水と硫酸との比重差のため、電解液が不均一となる成層化の度合いを示す概念である。例えば、成層化量は、成層化が生じていない場合の鉛蓄電池の所定の放電電圧を基準電圧とし、基準電圧に対する放電電圧の比率などで表される。   The amount of stratification q_st is a concept indicating the degree of stratification in which the electrolyte solution becomes non-uniform due to the difference in specific gravity between water and sulfuric acid generated during charge and discharge in a lead storage battery including an electrolyte solution containing sulfuric acid inside. is there. For example, the amount of stratification is represented by the ratio of the discharge voltage to the reference voltage, using a predetermined discharge voltage of the lead storage battery when stratification has not occurred as a reference voltage.

具体的には、液式の鉛蓄電池の極板表面では、放電時に水が発生する一方で、充電時には硫酸が発生する。このように、充放電中に生じた水と硫酸との比重差のため、比重の重い硫酸が下に沈殿する一方で水が上方に溜まって、電解液が不均一となる成層化が生じる。成層化が生じた鉛蓄電池においては、硫酸濃度の高い下層部の影響で鉛蓄電池の開放端電圧(OCV:Open Circuit Voltage)が実際の数値よりも高くに検出される。なお、発生した成層化は、充放電を行わない状態では時間とともに徐々に解消され、OCVも安定電圧に収束していく。しかしながら、最後の充放電終了からの経過時間が十分でない場合、成層化の影響により、実際の安定電圧とは異なるOCVが測定されるため、結果として正しいSOCを推定できなくなってしまうという技術的な問題がある。基準電圧に対する成層化の影響を定期的に把握することで、例えば、成層化の影響を除外した安定電圧を用いた、二次電池の状態推定を高精度に行うことが可能となる。   Specifically, on the surface of the electrode plate of the liquid lead-acid battery, water is generated during discharging, while sulfuric acid is generated during charging. Thus, due to the difference in specific gravity between water and sulfuric acid generated during charging and discharging, sulfuric acid with a high specific gravity precipitates downward, while water accumulates upward, resulting in stratification that makes the electrolyte non-uniform. In a lead storage battery in which stratification has occurred, the open circuit voltage (OCV) of the lead storage battery is detected to be higher than the actual numerical value due to the influence of the lower layer portion having a high sulfuric acid concentration. The generated stratification is gradually eliminated with time in a state where charging / discharging is not performed, and the OCV also converges to a stable voltage. However, if the elapsed time from the end of the last charge / discharge is not sufficient, an OCV different from the actual stable voltage is measured due to the effect of stratification, and as a result, a correct SOC cannot be estimated. There's a problem. By periodically grasping the effect of stratification on the reference voltage, for example, it is possible to accurately estimate the state of the secondary battery using a stable voltage excluding the effect of stratification.

分極量とは、同じく内部に硫酸を含む電解液を備える鉛蓄電池において生じる概念であって、充放電に伴って生じた電極板における分極の度合いを示す指標である。分極の発生により、鉛蓄電池の放電容量が大きく低下してしまう場合がある。また、分極は、充放電を停止した後は時間と共に解消されるため、分極の影響による放電容量の低下量は時間と共に変化する。このため、分極の発生の度合いを定期的に把握して補正を行うことで、鉛蓄電池24の状態推定を高精度に行うことが可能となる。   The amount of polarization is a concept that occurs in a lead storage battery that similarly includes an electrolytic solution containing sulfuric acid therein, and is an index that indicates the degree of polarization in the electrode plate that occurs with charge and discharge. Due to the occurrence of polarization, the discharge capacity of the lead storage battery may be greatly reduced. In addition, since polarization is eliminated with time after charging and discharging are stopped, the amount of decrease in discharge capacity due to the influence of polarization changes with time. For this reason, it becomes possible to estimate the state of the lead storage battery 24 with high accuracy by periodically grasping and correcting the degree of occurrence of polarization.

また、二次電池において、成層化または分極化が発生している場合、硫酸濃度が相対的に低い部分が存在する。このため、同等の充電率であっても、硫酸濃度が相対的に低い部分の電極板において、サルフェーションが発生し、充放電効率の低下が生じる。   Further, in the secondary battery, when stratification or polarization occurs, there is a portion where the sulfuric acid concentration is relatively low. For this reason, even if it is an equivalent charge rate, sulfation occurs in the electrode plate in a portion where the sulfuric acid concentration is relatively low, and the charge / discharge efficiency is reduced.

時間当たりの電流変化率ΔIは、電流センサによって検出される単位時間毎の電流変化率である。時間当たりの電流変化率ΔIを定期的に把握することで、鉛蓄電池24の劣化状態を定期的に把握した上で、第1パラメータの補正を行うことができる。   The current change rate ΔI per time is a current change rate per unit time detected by the current sensor. By periodically grasping the current change rate ΔI per hour, the first parameter can be corrected after periodically grasping the deterioration state of the lead storage battery 24.

状態推定装置30が用いる第1パラメータ群と第2パラメータ群との関係について、図4を参照して説明する。図4は、第1パラメータ群のそれぞれのパラメータについて、第2パラメータ群のそれぞれのパラメータを用いた補正を行うための補正値と各パラメータとの関係を示すテーブルである。   The relationship between the first parameter group and the second parameter group used by the state estimation device 30 will be described with reference to FIG. FIG. 4 is a table showing the relationship between the correction values and the parameters for correcting each parameter of the first parameter group using the parameters of the second parameter group.

図4のテーブルに示されるように、第1パラメータ群のそれぞれのパラメータについて、第2パラメータ群の各パラメータに基づく補正パラメータが設定される。   As shown in the table of FIG. 4, for each parameter of the first parameter group, a correction parameter based on each parameter of the second parameter group is set.

具体的には、車両1の走行時間t_runを補正するための補正パラメータAは、第2パラメータ群の各パラメータである、充電率SOC、温度T_batt、温度差ΔT、成層化量q_st、分極量q_OV及び電流変化率ΔIの関数として表される。例えば、A=a(SOC,T_batt,ΔT,q_st,q_OV,ΔI)となる。停止時間t_stop、充電時間t_chg、放電時間t_dischg、充電電気量Ah_chg、放電電気量Ah_dischg、内部抵抗R、減液量d_massに対応する補正パラメータB、C、D、E、F、G、Hについても同様に決定される。   Specifically, the correction parameters A for correcting the travel time t_run of the vehicle 1 are the charge rate SOC, temperature T_batt, temperature difference ΔT, stratification amount q_st, polarization amount q_OV, which are parameters of the second parameter group. And as a function of the current change rate ΔI. For example, A = a (SOC, T_batt, ΔT, q_st, q_OV, ΔI). Correction parameters B, C, D, E, F, G, and H corresponding to the stop time t_stop, the charge time t_chg, the discharge time t_dischg, the charge electricity amount Ah_chg, the discharge electricity amount Ah_dischg, the internal resistance R, and the liquid reduction amount d_mass It is determined similarly.

また、図4のテーブルに示される係数w1、w2、w3、・・・、w8は、それぞれ補正後の第1パラメータの検出値及びその累積値に対して乗算される重み付け係数であって、好適には、鉛蓄電池24の特性や状態に応じて逐次決定される。鉛蓄電池24の充電状態や特性によっては、第1パラメータ群のパラメータの中でも劣化度への影響が異なる場合がある。このような状態や特性に応じて、第1パラメータ群のパラメータを重み付けすることで、より高精度な劣化状態の推定が可能となる。このような重み付け係数は、例えば、あらかじめ算出され、RAM30c内のデータベース30ca内に格納されたものが、鉛蓄電池24の種別に応じて読み込まれることなどによって利用されてよい。   Also, the coefficients w1, w2, w3,..., W8 shown in the table of FIG. 4 are weighting coefficients that are respectively multiplied by the corrected detected value of the first parameter and its accumulated value. Are sequentially determined according to the characteristics and state of the lead storage battery 24. Depending on the state of charge and characteristics of the lead storage battery 24, the influence on the degree of deterioration may be different among the parameters of the first parameter group. By weighting the parameters of the first parameter group according to such states and characteristics, it is possible to estimate the deterioration state with higher accuracy. Such weighting coefficients may be used by, for example, being calculated in advance and stored in the database 30ca in the RAM 30c according to the type of the lead storage battery 24.

状態推定装置30による鉛蓄電池24の第1パラメータの補正処理の一連の流れについて、図5のフローチャートを参照して説明する。状態推定装置30は、フローチャートに示される一連の処理を、例えばROM30b内のプログラム30baにより規定される周期に従って定期的に実行する。   A series of processes for correcting the first parameter of the lead storage battery 24 by the state estimation device 30 will be described with reference to the flowchart of FIG. The state estimation device 30 periodically executes a series of processes shown in the flowchart according to a cycle defined by the program 30ba in the ROM 30b, for example.

第1パラメータ群の各パラメータのうち、特に、走行時間t_run、停止時間t_stop、充電時間t_chg、放電時間t_dischg、充電電気量Ah_chg及び放電電気量Ah_dischgについては、所定の周期毎に検出される。検出された各パラメータは、周期毎にそれぞれ対応する補正パラメータAないしFを用いて補正され、前回周期までの累積値に加算される。このように得られた最新の周期の検出値を補正した値を加算した累積値が、鉛蓄電池24の劣化状態推定におけるパラメータとして用いられる。他方で、内部抵抗R及び減液量d_massについては、周期毎に検出される値をそれぞれ対応する補正パラメータG、Hを用いて補正した値が、鉛蓄電池24の劣化状態推定におけるパラメータとして用いられる。   Among the parameters of the first parameter group, the travel time t_run, the stop time t_stop, the charge time t_chg, the discharge time t_dischg, the charge electricity amount Ah_chg, and the discharge electricity amount Ah_dischg are detected at predetermined intervals. Each detected parameter is corrected using the corresponding correction parameters A to F for each period, and added to the accumulated value up to the previous period. The cumulative value obtained by adding the values obtained by correcting the detected values of the latest period thus obtained is used as a parameter for estimating the deterioration state of the lead storage battery 24. On the other hand, with respect to the internal resistance R and the liquid reduction amount d_mass, values obtained by correcting the values detected for each cycle using the corresponding correction parameters G and H are used as parameters in the deterioration state estimation of the lead storage battery 24. .

これらのパラメータの検出、累積及び補正に係る処理の流れについて説明する。まず、状態推定装置30は、プログラム30baなどにより規定される所定の取得周期毎に、1つ前の周期において累積された第1パラメータ群の各パラメータである累積パラメータを格納する(ステップS101)。具体的には、走行時間t_runの前周期までの累積パラメータt_run_intをt_run_preとして格納する。同様に、停止時間t_stop、充電時間t_chg、放電時間t_dischg、充電電気量Ah_chg及び放電電気量Ah_dischgのそれぞれの値について、t_stop_pre、t_chg_pre、t_dischg_pre、Ah_chg_pre及びAh_dischg_preとして格納する。   A flow of processing relating to detection, accumulation, and correction of these parameters will be described. First, the state estimation device 30 stores accumulated parameters that are each parameter of the first parameter group accumulated in the previous cycle for every predetermined acquisition cycle defined by the program 30ba or the like (step S101). Specifically, the cumulative parameter t_run_int up to the previous cycle of the travel time t_run is stored as t_run_pre. Similarly, t_stop_pre, t_chg_pre, t_dischg_pre, Ah_chg_pre, and Ah_discg_p are stored for the values of the stop time t_stop, the charge time t_chg, the discharge time t_dischg, the charge electricity amount Ah_chg, and the discharge electricity amount Ah_dischg, respectively.

次に、状態推定装置30は、各センサから入力される情報を受け付け、第1パラメータ群の各パラメータである、走行時間t_run、停止時間t_stop、充電時間t_chg、放電時間t_dischg、充電電気量Ah_chg、放電電気量Ah_dischg、内部抵抗R及び減液量d_massの最新の測定値を取得する(ステップS102)。   Next, the state estimation device 30 receives information input from each sensor, and is a travel time t_run, a stop time t_stop, a charge time t_chg, a discharge time t_dischg, a charge electricity amount Ah_chg, which are parameters of the first parameter group. The latest measured values of the discharge electricity amount Ah_dschg, the internal resistance R, and the liquid reduction amount d_mass are acquired (step S102).

ステップS102と前後して、または同時に、状態推定装置30は、各センサから入力される情報を受け付け、第2パラメータ群の各パラメータである、充電率SOC、温度T_batt、温度差ΔT、成層化量q_st、分極量q_OV及び電流変化率ΔIの最新の測定値を取得する(ステップS103)。   Before or after step S102, or simultaneously, the state estimation device 30 receives information input from each sensor, and the charge rate SOC, temperature T_batt, temperature difference ΔT, stratification amount, which are parameters of the second parameter group. The latest measured values of q_st, polarization q_OV, and current change rate ΔI are acquired (step S103).

続いて、状態推定装置30は、取得した第2パラメータ群の各パラメータを用いて、補正パラメータAないしHを算出する(ステップS104)。   Subsequently, the state estimation device 30 calculates correction parameters A to H using each parameter of the acquired second parameter group (step S104).

次に、状態推定装置30は、取得された最新の第1パラメータ群の各パラメータについて、補正パラメータAないしHによる補正を行う(ステップS105)。   Next, the state estimation apparatus 30 corrects each parameter of the acquired first parameter group using the correction parameters A to H (step S105).

このとき、状態推定装置30は、積算される走行時間t_run、停止時間t_stop、充電時間t_chg、放電時間t_dischg、充電電気量Ah_chg及び放電電気量Ah_dischgの各パラメータについては、補正を行った上で、前周期の第1パラメータ群の各パラメータに加算する。例えば、車両1の走行時間t_runについて、前周期までの累積パラメータt_run_preに対して、取得された最新の値であるt_runに補正パラメータAを乗算した値を加算することで、最新の累積パラメータt_run_intが算出される。同様に、取得された最新の測定値t_stop、t_chg、t_dischg、Ah_chg及びAh_dischgのそれぞれの値に補正パラメータB−Fを乗算し、累積パラメータt_stop_int、t_chg_int、t_dischg_int、Ah_chg_int及びAh_dischg_intを算出する。   At this time, the state estimation device 30 corrects each parameter of the accumulated travel time t_run, stop time t_stop, charge time t_chg, discharge time t_dischg, charge electricity amount Ah_chg, and discharge electricity amount Ah_dischg. It adds to each parameter of the first parameter group of the previous cycle. For example, for the travel time t_run of the vehicle 1, the latest cumulative parameter t_run_int is obtained by adding a value obtained by multiplying the latest acquired value t_run to the correction parameter A to the cumulative parameter t_run_pre until the previous cycle. Calculated. Similarly, the values of the latest measured values t_stop, t_chg, t_dischg, Ah_chg, and Ah_dschg are multiplied by the correction parameter BF, and cumulative parameters t_stop_int, t_chg_int, t_dischg_int, Ah_chg_int_g_int_g_t_g_t_g_int_g_t_g_t_g_t_g_int_g_t_g_int_g_int_g_int_g_int_g_int_g_int_g_int_g_int_g_int_g_int

なお、第1パラメータのうち、内部抵抗R及び減液量d_massについては、所定の周期毎に累積する必要がなく、推定タイミング毎に取得した最新の値について補正パラメータを乗算することで補正が行われる。   Of the first parameters, the internal resistance R and the liquid reduction amount d_mass do not need to be accumulated every predetermined period, and correction is performed by multiplying the latest value acquired at each estimation timing by the correction parameter. Is called.

状態推定装置30は、上述した第1パラメータの検出、累積及び補正に係る一連の処理を例えば0.1〜100ms程度の周期で実行する。この処理を繰り返し実行することで、車両1の走行中(一時的な停止状態も含む、車両の運転開始から終了までの期間)において、第1パラメータを適宜最新の状態に維持することができる。   The state estimation device 30 executes the above-described series of processing relating to detection, accumulation, and correction of the first parameter at a cycle of about 0.1 to 100 ms, for example. By repeatedly executing this process, the first parameter can be appropriately maintained in the latest state while the vehicle 1 is traveling (a period from the start to the end of the vehicle operation including a temporarily stopped state).

状態推定装置30は、補正後の第1パラメータに対して、重み付け係数、w1、w2、w3、・・・、w8を適用したモデル式を用いて、二次電池2の劣化状態を示す容量変化率ΔSOHを推定する。二次電池2の容量変化率ΔSOHは、例えば、下記の数式によって算出される。
ΔSOH=t_run_int×w1+t_stop_int×w2+t_chg_int×w3+t_dischg_int×w4+Ah_chg_int×w5+Ah_dischg_int×w6+R×w7+d_mass×w8
The state estimation device 30 uses the model formula in which the weighting coefficients w1, w2, w3,..., W8 are applied to the corrected first parameter, and the capacity change indicating the deterioration state of the secondary battery 2 Estimate the rate ΔSOH. The capacity change rate ΔSOH of the secondary battery 2 is calculated by, for example, the following mathematical formula.
ΔSOH = t_run_int × w1 + t_stop_int × w2 + t_chg_int × w3 + t_dischg_int × w4 + Ah_chg_int × w5 + Ah_dischg_int × w6 + R × w7 + d_mass × w8

上述の処理は、例えば、車両の運転終了時など、一日に一度程度の周期で実施されてよく、また、鉛蓄電池24の劣化状態ΔSOHの検出が必要となる任意のタイミングで適宜実施されてよい。   The above-described processing may be performed at a cycle of about once a day, for example, at the end of driving of the vehicle, and is appropriately performed at any timing that requires detection of the deterioration state ΔSOH of the lead storage battery 24. Good.

上述した状態推定装置30の動作によれば、走行時間、停止時間、充電時間、放電時間、充電電気量、放電電気量、内部抵抗及び減液量など、鉛蓄電池24の使用状況に係る第1パラメータ群の各パラメータに基づく劣化状態の推定が行われる。また、状態推定装置30の動作によれば、二次電池24の温度と二次電池の周囲の気温との温度差や充電率、成層化量、分極量、時間あたりの電流変化率を用いて第1パラメータ群の各パラメータが補正される。   According to the operation of the state estimation device 30 described above, the first related to the usage status of the lead storage battery 24, such as travel time, stop time, charge time, discharge time, charge electricity amount, discharge electricity amount, internal resistance and liquid reduction amount. The deterioration state is estimated based on each parameter of the parameter group. Further, according to the operation of the state estimation device 30, the temperature difference between the temperature of the secondary battery 24 and the ambient temperature around the secondary battery, the charging rate, the stratification amount, the polarization amount, and the current change rate per time are used. Each parameter of the first parameter group is corrected.

このような補正により、鉛蓄電池24の状態に起因する劣化状態への影響を考慮した上で、正確な劣化状態の推定が可能となる。具体的には、充電率SOCに基づく補正を行うことで、鉛蓄電池24の電極板でサルフェーションが発生し、劣化が進行することを考慮した推定が可能となる。また、鉛蓄電池24の環境温度に基づく補正を行うことで、車両の停止状態での保存劣化や、車両の走行状態における充放電の繰り返しによる劣化の進行を考慮した推定が可能となる。成層化や分極の発生の度合いに基づく補正を行うことで、充電率SOCの大小によらず電極板でサルフェーションが生じることを考慮した推定が可能となる。   Such correction makes it possible to accurately estimate the deterioration state in consideration of the influence on the deterioration state caused by the state of the lead storage battery 24. Specifically, by performing the correction based on the charging rate SOC, it is possible to perform estimation considering that sulfation occurs in the electrode plate of the lead storage battery 24 and deterioration proceeds. Further, by performing correction based on the environmental temperature of the lead storage battery 24, it is possible to perform estimation in consideration of storage deterioration when the vehicle is stopped and deterioration due to repeated charging and discharging in the traveling state of the vehicle. By performing correction based on the degree of stratification and the occurrence of polarization, it is possible to perform estimation considering that sulfation occurs in the electrode plate regardless of the charge rate SOC.

このように、逐次補正を行うことができるため、鉛蓄電池24におけるサルフェーションや、充放電の繰り返しなどに起因する劣化を考慮した上で、劣化状態の推定が可能となる。したがって、鉛蓄電池24の使用環境や状態による影響を考慮した上で、劣化状態を高精度に推定することが可能となる。   As described above, since the correction can be performed sequentially, it is possible to estimate the deterioration state in consideration of deterioration due to sulfation in the lead storage battery 24, repeated charge / discharge, or the like. Therefore, it is possible to estimate the deterioration state with high accuracy in consideration of the influence of the usage environment and state of the lead storage battery 24.

なお、図5に示されるフローチャートは、本発明の状態推定装置30による処理の流れの一例を示すものであって、図示される処理のみに限定されるものではない。上述した第2パラメータから生成される補正パラメータを用いて、二次電池の容量劣化率ΔSOHの推定に用いる第1パラメータの補正が実現されていれば、他の態様で処理を実施しても構わない。   Note that the flowchart shown in FIG. 5 shows an example of the flow of processing by the state estimation device 30 of the present invention, and is not limited to the illustrated processing. If the correction of the first parameter used for estimating the capacity deterioration rate ΔSOH of the secondary battery is realized using the correction parameter generated from the second parameter described above, the process may be performed in another manner. Absent.

また、動作例において、状態推定装置30は、第1パラメータ群として、停止時間t_stop、充電時間t_chg、放電時間t_dischg、充電電気量Ah_chg、放電電気量Ah_dischg、内部抵抗R及び減液量d_massを検出して用いている。しかしながら、必ずしもこれら全てのパラメータを用いる必要はなく、一部のみを用いてもよい。少なくとも第1パラメータ群の一部のパラメータを用いることでも上述の処理は実現でき、鉛蓄電池24の劣化状態の推定を行うことができる。その際、状態推定装置30は、用いないパラメータについては、検出しないことや、または重み付け係数を0に設定することなど、何らかの手段により推定処理への影響を除外する。   In the operation example, the state estimation device 30 detects the stop time t_stop, the charge time t_chg, the discharge time t_dischg, the charge electricity amount Ah_chg, the discharge electricity amount Ah_dischg, the internal resistance R, and the liquid reduction amount d_mass as the first parameter group. It is used as. However, it is not always necessary to use all these parameters, and only some of them may be used. The above-described processing can also be realized by using at least some parameters of the first parameter group, and the deterioration state of the lead storage battery 24 can be estimated. At this time, the state estimation device 30 excludes the parameter that is not used, or excludes the influence on the estimation process by some means such as setting the weighting coefficient to 0.

また、動作例において、状態推定装置30は、第2パラメータ群として、充電率SOC、温度T_batt、温度差ΔT、成層化量q_st、分極量q_OV及び電流変化率ΔIを検出して用いている。しかしながら、必ずしもこれら全てのパラメータを用いる必要はなく、第1パラメータと同様に一部のパラメータのみを用いてもよい。少なくとも第2パラメータ群に含まれるいずれかのパラメータを用いて第1パラメータ群の各パラメータを補正することで、鉛蓄電池24の劣化状態推定の精度を向上させることができる。   In the operation example, the state estimation device 30 detects and uses the charging rate SOC, the temperature T_batt, the temperature difference ΔT, the stratification amount q_st, the polarization amount q_OV, and the current change rate ΔI as the second parameter group. However, it is not always necessary to use all these parameters, and only some of the parameters may be used in the same manner as the first parameter. By correcting each parameter of the first parameter group using at least one of the parameters included in the second parameter group, it is possible to improve the accuracy of estimation of the deterioration state of the lead storage battery 24.

また、以上の実施形態では、二次電池として鉛蓄電池24を例に挙げて説明したが、これ以外にも、例えば、ニッケルカドミウム電池、ニッケル水素電池及びリチウムイオン電池などを用いることも可能である。   Moreover, although the lead storage battery 24 was mentioned as an example and demonstrated in the above embodiment as a secondary battery, it is also possible to use a nickel cadmium battery, a nickel hydride battery, a lithium ion battery etc. besides this, for example. .

また、電解液を用いない二次電池に対しても本願は適用可能であり、その場合、状態推定装置30は、第1パラメータ群に含まれる減液量d_mass、並びに第2パラメータ群に含まれる成層化量q_st及び分極量q_OVの各パラメータを用いないで劣化状態の推定処理を行う。   The present application is also applicable to a secondary battery that does not use an electrolytic solution. In this case, the state estimation device 30 is included in the liquid reduction amount d_mass included in the first parameter group and the second parameter group. Deterioration state estimation processing is performed without using each parameter of the stratification amount q_st and the polarization amount q_OV.

本発明は、上述した実施の形態に限られるものではなく、特許請求の範囲及び明細書全体から読み取れる発明の要旨または思想に反しない範囲で変更可能であり、そのような変更を伴う二次電池の状態推定装置もまた本発明の技術的範囲に含まれるものである。   The present invention is not limited to the above-described embodiment, and can be modified within the scope and spirit of the invention that can be read from the claims and the entire specification, and a secondary battery with such a modification. This state estimation apparatus is also included in the technical scope of the present invention.

1 車両
10 エンジン
20 電力系統
21 電圧センサ
22 電流センサ
23 温度センサ
24 鉛蓄電池
30 状態推定装置
DESCRIPTION OF SYMBOLS 1 Vehicle 10 Engine 20 Electric power system 21 Voltage sensor 22 Current sensor 23 Temperature sensor 24 Lead acid battery 30 State estimation apparatus

Claims (5)

車両に搭載される二次電池の劣化状態を推定する二次電池の状態推定装置であって、
前記二次電池の充電が行われている充電時間、放電が行われている放電時間、前記二次電池の充電量、放電量、内部抵抗及び減液量第1パラメータとして検出する第1検出手段と、
前記二次電池の充電率、該二次電池の温度成層化量及び分極量第2パラメータとして検出する第2検出手段と、
前記第2パラメータを用いて、前記第1パラメータを補正する補正手段と、
前記補正された第1パラメータに基づいて、前記二次電池の劣化度の推定を行う推定手段と
を備えることを特徴とする二次電池の状態推定装置。
A state estimation device for a secondary battery for estimating a deterioration state of a secondary battery mounted on a vehicle,
First detection for detecting, as first parameters, a charge time during which the secondary battery is charged, a discharge time during which the secondary battery is discharged, a charge amount, a discharge amount, an internal resistance, and a liquid reduction amount of the secondary battery. Means,
Second detection means for detecting the charging rate of the secondary battery, the temperature , the stratification amount and the polarization amount of the secondary battery as second parameters;
Correction means for correcting the first parameter using the second parameter;
A state estimation device for a secondary battery, comprising: an estimation unit configured to estimate a deterioration degree of the secondary battery based on the corrected first parameter.
前記第1検出手段は、前記第1パラメータを所定周期毎に検出し、
前記第2検出手段は、前記第2パラメータを前記所定周期毎に検出し、
前記補正手段は、最新の周期において検出された前記第2パラメータを用いて、最新の周期において検出された前記第1パラメータを補正し、
前記推定手段は、前記補正された第1パラメータのうち、前記充電時間、前記放電時間、前記充電量及び前記放電量ついて、前回の周期までの累積値に加算した上で、該累積値を前記二次電池の劣化度の推定に用いることを特徴とする請求項1に記載の二次電池の状態推定装置。
The first detection means detects the first parameter every predetermined period,
The second detection means detects the second parameter every predetermined period,
The correction means corrects the first parameter detected in the latest cycle using the second parameter detected in the latest cycle,
Said estimating means, of the first parameter which is the correction, the charge time, the discharge time, with the charge amount and the discharge amount, in terms of the sum in the accumulated value up to the previous cycle, the accumulated value The secondary battery state estimation apparatus according to claim 1, wherein the secondary battery state estimation apparatus is used to estimate a deterioration degree of the secondary battery.
前記推定手段は、前記補正された第1パラメータのそれぞれについて、前記二次電池の特性に応じた重み付けを行ったうえで、前記二次電池の劣化度の推定を行うことを特徴とする請求項1または2に記載の二次電池の状態推定装置。   The estimation means estimates the degree of deterioration of the secondary battery after weighting each of the corrected first parameters according to characteristics of the secondary battery. The state estimation apparatus of the secondary battery as described in 1 or 2. 前記二次電池の初期容量を取得する、初期値取得手段を更に備え、
前記補正手段は、前記二次電池の初期容量に対して、前記補正された第1パラメータを適用することで、前記二次電池の劣化度の推定を行うことを特徴とする請求項1から3のいずれか一項に記載の二次電池の状態推定装置。
An initial value acquiring means for acquiring an initial capacity of the secondary battery;
The said correction | amendment means estimates the deterioration degree of the said secondary battery by applying the said corrected 1st parameter with respect to the initial capacity of the said secondary battery. The state estimation apparatus of the secondary battery as described in any one of these.
車両に搭載される二次電池の劣化状態を推定する二次電池の状態推定方法であって、
前記二次電池の充電が行われている充電時間、放電が行われている放電時間、前記二次電池の充電量、放電量、内部抵抗及び減液量第1パラメータとして検出する第1検出工程と、
前記二次電池の充電率、該二次電池の温度成層化量及び分極量第2パラメータとして検出する第2検出工程と、
前記第2パラメータを用いて、前記第1パラメータを補正する補正工程と、
前記補正された第1パラメータに基づいて、前記二次電池の劣化度の推定を行う推定工程と
を備えることを特徴とする二次電池の状態推定方法。
A state estimation method for a secondary battery for estimating a deterioration state of a secondary battery mounted on a vehicle,
First detection for detecting, as first parameters, a charge time during which the secondary battery is charged, a discharge time during which the secondary battery is discharged, a charge amount, a discharge amount, an internal resistance, and a liquid reduction amount of the secondary battery. Process,
A second detection step of detecting the charge rate of the secondary battery, the temperature of the secondary battery , the stratification amount, and the polarization amount as second parameters;
A correction step of correcting the first parameter using the second parameter;
An estimation step of estimating a deterioration degree of the secondary battery based on the corrected first parameter. A method for estimating the state of the secondary battery.
JP2012256577A 2012-11-22 2012-11-22 Secondary battery state estimation apparatus and method Active JP5840116B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012256577A JP5840116B2 (en) 2012-11-22 2012-11-22 Secondary battery state estimation apparatus and method
PCT/JP2013/080075 WO2014080764A1 (en) 2012-11-22 2013-11-07 Secondary battery state estimating device and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012256577A JP5840116B2 (en) 2012-11-22 2012-11-22 Secondary battery state estimation apparatus and method

Publications (2)

Publication Number Publication Date
JP2014105995A JP2014105995A (en) 2014-06-09
JP5840116B2 true JP5840116B2 (en) 2016-01-06

Family

ID=50775949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012256577A Active JP5840116B2 (en) 2012-11-22 2012-11-22 Secondary battery state estimation apparatus and method

Country Status (2)

Country Link
JP (1) JP5840116B2 (en)
WO (1) WO2014080764A1 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6226406B2 (en) * 2014-03-18 2017-11-15 株式会社東芝 Deterioration estimation method, deterioration estimation system, and deterioration estimation program
US11022653B2 (en) 2015-08-26 2021-06-01 Nissan Motor Co., Ltd. Deterioration degree estimation device and deterioration degree estimation method
JP6615011B2 (en) 2016-03-09 2019-12-04 日立オートモティブシステムズ株式会社 Battery management system, battery system and hybrid vehicle control system
JP6339618B2 (en) 2016-03-29 2018-06-06 古河電気工業株式会社 Secondary battery degradation estimation device and secondary battery degradation estimation method
JP6647111B2 (en) * 2016-03-29 2020-02-14 古河電気工業株式会社 Secondary battery deterioration estimating apparatus and secondary battery deterioration estimating method
JP7264583B2 (en) * 2016-10-31 2023-04-25 ビークルエナジージャパン株式会社 Battery controller and battery system
JPWO2018105645A1 (en) * 2016-12-09 2019-11-07 日本電気株式会社 Operation control system and control method thereof
JP6844923B2 (en) * 2017-03-17 2021-03-17 ダイハツ工業株式会社 Battery fluid temperature measuring device
KR102405005B1 (en) * 2017-04-14 2022-06-07 삼성전자주식회사 Electronic apparatus for changing state of charging battery according to state of battery
JP2019078571A (en) * 2017-10-20 2019-05-23 本田技研工業株式会社 Power supply system
JP2019079629A (en) * 2017-10-20 2019-05-23 本田技研工業株式会社 Power source system
JP6605008B2 (en) 2017-10-20 2019-11-13 本田技研工業株式会社 Power supply system and vehicle
JP2021060230A (en) 2019-10-03 2021-04-15 株式会社Gsユアサ Estimation device, estimation method, and computer program
JP2021061118A (en) * 2019-10-03 2021-04-15 株式会社Gsユアサ Estimation device, estimation method, and computer program
JP2021099262A (en) 2019-12-23 2021-07-01 株式会社Gsユアサ Method for estimating charge state of control valve type lead storage battery, reduced liquid quantity of electrolyte or sulfuric acid concentration of electrolyte, and device for monitoring control valve type lead storage battery
CN111077466B (en) * 2020-01-03 2023-09-12 浙江吉利汽车研究院有限公司 Method and device for determining vehicle battery health state
CN113484762B (en) * 2021-07-16 2024-05-14 东风柳州汽车有限公司 Battery state of health estimation method, device, equipment and storage medium
CN113978311B (en) * 2021-10-15 2024-05-17 潍柴动力股份有限公司 Battery temperature correction method and device and electronic equipment

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3744833B2 (en) * 2001-09-28 2006-02-15 三洋電機株式会社 Method for determining the life of secondary batteries for electric vehicles
JP2005265642A (en) * 2004-03-18 2005-09-29 Mitsubishi Fuso Truck & Bus Corp Remaining amount detection system for vehicle battery
JP4413893B2 (en) * 2006-07-10 2010-02-10 古河電気工業株式会社 Storage battery control method and control device
JP5076835B2 (en) * 2007-11-26 2012-11-21 株式会社ニプロン Secondary battery deterioration state judgment system
JP4823345B2 (en) * 2009-09-18 2011-11-24 三菱重工業株式会社 Battery system
JP5466564B2 (en) * 2010-04-12 2014-04-09 本田技研工業株式会社 Battery degradation estimation method, battery capacity estimation method, battery capacity equalization method, and battery degradation estimation apparatus

Also Published As

Publication number Publication date
WO2014080764A1 (en) 2014-05-30
JP2014105995A (en) 2014-06-09

Similar Documents

Publication Publication Date Title
JP5840116B2 (en) Secondary battery state estimation apparatus and method
JP7057882B2 (en) Estimator, power storage device, estimation method
US10802080B2 (en) Battery system in vehicle and aging deterioration estimation method for battery
CN108474824B (en) Power storage element management device, power storage element module, vehicle, and power storage element management method
JP5179047B2 (en) Storage device abnormality detection device, storage device abnormality detection method, and abnormality detection program thereof
CN107817450B (en) Storage element pack, management device, SOC estimation method, medium, and panel system
US8907674B2 (en) System and method for determining degradation of rechargeable lithium ion battery
JP5687584B2 (en) Lithium-ion battery condition measurement device
JP5548784B2 (en) Secondary battery deterioration estimation device
EP3343689B1 (en) Deterioration degree estimation device and deterioration degree estimation method
JP2010270747A (en) Automatic engine control device
US20140111214A1 (en) Electric storage condition detecting apparatus
WO2012137456A1 (en) Method for determining remaining lifetime
JP6339618B2 (en) Secondary battery degradation estimation device and secondary battery degradation estimation method
JP5911407B2 (en) Battery soundness calculation device and soundness calculation method
JP6421986B2 (en) Secondary battery charging rate estimation method, charging rate estimation device, and soundness estimation device
JP2020043084A (en) Electricity storage element management device, electricity storage element module, vehicle, and electricity storage element management method
JP2008022596A (en) Control method of accumulator and control device
JP2017138127A (en) Soc management system of onboard battery
JP2014109535A (en) Internal resistance estimation device, charging apparatus, discharging apparatus, and internal resistance estimation method
JP5904916B2 (en) Battery soundness calculation device and soundness calculation method
JP5535092B2 (en) Lead storage battery state detection device and lead storage battery state detection method
US8994324B2 (en) Charge capacity parameter estimation system of electric storage device
JP2003035176A (en) Battery-mounted vehicle, vehicle having idling stop function, and device for and method of determining condition of battery mounted on the vehicle having idling stop function
JP7225153B2 (en) Charge/discharge control method, battery-equipped device, management system, charge/discharge control program, management method, management server, and management program

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151110

R151 Written notification of patent or utility model registration

Ref document number: 5840116

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350